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Abstract. Let X0 and X1 be two order continuous Banach function
spaces on a finite measure space, (E0, E1) a Banach space interpolation
pair, and T : X0 + X1 → E0 + E1 an admissible operator between the
pairs (X0, X1) and (E0, E1). If Tθ : [X0, X1][θ] → [E0, E1][θ] is the inter-
polated operator by the first complex method of Calderón and m0, m1

and mθ are the vector measures coming from T |X0
and T |X1

and Tθ,
respectively, then we study the relationship between the optimal domain
L1(mθ) of Tθ and the complex interpolation space [L1(m0), L

1(m1)][θ]

of the optimal domains of T |X0
and T |X1

. Then, we apply the obtained

result to study interpolation of p-th power factorable and bidual (p, q)-
power-concave operators.
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1. Introduction

Let T : X → E be a (continuous and linear) operator from a Banach function
space X, over a measure space (Ω,Σ, μ), into a Banach space E. Under some
mild conditions, a vector measure mT : Σ → E is defined by mT (A) :=
T (χA). The space L1(mT ) of scalar integrable functions with respect to mT

is the optimal domain of T in the sense that it is the largest space among
all order continuous Banach function spaces (based on (Ω,Σ, μ)) into which
X is continuously embedded and to which T admits an E-valued continuous
linear extension (see [5] or [12, Theorem 4.14]).

Let (X0,X1) be an interpolation pair of Banach function spaces,
(E0, E1) an interpolation pair of Banach spaces and T an admissible operator
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between the pairs (X0,X1) and (E0, E1), that is, an operator T : X0 + X1 →
E0 + E1 such that its restrictions T0 := T |X0

: X0 → E0 and T1 :=
T |X1

: X1 → E1 are continuous. Moreover, let Tθ : [X0,X1][θ] → [E0, E1][θ]

be the interpolated operator for 0 < θ < 1, where [·, ·][θ] denotes Calderón’s
first complex interpolation method, and set mθ := mTθ

for all 0 ≤ θ ≤ 1.
Mastylo asked one of the authors whether the equality between the inter-

polated space [L1(m0), L1(m1)][θ] of the optimal domains of T0 and T1, and
the optimal domain L1(mθ) of the interpolated operator Tθ holds. In general,
the answer to this question lies in the negative (see Remark 3.3). However, in
the present paper we prove that the inclusion [L1(m0), L1(m1)][θ] ⊆ L1(mθ)
holds. This is carried out in Sect. 3 (Theorem 3.1), after having established the
necessary preliminaries in Sect. 2. Finally, in Sect. 4, we apply the obtained
results to study the complex interpolation of certain classes of operators char-
acterized by some extension or Maurey–Rosenthal factorization property. In
concrete, we study the complex interpolation of p-th power factorable opera-
tors (Theorem 4.4), bidual (p, q)-power-concave operators (Theorem 4.9) and
q-concave operators (Theorem 4.12).

2. Preliminaries and Notation

Let (Ω,Σ, μ) be a finite measure space. A Banach function space X over μ
(B.f.s. for short) is an ideal of the space of (equivalence classes of) measurable
functions L0(μ) endowed with a complete norm ‖ · ‖X that is compatible with
the μ-a.e. order and such that L∞(μ) ⊆ X ⊆ L1(μ) (see [9, p. 28]). The unit
ball of X will be denoted by B(X). The Banach space of all integral func-
tionals on X is the Köthe dual space and is denoted by X ′. The topological
dual is denoted by X∗.

A B.f.s. X is order continuous if for every sequence (fn)n in X such
that 0 ≤ fn ↓ 0 pointwise we have that ‖fn‖X ↓ 0. In [9, p. 29-30] we can find
the following characterization: X is order continuous if and only if X ′ = X∗.
Given 0 < p < ∞, the p-th power space of a B.f.s. X with norm ‖ · ‖X is

the space X[p] :=
{

f ∈ L0(μ) : |f | 1
p ∈ X

}
which is a quasi-Banach function

space with quasi-norm

‖f‖X[p]
:= ‖ |f | 1

p ‖p

X , f ∈ X[p].

This quasi-norm is equivalent to a norm if and only if X is p-convex, and for
0 < p < 1, it is in fact a norm (see [12, Proposition 2.23]). Therefore, X[p] is
a B.f.s. for 0 < p < 1. If p ≥ 1 then X ⊆ X[p].

For a given pair (X0,X1) of B.f.s. over μ and 0 < θ < 1, the Calderón–
Lozanovskii’s product space X1−θ

0 Xθ
1 (see [3]) is the Banach space consisting

of all f ∈ L0(μ) such that there exist f0 ∈ B(X0), f1 ∈ B(X1) and λ > 0 for
which

|f(w)| ≤ λ|f0(w)|1−θ|f1(w)|θ, w ∈ Ω (μ-a.e.), (2.1)

endowed with the norm ‖x‖X1−θ
0 Xθ

1
= inf λ, where the infimum is taken

over all λ satisfying (2.1). The Calderón–Lozanovskii’s product space has



the following relationships with the first Calderón’s complex interpolation
method (see [1] or [2]): X0 ∩ X1 ⊆ [X0,X1][θ] ⊆ X1−θ

0 Xθ
1 ⊆ X0 + X1 with

‖x‖[X0,X1][θ]
= ‖x‖X1−θ

0 Xθ
1

for all x ∈ [X0,X1][θ]. Furthermore, if X0 or X1 is

order continuous, then [X0,X1][θ] = X1−θ
0 Xθ

1 .
Now we present the essential definitions and results about integration

with respect to vector measures. Let m : Σ → E be a vector measure defined
on a σ–algebra Σ of subsets of a nonempty set Ω. This will always mean that
m is countably additive on Σ with values in a real Banach space E. The semi-
variation of m is the subadditive set function ‖m‖ : Σ → [0,∞) defined by

‖m‖ (A) := sup {|〈m,x∗〉| (A) : x∗ ∈ B(E∗)} , A ∈ Σ,

where |〈m,x∗〉| is the total variation measure of the scalar measure 〈m,x∗〉
given by 〈m,x∗〉 (A) := 〈m(A), x∗〉 , for all A ∈ Σ. Note that for a positive
scalar (finite) measure m, the semivariation of m and the measure m coin-
cide. A set A ∈ Σ is called m–null if ‖m‖ (A) = 0. Let L0(m) be the space
of all R–valued Σ–measurable functions on Ω. Two functions f, g ∈ L0(m)
are identified if they are equal m–a.e., that is, if {w ∈ Ω : f(w) = g(w)} is an
m–null set.

A function f ∈ L0(m) is called integrable (with respect to m) if
f ∈ L1 (|〈m,x∗〉|) for all x∗ ∈ E∗ and for each A ∈ Σ there exists an ele-
ment

∫
A

fdm ∈ E (called the integral of f over A) such that
〈∫

A
fdm, x∗〉 =∫

A
fd 〈m,x∗〉 for all x∗ ∈ E∗ (see [10], [8]). The space L1(m) of all (equiv-

alence classes of) integrable functions becomes a Banach lattice when it is
endowed with the natural order m–a.e., and the norm

‖f‖L1(m) := sup

⎧
⎨
⎩

∫

Ω

|f | d |〈m,x∗〉| : x∗ ∈ B(E∗)

⎫
⎬
⎭ , f ∈ L1(m).

The integration map Im : L1(m) → E, given by Im(f) :=
∫
Ω

f dm for all
f ∈ L1(m), is an operator.

Let 1 ≤ p < ∞. A measurable function f : Ω → R is called p–integrable
(with respect to m) if |f |p ∈ L1(m). We denote by Lp(m) the space of
(equivalence classes of) p–integrable functions. The natural norm for this
space is given by

‖f‖Lp(m) := sup

⎧
⎪⎨
⎪⎩

⎛
⎝

∫

Ω

|f |p d |〈m,x∗〉|
⎞
⎠

1
p

: x∗ ∈ B(E∗)

⎫
⎪⎬
⎪⎭

, f ∈ Lp(m).

A measure |〈m,x∗〉| that is equivalent to m (in the sense that they have
both the same null sets) is called a Rybakov control measure for m. Such
a measure always exists. We refer to [6] for this notion and basic results on
vector measures and to [7] for spaces Lp(m). If μ is a Rybakov control measure
for m then Lp(m) is a B.f.s. on (Ω,Σ, μ) for all p ≥ 1. Moreover, Lp(m) is
order continuous and it can be easily checked that Lp(m) = (L1(m))[ 1

p ].



3. Interpolation and Optimal Domains

Let T : X → E be a Banach-space valued operator on an order continuous
B.f.s. X. Under these conditions the expression mT (A) := T (χA) defines a
vector measure mT : Σ → E which is called the vector measure associated to
T . The operator T is said to be μ-determined if the measures μ and mT have
exactly the same null sets. When T is μ-determined, the space L1(mT ) is an
order continuous B.f.s. on (Ω,Σ, μ), X is continuously embedded into L1(mT )
via the natural inclusion JT : X → L1(mT ) and the integration operator
ImT

: L1(mT ) → E is the unique continuous linear extension of T satisfying
T = ImT

◦ JT (see [5] or [12, Proposition 4.4]).
Therefore, if Y is another order continuous B.f.s such that X ⊆ Y ⊆

L0(μ) and T : Y → E is a continuous linear extension of T then Y ⊆ L1(mT ).
In this sense, it is said that L1(mT ) is the (order continuous) optimal domain
for the operator T .

From now on, X0 and X1 will be order continuous B.f.s. on the same
finite measure space (Ω, Σ, μ), (E0, E1) a Banach space pair and T an admis-
sible μ-determined operator. In this situation we have the optimal domains
L1(m0), L1(m1) and L1(mθ) corresponding to the restricted μ-determined
operators T0 : X0 → E0, T1 : X1 → E1 and Tθ : [X0,X1][θ] → [E0, E1][θ].
The following result relates the interpolation space [L1(m0), L1(m1)][θ] of
the optimal domains L1(m0) and L1(m1) with the optimal domain L1(mθ)
of the interpolated operator Tθ.

Theorem 3.1. [L1(m0), L1(m1)][θ] is continuously embedded into L1(mθ).

Proof. For i = 0, 1, the space Xi is continuously embedded into the space
L1(mi) and there exists a unique extension Imi

of Ti to L1(mi) (see [5] or
[12, Theorem 4.14]). By the order continuity of Xi and L1(mi) we have the
following chain of inclusions

[X0,X1][θ] = X1−θ
0 Xθ

1 ⊆ L1(m0)1−θL1(m1)θ = [L1(m0), L1(m1)][θ].

Note that if f ∈ L1(m0) ∩ L1(m1) then Im0(f) = Im1(f). In fact, if
0 ≤ f ∈ L1(m0) ∩ L1(m1) then we can take a sequence of simple functions
0 ≤ ϕn ↑ f pointwise. Since L1(mi) has order continuous norm we have
ϕn → f in L1(mi). By the continuity of Imi

we obtain Imi
(f) = lim Imi

(ϕn),
but ϕn ∈ Xi, so Imi

(ϕn) = Ti(ϕn) = T (ϕn) and hence Imi
(f) = lim T (ϕn).

Now we define the operator T̂ : L1(m0) + L1(m1) → E0 + E1 by

T̂ (f0 + f1) := Im0(f0) + Im1(f1), f0 + f1 ∈ L1(m0) + L1(m1).

T̂ is well–defiend since Im0(f) = Im1(f) for every f ∈ L1(m0) ∩ L1(m1).
Moreover, T̂ |L1(m0)

= Im0 , T̂ |L1(m1)
= Im1 and T̂ |X0+X1

= T . Therefore,
we have that the interpolated operator T̂θ : [L1(m0), L1(m1)][θ] → [E0, E1][θ]

satisfies T̂θ|[X0,X1][θ]
= Tθ.

Thus, T̂θ is a continuous linear extension of Tθ : [X0,X1][θ] → [E0, E1][θ]

to the order continuous Banach space [L1(m0), L1(m1)][θ]. By the optimality
of the domain L1(mθ) for the operator Tθ (see again [5] or [12, Theorem



4.14]) we conclude that [L1(m0), L1(m1)][θ] is continuously embedded into
L1(mθ). �

Remark 3.2. When (E0, E1) is a pair of B.f.s. on the same finite measure
space and the operator T is positive, the vector measure mθ coincides with
the interpolated measure [m0,m1]θ introduced and studied in [4] and then
Theorem 3.1 is a generalization of [4, Corollary 2.7].

Remark 3.3. (see the interesting paper [11] for details). In general we can
not expect the equality between the spaces involved in Theorem 3.1 as the
Fourier transform map F : L1(T) → �∞(Z) shows. Recall that F assigns to
each f ∈ L1(T) its Fourier transform f̂ : Z → C given by

f̂(n) :=
1
2π

2π∫

0

f(x)e−inxdx, n ∈ Z.

It is known that L1(m0) = L1(T) and L1(m1) = L2(T) for the vector mea-
sures m0(A) = F0(χA) and m1(A) = F1(χA) associated to F0 : L1(T) →
�∞(Z) and F1 : L2(T) → �2(Z). Therefore, for 0 < θ < 1,

[L1(m0), L1(m1)][θ] = [L1(T), L2(T)][θ] = Lp(T),

where 1
p = 1 − θ

2 . However, the optimal domain L1(mθ) for the interpolated

operator Tθ : Lp(T) → �
2
θ can be described in this way

L1(mθ) = F p(T) :=
{

f ∈ L1(T) : F(fχA) ∈ �
2
θ (Z),∀A ∈ B(T)

}
,

and, what is more interesting and deeper, the inclusion Lp(T) ⊆ F p(T) is
proper (see [11, Theorem 1.4]).

4. Interpolation of p-th Power Factorable Operators and
Bidual (p, q)-Power-Concave Operators

A classical question on interpolation theory is the following: if we have an
admissible operator T between the pairs (X0,X1) and (E0, E1) such that
both T0 : X0 → E0 and T1 : X1 → E1 have a certain property P then
does the operator Tθ : [X0,X1][θ] → [E0, E1][θ] between the interpolated
spaces satisfy the same property P? We are going to apply our result about
optimal domains to answer this question in the affirmative for the properties
of being p-th power factorable operator and being bidual (p, q)-power-concave
operator.

We begin by recalling the definition and properties of p-th power fac-
torable operators introduced in [12].

Definition 4.1. Let 1 ≤ p < ∞, X an order continuous Banach function
space, and E a Banach space. An operator T : X → E is said to be p-th
power factorable if there exists an operator T[p] : X[p] → E, which equals T
over X ⊆ X[p].



When we consider a μ-determined operator T : X → E on an order
continuous B.f.s. X it is easy to see that the restriction Ip

mT
: Lp(mT ) → E of

the integration operator ImT
: L1(mT ) → E is μ-determined and p-th power

factorable. The characterization of p-th power factorable operator is given by
the following result (see [12, Theorem 5.7] for more equivalences).

Theorem 4.2. Given 1 ≤ p < ∞, an order continuous B.f.s. X, a Banach
space E and a μ-determined operator T : X → E, the following assertions
are equivalent:

(i) T is p-th power factorable.
(ii) X ⊆ Lp(mT ) with a continuous inclusion.

Remark 4.3. If an operator T is p-th power factorable then it is q-th power
factorable for every 1 ≤ q < p. This is due to the facts that Lp(mT ) is
continuously embedded in Lq(mT ) for 1 ≤ q < p and that the composition of
a p-th power factorable operator with an operator is a p-th power factorable
operator (see [12, Lemma 5.4]).

Now we are going to prove that the property of being p-th power fac-
torable is preserved by the first Calderón’s complex interpolation method.
Recall that from now on (X0,X1) is a pair of order continuous B.f.s on
the same measure space (Ω,Σ, μ), (E0, E1) is a Banach space interpola-
tion pair and T is an admissible μ-determined operator with restrictions
T0 := T |X0

: X0 → E0 and T1 =: T |X1
: X1 → E1.

Theorem 4.4. If T0 and T1 are p-th power factorable then the interpolated
operator Tθ is p-th power factorable.

Proof. By Theorem 4.2 we have to prove that [X0,X1][θ] ⊆ Lp(mθ). Since
X0 and X1 have order continuous norm and T0 and T1 are p-th factorable we
have [X0,X1][θ] = X1−θ

0 Xθ
1 ⊆ Lp(m0)1−θLp(m1)θ. So, we only need to check

that Lp(m0)1−θLp(m1)θ ⊆ Lp(mθ), but this condition is equivalent to prove
that L1(m0)1−θL1(m1)θ ⊆ L1(mθ) and this follows from Theorem 3.1 since
L1(m0) (or L1(m1)) has order continuous norm. �

What can we say if we consider an admissible operator T such that T0

is p0-th power factorable and T1 is p1-th power factorable? The next result
sheds some light on this issue:

Theorem 4.5. Let 0 < θ < 1 ≤ p0 ≤ p1 < ∞. If T0 is p0-th power factorable
and T1 is p1-th power factorable then Tθ,α : [X0,X1][θ] → [E0, E1][α] is well-
defined and it is a p-th power factorable restriction of T , where p is given by
1
p := 1−θ

p0
+ θ

p1
and α := θp

p1
.

Proof. First, observe that 0 < α < 1. During the proof we will check that
[X0,X1][θ] ⊆ Lp(mα), where mα is the measure associated to the opera-
tor Tα : [X0,X1][α] → [E0, E1][α]. Thus, in particular we have [X0,X1][θ] ⊆
L1(mα) which allows us to consider the operator Tθ,α : [X0,X1][θ] →
[E0, E1][α] given by Tθ,α := Imα

|[X0,X1][θ]
. Note that mTθ,α

= mα. There-
fore, keeping in mind Theorem 4.2, we only have to prove that [X0,X1][θ] ⊆
Lp(mα).



Since X0 is p0-th factorable and X1 is p1-th factorable we have

[X0,X1][θ] = X1−θ
0 Xθ

1 ⊆ Lp0(m0)1−θLp1(m1)θ.

Thus, if we check that Lp0(m0)1−θLp1(m1)θ ⊆ Lp(mα) then the proof will
be completed. So, let 0 ≤ f0 ∈ Lp0(m0), 0 ≤ f1 ∈ Lp1(m1) and take
g0 := fp0

0 ∈ L1(m0) and g1 := fp1
1 ∈ L1(m1). By Theorem 3.1 we have

L1(m0)1−αL1(m1)α ⊆ L1(mα). Hence,
(
f1−θ
0 fθ

1

)p
= f

(1−θ)p
0 fθp

1 = (fp0
0 )

(1−θ)p
p0 (fp1

1 )
θp
p1 = g1−α

0 gα
1 ∈ L1(mα),

that is, f1−θ
0 fθ

1 ∈ Lp(mα). �

Observe that if p0 = p1 in Theorem 4.5 then α = θ and we recover
Theorem 4.4. Furthermore, if p0 < p1, T0 is p0-th power factorable and T1 is
p1-th power factorable then T1 is also p0-th power factorable and so the oper-
ator Tθ : [X0,X1][θ] → [E0, E1][θ] is p0-th power factorable by Theorem 4.4.
Theorem 4.5 provides a better result in the sense that the operator Tθ,α

is even p-th power factorable (with p0 < p). However, the range space is
not [E0, E1][θ] but [E0, E1][α]. In particular when the pair of Banach spaces
(E0, E1) satisfies that E0 ⊆ E1 we have the following result.

Corollary 4.6. Let 1 ≤ p0 < p1 < ∞ and E0 ⊆ E1. If T0 is p0-th power
factorable and T1 is p1-th power factorable then Tθ is p-th power factorable,
where p is given by 1

p := 1−θ
p0

+ θ
p1

.

Proof. If p0 < p1 then p0 < p < p1 and so α = θp
p1

< θ. From E0 ⊆ E1 and [2,
Theorem 4.2.1] it follows that [E0, E1][α] ⊆ [E0, E1][θ]. By Theorem 4.5, the
operator Tθ,α : [X0,X1][θ] → [E0, E1][α] is p-th power factorable and hence
Tθ = Tθ,θ : [X0,X1][θ] → [E0, E1][θ] is p-th power factorable. �

In connection with the Maurey–Rosenthal factorization theory, Okada,
Ricker and Sánchez-Pérez introduced in [12] the concept of bidual (p, q)-
power-concave operator.

Definition 4.7. Let 1 ≤ p, q < ∞, X an order continuous Banach function
space, and E a Banach space. An operator T : X → E is said to be bidual
(p, q)-power-concave if there exists a constant C > 0 such that

n∑
j=1

‖T (fj)‖
q
p

E ≤ C sup

⎧
⎨
⎩

∣∣∣∣∣∣

〈
n∑

j=1

|fj |
q
p , ξ

〉∣∣∣∣∣∣
: ξ ∈ B(X∗

[q])

⎫
⎬
⎭

for all n ∈ N and f1, . . . , fn ∈ X. A bidual (1, q)-power-concave operator is
called simply bidual q-concave.

The following theorem characterizes bidual (p, q)-power-concave opera-
tors (see [12, Theorem 6.9] for other equivalences).

Theorem 4.8. Let T : X → E a μ-determined operator. The following asser-
tions are equivalent:

(i) T is bidual (p, q)-power-concave operator.



(ii) There exists 0 < g ∈ L0(μ) such that the inclusions

X ⊆ Lq(gdμ) ⊆ Lp(mT )

hold and are continuous.

Now we can obtain a result about interpolation of bidual (p, q)-power-
concave operators.

Theorem 4.9. If T0 and T1 are bidual (p, q)-power-concave then Tθ is bidual
(p, q)-power-concave.

Proof. By Theorem 4.8 there exists 0 < gi ∈ L0(μ) such that Xi ⊆
Lq(gidμ) ⊆ Lp(mi) for i = 0, 1. Therefore,

[X0,X1][θ] ⊆ [Lq(g0dμ), Lq(g1dμ)][θ] ⊆ [Lp(m0), Lp(m1)][θ].

According to [2, Theorem 5.5.3] we have [Lq(g0dμ), Lq(g1dμ)][θ] = Lq(gdμ),
where g := g1−θ

0 gθ
1 > 0. On the other hand, by Theorem 3.1 it follows

that L1(m0)1−θL1(m1)θ ⊆ L1(mθ) and hence Lp(m0)1−θLp(m1)θ ⊆ Lp(mθ).
Thus, [X0,X1][θ] ⊆ Lq(gdμ) ⊆ [Lp(m0), Lp(m1)][θ] ⊆ Lp(mθ) and so the
operator Tθ is bidual (p, q)-power-concave (again by Theorem 4.8). �

We can obtain similar results to Theorem 4.5 and Proposition 4.6 for
bidual (p, q)-power-concave operators.

Theorem 4.10. Let 1 ≤ p0 ≤ p1 < ∞, 1 ≤ q0 ≤ q1 < ∞, 0 < θ < 1.
If T0 is bidual (p0, q0)-power-concave and T1 is bidual (p1, q1)-power-concave
then Tθ,α : [X0,X1][θ] → [E0, E1][α] is bidual (p, q)-power-concave, where 1

p :=
1−θ
p0

+ θ
p1

, 1
q := 1−θ

q0
+ θ

q1
and α := θp

p1
.

Proof. Again there exists 0 < gi ∈ L0(μ) such that Xi ⊆ Lqi(gidμ) ⊆
Lpi(mi), for i = 0, 1 and hence

[X0,X1][θ] ⊆ [Lq(g0dμ), Lq(g1dμ)][θ] = Lq(gdμ) ⊆ [Lp(m0), Lp(m1)][θ],

with g = g1−θ
0 gθ

1 > 0. Now we can repeat the same argument as in Theo-
rem 4.5 to prove that Lp0(m0)1−θLp1(m1)θ ⊆ Lp(mα) and this completes the
proof. �

Observe that if p0 = p1 and q0 = q1 then Theorem 4.10 reduces to
Theorem 4.9.

Corollary 4.11. Let 1 ≤ p0 < p1 < ∞, 1 ≤ q < ∞ and E0 ⊆ E1. If T0 is
bidual (p0, q)-power-concave and T1 is bidual (p1, q)-power-concave then Tθ

is bidual (p, q)-power-concave, where p is given by 1
p := 1−θ

p0
+ θ

p1
.

Proof. If p0 < p1 then p0 < p < p1 and so α = θp
p1

< θ. From E0 ⊆ E1 and
[2, Theorem 4.2.1] we deduce that [E0, E1][α] ⊆ [E0, E1][θ]. By Theorem 4.10,
the operator Tθ,α : [X0,X1][θ] → [E0, E1][α] is bidual (p, q)-power-concave and
thus Tθ = Tθ,θ : [X0,X1][θ] → [E0, E1][θ] is bidual (p, q)-power-concave (see
[12, Proposition 6.2 (vi)]). �



Finally we obtain a new result about interpolation of q-concave opera-
tors. Recall that a bidual q-concave operator is in particular q-concave (see
[12, Proposition 6.2 (i)] with p = 1).

Corollary 4.12. Let (X0,X1) be a pair of q-convex order continuous B.f.s and
T an admissible operator. If T0 and T1 are q-concave then Tθ is q-concave.

Proof. Since X0 and X1 are q-convex and T0 and T1 are q-concave, then
applying [12, Proposition 6.2 (iv) and (6.6)] it follows that T0 and T1 are
bidual q-concave operators and so is Tθ by Theorem 4.9 with p = 1. Then,
[12, Proposition 6.2 (i)] guarantees that Tθ is q-concave. �
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Matemática, vol. 58. North–Holland, Amsterdam (1975)

[11] Mockenhaupt, G., Ricker, W.J.: Optimal extension of the Hausdorff–Young
inequality. J. Reine Angew. Math. 620, 195–211 (2008)

[12] Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral
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