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a b s t r a c t

We apply the Calderón interpolation methods to Banach lattices of p-integrable and
weakly p-integrable functionswith respect to a Banach-space-valuedmeasure defined on a
δ-ring. In general, the results we obtain are quite different from those in the case of vector
measures on σ -algebras. However, we find a wide class of vector measures on δ-rings for
which the results on σ -algebras hold true.

1. Introduction

For a Banach-space-valued measure m defined on a σ -algebra, we obtained in [8] the Calderón interpolation spaces
[X0, X1][θ] and [X0, X1]

[θ ] of the couples (X0, X1), where X0 and X1 are the Banach lattices Lp(m) or Lpw(ν) of equivalence
classes of scalar p-integrable or, respectively, weakly p-integrable functions with respect to the measure m. In such a case,
the first method always gives another Lp(m)-space and the second one yields an Lpw(m)-space. More precisely, we obtained
(see [8, Theorem 3.4]) for 1 ≤ p0 ≠ p1 ≤ ∞, 0 < θ < 1, and 1

p :=
1−θ
p0

+
θ
p1

the following equalities:
Lp0(m), Lp1(m)


[θ ]

(⋆)
= Lp(m),

Lp0w (m), Lp1(m)

[θ ]

(⋆)
=

Lp0(m), Lp1w (m)


[θ ]

(⋆)
= Lp(m),

Lp0w (m), Lp1w (m)

[θ ]

(�)
= Lp(m).

Lp0(m), Lp1(m)
[θ ] (�)

= Lpw(m),
Lp0w (m), Lp1(m)

[θ ] (�)
=

Lp0(m), Lp1w (m)

[θ] (�)
= Lpw(m),

Lp0w (m), Lp1w (m)
[θ ] (⋆)

= Lpw(m).
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In particular, if the vector measure m is a (real) positive finite measure µ all the previous equalities collapse into the well-
known interpolation formulas [Lp0(µ), Lp1(µ)][θ ] = [Lp0(µ), Lp1(µ)][θ]

= Lp(µ). Nevertheless the situation considered in [8]
does not include the case

Lp0(R), Lp1(R)

[θ ]

=

Lp0(R), Lp1(R)

[θ ]
= Lp(R),

where the Lebesgue measure in the real line R is considered. In order to fill this gap we need to consider a more general
structure than a σ -algebra: we must consider vector measures defined on a δ-ring. That is the motivation to study the
Calderón interpolation methods of Banach lattices of p-integrable and weakly p-integrable functions with respect to a
Banach-space-valued measure defined on a δ-ring. We will see that interpolation results for vector measures on δ-rings can
be very different from those ones on the context of σ -algebras. Roughly speaking we can say that equalities (⋆) for vector
measures onσ -algebras remain true for vectormeasures on δ-rings (see Corollary 3.7), but equalities (�) for vectormeasures
on σ -algebras cease to be true for vector measures on δ-rings (see Example 3.10). However, we will identify a certain type
of vector measures on δ-rings (called locally strongly additivemeasures) which keep completely the same behavior as in the
σ -algebra case for all the different combinations of couples (see Corollaries 4.7 and 4.9).

2. Preliminaries

In this sectionwe establish the preliminaries necessary for integration of scalar functionswith respect to vectormeasures
on δ-rings, in order to make the paper more self-contained and readable. The basic references about integration for us will
be [6,11–13]. Throughout this paper ν : R → X will be a vectormeasure defined on a δ-ringR of subsets of some nonempty
set Ω with values in a real Banach space X . We denote by Rloc the σ -algebra of subsets A ⊆ Ω such that A ∩ B ∈ R for
each B ∈ R. The measurability of functions f : Ω −→ Rwill be considered with respect to themeasurable space (Ω, Rloc).
The semivariation of ν is the set function ∥ν∥ : Rloc

→ [0,∞] defined by ∥ν∥(A) := sup {|⟨ν, x∗⟩| (A) : x∗
∈ B(X∗)} , where

|⟨ν, x∗⟩| is the variation of the scalar measure
ν, x∗


: A ∈ R −→


ν, x∗


(A) :=


ν(A), x∗


∈ R,

and B(X∗) is the unit ball of X∗, the dual space of X . A set N ∈ Rloc is called ν-null if ∥ν∥(N) = 0. A property holds ν-almost
everywhere (ν-a.e.) if it holds except on a ν-null set.

A measurable function f : Ω −→ R is called weakly integrable (with respect to ν) if f ∈ L1 (⟨ν, x∗⟩) for all x∗
∈ X∗.

A weakly integrable function f is said to be integrable (with respect to ν) if, for each A ∈ Rloc there exists an element
(necessarily unique)


A fdν ∈ X , satisfying

A
fdν, x∗


=


A
fd

ν, x∗


, x∗

∈ X∗.

If 1 ≤ p < ∞, a measurable function f : Ω −→ R is called weakly p-integrablewith respect to ν if |f |p is weakly integrable
(with respect to ν) and p-integrable (with respect to ν) if |f |p is integrable with respect to ν. The space Lpw(ν) of all (ν-a.e.
equivalence classes of) weakly p-integrable functions becomes a Banach lattice when endowed with the usual order ν-a.e.
and the norm

∥f ∥Lpw(ν) := sup


Ω

|f |p d
ν, x∗

 1
p

: x∗
∈ B(X∗)


.

The Fatou property holds in Lpw(ν), meaning that if (fn)n is a positive increasing sequence in Lpw(ν) converging pointwise
ν-a.e. to a function f and supn ∥fn∥Lpw(ν) < ∞, then f ∈ Lpw(ν), and ∥f ∥Lpw(ν) = supn ∥fn∥Lpw(ν). Moreover, the space Lp(ν) of
all (ν-a.e. equivalence classes of) p-integrable functions is a closed order continuous ideal of Lpw(ν). In fact, it is the closure of
S(R), the space of simple functions supported on R. Recall that order continuity means that if (fn)n is a positive increasing
sequence in Lp(ν) converging pointwise ν-a.e. to a function f ∈ Lp(ν), then ∥f − fn∥Lpw(ν) → 0. The Banach lattices Lp(ν) and
Lpw(ν) of equivalence classes of scalar p-integrable and weakly p-integrable functions were initially studied in [7] for vector
measures ν on a σ -algebra and its basic properties can be extended and remain true for vector measures on δ-rings. Also
we can find in [14, Chapter 3] a very good material about spaces of integrable functions with respect to a vector measure on
a σ -algebra. Finally, let us consider two more spaces strongly related with the spaces of p-integrable functions with respect
to a vector measure. Denote by L∞(ν) the space of classes of essentially bounded measurable functions f : Ω −→ R with
the essential supremum norm. Consider also the vector space L0(ν) of all classes of measurable functions f : Ω −→ R. If
the vector measure ν is defined on a σ -algebra it is well-known (see [7, Corollary 3.2]) that the following inclusions hold for
all p > 1

L∞(ν) ⊆ Lp(ν) ⊆ Lpw(ν) ⊆ L1(ν) ⊆ L1w(ν) ⊆ L0(ν), (1)

and all of them are continuous inclusions, where the topology of convergence in measure is considered on L0(ν). As it is well-
known, this topology is generated by the complete F-norm

 |f |
1+|f |


L1w(ν)

, where f ∈ L0(ν). When the vector measure ν is



defined on a δ-ring instead of a σ -algebra, the inclusions (1) are in general false, but we can save something. For each A ∈ R
consider the σ -algebraΣA := {E ∈ R : E ⊆ A} of subsets of A and the vector measuremA : E ∈ ΣA −→ mA(E) = ν(E) ∈ X,
that is, the restriction of ν to A. Note that |⟨mA, x∗⟩| (E) = |⟨ν, x∗⟩| (E) for all x∗

∈ X∗ and E ∈ ΣA. In particular,
∥mA∥(E) = ∥ν∥(E) for all E ∈ ΣA. Moreover, if 1 ≤ p < ∞ and f ∈ Lpw(ν) it is not difficult to check that

A
|fχA|

p d
mA, x∗

 =


Ω

|fχA|
p d
ν, x∗

 , x∗
∈ X∗,

and so fχA ∈ Lpw(mA) and ∥fχA∥Lpw(mA) = ∥fχA∥Lpw(ν). Moreover, if f ∈ L1(ν), in which case fχA ∈ L1(ν), and E ∈ ΣA, then
E
fχAdmA, x∗


=


E
fχAd


ν, x∗


=


E
fχAd


mA, x∗


, x∗

∈ X∗,

and fχA ∈ L1(mA).

Lemma 2.1. If f ∈ Lpw(ν), with p > 1, and A ∈ R, then fχA ∈ L1(ν). Moreover, ∥fχA∥L1w(ν) ≤ (∥ν∥(A))
1
q ∥f ∥Lpw(ν), where q is

the conjugate exponent of p.

Proof. Given A ∈ R, and f ∈ Lpw(ν), with p > 1 we know that fχA ∈ Lpw(mA). Now by applying (1) we obtain

fχA ∈ Lpw(mA) ⊆ L1(mA). Now the Hölder inequality gives ∥fχA∥L1w(mA) ≤ ∥fχA∥Lpw(mA) (∥mA∥ (A))
1
q , that is, ∥fχA∥L1w(ν) ≤

∥fχA∥Lpw(ν) (∥ν∥ (A))
1
q ≤ ∥f ∥Lpw(ν) (∥ν∥ (A))

1
q . �

3. Interpolation for general vector measures

We wish to apply Calderón’s two methods of complex interpolation to couples of Banach lattices Lp(ν) and Lpw(ν). Since
these methods are defined only for Banach spaces over the complex field C we must in fact apply them to the couple of
complexifications of those spaces concerning complex valued functions f : Ω −→ C and vector measures with values in
complex Banach spaces. If ν : R → X is a vector measure defined on a δ-ring R of subsets of Ω with values into a complex
Banach space X we can define the spaces Lpw(ν) and Lp(ν), with 1 ≤ p < ∞, analogously as we did in the previous section
for the case of a real Banach space. Moreover, following a standard argument (see [8, Section 2]) we can see that Lpw(ν) and
Lp(ν) are complex Banach lattices, that is,

Lpw(ν) =

f : Ω −→ C : Re(f ), Im(f ) ∈ Lpw(νR)


,

Lp(ν) =

f : Ω −→ C : Re(f ), Im(f ) ∈ Lp(νR)


,

where Re(f ) and Im(f ) are, respectively, the real and imaginary parts of f , and νR : A ∈ R −→ νR(A) := ν(A) ∈ XR, where
XR denotes X considered as a vector space over R, in which case XR is a real Banach space. Then a function f ∈ Lpw(ν)
(respectively Lp(ν)) if and only if its modulus |f | ∈ Lpw(ν) (respectively Lp(ν)). This means that in the proofs of the
interpolation results of this paper it suffices to consider only nonnegative real functions. We refer to [2,4,5] for general
results concerning interpolation.

In what follows we will always consider vector measures ν : R → X which are σ -finite, that is, there exist a pairwise
disjoint sequence (Ωk)k in R and a ν-null set N ∈ Rloc, such that Ω =


∪k≥1 Ωk


∪ N . There is some connection between

σ -finite vector measures defined on δ-rings and vector measures defined on σ -algebras. The first ones always appear as
densities νg of a certain measurable function g with respect to a measure ν defined on a σ -algebra, as we describe in the
following example. In fact, the example is a natural procedure to construct vector measures on δ-rings coming from vector
measures on σ -algebras. See [6, Theorem 3.3].

Example 3.1. Let (Ω, Σ) be a measurable space, and m : Σ → X a vector measure with values in a Banach space X . For
a strictly positive measurable function g : Ω −→ R consider the δ-ring Rg :=


A ∈ Σ : g · χA ∈ L1(m)


, where L1(m) is

the space of integrable functions with respect to the measure m. We shall denote by νg the measure with density g with
respect tom, that is, the vector measure defined by νg : A ∈ Rg −→ νg(A) :=


A g dm ∈ X . Note that Rloc

g = Σ , and so Rg

coincides with (not only a δ-ring) the σ -algebra Σ , if and only if g ∈ L1(m). Therefore, measurability and (since g is strictly
positive) equality νg-a.e. andm-a.e. coincide. Moreover, the Lp-spaces (1 ≤ p < ∞) associated with this measure νg can be
easily described in terms of the ones of the measurem. Namely,

Lpw(νg) =

f ∈ L0(m) : |f |p · g ∈ L1w(m)


,

Lp(νg) =

f ∈ L0(m) : |f |p · g ∈ L1(m)


,

with the norm ∥f ∥Lpw(νg ) = ∥|f |p · g∥
1
p

L1w(m)
, for all f ∈ Lpw(νg). Furthermore,

(A) If g is bounded from above, then Lpw(m) ⊆ Lpw(νg), and similarly Lp(m) ⊆ Lp(νg), both with continuous inclusions.
(B) If g is bounded from below, then Lpw(νg) ⊆ Lpw(m), and analogously Lp(νg) ⊆ Lp(m), both with continuous inclusions.



The first step for interpolation is to check that each pair of spaces Lpw(ν) or Lp(ν), where ν : R → X is a σ -finite vector
measure, forms a compatible couple of Banach spaces, that is, they are imbedded continuously in the same topological vector
space. In our case the environment space will be the linear space L0(ν) of all (ν-a.e. equivalence classes of) real measurable
functions f defined on Ω , endowed with the topology generated by certain F-norm ∥·∥L0(ν) which we shall now describe.
Consider the decomposition Ω =


∪k≥1 Ωk


∪ N , where (Ωk)k is a pairwise disjoint sequence in R, and N is a ν-null set in

Rloc. For each k = 1, 2, . . . consider the σ -algebra Σk := {A ∈ R : A ⊆ Ωk} of subsets of Ωk and the vector measure

mk : A ∈ Σk −→ mk(A) = ν(A) ∈ X,

that is, the restriction of ν to Ωk. Note that ∥mk∥(A) = ∥ν∥(A) for all A ∈ Σk, and consequently a set B ∈ Rloc is ν-null if
and only if B ∩ Ωk is mk-null for all k = 1, 2, . . . . Now define

∥f ∥L0(ν) :=

∞
k=1

1
2k (1 + ∥ν∥ (Ωk))

 |f |
1 + |f |

χΩk


L1w(mk)

, f ∈ L0(ν).

Note that |f |
1+|f |χΩk ∈ L∞(mk) ⊆ L1(mk) for all k = 1, 2, . . . .

Lemma 3.2. Let (fn)n be a sequence in L0(ν). The following assertions are equivalent:

(1) ∥fn∥L0(ν) → 0 as n → ∞.
(2) fn → 0, as n → ∞, in mk-measure on Ωk for all k = 1, 2, . . . .

Proof. The implication (1) ⇒ (2) follows from the inequality |f |
1 + |f |

χΩk


L1w(mk)

≤ 2k (1 + ∥ν∥ (Ωk)) ∥f ∥L0(ν) , f ∈ L0(ν), k = 1, 2, . . . .

For the converse implication (2)⇒ (1) take an arbitrary ε > 0 and let k0 such that


k>k0
2−k < ε

2 . Nowusing the hypothesis

(2) choose n0 such that
 |fn|

1+|fn|
χΩk


L1w(mk)

≤
2k−1(1+∥ν∥(Ωk))ε

k0
for all n ≥ n0 and k = 1, 2, . . . , k0. Then ∥fn∥L0(ν) < ε for all

n ≥ n0. �

Lemma 3.3. ∥·∥L0(ν) is an F-norm, and

L0(ν), ∥·∥L0(ν)


is a complete metric linear space.

Proof. (i) ∥f ∥L0(ν) = 0 if and only if f = 0 ν-a.e. If ∥f ∥L0(ν) = 0, then
 |f |

1+|f |χΩk


L1w(mk)

= 0 for all k = 1, 2, . . . and hence

f = 0 on Ωk mk-a.e. for all k = 1, 2, . . . . Now take into account the comment above the definition of ∥ · ∥L0(ν) to conclude
that f = 0 ν-a.e.
Since the function t ∈ [0,∞) →

t
1+t ∈ [0,∞) is increasing the next properties follow:

(ii) ∥αf ∥L0(ν) ≤ ∥f ∥L0(ν) if |α| ≤ 1 and f ∈ L0(ν), and
(iii) ∥f + g∥L0(ν) ≤ ∥f ∥L0(ν) + ∥g∥L0(ν) for all f , g ∈ L0(ν).

Next let us see that

(iv) ∥αnf ∥L0(ν) → 0 if f ∈ L0(ν) and αn → 0.

Indeed, if (αn)n is a sequence of scalars with αn → 0, then |αnf |
1+|αnf |

χΩk converges pointwise to 0 on Ωk mk-a.e. for all

k = 1, 2, . . . . The order continuity of the space L1(νk) means that
 |αnf |

1+|αnf |
χΩk


L1w(mk)

→ 0 for all k = 1, 2, . . . . Thus

Lemma 3.2 assures that ∥αnf ∥L0(ν) → 0 as n → ∞.
Finally, from the inequality ∥αf ∥L0(ν) ≤ max {1, α} ∥f ∥L0(ν) , where f ∈ L0(ν) and α ∈ R, it follows that

(v) ∥αfn∥L0(ν) → 0 if α ∈ R and ∥fn∥L0(ν) → 0.

Properties (i)–(v) mean that ∥ · ∥L0(ν) is an F-norm on L0(ν). Finally we are going to check that

L0(ν), ∥ · ∥L0(ν)


is complete.

Take a Cauchy sequence (fn)n in L0(ν). Then, for every k = 1, 2, . . . ,


|fn|
1+|fn|

χΩk


n
is a Cauchy sequence in the Banach space

L1(mk). Thus for every k = 1, 2, . . . there exists gk ∈ L1(mk) such that
gk −

|fn|
1+|fn|

χΩk


L1w(mk)

→ 0 as n → ∞. Define

pointwise the function g :=


k≥1 gk ∈ L0(ν) and conclude that ∥g − fn∥L0(ν) → 0, as n → ∞, with the same argument as
in Lemma 3.2. �

Lemma 3.4. For all p ≥ 1, the space Lpw(ν) is continuously included into L0(ν).



Proof. If f ∈ L1w(ν), then
 |f |

1+|f |χΩk


L1w(mk)

≤
fχΩk


L1w(mk)

≤ ∥f ∥L1w(ν) for all k = 1, 2, . . . and ∥f ∥L0(ν) ≤ ∥f ∥L1w(ν). If

f ∈ Lpw(ν), with p > 1, Lemma 2.1 assures that fχΩk ∈ L1(ν) for all k = 1, 2, . . . and then
 |f |

1+|f |χΩk


L1w(mk)

≤
fχΩk


L1w(ν)

≤

∥f ∥Lpw(ν) (∥ν∥ (Ωk))
1
q , where q > 1 is the conjugate exponent of p. Thus

∥f ∥L0(ν) :=

∞
k=1

1
2k (1 + ∥ν∥ (Ωk))

 |f |
1 + |f |

χΩk


L1w(mk)

≤

∞
k=1

(∥ν∥ (Ωk))
1
q

2k (1 + ∥ν∥ (Ωk))
∥f ∥Lpw(ν) ≤ ∥f ∥Lpw(ν) . �

The key to obtaining the (⋆)-formulas for the interpolated spaces is the Calderón–Lozanovskii’s product space. Let us now
recall the basic properties of this space that we can see in [4]. Let ν : R → X be a σ -finite vectormeasure. For a given couple
(X0, X1) of Banach lattice ideals of L0(ν) and 0 ≤ θ ≤ 1, the Calderón–Lozanovskii’s product space X1−θ

0 Xθ
1 is the Banach space

of all (ν-a.e. equivalence classes of) scalar measurable functions f ∈ L0(ν) such that there exist f0 ∈ B1(X0), f1 ∈ B1(X1) and
λ > 0 for which

|f (w)| ≤ λ |f0(w)|1−θ
|f1(w)|θ , w ∈ Ω (ν-a.e.) (2)

endowed with the norm ∥f ∥X1−θ
0 Xθ

1
= inf λ, where the infimum is taken over those λ satisfying (2). The Calderón–

Lozanovskii’s product space has the following relationships to the Calderón interpolation spaces.

(CL1) X0 ∩X1 ⊆ [X0, X1][θ ] ⊆ X1−θ
0 Xθ

1 ⊆ [X0, X1][θ ]
⊆ X0 +X1. Moreover we have equality of norms (see [1, Theorem]), that

is,

∥x∥[X0,X1][θ ]
= ∥x∥X1−θ

0 Xθ
1

= ∥x∥[X0,X1][θ ] , x ∈ [X0, X1][θ ] . (3)

(CL2) If X0 or X1 is order continuous, then [X0, X1][θ ] = X1−θ
0 Xθ

1 .
(CL3) If X0 and X1 have the Fatou property then [X0, X1]

[θ]
= X1−θ

0 Xθ
1 .

Let us compute the Calderón–Lozanovskii’s products of spaces of p-integrable functions. The key is the following result.

Proposition 3.5. Let 1 < p, q < ∞ be conjugate exponents. Then

(i) S(R) · Lpw(ν) ⊆ L1(ν).
(ii) Lpw(ν) · Lqw(ν) = L1w(ν), with ∥fg∥L1w(ν) ≤ ∥f ∥Lpw(ν)∥g∥Lqw(ν).
(iii) Lp(ν) · Lq(ν) = Lp(ν) · Lqw(ν) = L1(ν).

Proof. (i) This inclusion follows from Lemma 2.1, because functions in S(R) are linear combinations of characteristic
functions of subsets in R.
(ii) Let f ∈ Lpw(ν), g ∈ Lqw(ν). The Hölder inequality gives fg ∈ L1(|⟨ν, x∗

⟩|), for all x∗
∈ X∗, andmoreover, if x∗

∈ B(X∗), then
Ω

|fg| d|⟨ν, x∗
⟩| ≤ ∥f ∥Lp(|⟨ν,x∗⟩|)∥g∥Lq(|⟨ν,x∗⟩|) ≤ ∥f ∥Lpw(ν)∥g∥Lqw(ν).

Therefore, fg ∈ L1w(ν) with ∥fg∥L1w(ν) ≤ ∥f ∥Lpw(ν)∥g∥Lqw(ν). Conversely, if 0 ≤ h ∈ L1w(ν) then h = h
1
p h

1
q , with h

1
p ∈ Lpw(ν) and

h
1
q ∈ Lqw(ν).

(iii) Clearly, L1(ν) ⊆ Lp(ν) · Lq(ν) ⊆ Lp(ν) · Lqw(ν). Let f ∈ Lp(ν), and g ∈ Lqw(ν). There exists (sn)n ⊆ S(R) such that sn → f
in Lp(ν). From (i), it follows that (sng)n ⊆ L1(ν). Moreover,

∥fg − sng∥L1w(ν) = ∥(f − sn)g∥L1w(ν) ≤ ∥f − sn∥Lpw(ν)∥g∥Lqw(ν) → 0,

which yields (sng)n → fg in L1w(ν). Since L1(ν) is closed in L1w(ν) we conclude that fg ∈ L1(ν). �

As we mentioned above, Proposition 3.5 allows us to compute the Calderón–Lozanovskii’s product spaces of several
couples of Lp and Lpw-spaces.

Corollary 3.6. Let 1 ≤ p0 < p1 < ∞, 0 < θ < 1, and 1
p =

1−θ
p0

+
θ
p1
. Then

(i) Lp0(ν)1−θLp1(ν)θ = Lp(ν).
(ii) Lp0w (ν)1−θLp1(ν)θ = Lp0(ν)1−θLp1w (ν)θ = Lp(ν).
(iii) Lp0w (ν)1−θLp1w (ν)θ = Lpw(ν).



Proof. It is enough to observe that p0
(1−θ)p and p1

θp are conjugate exponents. Now, apply Proposition 3.5. �

From Corollary 3.6, and equalities described in (CL2) and (CL3), it follows that

Corollary 3.7. If 1 ≤ p0 < p1 < ∞, 0 < θ < 1, and 1
p =

1−θ
p0

+
θ
p1
, then

Lp0(ν), Lp1(ν)

[θ]

=

Lp0w (ν), Lp1(ν)


[θ]

=

Lp0(ν), Lp1w (ν)


[θ ]

= Lp(ν),
Lp0w (ν), Lp1w (ν)

[θ]
= Lpw(ν).

The simplest example of a σ -finite vector measure on a δ-ring is given by a σ -finite measure space (Ω, Σ, µ) if we
consider the measure µ defined on the δ-ring of measurable subsets of finite measure. For example, consider the Lebesgue
measure λ on the σ -algebra M of Lebesgue measurable subsets of the real lineR. Let R := {A ∈ M : λ(A) < ∞} and define
the vector measure ν : A ∈ R −→ ν(A) = λ(A) ∈ R. Then Lpw(ν) = Lp(ν) = Lp(R) for all p ≥ 1 and Corollary 3.7 assures
that 

Lp0(R), Lp1(R)

[θ]

=

Lp0(R), Lp1(R)

[θ]
= Lp(R),

as we have mentioned in the introduction.

Remark 3.8. Let 1 ≤ p0 < p < p1 < ∞. From (CL1) and the above corollary we obtain the following inclusions:

(i) Lp0w (ν) ∩ Lp1w (ν) ⊆ Lpw(ν) ⊆ Lp0w (ν) + Lp1w (ν).
(ii) Lp0(ν) ∩ Lp1(ν) ⊆ Lp(ν) ⊆ Lp0(ν) + Lp1(ν).
(iii) Lp0(ν) ∩ Lp1w (ν) ⊆ Lp(ν) ⊆ Lp0(ν) + Lp1w (ν).
(iv) Lp0w (ν) ∩ Lp1(ν) ⊆ Lp(ν) ⊆ Lp0w (ν) + Lp1(ν).

Each of them assures that the corresponding space that is in the middle of the inclusions is an intermediate space.
Nevertheless, for a general vectormeasure ν on a δ-ring and p0 < p < p1, the space Lp(ν)does not need to be an intermediate
space of the couple


Lp0w (ν), Lp1w (ν)


because in some cases Lp0w (ν) ∩ Lp1w (ν) ⊈ Lp(ν). Analogously the space Lpw(ν) does not

need to be an intermediate space of the couple (Lp0(ν), Lp1(ν)) because in such cases Lpw(ν) ⊈ Lp0(ν)+Lp1(ν). The following
example illustrates the above statements.

Example 3.9. Let R be the δ-ring of finite subsets of natural numbers N, and consider the σ -finite vector measure ν : A ∈

R −→ ν(A) := χA ∈ c0(N), where c0(N) is the space of null sequences. For every 1 ≤ p < ∞, it is easy to check that
Lpw(m) = ℓ∞(N), the space of bounded sequences, and Lp(m) = c0(N). In what follows it will be interesting to know that
∥ν∥(A) = 1, for every nonempty A ⊆ N, and ∥ν∥(∅) = 0.

As we noted in the introduction, if ν is a vector measure over a σ -algebra, then it is known that, in addition to
the equalities established in the above Corollary 3.7, the following equalities hold [Lp0w (ν), Lp1w (ν)][θ] = Lp(ν) and
[Lp0(ν), Lp1(ν)][θ ]

= [Lp0w (ν), Lp1(ν)][θ ]
= [Lp0(ν), Lp1w (ν)][θ]

= Lpw(ν). Nevertheless, the situation can be completely
different in δ-rings as the next example shows.

Example 3.10. Consider the vector measure ν of Example 3.9. For every 1 ≤ p < ∞, we know that Lpw(ν) = ℓ∞(N), and
also Lp(ν) = c0(N). Thus, for all 1 ≤ p0 < p < p1 < ∞, we have

Lp0w (ν), Lp1w (ν)

[θ ]

=

ℓ∞(N), ℓ∞(N)


[θ ]

= ℓ∞(N) = Lpw(ν),
Lp0(ν), Lp1(ν)

[θ ]
= [c0(N), c0(N)][θ ]

= c0(N) = Lp(ν).

But there are caseswhere the situation is similar to the case ofσ -algebras even formeasures genuinely defined on δ-rings.

Example 3.11. With the same notation of the previous examples, let us consider now the vector measure (defined on the
same δ-ring R)

ν : A ∈ R −→ ν(A) := α · χA ∈ c0(N),

where α = (αn)n is the sequence given by αn = n, for all n = 1, 2, . . . . It is easy to check, for all 1 ≤ p < ∞, that

Lpw(ν) = ℓ∞


α

1
p


:=


(an)n :


n

1
p an

n

∈ ℓ∞(N)


,

Lp(ν) = c0

α

1
p


:=


(an)n :


n

1
p an

n

∈ c0(N)


.

In this case, we get the (�)-formulas, that is, for all 1 ≤ p0 < p1 < ∞ and 0 < θ < 1, we have
Lp0w (ν), Lp1w (ν)


[θ]

= Lp(ν), (4)



and 
Lp0(ν), Lp1(ν)

[θ ]
=

Lp0w (ν), Lp1(ν)

[θ ]
=

Lp0(ν), Lp1w (ν)

[θ ]
= Lpw(ν), (5)

where 1
p :=

1−θ
p0

+
θ
p1
. Let us see how to obtain equality (4). The proof of equalities (5) must be postponed until Corollary 4.9

because we do not know an easy computation to obtain them. To prove equality (4) it is enough to have in mind the
following:

(A) c0(α
1
p ) ⊆ ℓ∞(α

1
p ) ⊆ c0(α

1
q ) ⊆ ℓ∞(α

1
q ), 1 ≤ p < q < ∞.

(B) ℓ∞(α
1
p )

ℓ∞(α
1
q )

= c0(α
1
q ), 1 ≤ p < q < ∞.

(C)

ℓ∞(α

1
p0 )
1−θ 

c0(α
1
p1 )
θ

= c0(α
1
p ) (cf. Corollary 3.6(ii)).

Then, taking into account [2, Theorem 4.2.2(b)],


Lp0w (ν), Lp1w (ν)


[θ ]

=


ℓ∞


α

1
p0


, ℓ∞


α

1
p1


[θ ]

=

ℓ∞


α

1
p0


, ℓ∞


α

1
p0

 ℓ∞


α

1
p1


[θ]

=


ℓ∞


α

1
p0


, c0


α

1
p1


[θ ]

=


ℓ∞


α

1
p0

1−θ 
c0

α

1
p1

θ

= c0

α

1
p


= Lp(ν).

Let us mention for this measure that for every A ⊆ Nwe have ∥ν∥(A) = max A if A is finite, and ∥ν∥(A) = ∞ if A is infinite.

4. Interpolation for locally strongly additive measures

As we have seen in Example 3.9, for a σ -finite vector measure ν on a δ-ring and p0 < p < p1, the space Lp(ν) does
not need to be an intermediate space of the couple


Lp0w (ν), Lp1w (ν)


. However, there is a broad class of vector measures for

which this occurs: locally strongly additive vector measures (see Theorem 4.5). Recall that a vector measure ν : R → X is
called locally strongly additive if limn→∞ ∥ν(An)∥X = 0 for all disjoint sequences (An)n in R such that ∥ν∥


∪n≥1 An


< ∞.

This concept of locally strongly additivity differs a bit from that of Brooks and Dinculeanu [3], where locally means that
the property is satisfied inside a set of the δ-ring R instead of a measurable set of finite semivariation. Note that the vector
measurewe have considered in the previous Example 3.11 is locally strongly additive, but the vectormeasurewe considered
in Example 3.9 is not locally strongly additive. In what follows we continue with a σ -finite vector measure ν : R → X .

Lemma 4.1. Let B ∈ Rloc. Then

(1) χB ∈ L1w(ν) if and only if ∥ν∥(B) < ∞.
(2) χB ∈ L1(ν) if and only if limn→∞ ∥ν(An)∥ = 0 for all disjoint sequences (An)n in R such that An ⊆ B, for all n = 1, 2, . . . .

Moreover, the following conditions are equivalent:

(A) ν is locally strongly additive.
(B) If B ∈ Rloc and χB ∈ L1w(ν), then χB ∈ L1(ν).
(C) There is no set B ∈ Rloc such that χB ∈ L1w(ν) \ L1(ν).

Proof. (1) If B ∈ Rloc, it is enough to note that

∥ν∥(B) = sup
⟨ν, x∗

⟩
 : x∗

∈ B(X∗)


= ∥χB∥L1w(ν) .

(2) Suppose χB ∈ L1(ν) and let (An)n ⊆ R be a pairwise disjoint sequence such that An ⊆ B, for all n = 1, 2, . . . .
Denote by A := ∪n≥1 An. Then χA ≤ χB, and so χA ∈ L1(ν). Moreover, the order continuity of L1(ν) implies that

n≥1 χAn = χA in L1(ν), so ∥ν(An)∥ ≤
χAn


L1w(ν)

→ 0, as n → ∞. Reciprocally, suppose that limn→∞ ∥ν(An)∥ = 0
for all pairwise disjoint sequences (An)n in R such that An ⊆ B, for all n = 1, 2, . . . . This means that the vector measure
νB : A ∈ R −→ νB(A) := ν(B ∩ A) ∈ X is strongly additive, which is equivalent to χΩ ∈ L1(νB) (see [6, Corollary 3.2(b)]).
Moreover, for a function f ∈ L0(ν) it is not difficult to check that f ∈ L1(νB) if and only if fχB ∈ L1(ν). Thus, χB ∈ L1(ν) and
the equivalence is over.
Finally note that (C) is a reformulation of (B) and the equivalence between (A) and (B) follows by applying characterizations
(1) and (2). �



Notation 4.2. In what follows it will be convenient to consider the following notation. For a nonnegative measurable
function f : Ω −→ R, and two real numbers 0 < a < b, consider the three disjoint measurable subsets of Ω

[f < a] := {w ∈ Ω : 0 ≤ f (w) < a} ∈ Rloc,

[a ≤ f ≤ b] := {w ∈ Ω : a ≤ f (w) ≤ b} ∈ Rloc, and
[f > b] := {w ∈ Ω : f (w) > b} ∈ Rloc.

The next two lemmas will be useful in what follows.

Lemma 4.3. Let 1 ≤ p0 < p < p1 < ∞.

(1) If 0 ≤ f ∈ Lpw(ν), then
(i) fχ[f>b] ∈ Lp0w (ν), and limb→∞

fχ[f>b]

L
p0
w (ν)

= 0.
(ii) fχ[f<a] ∈ Lp1w (ν), and lima→0

fχ[f<a]

L
p1
w (ν)

= 0.
(2) If 0 ≤ f ∈ Lp0w (ν) ∩ Lp1w (ν), then

lim
b→∞

fχ[f>b]

Lpw(ν)

= lim
a→0

fχ[f<a]

Lpw(ν)

= 0.

Proof. (1i) Note that f p0χ[f>b] = f pf p0−pχ[f>b] ≤
1

bp−p0 f
pχ[f>b] ∈ L1w(ν), which means that fχ[f>b] ∈ Lp0w (ν). Taking norm in

the above inequalities we havef p0χ[f>b]

L1w(ν)

≤ bp0−p
f pχ[f>b]


L1w(ν)

≤ bp0−p
f pL1w(ν)

→ 0,

as b → ∞, that is, limb→∞

fχ[f>b]

L
p0
w (ν)

= 0.

(1ii) In that case f p1χ[f<a] = f pf p1−pχ[f<a] ≤ ap1−pf pχ[f<a] ∈ L1w(ν), so we have fχ[f<a] ∈ Lp1w (ν). Now, taking normf p1χ[f<a]

L1w(ν)

≤ ap1−p
f pχ[f<a]


L1w(ν)

→ 0,

as a → 0, that is, lima→0
fχ[f<a]


L
p1
w (ν)

= 0.

(2) According to Remark 3.8 the function f ∈ Lpw(ν) and so the functions f pχ[f<a] and f pχ[f>b] belong to L1w(ν) too. Moreover,
using the above arguments we havef pχ[f<a]


L1w(ν)

≤ ap−p0
f p0χ[f<a]


L1w(ν)

≤ ap−p0
f p0L1w(ν)

,f pχ[f>b]

L1w(ν)

≤ bp−p1
f p1χ[f>b]


L1w(ν)

≤ bp−p1
f p1L1w(ν)

,

that is, limb→∞

fχ[f>b]

Lpw(ν)

= lima→0
fχ[f<a]


Lpw(ν)

= 0. �

Lemma 4.4. Let 0 ≤ f ∈ L0(ν), 1 ≤ p0 < p1 < ∞, and 0 ≤ a < b.

(A) If fχ[a≤f≤b] ∈ Lp0w (ν) + Lp1w (ν), then fχ[a≤f≤b] ∈ Lp0w (ν) ∩ Lp1w (ν).
(B) If fχ[a≤f≤b] ∈ Lp0(ν) + Lp1(ν), then fχ[a≤f≤b] ∈ Lp0(ν) ∩ Lp1(ν).

Proof. (A) Assume that fχ[a≤f≤b] belongs to Lp0w (ν) + Lp1w (ν), so there exist 0 ≤ f0 ∈ Lp0w (ν) and 0 ≤ f1 ∈ Lp1w (ν) such that
fχ[a≤f≤b] = f0 + f1. On the one hand note that f p10 ≤ bp1−p0 f p00 since f0 ≤ fχ[a≤f≤b] ≤ b. Therefore,

f p1χ[a≤f≤b] = (f0 + f1)p1 ≤ 2p1(f p10 + f p11 ) ≤ 2p1(bp1−p0 f p00 + f p11 ) ∈ L1w(ν),

which proves that fχ[a≤f≤b] ∈ Lp1w (ν). In order to prove that fχ[a≤f≤b] also belongs to Lp0w (ν), consider the disjoint sets ofRloc

D := {u ∈ [a ≤ f ≤ b] : f0(u) ≤ f1(u)} ,

E := {u ∈ [a ≤ f ≤ b] : f1(u) < f0(u)} ,

and observe that

f = f0 + f1 = (f0 + f1) χD + (f0 + f1) χE ≤ 2f1χD + 2f0χE,

and also that f1χD ≥
a
2 since a ≤ fχD ≤ 2f1χD. Thus,

f p0χ[a≤f≤b] ≤ 2p0 f p01 χD + 2p0 f p00 χE ≤
2p1

ap1−p0
f p11 χD + 2p0 f p00 χE ∈ L1w(ν),

which proves that fχ[a≤f≤b] ∈ Lp0(ν).
(B) The proof is similar to (A). �



Theorem 4.5. Let 1 ≤ p0 < p1 < ∞. The following are equivalent:

(i) ν is locally strongly additive.
(ii) Lp0w (ν) ∩ Lp1w (ν) ⊆ Lp(ν), for some/all p0 < p < p1.
(iii) Lpw(ν) ⊆ Lp0(ν) + Lp1(ν), for some/all p0 < p < p1.

Proof. (i) ⇒ (ii) Let p0 < p < p1 and take 0 ≤ f ∈ Lp0w (ν) ∩ Lp1w (ν). Let us consider the sets

f < 1

n


,
 1
n ≤ f ≤ n


, and

[f > n], for all n = 1, 2, . . . . As we know, all these sets are inRloc since f is measurable. According to Remark 3.8, f ∈ Lpw(ν)

and so the functions f pχ
f< 1

n

, f pχ 1
n ≤f≤n

, and f pχ[f>n] belong to L1w(ν), for all n = 1, 2, . . . . From the inequalities

1
np

χ 1
n ≤f≤n

 ≤ f pχ 1
n ≤f≤n

 ≤ npχ 1
n ≤f≤n

, n = 1, 2, . . . (6)

we conclude that χ 1
n ≤f≤n

 ∈ L1w(ν), for all n = 1, 2, . . . . By the hypothesis and Lemma 4.1 we get χ 1
n ≤f≤n

 ∈ L1(ν), for

all n = 1, 2, . . . . But, applying again inequalities (6) we obtain that f pχ 1
n ≤f≤n

 ∈ L1(ν), for all n ∈ N. On the other hand,

Lemma 4.3 assures that

lim
n→∞

f pχf< 1
n


L1w(ν)

= lim
n→∞

f pχ[f>n]

L1w(ν)

= 0,

and therefore,f p − f pχ 1
n ≤f≤n


L1w(ν)

≤

f pχf< 1
n


L1w(ν)

+
f pχ[f>n]


L1w(ν)

→ 0,

when n → ∞, which says that

f pχ 1

n ≤f≤n


n
converges to f p in L1w(ν). Hence, f p must be in L1(ν) (or equivalently

f ∈ Lp(ν)), since L1(ν) is closed in L1w(ν).

(ii) ⇒ (iii) Let p0 < p < p1 and assume that Lp0w (ν) ∩ Lp1w (ν) ⊆ Lp(ν). Let us see that Lpw(ν) ⊆ Lp0(ν) + Lp1(ν). Let
0 ≤ f ∈ Lpw(ν) and consider again the sets


f < 1

n


,
 1
n ≤ f ≤ n


, and [f > n] for n = 1, 2, . . . . By applying Lemma 4.3 we

obtain fχ
f< 1

n

 ∈ Lp1w (ν), fχ[f>n] ∈ Lp0w (ν), and moreover

lim
n→∞

fχf< 1
n


L
p1
w (ν)

= lim
n→∞

fχ[f>n]

L
p0
w (ν)

= 0. (7)

As Lpw(ν) ⊆ Lp0w (ν) + Lp1w (ν), Lemma 4.4 leads to

fχ 1
n ≤f≤n

 ∈ Lp0w (ν) ∩ Lp1w (ν), n = 1, 2, . . . . (8)

From (7) and (8) we obtain also thatf − fχ 1
n ≤f≤n


L
p0
w (ν)+L

p1
w (ν)

≤

fχf< 1
n


L
p1
w (ν)

+
fχ[f>n]


L
p0
w (ν)

→ 0,

when n → ∞, which says that the sequence

fχ 1

n ≤f≤n


n
converges to f in Lp0w (ν) + Lp1w (ν). If


fχ 1

n ≤f≤n


n
were a

Cauchy sequence in Lp0(ν) + Lp1(ν), then f would be in Lp0(ν) + Lp1(ν) and this would finish the proof. First note that
fχ 1

n ≤f≤n
 ∈ Lp0(ν) + Lp1(ν) for n = 1, 2, . . . . This follows from (8), the hypothesis Lp0w (ν) ∩ Lp1w (ν) ⊆ Lp(ν), and

Remark 3.8(ii). Thus, we have to check for natural numbers k < n that

lim
k→∞

fχ 1
n ≤f≤n

 − fχ 1
k ≤f≤k


L
p0
w (ν)+L

p1
w (ν)

= 0.

Let k, n ∈ N, with k < n. Since

fχ 1
n ≤f≤n

 − fχ 1
k ≤f≤k

 = fχ 1
n ≤f≤n


∩


f< 1

k

 + fχ 1
n ≤f≤n


∩[f>k]

= fχ 1
n ≤f< 1

k

 + fχ[k<f≤n],



then, having in mind (7) we conclude thatfχ 1
n ≤f≤n

 − fχ 1
k ≤f≤k


L
p0
w (ν)+L

p1
w (ν)

≤

fχ 1
n ≤f< 1

k


L
p0
w (ν)

+
fχ[k<f≤n]


L
p1
w (ν)

≤

fχf< 1
k


L
p0
w (ν)

+
fχ[k<f ]


L
p1
w (ν)

→ 0,

as k → ∞.

(iii)⇒ (i) Let B ∈ Rloc such thatχB ∈ L1w(ν). ThenχB ∈ Lpw(ν), and by the hypothesisχB ∈ Lp0(ν)+Lp1(ν), that is,χB = f0+f1
for some f0 ∈ Lp0(ν) and f1 ∈ Lp1(ν). We can choose f0, f1 ≥ 0 and so sup{f0, f1} ≤ 1. Since f p00 , f p11 ∈ L1(ν) and f p10 ≤ f p00
we have

χB = (χB)
p1 = (f0 + f1)p1 ≤ 2p1(f p10 + f p11 ) ≤ 2p1(f p00 + f p11 ) ∈ L1(ν).

Therefore χB ∈ L1(ν), and Lemma 4.1 ensures that ν is locally strongly additive. �

Remark 4.6. In relation to the proof of the above implication (ii) ⇒ (iii) let us mention the following comment. If Y0 and Y1
are Banach spaces and X0 ⊆ Y0 and X1 ⊆ Y1 are closed subspaces, in general X0 + X1 ⊆ Y0 + Y1 is not a closed subspace of
the sum. Even more, the sum of two closed subspaces of a Hilbert space need not be closed.

Let us seewhat happenswhen Lp(ν) is an intermediate space of the couple

Lp0w (ν), Lp1w (ν)


as is described in Theorem4.5.

Corollary 4.7. Let 1 ≤ p0 < p1 < ∞. The following are equivalent:

(1) ν is locally strongly additive.
(2)


Lp0w (ν), Lp1w (ν)


[θ ]

= Lp(ν), where 0 < θ < 1, and 1
p =

1−θ
p0

+
θ
p1
.

Proof. (1) ⇒ (2) Applying Theorem 4.5 and Corollary 3.7, we have

Lp0w (ν) ∩ Lp1w (ν) ⊆ Lp(ν) =

Lp0(ν), Lp1(ν)


[θ]

⊆

Lp0w (ν), Lp1w (ν)


[θ ]

⊆ [Lp0w (ν), Lp1w (ν)][θ ]
= Lpw(ν).

On the other hand, the norm in Lp(ν) is the restriction of the norm in

Lp0w (ν), Lp1w (ν)


[θ ]

, because Lp(ν) and Lpw(ν) have the

same norm, and as we know from (3) the norm in

Lp0w (ν), Lp1w (ν)


[θ ]

is the restriction of the norm of

Lp0w (ν), Lp1w (ν)

[θ ].
Being Lp(ν) a Banach space it is closed in


Lp0w (ν), Lp1w (ν)


[θ ]

, and we get the equality Lp(ν) =

Lp0w (ν), Lp1w (ν)


[θ ]

because
Lp0w (ν) ∩ Lp1w (ν) is dense in


Lp0w (ν), Lp1w (ν)


[θ]

(see [2, Theorem 4.2.2]).

The implication (2)⇒ (1) follows clearly from Theorem 4.5, because the inclusion Lp0w (ν)∩Lp1w (ν) ⊆

Lp0w (ν), Lp1w (ν)


[θ]

holds
for all 0 < θ < 1. �

The key to obtaining themissing (�)-formulas for the interpolated spaces is the Gustavsson–Peetre’s method. Let us now
recall briefly thismethod. Its detailed description appears in [9]. For a given couple (X0, X1) of Banach spaces and 0 < θ < 1,
the Gustavsson–Peetre space ⟨X0, X1, θ⟩ is the Banach space of those elements x ∈ X0 + X1 for which there exists a sequence
(xk)k∈Z of elements of xk ∈ X0 ∩ X1 such that

(GP1) x =


k∈Z xk, where the series converges in X0 + X1, and
(GP2) there exists C > 0 such that for every finite subset F ⊂ Z and every real sequence (εk)k∈F with |εk| ≤ 1 we havek∈F

εk
2kθ

xk

X0

≤ C , and
k∈F

εk
2k(θ−1) xk


X1

≤ C .

We equip ⟨X0, X1, θ⟩ with the norm ∥x∥⟨X0,X1,θ⟩ = inf C , where the inf is taken over all sequences (xk)k∈Z permissible in
(GP1) and (GP2). The relation of the Gustavsson–Peetre’s interpolation space and the Calderón interpolation spaces is given
(see [10, Theorem 5 and Section 7]) by the continuous inclusion

⟨X0, X1, θ⟩ ⊆ [X0, X1][θ ] . (GP3)

Corollary 4.8. Let 1 ≤ p0 < p1 < ∞. The following are equivalent:

(1) ν is locally strongly additive.
(2) Lpw(ν) ⊆ ⟨Lp0(ν), Lp1(ν), θ⟩, where 0 < θ < 1, and 1

p =
1−θ
p0

+
θ
p1
.



Proof. (1) ⇒ (2) Let 0 < θ < 1, 1
p =

1−θ
p0

+
θ
p1
, and put

c := 2
−(1−θ)p1

p1−p = 2
−θp0
p−p0 < 1.

Take an arbitrary function 0 ≤ f ∈ Lpw(ν) and for all k ∈ Z, define fk := fχ[ck≤f<ck−1], which belongs to Lpw(ν). Since ν

is locally strongly additive, by Theorem 4.5 we have that f , fk ∈ Lp0(ν) + Lp1(ν), and applying Lemma 4.4 it follows that
fk ∈ Lp0(ν) ∩ Lp1(ν). We are going to check conditions (GP1) and (GP2) for the function f and the sequence (fk)k∈Z.
(GP1) First note that f =


k∈Z fk pointwise. Then, given i < j ∈ Z, we have by applying Lemma 4.3f −

j
k=i

fk


Lp0 (ν)+Lp1 (ν)

=
fχ[f≥ci−1] + fχ[f≤cj]


Lp0 (ν)+Lp1 (ν)

≤
fχ[f≥ci−1]


L
p0
w (ν)

+
fχ[f<cj]


L
p1
w (ν)

→ 0,

when i → −∞ and j → ∞, that is, f =


k∈Z fk in Lp0(ν) + Lp1(ν).

(GP2) Let F ⊆ Z be a finite set and (εk)k∈F with |εk| ≤ 1. Keeping in mind that f p0k ≤ ck(p0−p)f pk and also that
f p1k ≤ c(k−1)(p1−p)f pk , we obtain, on the one hand

k∈F

εk

2kθ
fk


p0

L
p0
w (ν)

≤


k∈F

1
2kθp0

f p0k


L1w(ν)

≤


k∈F

ck(p0−p)

2kθp0
f pk


L1w(ν)

=


k∈F

f pk


L1w(ν)

≤ ∥f ∥p
Lpw(ν)

,

and on the other hand
k∈F

εk

2k(θ−1)
fk


p1

L
p1
w (ν)

≤


k∈F

1
2k(θ−1)p1

f p1k


L1w(ν)

≤


k∈F

c(k−1)(p1−p)

2k(θ−1)p1
f pk


L1w(ν)

=


k∈F

f pk


L1w(ν)

≤ ∥f ∥p
Lpw(ν)

.

Therefore, taking C = max

∥f ∥

p
p0
Lpw(ν)

, ∥f ∥
p
p1
Lpw(ν)


the implication is over.

The implication (2) ⇒ (1) is clear from Theorem 4.5, because the inclusion ⟨Lp0(ν), Lp1(ν), θ⟩ ⊆ Lp0(ν) + Lp1(ν) holds for
all 0 < θ < 1. �

Corollary 4.9. Let 1 ≤ p0 < p1 < ∞. The following are equivalent:

(1) ν is locally strongly additive.
(2) [Lp0(ν), Lp1(ν)][θ ]

= [Lp0w (ν), Lp1(ν)][θ ]
= [Lp0(ν), Lp1w (ν)][θ ]

= Lpw(ν), where 0 < θ < 1, and 1
p =

1−θ
p0

+
θ
p1
.

Proof. (1) ⇒ (2) Let 0 < θ < 1 and 1
p =

1−θ
p0

+
θ
p1
. By applying the property (GP3), Corollaries 4.8 and 3.7, we have

Lpw(ν) ⊆

Lp0(ν), Lp1(ν), θ


⊆

Lp0(ν), Lp1(ν)

[θ ]

⊆

Lp0w (ν), Lp1(ν)

[θ]
⊆

Lp0w (ν), Lp1w (ν)

[θ]
= Lpw(ν).

In the above chain of inclusions we can change the space

Lp0w (ν), Lp1(ν)

[θ ] by the other one

Lp0(ν), Lp1w (ν)

[θ ]. This gives
the desired equalities.
The implication (2) ⇒ (1) is clear from Theorem 4.5, because the inclusion [Lp0(ν), Lp1(ν)][θ ]

⊆ Lp0(ν) + Lp1(ν) holds for all
0 < θ < 1. �

Remark 4.10. After Corollary 4.9 we can retrieve equalities (5) of Example 3.11 because the measure considered there was
locally strongly additive. In particular, with the same notation as in Example 3.11, we obtain

c0

α

1
p0


, c0


α

1
p1


, θ

=


c0

α

1
p0


, c0


α

1
p1

[θ]

= ℓ∞


α

1
p


. (9)

Remark 4.11. Given 1 ≤ p0 < p1 < ∞, 0 < θ < 1, and a σ -finite vector measure ν : R → X , Corollary 3.7 tells us that
the smallest space of the list of all possible Calderón interpolated spaces is Lp(ν) = [Lp0(ν), Lp1(ν), ][θ ], and the biggest one



is

Lp0w (ν), Lp1w (ν),

[θ]
= Lpw(ν), where 1

p :=
1−θ
p0

+
θ
p1
. Then any other Calderón interpolated space must be laid between

Lp(ν) and Lpw(ν). We have seen that the method [·, ·][θ ] always produces an Lp-space whereas the method [·, ·][θ ] always
produces an Lpw-space, of course under the hypothesis that ν is locally strongly additive. Without this assumption the spaces
Lp0w (ν), Lp1w (ν)


[θ ]

and [Lp0(ν), Lp1(ν)][θ ] can be strictly located between Lp(ν) and Lpw(ν). The illustration of this claim is the
purpose of the following example which is a mixture of Examples 3.9 and 3.11.

Example 4.12. Let R be the δ-ring of finite subsets of natural numbers and consider the σ -finite vector measure

ν : A ∈ R −→ ν(A) := χA∩O + α · χA∩E ∈ c0(N),

where α = (αn)n is the sequence given by αn = n, for all n = 1, 2, . . . , andO and E are, respectively, the subset of odd and
even natural numbers. For every 1 ≤ p < ∞, it is not difficult to convince yourself that

Lpw(ν) =


f = (fn)n : fχO ∈ ℓ∞(N) and f α

1
p χE ∈ ℓ∞(N)


:= ℓ∞(O) ⊕ ℓ∞


α

1
p E


,

Lp(ν) =


f = (fn)n : fχO ∈ c0(N) and f α

1
p χE ∈ c0(N)


:= c0(O) ⊕ c0


α

1
p E


.

Analogously we define the spaces ℓ∞(O) ⊕ c0(α
1
p E) and c0(O) ⊕ ℓ∞(α

1
p E). Let us consider 1 ≤ p0 < p1 < ∞, 0 < θ < 1,

and let 1
p :=

1−θ
p0

+
θ
p1
. First we are going to see that Lp(ν)  


Lp0w (ν), Lp1w (ν)


[θ]

 Lpw(ν). Clearly the sequence
f := (1, 0, 1, 0, . . .) belongs to Lp0w (ν) ∩ Lp1w (ν) ⊆


Lp0w (ν), Lp1w (ν)


[θ ]

, but f ∉ Lp(ν) because fχO ∉ c0(N). Now recall

that Lpw(ν) =

Lp0w (ν), Lp1w (ν)

[θ ], and therefore

Lp0w (ν), Lp1w (ν)


[θ ]

= Lp0w (ν) ∩ Lp1w (ν)
Lpw(ν)

. But, taking into account inclusions

(A) stated in Example 3.11 we can easily check that Lp0w (ν) ∩ Lp1w (ν) ⊆ ℓ∞(O) ⊕ c0(α
1
p E). Thus

Lp0w (ν) ∩ Lp1w (ν)
Lpw(ν)

⊆ ℓ∞(O) ⊕ c0

α

1
p E

 ℓ∞(O) ⊕ ℓ∞


α

1
p E


= Lpw(ν).

Second, we will see that Lp(ν)  [Lp0(ν), Lp1(ν)][θ]  Lpw(ν). Observe that
Lp0(ν), Lp1(ν)

[θ]
⊆ Lp0(ν) + Lp1(ν) = Lp1(ν) = c0(O) ⊕ c0


α

1
p1 E


.

Clearly the sequence f := (1, 0, 1, 0, . . .) ∈ Lpw(ν), but f ∉ [Lp0(ν), Lp1(ν)][θ ]. Finally note that

Lp(ν) = c0(O) ⊕ c0

α

1
p E

 c0(O) ⊕ ℓ∞


α

1
p E


(∗)
=

Lp0(ν), Lp1(ν), θ


⊆

Lp0(ν), Lp1(ν)

[θ ]
.

The above equality (∗) follows by using similar arguments of those used to obtain (9).
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