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ABSTRACT. An investigation is made of LP-spaces generated by Fréchet-space 
-valued measures, together with various ideal properties (compactness, 
weak compactness, complete continuity) of their associated integration map. 
Such ideal properties influence the nature of the LP-spaces. Significant 
differences and new features occur which are not present in the Banach 
space setting.
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l. INTRODUCTION

Let X be a Banach space and v a cr-additive X-valued measure. Toe Ba­
nach space L 1 ( v) of all v-integrable functions is due to Kluvánek and Knowles 
[19]. Later, Curbera stressed the role of order and obtained a better understand­
ing of the nature of L1(v) [6]. Toe Banach space Li(v) of all scalarly V-integrable 
functions is due to Stefansson [30]. Spaces of the kind Li(v) characterize a broad 
class of Banach lattices with the cr-Fatou property [8]. For p > l the Banach space 
LP(v) of p-integrable functions is due to Sánchez-Pérez [28]. Toe corresponding 
Banach spaces L!'.. ( v) were treated by Fernández et al. in [15]; see also [10] and 
Chapter 3 of [25]. For further properties and applications of the spaces LP ( v) and 
L!'..( v ), 1 � p < oo, see [9], [25] and the references therein. 

For X a (locally convex) Fréchet space, the analogous spaces L 1 ( v), Li ( v)
are more recent. Again Li ( v) is a Fréchet lattice containing L 1 ( v) as a closed
subspace ([4] and [26], Section 4.4). One of our aims is to develop sorne of the 
main properties of LP(v) and L!'..(v) for p > l. Beyond the facts that both LP(v) 
and L!'..(v) are Fréchet lattices, with LP(v) closed in L!'..(v), that the simple func­
tions are dense in LP(v), and that both LP(v) � L'(v) and L!'..(v) � L�(v) hold 
whenever 1 � r � p ([26], Chapter 4) not much more is known. Let us formulate 



sorne further facts concerning these spaces which are presented here. For X a
Banach space and p > 1, we always have L{;,, ( v) � L 1 ( v) with a continuous (nat­
ural) inclusion map ([15], Proposition 3.1) which is always weakly compact ([15],
Proposition 3.3). For a non-normable Fréchet space X the situation can be differ­
ent. The natural inclusion map L{;,, ( v) � L 1 ( v) still exists and is continuous, but
it may fail to be weakly compact. Indeed, we identify Fréchet spaces X for which
there always exists an X-valued measure v such that the inclusion L{;,, ( v) � L 1 ( v)
fails to be weakly compact for every p > l. The underlying reason is, for X a
Banach space, that the inclusion LP ( v) � U ( v) is proper for every non-trivial X­
valued measure v whenever 1 :,;;; r < p ([25], Proposition 3.28). An examination
of the proof in [25] reveals it can be adapted to show that also L{;,, ( v) � L� ( v)
whenever 1 :,;;; r < p. This fails for Fréchet spaces in general; it can even happen
that L{;,,(v) = LP(v) = L1(v) for all 1 � p < oo. So, differences such as these (and
others) appear in the non-normable setting.

0n the positive side, we characterize weak compactness of the integration
map Iv: L1(v)-+ X (i.e., Iv(f) := J fdv). In this case we have Li(v) = L1(v), a

D 
known result in Banach spaces ([7], Corollary 2.3). lt is also shown that Li(v) =
L 1 ( v) whenever Iv is completely continuous (new even for Banach spaces). Con­
cerning lattice properties, there is a good correspondence with Banach space re­
sults. For each p � 1, the Fréchet lattice LP ( v) has a Lebesgue topology and
L{;,, ( v) has the Fatou property. More precisely, LP ( v) is the order continuous
part of L{:,(v) and L{:,(v) is the Fatou completion of LP(v). So, the containment
LP ( v) � L{;,, ( v) is proper precisely when either LP ( v) or L{;,, ( v) fails to be weakly
sequentially complete, i.e., whenever either LP ( v) or L{;,, ( v) contains a copy of the
Banach lattice ca.

2. FRÉCHET SPACES OF p-INTEGRABLE FUNCTIONS

Let X be a (real) metrizable locally convex space (briefly, metrizable les) gen­
erated by an increasing fundamental sequence of seminorms (11 · ll(n))nEN and
with continuous dual space X*. Consider the neighbourhood base of O E X gen­
erated by the sets Bn := {x E X : llxll (n) � 1} and their polars B� := {x* E X* :
1 (x, x*) 1 � 1, 1./x E Bn}, in which case Bn+

l � Bn and B� � B�+l' for each n EN.
Let (D,..E) be a measurable space, v : ..E -+ X be a vector measure (i.e.

<T-additive) and f : D -+ IR be a ..E-measurable function. We call f scalarly v­
integrable if it is integrable for each IR-valued measure (v,x*) : AH (v(A),x*),
for x* E X*. A scalarly V-integrable function f is called V-integrable if, for each
A E ..E, there exists an element J fdv E X such that \ J fdv, x*) = J fd(v, x*),

A A A 

for x* E X*. The total variation measure of ( v, x*) is denoted by 1 ( v, x*) 1 ·



Let p ): l. A 1:-measurable function f : D -+ ffi. is called scalarly v-p-ínte­
grable if lflP is scalarly V-integrable and v-p-íntegrable if lflP is v-integrable. The 
linear space of all individual scalarly v-p-integrable (respectively v-p-integrable) 
functions on D is denoted by .ce,(v) (respectively .CP(v)). For each n E N, de-
fine a [0,oo]-valued "seminorm" 11 · llt) on the space .Cº(v), consisting of all 1:­
measurable functions, by 

(2.1) llfllt) := sup (j lflPdl(v,x*)1)
11P, f E .C0(v), 

x*EB� D 
and denote 11 · 11�1 simplyby ll · llrn);seeSection 4.3of [26]. 

Observe that f E .Cº(v) belongs to .ce,(v) if and only if llfllt) < oo for all 
n E N; the argument for p = l given in Proposition 2.1 of [4] can be adapted to 
p > l. That is, (2.1) is a [O, oo )-valued seminorm, for each n E N, precisely on 
.ce, ( v) t;;;; .c0 ( v). Toe spaces .ce, ( v) and .CP ( v) are complete les' for the sequence 
of seminorms given by (2.1) (provided X is complete in the latter case) ([26], The­
orems 4.4.2 and 4.4.8). Clearly .CP(v) t;;;; .ce.(v) for all p): l. By Lemma II.1.2 of 
[19], for each n E N, 

(2.2) sup 11 J fdvll (n) 

� llfllrn) � 2 sup 11 J fdvll (n)
I f E .C1(v).EEE E EEE E

Fix n EN. Toen Xn is the completion of the quotient normed space X/ Mn, 
where Mn := {x E X : llxll(n) = O}, and Trn : X -+ Xn is the corresponding 
quotient map. Hence, Vn : 1: -+ Xn defined by 
(2.3) vn(A) := nn(v(A)), A E I;, 
is a Banach-space-valued vector measure. Its variation measure lvn 1 : 1: -+ [O, oo] 
is defined analogous to that for scalar measures ([11], Chapter I, Definition 1.4). 

LEMMA 2.1. Let X be a Fréchet space and v : 1: -+ X be a vector measure. lf 
f E .Cº(v), then llfllrn) = llfllvn ,Jor n EN. Moreover, 

(i) f is scalarly V-integrable if and only if f is scalarly Vn-integrable far each n E N.
(ii) f is v-integrable if and only if f is Vn-integrable far each n E N.
(iii) Far n E N, if f is scalarly Vn+ 1-íntegrable, then f is also scalarly Vn-integrable.
(iv) F ar n EN, if f is Vn+1-íntegrable, then f is also Vn-integrable.

Proof The first statement and (i) follow from n� being a linear isometric
bijection between the Banach spaces X� and Lin(B�) ([22], Remark 24.S(b)). For 
the details we refer to the proof of Proposition 2.1 in [4]. 

(ii) This is part of Lemma 2 in [24].
(iii) Let f E .ci(vn+i). Given y* E X� we have n�(y*) E Lin(B�) t;;;;

Lin(B�+1). So, there is x* E X�+l with n�(y*) = n�+l(x*) and Jlfld l(vn,Y*)I n 



=Jlf ld l(v,rr�(y*))I = Jlfldl(v,rr�+1(x*))I = Jlf ld l(vn+1,x*)I < oo. That is, n n n 
f E .ci(vn). 

(iv) Let f E .C1(vn+1)- Since 11 · ll(n) � 11 · ll(n+l), we have Mn+l � Mn and
hence, there is a continuous linear map 7Tn+l ,n : Xn+l -+ Xn satisfying 7Tn = 

7Tn+1,n o 7Tn+1· Given A E .E, let XA := J fdvn+l E Xn+l in which case uA :=
A 7Tn+1,n ( x A) E Xn. Por each y* E X� we have rr� (y*) = rr�+l ( x*) for sorne x* E 

X�+l (see the proof of (iii)) and so 
(uA,y*) = (nn+1,n(XA),y*) = (xA, 7T�+1,Jy*)) 

= (xA, (rr�+1)-1 
o rr�(y*)) = (xA, (rr�+l)-1 

o rr�+l (x*)) 
= (xA,x*) = j fd(vn+1,x*) = j fd(v, n�+l (x*)) 

A A 

= j fd(vn, rr�(y*)) = j fd(vn,y*). 
A A 

It follows that f E .C 1 ( Vn) and 
(2.4) j fdvn = UA = 7Tn+l ,n (f fdvn+l ), A E .E. 1 

A A 

Por Banach spaces, the following version of Holder's inequality occurs in 
Theorem 3.1.13 of [26] for (i) and in Theorem 3.5.1 of [26] for (ii).

PROPOSITION 2.2. Let X be a Fréchet space, v : .E -+ X be a vector measure and 
1 < p,q < oo satisfyl/p+l/q = l. 

(i) If f E .C{:,,(v) and g E .C!,(v), then f g E .ci(v). 
(ii) If f E O(v) and g E O(v), then f g E .C1(v).

In both cases, llfgll[n) � llf lltJ llglltJJor n EN. 
Proof (i) By definition lf I P E .ci ( v), lg I q E .ci ( v). Pix x* E X*. Then, both 

IJIP, lglq E .C1(1(v,x*)I). By the classical Holder inequality for scalar measures, 
fg E .C1(l(v,x*)I) and 

j lfgldl(v,x*)I � (/ lf1Pdl(v, x*)1) 11P (j lglqd l(v,x*) l)
11q < oo. 

n n n 
This shows that f g E .ci ( v). 

Pix n E N. Por x* E B�, the previous inequality yields J lfgldl(v,x*)I �n 
llf lltJ llglltJ and so 

llfgll[n) 
= sup j lfgldl(v,x*)I � llf lltJ llgllt{ 

x*EB� 
D 



(ii) Here lflP E L:1 (v), lglq E L:1 (v). By Lemma 2.1, IJIP E L:1(vn), lglq E
L:1(vn), that is, f E O(vn),g E ,eq(vn), for all n EN. Applying Theorem 3.5.1 of 
[26] to each complete seminormed space L:1(vn) we deduce that fg E L:1(vn), for
ali n E N; see also the proof of Lemma 2.21(i) in [25]. Again Lemma 2.1 ensures
thatfg E L:1 (v). 1

Since Xn E ,eq(v) � L:!,(v), the following result is clear from Proposi­
tion 2.2; see also Theorem 4.5.13(v)(a) of [26] for part of the conclusion. 

COROLLARY 2.3. Let v be a Fréchet-space-valued measure and l < p, q < oo 
satisfy l/ p + l/ q = l. Let f E .ci( v ). Then

(2.5) llfll�
n
) � llflltJ (llxo ll�

n
))l /q, n EN. 

Also, ,CP ( v) � L:1 ( v) and .ci ( v) � ,C� ( v) with continuous inclusions.

Scalarly v-p-integrable functions are more than scalarly V-integrable. For 
Banach spaces the next result is Proposition 3.1 of [15]. 

PROPOSITION 2.4. Let X be a Fréchet space and v : l: -+ X be a vector measure.
If p > l, then .ci ( v) � L:1 ( v) with a continuous inclusion.

Proof Let f E .ci(v). For any k E N, consider the set Ak := {w E D : 
lf(w)I � k} and the function Ík := fxA . Each Ík E L:1(v) since it is bounded 

k 

([19], p. 26). Moreover, (fk) converges pointwise to f. To verify that f E L:1 ( v)
it suffices to show that (J fkdv) is Cauchy in X uniformly with respect to E E l:

E

([21], Theorem 2.4). Fix n E N. For i > j, by Proposition 2.2 and (2.2) we have, for 
E El:, that 

11 / f¡dv - f Jjdvll
(n) 

� sup 11 / (!¡ - Jj)dvll
(n) 

� llf¡ - JjJl�
n
) = 11 lflx(A;\A¡l ll�

n
) 

E E 
FEI; 

F 

� 11111tJ llx(O\A¡) 11tJ = ll!lltJ (llx(O\A¡) ll�
n
))l /q. 

Since X
(n\A¡) + O pointwise, the dominated convergence theorem ([19], p. 30) im­

plies that IIX
(o\A¡l ll�

n
)-+ O as j-+ oo. Thus f E L:1(v). 

Continuity of the inclusion .ci(v) � L:1(v) is clear from (2.5). 1 

A set A E l: is called v-null if v(B) = O for every B E l: with B � A.
Equivalently, A is V»-null for all n E N. Denote the cr-ideal of all v-null sets by 
No(v). Let f E L:º(v). Toen f is called v-null whenever IJJIJ�

n
) = O for all n EN. 

If ¡- 1 (JR\ {O}) E No(v), then it is also 1 (v, x*) 1 -null for all x* E X*. Hence, f is a 
v-null function because

Jlfll�
n
) = sup j lfldl (v, x*) 1 = O, n E N. 

x* EB� ¡-i (JR\ {O}
)



Conversely, suppose f is a v-null function. Fix n E N. For the Banach-space­
valued measure Vn, Rybakov's theorem states that there is a unit vector s* E X� 
(i.e., 7f� ( s*) E B�) such that Vn and 1 ( Vn, s*) 1 have the same null sets ([11 ], p. 268). 
Since J lfldl(v,s*)I :::;; IIJll[n) = O, the set ¡-1(JR\{O}) is l(vn,s*)l-null

¡- 1 (IR\ {O}) 

and hence,alsovn-null. But,n E N is arbitrary and sof-1(JR\{O}) ENo(v). So, 
the subspace N ( v) of [,O ( v) consisting of all v-null functions is the space of all f E 
C,º(v) such thatf-1(JR\{O}) E No(v) (briefly, we say f isv-null). Observe that 
N ( v) � [, 1 ( v). Two functions from [,O ( v) are v-equivalent if their difference is a 
v-null function. Noting that N ( v) is a closed ideal in both [,e_, ( v) and [,P ( v), the
quotient spaces Le.,(v) := [,e.,(v)! N(v) and LP(v) := [,P(v)/ N(v), for 1 :::;; p <
oo, are then complete Fréchet lattices for the (quotient) seminorms induced via
(2.1) ([26], Theorem 4.5.11). So, Proposition 2.2, Corollary 2.3 and Proposition 2.4
also hold for the corresponding statements with the Fréchet spaces LP ( v) and
Le_, ( v) in place of the complete pseudo-metrizable lc-spaces [,P ( v) and [,e_, ( v).
Define LO ( v) : = [,O ( v) / N ( v).

A vector measure v : I: ---+ X is called <T-decomposable if I: admits count­
ably infinite many pairwise disjoint non-v-null sets ([25], p. 129). For X a Banach 
space the natural inclusion LP ( v) � L q ( v) is proper whenever 1 � q < p, ([25], 
Proposition 3.28). 

PROPOSITION 2.5. Let X be a Fréchet space not admitting a continuous norm. 
There exists an X-valued, <T-decomposable measure v such that 

Le_,(v) = LP(v) = L'tv(v) = Lq(v), 1:::;; q:::;; p < oo. 
Proof By a classical result of Bessaga and Pelczynski ([3] and Theorem 7.2.7 

of [18]) X contains a complemented subspace isomorphic to the Fréchet sequence 
space w := Rt'\ equipped with the seminorms qn(x) := max lxjl, for x =

l,(7,(n 

( x1,x2, . . .  ) E w. So, it suffices to establish the result for X = w. Let D = N 
and I: = 2°. Define v: I:---+ w by v(A) = X

A
' for A E I:. Then v is a vector mea­

sure with 0 as its only v-null set and [,O ( v) = JR.N. Observe that w* = { s E JR.N : 
00 

supp( s) is finite} with duality ( x, s) = L Xnsn (a finite sum), for each X E w and 
n=l 

s E w*. lt is routine to check that Le.,(v) = LP(v) = Lº(v) � w, for 1 :::;; p < oo, 
with equality as vector spaces and topologically. 1 

In Banach spaces X, the continuous inclusion of Le_, ( v) into L 1 ( v) is weakly 
compact for all p > l ([15], Proposition 3.3). So, the restriction to LP ( v) of the 
(continuous) integration map Iv : L1 (v) ---+ X (i.e., f i--+ Iv (f) := J fdv for f E 

D 

L 1 ( v) ), is also weakly compact. For X a Fréchet space, this may fail. Via (2.2), 
Iv : L 1 ( v) ---+ X is still continuous and so, by Corollary 2.3, also the restriction Iv : 
LP ( v) ---+ X is continuous for all p � l. Toe problem lies with weak compactness. 



A continuous linear map T from a lc-space Y into a Fréchet space X is weakly
compact (respectively compact) if there is a neighbourhood U of O E Y such that 
the closure of T(U) is weal<ly compact (respectively compact) in X. 

PROPOSITION 2.6. Let X be any Fréchet space which does not admit a continuous
norm. Then there exists an X-valued measure v such that: 

(i) the continuous inclusion Lfv ( v) � L 1 ( v) is not weakly compact, Jor every p > 1;
(ii) the continuous integration map lv : LP ( v) ---+ X is not weakly compact, for every

p � l. 
Proof As in the proof of Proposition 2.5 it suffices to consider X = w and 

v : 1: ---+ w as given there. Since Lfv ( v) = L1 ( v) e::: w for all p � 1, the natu­
ral inclusion Lfv(v) � L1 (v) is the identity map on w. If this map was weal<ly 
compact, then w would have a bounded neighbourhood of O and hence, would 
be normable (which is not so). This establishes (i). lt is also routine to check that 
the integration map lv : LP ( v) ---+ w is the identity map on w and so the same 
argument yields (ii). 1 

For a Banach-space-valued measure v : 1: ---+ X it is known, for each 1 < 
p < oo, that the restriction of the integration map lv : Lfv(v) ---+ X (well de­
fined by Proposition 3.1 of [15]) is a compact operator if and only if the range 
R(v) := {v(A) : A E 1:} is a relatively compact subset of X ([15], Theorem 3.6 
and [25], Proposition 3.56(1)). What if X is a Fréchet space? According to Propo­
sition 2.4 the restriction map Iv : Lfv(v) ---+ X is again well defined. If this map 
is compact, then there exists n E N such that Iv(Wn) is relatively compact in X, 
where Wn := {JE Lfv(v) : llfllt) :::;; 1} is a basic neighbourhood of O in Lfv(v).

Since (II IJIPll[n))11P = IIJlltJ, for every f E Li(v), we have

Accordingly, R(v) � (IIX
o 
ll[n)) llP · Iv(Wn), which shows that R(v) is necessarily 

a relatively compact subset of X. Unfortunately, the converse statement does not 
hold for general non-normable X. 

PROPOSITION 2.7. Let X be any Fréchet space which does not admit a continuous
norm. There exists an X-valued measure v such that: 

(i) R( v) is a relatively compact subset of X, but

(ii) the restricted integration map Iv : Lfv ( v) ---+ X Jails to be compact Jor every
1 < p < OO. 

Proof As in the proof of Proposition 2.5 it suffices to consider X = w and 
v : 1: ---+ X as given there. Since R(v) is a bounded subset of w (being rela­
tively weal<ly compact ([19], p. 76) and w is a Montel space, it follows that R( v) 
is a relatively compact subset of w, i.e., (i) holds. Toe same argument as in the 



proof of Proposition 2.6, with "compact" in place of "weakly compact" estab­
lishes part (ii). 1 

3. IDEAL PROPERTIES OF THE INTEGRATION MAP Iv 

The aim of this section is to investigate how certain ideal properties of lv 

influence the nature of its domain space L 1 ( v). 
Let v : I: ---+ X be a Fréchet-space-valued vector measure and Vn , for n E N, 

be as in (2.3). According to (2.4) we have N(vn+1) � N(vn ) and hence, via 
Lemma 2.l(iv), that L1 (vn+I) � L1 (vn ), n EN, with a continuous inclusion. 

We point out that the equality L 1 ( v) = Ll ( v) is equivalent to L 1 ( v) ( or
Ll ( v)) being weakly sequentially complete; see Proposition 3.4 of [5]. 

THEOREM 3.1. Let v : I: ---+ X be a Fréchet-space-valued measure. Then the 
integration map lv : L 1 ( v) ---+ X is weakly compact if and only if there exists r E N such
that for all k � r we have: 

(i) lvk 
: L 1 ( vk ) ---+ Xk is weakly compact, and

(ii) L 1 ( v) = L 1 ( vk ) = L 1 ( v, ), with equality as lc-spaces. 
In this case, L 1 ( v) is necessarily a Banach space.

First we require a preliminary lemma. Recall that a convex balanced subset 
Bof a lc-space X is a Banach disc if XB := span(B), equipped with its Minkowski 
functional, is a Banach space ([22], p. 267). 

LEMMA 3.2. Let X be a Fréchet space and v : I: ---+ X be a vector measure. Then 
the integration map lv : L 1 ( v) ---+ X is weakly compact if and only if there exist a Banach
disc B � X and a vector measure µ : I: ---+ XB such that: 

(i) XB Y X continuously vía the natural injection J;
(ii) L 1 (µ) = L 1 ( v) as lc-spaces;

(iii) Iµ : L 1 (µ) ---+ XB is weakly compact; and
(iv) lv = Jo Iµ (i.e. v factors through XB víaµ and J).

Proof Clearly (i)-(iv) imply that lv is weakly compact. 
Conversely, let lv be weakly compact. We adapt the proof of Lemma 3.2 in 

[23]. Take a convex balanced neighbourhood V of O in L1 (v) with A := Iv(V)
weakly compact in X. Then choose a weakly compact Banach clise B of X such 
that A � B and A is weakly compact in XB ([27], p. 422 Lemma). Then (i) follows 
from Corollary 23.14 of [22]; see also its proof. Since the range R(Iv) � XB, let 
I�B ) : L1 (v) ---+ XB denote lv considered as being Xwvalued. Arguing as in [23] 
the map I�B ) is weakly compact (hence, continuous). Moreover, µ : I: ---+ XB 
defined by E H I�B ) (xE 

), for E E I:, is a vector measure satisfying (ii), (iv); see 
the proof in [23]. Since L1 (v) = L1 (µ) as lc-spaces, V is also a 0-neighbourhood 
in the Banach space L 1 (µ) and so, is contained in a multiple of the unit ball in



L1 (µ ). Moreover, I
11 
(V) = I�B ) (V) s;;: A is relatively weakly compact in X8 from 

which (iii) follows. 1 

Proof ofTheorem 3.1. Suppose that Iv is weakly compact. By Lemma 3.2, 
L 

1 ( v) is a Banach space. According to p. 25 of [17] there exists r E N such that (ii) 
of Theorem 3.1 holds. Toen Ivk = nk o Iv is weakly compact, for all k � r, after 
noting that the domain 'D(IvJ = L

1 (vk) = L
1 (v) = 'D(Iv) by (ii). Hence, (i) is 

valid. 
Suppose that (i), (ii) of Theorem 3.1 hold. By (ii), L1 (v) is a Banach space. 

Toen apply the version of Lemma 2.3 of [23] with "compact" replaced throughout 
by "weakly compact" (the "same" proof applies), together with (i), to conclude 
that Iv is weakly compact. 1 

A version of Theorem 3.1 is known for compactness of the integration map Iv 

([23], Theorem 2). 
For Banach spaces the following result occurs in Corollary 2.3 of [7]. 

COROLLARY 3.3. The Fréchet space L 1 ( v) is weakly sequentially complete when­
ever the integration map Iv : L 1 ( v) -+ X is weakly compact.

Proof Let r E N be as in Theorem 3.1. Toen Iv, : L 1 ( Vr) -+ Xr is weakly 
compact. Since Xr is a Banach space, L 1 ( Vr) is weakly sequentially complete ([7],
Corollary 2.3). By (ii) of Theorem 3.1, L 

1 ( v) is also weakly sequentially complete 
(and a Banach space). 1 

COROLLARY 3.4. Let X be a Fréchet space such that each Banach space Xk, far
k E N, is reflexive. Then an X-valued measure v satisfies Iv is weakly compact if and
only if L 1 ( v) is a Banach space.

Proof lf Iv is weakly compact, then Theorem 3.1 implies that L1 (v) is a Ba­
nach space. Conversely, suppose L 1 ( v) is a Banach space. Toen nk o Iv : L 1 ( v) -+
Xk is weakly compact from the Banach space L 1 ( v) into the Banach space Xk, far
k E N. By the "weakly compact" version of Lemma 2.3 in [23] it follows that Iv is 
weakly compact. 1 

We point out that if each Banach space Xkt k E N, is reflexive, then X itself 
is necessarily reflexive ([22], Proposition 25.15). 

For Y, Z Fréchet spaces, a continuous linear map T : Y -+ Z is called com­
pletely continuous (or Dunford-Pettis) if it maps weakly convergent sequences in 
Y to convergent sequences in Z. For Banach spaces, such operators form a clas­
sical operator ideal. lf Z is a Fréchet-Montel space, then every continuous linear 
map T : Y -+ Z is completely continuous. The same is true whenever Z has the 
Schur property. 

LEMMA 3.5. Far a continuous linear operator T : Y -+ Z between Fréchet spaces
Y, Z the following assertions are equivalent:



(i) T maps weakly compact subsets of Y to compact subsets of Z;
(ii) T is completely continuous;

(iii) T maps weakly Cauchy sequences in Y to convergent sequences in Z.

Proof (i) {:} (ii) is known ([16], p. 43), and depends on the fact that a sub­
set of a Fréchet space is weakly compact if and only if it is weakly sequentially 
compact ([16], pp. 30-31 and (1) p. 39; [20], (9) p. 318). 

(iii) * (ii). Immediate.
(ii) ::;, (iii). For Banach spaces, see p. 333 of [2]. Suppose there is a weak

Cauchy sequence {Yn}�=l s;:; Y such that {T(yn) }�=lis not convergent in Z. With
d denoting a translation invariant metric in Z which determines its given Fréchet 
space topology, there is t:>0 and positive integers p(l)<q(l)<p(2)<q(2)< · · · 
such that d(T(Yp(n) ), T(Yq(n))) > E for n E N. lt is routine to check that {Yp(n) -
Yq(n) }�=l is weakly convergent to O E Y. Since T is also continuous when Y, Z 
have their weak topology, it follows that T(Yp(n) - Yq(n)) --t O weakly in Z. Now, 
(ii) implies that {T(Yp(n) - Yq(n))}�=l is convergent in Z (to O by the previous
sentence). This contradicts d(T(Yp(n)), T(Yq(n))) > E for n EN. So, no such weak
Cauchy sequence {yn}�=l exists. 1

Corollary 3.3 shows that compactness/weak compactness of Iv has a strong 
influence on L 1 ( v ), i.e., it is weakly sequentially complete. We will see in Section 4 
that this, in tum, forces ali spaces LP(v) and Lt:.,(v), for 1 ::S; p < oo, to be weakly 
sequentially complete. Toe complete continuity of Iv has the same effect on L 1 ( v).

THEOREM 3.6. Let X be a Fréchet space and v be an X-valued measure. If the 
integration map Iv : L 1 ( v) --t X is completely continuous, then Lt(v) = L 1 ( v). 

Toe proof proceeds via a series of lemmata, using the notation of Theo­
rem 3.6. In particular, X is always a Fréchet space and v : I: --t X a (fixed) vector 
measure with I: a cr-algebra of subsets of D. 

Let L 1 ( v)o- denote L1 ( v) with its weak topology cr(L 1 ( v), L 1 ( v)*). Toe strong
bidual L1 (v)** is a Fréchet space which contains L1 (v) as a closed subspace via 
the canonical embedding J: L1 (v) --t L1 (v)** ([22], Corollary 25.10). Toe space 
L1 (v)** equipped with its weak-* topology cr(L1 (v)**,L1 (v)*) is denoted by 
L1 (v);:; it is a sequentially complete Hausdorff les ([20], (3) p. 396). The follow­
ing fact is routine to establish. 

LEMMA 3.7. The embedding J: L1 (v)o- --t L1 (v);: is a topological isomorphism 
anta its range J( L 1 ( v) ). 

Given f E L1 (v), define m¡ : I: --t L1 (v) by m¡(A) := fXA , for A E I:. If

An t 0 in I:, then fxAn --t O pointwise v-a.e. on D and lfxAJ ::S; lfl E L1 (v), for
n EN. By the dominated convergence theorem ([19], p. 30), m¡(An) = f XAn --t O
in L1 (v) as n --too, i.e., m¡ is cr-additive in the Fréchet space L1 (v). 



LEMMA 3.8 . Let Un } ;=l � L 1 ( v) be a weak Cauchy sequence, i.e., Cauchy in 
the les L1(v)cr . 

(i) For each A E !:, the following limit exists in the Hausdorff les L 1 ( v );: :
(3.1) s(A) := lim !UnxA

). 
n--+oo 

(ii) The set function s : !: -+ L 1 ( v) ;: defined by (3.1) is a vector measure and satisfies
No(v) � No(s'). 

Proof (i) Fix A E !:. It is clear from (2.1), with p = 1, that the operator of 
multiplication by xA 

is continuous from L 
1 ( v) to itself. It is then also continuous 

from L1 (v)cr to itself and hence, UnXA };=l is a weak Cauchy sequence in L1 (v).
By Lemma 3.7 the limit (3.1) exists in the sequentially complete les L 

1 ( v );: . 
(ii) For k E N fixed the discussion prior to Lemma 3.8 ensures that the set

function m !k : !: -+ L 
1 ( v) is a vector measure and hence, is also CT-additive when 

considered to be L1 (v)cr -valued. Lemma 3.7 implies that Jo m¡k : !: -+ L1 (v);! is 
alsoCT-additive. Givenu E L1(v) * we have via(3.l) that(u,s')(A) = lim(u,(Jo 

n--+oo 

m¡n)(A)),foreachA E!:. Since (u,Jom¡n) is a scalar measure,for eachn EN, 
the Vitali-Hahn-Saks theorem ensures that (u,s) is CT-additive. But, the contin­
uous seminorms generating the topology of L1 (v);! are given by r¡ � l(u,r¡)I, 
for r¡ E L 1 ( v);:, as u varíes in L 1 (v)*. Accordingly, sis CT-additive as an L1 (v);!­
valued set function. 

To see that No(v) � No(s), let A E No(v). For each BE!: with B � A the
functions UnX8 

: n E N} are v-null. Hence, !UnX8
) = O for n E N. Toen (3.1)

implies that s(B) =O.So, A E No(s). 1 

LEMMA 3.9. Let Iv be completely continuous and {fn};=l � L1 (v)cr be Cauchy. 
(i) For each A E !:, the following limit exists in X:

(3.2) m(A) := lim lv(fnxA
). 

n--+oo 

(ii) The set function m : !: -+ X defined by (3.2) is a vector measure and satisfies
No(v) � No(m). 

Proof (i) For A E!:, the sequence UnXA };=l is Cauchy in L1(v)cr (c.f. proof
of Lemma 3.8(i)). So, by complete continuity the limit (3.2) exists. 

(ii) Since fn E L1(v), the Orlicz-Pettis theorem ensures that Un : A �
J fndv = lv(/nXA

) is a CT-additive, X-valued measure on !: for each n E N. In
A 

particular, for each x* E X*, the scalar valued set functions ( Un, x* ), for n E N, are 
CT-additive. By the Vitali-Hahn-Saks theorem, also (m,x*)(A) := (m(A),x*) = 
lim (un(A),x*), for A E !:, is CT-additive. By the Orlicz-Pettis theorem mis CT-

n--+oo 

additive in X. 
To verify that No ( v) � N0 ( m), adapt that part of the argument in the proof 

of Lemma 3.8(ii) showing that No ( v) � No ( s). 1 



Since X is a Fréchet space, there exists a sequence { xJ} ¡:
1 

S: X* (fixed from 
00 

now on) which satisfies No ( v) = íl No ( ( v, xJ)); see the proof of Theorem 2.5j=l 
in [4], for example. Fix j E N. It is clear from (2.1), with p = 1, and the fact 
that xJ E aB� for sorne a > O and m E N, that the natural identity map from 
L 1 ( v) into the Banach space L 1 ( ( v, xJ)) is continuous and hence, also continuous
from L1 (v)(T into L1 ((v,xJ))(T , So given a Cauchy sequence {fn}�=

l 
S: L1 (v)(T 

(fixed henceforth), it is also Cauchy in the sequentially complete les L 1 ( (v, xJ) )(T ,
Accordingly, there exists (f>j E L 1 ( (v, xJ)) such that fn -+ (f>

j 
weakly in L1 ( (v, xJ))

as n -+ oo. By the weak Banach-Saks property of L 1 ( (v, xJ)) ([29]) there exists a 

b {f(j) }00 f { r }00 h 'th ti' N- 1 � ¡U) · su sequence n(k) k=l o ;n n=l w ose an me e means L.. n(k) -+ (f>j mk=l 
the norm of L 1 ( ( v, xJ)) as N -+ oo. These arithmetic means admit a subsequence

(3.3) (j) ·- l N(f) (j) gN(f) .- N(f) k� Ín(k)' f EN,

converging (v,xJ)-a.e. to (f>
j
· So, there exists Bj E 1: with (D\Bj) E N0((v,xJ)) 

and gi{c) -+ (f>j pointwise on Bj as f -+ oo. Set A1 := B1 and Ak := Bk \ LJJ:f Bj, 
k k 

for k): 2. Toen U A
j 
= U Bj, for k EN, andj=l j=l 

(3.4) l. Ul · tw· n 1m gN(c)XA - = (f>jXk , pom 1se on ,
f-+oo J J 

Vj EN. 

LEMMA 3.10. In the setting of the above construction and with Iv assumed to be 
completely continuous we have the following facts: 

(i) The sets {Ak}k=l are pairwise disjoint with (D\ Uk=
l 

Ak) E No(v).
(ii) Far each j E N the function (f>jXA - belongs to L 1 (v) with 

J 

(3.5) 

(3.6) 

j (f>jXAjdv = m(A n Aj), A E 1:, and 
A 

J(q>jXA ) = s(Aj), as elementsofL1(v);:. 
J 

Proof (i) Toe sets { Ak}k=l are pairwise disjoint by construction. Also

00 

and so (D\ Uk=
l 

Ak) E íl No( (v,xJ)) = No(v). j=l 



(ii) Fix j E N. Por each A E I: it follows from (3.2) that m(A n Aj)
lim Iv (N- 1 [, /1

(
.t

)
xA xA ) in X and hence, from (3.3), that alsoN-+oo k=l n I 

(3.7) lim f gW(f.)
XA .dv = lim Iv(gW

(e)
XA xA ) = m(A n Aj)-f.-+oo J C-too J 

A 

Fix x* E X*. As a consequence of (3.7) the scalar measures Ae(A) .­
J gWre)

XA d(v,x*) (recall that gWre)
XA E L1 (v), for CE N) have a limit for each 

A 
l l 

A E I: namely, lim Af.(A) = (m(AnAj),x*). It follows from(3.4) andLemma 2.3 
f,-,oo of [21] that 'P

jXA . E L 1 ( (v, x*)) and 
J 

(3.8) / 'PjXA
¡ 
d(v, x*) = (m(A n Aj), x*), A E I:. 

A 

Since x* E X* is arbitrary, we have 'PjXA - E L�(v). Moreover, for each A E I: it 
J follows from (3.8) that the vector m(A n Aj) E X satisfies 

(m(A n Aj),x*) = j 'PjXA
¡
d(v,x*), x* E X*. 

A 

According to the definition of v-integrability we can conclude that 'PjXA . E L 1 ( v), 
J for each j E N, and that (3.5) is valid. 

Again fix j E N. Since {gW(e)
XA)&=i � L1 (v), Lemma 2.l(ii) yields that 

{gW(e)
XA }g'=l � L1 (vn), for all n EN. Moreover, (3.7) implies that lim JgW

(f.)
XA dvn 

l f-+ooA I 

= nn(m(A n Aj)) exists in Xn, for each A E I: and n E N. Via (3.4) it follows from 
Theorem 2.2.8 of [26] that 

lim f gW(f.)
xA-dvn = J 'PjXA-dvn, A E I:, 

C-+oo 1 1 
A A 

with the limit in Xn existing uniformly for A E I:. Hence, (2.2) and the identities 
llfll�

n

) = llf llvn , valid for all n E N and f E L 1 ( v), imply 
(3.9) l. (j) . h F ' h L1 ( ) 1m gN(e)

XA = 'PjXA ·' m t e rec et space v . f.-+oo J J 

To establish (3.6), note that (3.9) implies gw(f.)
XA¡ -+ 'PjXA¡ in L 1 ( v )(T as f -+

oo and hence, byLemma 3.7, thatJ(g�{e)
XA

¡
)-+ J(cpjXA) inL1 (v);! as€-+ oo. 0n 

the other hand, it follows from (3.1) that 1( N- 1 ktl t!{t)
xA

¡
) -+ s(Aj) in L1 (v);: 

as N-+ OO. Vía (3.3), also J(gW(e)
XA

¡
) -+ s(Aj) in L1 (v);: as€-+ OO. So, (3.6) is 

valid. 1 



Proof ofTheorem 3.6. To show L 1 ( v) is weakly sequentially complete (equiv­
alent to L1 (v) = L�(v)) let {fn}�=l be a weak Cauchy sequence in L1 (v). In the 

00 

notation of the above construction, define f := [ (f)
jXA · pointwise on D (recall 

j=l 1

the sets A
j
, j E N, are pairwise disjoint). Toe aim is to show that J E L 1 ( v) and

Jn-+ f inL1(v)O'. 

By Lemma 3.lO(ii), each function 1/Jr := [ (f)
j
Xk E L1 (v), for r EN. More-

j=l 1

over, 1/Jr -+ f pointwise on D as r -+ oo. By Lemma 3.9(ii) and Lemma 3.lO(i) the 
set D\ (U;1 Aj

) is m-null. Due to (3.5), the <T-additivity of m (c.f. Lemma 3.9(ii)), 
and the fact that D\(U;1 Aj

) E No(m), we can conclude, for each A E ..E, that 
the sequence 

j 1/Jrdv = t j (f)jXA
¡
dv = t m(A n Aj)= m(A n (U¡=l A

j
)), r EN,

A ¡=l A ¡=l

converges in X to m(A n (u;1 Aj
)) = m(A) as r-+ oo. Repeating the argument 

used to establish (3.9) it follows that f E L1(v) with J fdv = m(A), for A E ..E 
A 

and that 1/Jr -+ f in L 1 ( v) as r -+ oo. In particular, 1/Jr -+ f in L 1 ( v )O' and so, by 
Lemma 3.7, J( 1/Jr) -+ J(J) in L 1 ( v );: . 0n the other hand, applying Lemma 3.8(ii)
and (3.6) yields 

00 00 

�(D) =[�(A
j
)= [)((f)jXA ) = lim J(tfJr) = J(J) 

j=l j=l 
I r-too 

with the limit existing in L1(v);:. In view of (3.1), with A:= D, we conclude that 
J(Jn - J) -+ O in L1(v);! which, by Lemma 3.7, implies that fn -+ fin L1(v)()' as 
n-+ OO. 1 

REMARK 3.11. (i) If there is a single (Rybakov) functional x; E X* such that 
No(v) = No((v,xi)), then clearly the proof of Theorem 3.6 can be simplified. 
For Fréchet spaces X which admit a continuous norm (i.e., all Banach spaces and 
many non-normable Fréchet spaces), every X-valued measure has such a Rybakov 
functional, [12). 

(ii) By Corollary 3.3 and Theorem 3.6, any one of compactness, weak com­
pactness or complete continuity of Iv force L 1 ( v) to be weakly sequentially com­
plete. Toe converse fails. Toe following example is over C rather than R But, via 
the usual complexification of Banach (and Fréchet) lattices and function spaces 
over lR (cf. [14), Chapters 2 and 3 of [25) and [26)), this causes no difficulties in 
passing to spaces over C. If G is any infinite compact abelian group and A any C­
valued, regular Borel measure on G, then the convolution operator CA : L 1 ( G) -+ 

L1 ( G), i.e., f f-t A* f, for f E L 1 ( G), is continuous and induces the L 1 ( G)-valued 
measure mA : A f-t CA(X

A
). For every such A the space L1(mA) = L1(G) and 



so L 1 ( m,1J is weakly sequentially complete ([25], Proposition 7.35). But, Im
;,. 

is
compact ( = weakly compact) if and only if A is absolutely continuous with re­
spect to Haar measure whereas Im;,. is completely continuous if and only if the 
Fourier-Stieltjes transform A of A belongs to c0 ( I'), with r the dual group of G 
([25], Remark 7.36). Since there always exist A with A ri: co(I'), for such A we see 
that L1(m,1,,) is weakly sequentially complete, but Im;,. is neither compact, weakly 
compact or completely continuous. 

The Fréchet space L 
1 ( v) can also be weakly sequentially complete for a dif­

ferent reason. A Fréchet-space-valued measure v is said to have finite variation if
/vn 1 (D) < oo for each n E N, where Vn , for n E N, is given by (2.3).

We have seen that L1 (vn+1) � L1 (vn), for n E N, with a continuous inclu­
sion. Similarly, L1(/vn+1 /) � L1(/vn/) continuously,for each n EN. Toen L1(v) :=

00 
C 1 ( v) / N ( v) is the Fréchet space íl L 1 ( vn) with the increasing sequence of norms 

n=l00 
{/1 · 1/vn };=l· Define L1(/v/) := íl L1(/vn/) = (n;=1 C1(/vn/)!N(v), equipped

n=l 
with the increasing sequence of norms 

00 
(3.10) 1//fl//�n ) := j /f/d/vn/, f E íl L1 (/vk/), n EN.

n k=l 

Toen L1 (/v/) is also a Fréchet space ([17], p. 17) and is continuously included in 
L 

1 ( v) ([23], Lemma 2.4; [24], Lemma 2). 

PROPOSITION 3.12. Let v be any Fréchet-space-valued measure with finite varia­
tion. Then L 1 ( /v 1) is weakly sequentially complete. 

Proof Since each lc-space L1 (/vn/)lT, n E N, is sequentially complete, the
00 

product lc-space TI L 
1 (/vn /)(T is also sequentially complete ([20], (2) p. 296). More-

n=l 00 00 
over, we have (TI�1 L 1 (/vn /) )(T = TI L 1 (/vn/)(T ([20], (3) p. 285) and so TI L 1 (/vn/) 

n=l n=l 
is weakly sequentially complete. But, L1(/v/) is topologically isomorphic to a 

00
closed (hence, also weakly closed) subspace of TI L 

1 ( /vn 1); Lemma 25.4 of [22]
n=l 

or see the proof of (7) p. 208 in [20] as applied to L 
1 (/vi) and recall (3.10). Accord-

ingly, L 
1(/v/) is weakly sequentially complete. 1

COROLLARY 3.13. Let v be any Fréchet-space-valued measure such that L 1 ( v) =
L1 (/v/) as vector spaces. Then L1 (v) is weakly sequentially complete. In particular, 
L1 (v) = L1(v). 



Proof Since Xo E L1 (v), also Xo E L1 (1vl) = íl L1 (lvkl) and hence, v has 
k=l 

finite variation. As already noted, the natural inclusion of L 1 ( lvl) into L 
1 ( v) is

always continuous and injective. So, as it is also surjective, the open mapping 
theorem ensures that L1(v) and L1(1vl) are topologically isomorphic. Then apply 
Proposition 3.12. 1 

Whenever Iv is a compact map the vector measure v necessarily satisfies 
L1 (v) = L1 (1vl) ([23], Theorems 1 and 2). The converse is false, even for Banach
spaces; see Remark 3.ll(ii). 

Since L 
1 ( 1 v 1) is a Fréchet AL-space, we point out that Corollary 3.13 also 

follows from Corollary 2.6 of [13]. 
lt is instructive to analyze sorne non-trivial examples of vector measures v

in non-normable Fréchet spaces and the ideal properties of lv, So, let us consider 
Examples 4.1-4.4 in [23); the vector measures presented there, all denoted by m, 
will here be denoted by v. 

For Examples 4.1 and 4.2 the Fréchet space X is, respectively, w and s (rapidly 
decreasing sequences). In both examples it is shown that L 

1 ( v) is non-normable, 
satisfies L1 (v) = L1 (JvJ) but, Iv is not compact. So, Iv cannot be weakly com­
pact either (w and s are Montel). As already noted, whenever X is a Montel, Iv is 
completely continuous. 

In the case of Example 4.4 in [23], where X is the reflexive Fréchet space 
f P+ = íl gq, 1 < p < oo, it is shown that L 1 ( v) is a Banach space, satisfies

q>p

L 1 ( v) = L 
1 ( J v 1) but, I v is not compact. Since each Banach space Xk = f Pk for sorne

p < Pk < oo, it is reflexive. By Corollary 3.4, Iv is weakly compact. The claim is 
that Iv is also completely continuous. To see this, let Un} :;"=

1 
be a null sequence in 

L1 (v)O" and observe thativUn) � O in X if and only if (nk o Iv )Un)= IvkUn) � O 
in the Banach space Xk as n � oo, for each k EN. Fix k EN. Since L1 (v) = L1 (vk) 
as le spaces ([23), p. 226) also fn � O in L 

1 ( vk)O" as n � oo. Moreover, it follows 
from p. 225 of [23] that Ivk : L 1 ( vk) = L 1 ( lvk J) � Xk is Bochner representable. So, 
by Corollary 9(c) in p. 56 of [11), vk has relatively compact range in Xk . Hence, 
Ivk 

is completely continuous ([25], Corollary 2.43) and so Iv
k 
Un) � O in Xk as 

n � oo. This shows that Iv(fn) � O in X, i.e., Iv is completely continuous. 
For Example 4.3 of [23], where X = f p+, 1 < p < oo, the inclusion L 

1 ( 1 v 1) �
L 1 ( v) is proper with L1 (Jvl) a Banach space whereas L 1 ( v) is non-normable. Since 
the Xk, k E N, are all reflexive, Corollary 3.4 yields that Iv is not weakly compact 
(hence, not compact). To show lv is not completely continuous is more involved. 
The notation below is as in [23] except that m there is here denoted by v. 

Set hn := (n + l)nix;;-1xF(nJ ? O, for n EN. With { en}:;"=
1 

being the standard
00 

basis vectors of X, fix x = [ x(n)en, Since vk : .E � Xk := fPk is a positive 
n=l 

vector measure, for each k E N, it follows from Lemma 3.13 of [25) and pairwise 



disjointness of the sets { F ( n)} := 1 that 
N M 

11 L x(n)hn - L x(n)hn ll
v n=l n=l k 

N N 

(3.11) = 11 L x(n)h»II = 11 j I L x(n)hn ldvk ll n=M+l vk n n=M+l Xk 

N N N 

= 11 L lx(n) lj hndv kll = 11 L lx(n) le»II = 11 L x(n)e»II , 
n=M+l n Xk n=M+l Xk n=M+l Xk 

for all M < Nin N. So, n=�=l x(n)hnH�=l is Cauchy in L1 (v), with limit h, say. 
For each j E N, multiplication by XF(i) 

is a continuous operator from L1 (v) into 
itself, which implies that 

N 

hxF( 'l = lim L x(n)hnXF(
'l = x(j)hj 

(in L1 (v)). 1 N--+oo I n=l 
00 Accordingly, h = [ x(n)hn pointwise on O and with the series converging inn=l 

L 1 ( v). By continuity of Iv we can conclude that 
00 00 

(3.12) Iv(h) = L x(n)Iv(hn ) = L x(n)en = x (in X).n=l n=l 
00 00 Moreover, since also L x(n)hn = h in L1 (vk) and x = [ x(n)en in Xk = 

fPk,n=l n=l for each k E N, where we now interpret {en}�=l as the canonical basis in Xk, it 
follows from (3.12) that 

N N 

(3.13) llhllvk = lim 11 L x(n)h»II = lim 11 L x(n)e»II = llxllxk ; N--+oo n=l � N--+oo n� � 
here we have used tt x(n)hn llvk 

= tt x(n)en lk for each N E N, which can 

be verified as in (3.11). 
00 Define <P: X-+ L1 (v) by <P(x) := L x(n)hn, for x E X. Toen <Pis injectiven=l 

and, by (3.13) continuous since, for each k E N, we have 
(3.14) ll<P(x)llvk = llxllxk ' x E X. 
The range of <P is precisely the subspace W � L 1 ( v) given by 

00 

W := { h E L1 (v) : h = L x(n)hn pointwise, for sorne x E X}· n=l 
From (3.14) we see that llhllvk = ll<P-1(h) llxk ' h E W, for k EN, that is, <1>-1 : W-+
X is continuous when W is equipped with the relative topology from L1 (v). So, 



<Pis a topological isomorphism of X onto W, i.e., the restriction Iv lw = <P-1 is
a surjective isomorphism of W onto X. Since h n -+ O in W(T (as e n -+ O in X(T 

and hn = <P-1(en), n EN), but Ivl w (hn) =e n -A O in the Fréchet topology of X,
the operator Ivl w is not completely continuous. So, if H: W -+ L 1 (v) denotes 
the canonical inclusion, then the identity Iv lw = Iv o H : W -+ X implies that Iv 

cannot be completely continuous either. 
Accordingly, for Example 4.3 of [23] the integration map Iv is neither com­

pact, weakly compact or completely continuous and it fails to satisfy L 1 ( v) =
L 1 (1vl). Nevertheless, since the reflexive space X cannot contain an isomorphic 
copy of c0 we still have L 1 (v) = L�(v) ([19], p. 31 Theorem 1) that is, L 1 (v) is
weakly sequentially complete. For a Banach space example exhibiting these fea­
tures (i.e., those of Example 4.3 in [23]) we refer to Example 3.26(ii) of [25]. 

4. LATIICE PROPERTIES OF L(;, ( v) AND LP ( v)

Let (F, r) be a metrizable lc-solid Riesz space with a fundamental sequence 
of Riesz seminorms {qn }nEN ([1], Chapter 2, Section 6). Recall that T is called 
a Lebesgue (respectively cr-Lebesgue ) topology, if Ua: + O implies Ua: � O in F (re­
spectively uk + O implies uk � O in F )  ([l], Chapter 3). The space F has the Fa­
tau (respectively cr-Fatou ) property if, for every increasing net {u a:}a: (respectively 
increasing sequence {ukh) in the positive cone f+ of F which is topologically 
bounded in F, the element u:= supu a: exists in f+ and qn (ua:) ta: qn (u) (respec­
tively u := sup uk exists in f+ and qn ( uk) tk qn (u)), for n E N. 

Let (D,I:.,µ) be a cr-finite measure space, M := L º (µ), and {pn}nEN be
a fundamental (i.e. íl p;¡- 1 ( {O}) = {O}) increasing sequence of function semi­

nEN 
norms on M (see Chapter 15 of [31) for the definition of a function seminorm). 
The metrizable function space induced by {Pn }nEN is the locally solid, metrizable les 

L
{Pn} 

:= {f E M: pn (f) < oo, 'in EN} 

equipped with the topology induced by {pn}nEN; see Lemma 22.5 of [22]. If L
{p

n} 
is also complete, then it is called a Fréchet function space (briefly, F.f.s.). Given 
a F.f.s. there is no distinction between using nets or sequences when specifying 
either a Lebesgue topology or the Fatou property ([5], Section 2). A function 
seminorm pin M is said to have the Fatou property if p(uk) t p(u) whenever 
O� uk t u  in M. 

Let X be a Fréchet space and v : I:. -+ X be a measure. It was noted in 
Theorem 4.5.ll(ii) of [26) that LP(v), L{:,,(v) are Fréchet lattices for the pointwise 
order. Actually, they are "better" than just being Fréchet lattices. Let µ be any 
control measure for v (e.g., the one in the proof of Theorem 2.5 in [41). It was 
shown in Example 1 of [5] that both L�(v), L 1 (v) are F.f.s.' relative to (D,I:., µ). 



The next result shows the same is true of L{;.(v) LP(v) and that they have special 
properties. 

THEOREM 4.1. Let X be a metrizable les, v : L ---t X be a vector measure and µ be
a control measure for v. Then, for each 1 � p < oo, the increasing sequence of fu.nctions
seminorms {(pv )V)}nEN deftned, relative to (D, L, µ),by 

(pv)V\J) := IIJlltJ f E L0(µ) = L0(v), n EN,
makes Le., ( v) a F f.s. with the Fatou property. 

Moreover, if X is a Fréchet space, then LP ( v) is a F f.s. for the topology T(p) in-
duced by the increasing sequence of fu.nction seminorms { (pv )V) }nEN deftned, relative 
to (D,L,µ), by 

(¡i, )ir\J) ,- { �" Jif) (J)

and T(p) is a Lebesgue topology. 

if f E LP(v), 
if f E Lº(µ)\LP(v) 

= 
Lº(v)\LP(v), 

Proof By Example 1 of [5] we know that Ll ( v) = L 
{(pv )�1)} and that L 1 ( v) =

L{(,ov)�i)}' Hence, Le.,(v) = L{(pv)!f'l} and LP(v) = L{(,ov)!f'l}' 
According to Section 65, Theorem 4 of [31] and the formula (2.1), the func-

tion seminorm (Pv )V) has the Fatou property for each n E N (since the norm of 
the LP-space of any positive measure has the Fatou property). Toen L{P

n} is a 
F.f.s. with the Fatou property ([5], Theorem 2.4). 

To check that T(p) is a Lebesgue topology, let { uk} k be a sequence in LP ( v) + 
with uk .,¡_O.Toen each uf E L1 (v)+ and uf.,¡_ O. Fix n EN. As T(l) is a Lebesgue 
topology ([4], Section 3) it follows that (pv)�1)(un ---t O as k ---t oo. Hence, also 
(pv )V\uk) ---t O as k ---too. As n EN is arbitrary, this shows that T(p) is a Lebesguetopology. 1 

For v a Banach-space-valued measure, Theorem 4.1 is known. lndeed, that 
Le.,(v) has the Fatou property occurs in Proposition 1 of [10], Proposition 2.1 and 
Lemma 3.8 of [15], and for T(p) being a Lebesgue topology (i.e., the norm is order 
continuous) we refer to p. 291 of [10], and Proposition 2.1 of [15]. 

Toe Lorentz fu.nction seminorm p1, associated to any function seminorm p
M ---t [O, oo], is defined by 

pL(u) := inf { lirp(uk): Uk E M + , uk tu}, u E M + , 
in which case PL � p. Moreover, PL is the largest function seminorm with the Fa­tou property which is majorized by p ([31], Chapter 15, Section 66). Let frn}nEN be any increasing fundamental sequence of function seminorms on M. Accord­
ing to Definition 2.6 of [5] the Fatou completion of the metrizable function space 



L{pn} is defined as the F.f.s. (L{pn})f := L{(pn)d (i.e., the minimal F.f.s. in Lº(µ)
with the Fatou property and containing L{Pn} continuously, as (pn)L � Pn, 'r/n E 
N). It is known that (L1(v))f 

= Ll(v) ([5], Theorem 3.1); see p. 191 of [8] for Ba­
nach spaces. For the notion of the cr-order continuous part (L{Pn})a of L{Pn} see pp. 
331-332 of [32]. It is known that (Ll(v))a = L1(v) ([4], Theorem 3.2); for Banach 
spaces see p. 192 of [8]. The above relationships remain valid for all LP-spaces; 
for Banach spaces see p. 289 and p. 291 of [10]. 

THEOREM 4.2. Let v be a Fréchet space-valued measure and p ;?: l. Then we have 
(LP(v) )f 

= Li( v) and (Li(v) )a = LP(v). 
Proof Let µ be any control measure for v. Fix n E N. Clearly (pv )�) � 

(pv)�) in Lº(µ) with the function seminorms (pv)�l, n E N, having the Fatou 
property; see Theorem 4.1. By maximality of the Lorentz seminorm ((pv)�))L 
it follows that (pv)�) � ((pv)�))L in Lº(µ). Hence, (LP(v))f <:: Li(v). 0n the 
other hand, given f E Li(v)+, choose E-simple functions O � sk t f. Since 
( (Pv )�) )1 � (pv )�) with { sk }k <:: LP(v), we have, for each n E N, that 

((pv)�))L(sk) � (pv)�)(sk) = (pv)�\sk) � (pv)�)(f) < co, k EN. 
Accordingly, {sdk is topologically bounded in (LP(v))f with sk t f. By the 
Fatou property of (LP(v))f we conclude that f E (LP(v))f . This shows that 
(LP(v))f 

= Lt(v), with equality as vector spaces and also topologically (by the 
open mapping theorem). 

As already noted, T(p) is a Lebesgue topology for LP(v). Since LP(v) has 
the relative topology from Li(v), we have LP(v) <:: (Li(v))a . Conversely, let 
f E (Lt(v))a and assume f ;?: O. Choose E-simple functions {skh, with O � 
sk t f (v-a.e.). Toen O � (f - sk ) � f for all k with (f - sk) + O. By definition 
off E (Li(v))a this implies that {f - sk}k converges to O in Lt(v), i.e., {skh 
converges to fin Lt(v). But, {sdk <:: LP(v) with LP(v) closed in Ll(v). So, 
f E LP(v). Since every f E (Li(v))a has a decomposition f = ¡+ - ¡- with 
¡+, ¡- E (Li(v) )a, we have (Li( v) )a <:: LP( v). Thus, (Li( v) )a = LP (v ). 1 

The previous results yield information about LP(v), Li(v); for p = l see 
Proposition 3.4 of [5]. For the Banach space version of the following result see 
Proposition 3 of [10], Corollary 3.10 of [15]. A Fréchet lattice F is a KB-space if 
every topologically bounded, increasing sequence in f+ is convergent. 

COROLLARY 4.3. Let v be a Fréchet-space-valued measure and p ;?: l. Then the 
following statements are equivalent: 

(i) Ll(v) = L1(v). 
(ii) Lt(v) = LP( v). 
(iii) The topology of Li ( v) is Lebesgue.
(iv) LP(v) has the Fatou property.



(v) Lt(v) is a KB-space.
(vi) LP(v) is a KB-space.

(vii) Lt ( v) contains no lattice copy of co.
(viii) LP ( v) contains no lattice copy of co.

(ix) Lt ( v) is weakly sequentially complete.
(x) LP ( v) is weakly sequentially complete.

Proof (i) {:} (ii) Evident from the definitions.
(ii) {:} (iii) Theorem 4.1 and the second equality in Theorem 4.2.
(ii) {:} (iv) Theorem 4.1 and the first equality in Theorem 4.2.
(iii) {:} (v) {:} (vii) {:} (ix) are inmediate from Lemma 3.3 of [5] since Lt(v)

always has the Fatou property; see Theorem 4.1. 
(iv) {:} (vi) {:} (viii) {:} (x) follow from Lemma 3.3 of [5] since T(p) is always

a Lebesgue topology for LP ( v); see Theorem 4.1. 1 
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