L^p-SPACES AND IDEAL PROPERTIES OF INTEGRATION OPERATORS FOR FRÉCHET-SPACE-VALUED MEASURES

R. DEL CAMPO, S. OKADA, and W.J. RICKER

_ -

ABSTRACT. An investigation is made of L^p -spaces generated by Fréchet-space

-valued measures, together with various ideal properties (compactness, weak compactness, complete continuity) of their associated integration map. Such ideal properties influence the nature of the L^p -spaces. Significant differences and new features occur which are not present in the Banach space setting.

KEYWORDS: Fréchet space (lattice), vector measure, Fatou property, Lebesgue topology, integration map.

MSC (2000): 28B05,46A04,46A40,46E30,54H12.

1. INTRODUCTION

Let X be a Banach space and ν a σ -additive X-valued measure. The Banach space $L^1(\nu)$ of all ν -integrable functions is due to Kluvánek and Knowles [19]. Later, Curbera stressed the role of order and obtained a better understanding of the nature of $L^1(\nu)$ [6]. The Banach space $L^1_w(\nu)$ of all *scalarly* ν -integrable functions is due to Stefansson [30]. Spaces of the kind $L^1_w(\nu)$ characterize a broad class of Banach lattices with the σ -Fatou property [8]. For p > 1 the Banach space $L^p(\nu)$ of p-integrable functions is due to Sánchez-Pérez [28]. The corresponding Banach spaces $L^p_w(\nu)$ were treated by Fernández et al. in [15]; see also [10] and Chapter 3 of [25]. For further properties and applications of the spaces $L^p(\nu)$ and $L^p_w(\nu)$, $1 \leq p < \infty$, see [9], [25] and the references therein.

For X a (locally convex) *Fréchet* space, the analogous spaces $L^1(\nu)$, $L^1_w(\nu)$ are more recent. Again $L^1_w(\nu)$ is a Fréchet lattice containing $L^1(\nu)$ as a closed subspace ([4] and [26], Section 4.4). One of our aims is to develop some of the main properties of $L^p(\nu)$ and $L^p_w(\nu)$ for p > 1. Beyond the facts that both $L^p(\nu)$ and $L^p_w(\nu)$ are Fréchet lattices, with $L^p(\nu)$ closed in $L^p_w(\nu)$, that the simple functions are dense in $L^p(\nu)$, and that both $L^p(\nu) \subseteq L^r(\nu)$ and $L^p_w(\nu) \subseteq L^r_w(\nu)$ hold whenever $1 \leq r \leq p$ ([26], Chapter 4) not much more is known. Let us formulate

some further facts concerning these spaces which are presented here. For X a Banach space and p > 1, we always have $L_w^p(v) \subseteq L^1(v)$ with a continuous (natural) inclusion map ([15], Proposition 3.1) which is always weakly compact ([15], Proposition 3.3). For a *non-normable* Fréchet space X the situation can be different. The natural inclusion map $L_w^p(v) \subseteq L^1(v)$ still exists and is continuous, but it may *fail* to be weakly compact. Indeed, we identify Fréchet spaces X for which there always exists an X-valued measure v such that the inclusion $L_w^p(v) \subseteq L^1(v)$ fails to be weakly compact for every p > 1. The underlying reason is, for X a Banach space, that the inclusion $L^p(v) \subseteq L^r(v)$ is *proper* for every non-trivial X-valued measure v whenever $1 \leq r < p$ ([25], Proposition 3.28). An examination of the proof in [25] reveals it can be adapted to show that also $L_w^p(v) \subsetneq L_w^r(v)$ whenever $1 \leq r < p$. This *fails* for Fréchet spaces in general; it can even happen that $L_w^p(v) = L^p(v) = L^1(v)$ for all $1 \leq p < \infty$. So, differences such as these (and others) appear in the non-normable setting.

On the positive side, we characterize weak compactness of the integration map $I_{\nu} : L^{1}(\nu) \to X$ (i.e., $I_{\nu}(f) := \int_{\Omega} f d\nu$). In this case we have $L^{1}_{w}(\nu) = L^{1}(\nu)$, a known result in Banach spaces ([7], Corollary 2.3). It is also shown that $L^{1}_{w}(\nu) = L^{1}(\nu)$ whenever I_{ν} is completely continuous (new even for Banach spaces). Concerning lattice properties, there is a good correspondence with Banach space results. For each $p \ge 1$, the Fréchet lattice $L^{p}(\nu)$ has a Lebesgue topology and $L^{p}_{w}(\nu)$ has the Fatou property. More precisely, $L^{p}(\nu)$ is the order continuous part of $L^{p}_{w}(\nu)$ and $L^{p}_{w}(\nu)$ is the Fatou completion of $L^{p}(\nu)$. So, the containment $L^{p}(\nu) \subseteq L^{p}_{w}(\nu)$ is proper precisely when either $L^{p}(\nu)$ or $L^{p}_{w}(\nu)$ fails to be weakly sequentially complete, i.e., whenever either $L^{p}(\nu)$ or $L^{p}_{w}(\nu)$ contains a copy of the Banach lattice c_{0} .

2. FRÉCHET SPACES OF *p*-INTEGRABLE FUNCTIONS

Let *X* be a (real) metrizable locally convex space (briefly, metrizable lcs) generated by an increasing fundamental sequence of seminorms $(\| \cdot \|^{(n)})_{n \in \mathbb{N}}$ and with continuous dual space *X*^{*}. Consider the neighbourhood base of $0 \in X$ generated by the sets $B_n := \{x \in X : \|x\|^{(n)} \leq 1\}$ and their polars $B_n^{\circ} := \{x^* \in X^* : |\langle x, x^* \rangle | \leq 1, \forall x \in B_n\}$, in which case $B_{n+1} \subseteq B_n$ and $B_n^{\circ} \subseteq B_{n+1}^{\circ}$, for each $n \in \mathbb{N}$.

Let (Ω, Σ) be a measurable space, $\nu : \Sigma \to X$ be a vector measure (i.e. σ -additive) and $f : \Omega \to \mathbb{R}$ be a Σ -measurable function. We call f scalarly ν -integrable if it is integrable for each \mathbb{R} -valued measure $\langle \nu, x^* \rangle : A \mapsto \langle \nu(A), x^* \rangle$, for $x^* \in X^*$. A scalarly ν -integrable function f is called ν -integrable if, for each $A \in \Sigma$, there exists an element $\int_A f d\nu \in X$ such that $\langle \int_A f d\nu, x^* \rangle = \int_A f d\langle \nu, x^* \rangle$, for $x^* \in X^*$. The total variation measure of $\langle \nu, x^* \rangle$ is denoted by $|\langle \nu, x^* \rangle|$.

Let $p \ge 1$. A Σ -measurable function $f : \Omega \to \mathbb{R}$ is called *scalarly* ν -*p*-*integrable* if $|f|^p$ is scalarly ν -integrable and ν -*p*-*integrable* if $|f|^p$ is ν -integrable. The linear space of all individual scalarly ν -*p*-integrable (respectively ν -*p*-integrable) functions on Ω is denoted by $\mathcal{L}_w^p(\nu)$ (respectively $\mathcal{L}^p(\nu)$). For each $n \in \mathbb{N}$, define a $[0, \infty]$ -valued "seminorm" $\|\cdot\|_{\nu, p}^{(n)}$ on the space $\mathcal{L}^0(\nu)$, consisting of all Σ measurable functions, by

(2.1)
$$\|f\|_{\nu,p}^{(n)} := \sup_{x^* \in B_n^\circ} \left(\int_{\Omega} |f|^p \mathrm{d} |\langle \nu, x^* \rangle| \right)^{1/p}, \quad f \in \mathcal{L}^0(\nu),$$

and denote $\|\cdot\|_{\nu,1}^{(n)}$ simply by $\|\cdot\|_{\nu}^{(n)}$; see Section 4.3 of [26].

Observe that $f \in \mathcal{L}^0(\nu)$ belongs to $\mathcal{L}^p_w(\nu)$ if and only if $||f||_{\nu,p}^{(n)} < \infty$ for all $n \in \mathbb{N}$; the argument for p = 1 given in Proposition 2.1 of [4] can be adapted to p > 1. That is, (2.1) is a $[0, \infty)$ -valued seminorm, for each $n \in \mathbb{N}$, precisely on $\mathcal{L}^p_w(\nu) \subseteq \mathcal{L}^0(\nu)$. The spaces $\mathcal{L}^p_w(\nu)$ and $\mathcal{L}^p(\nu)$ are complete lcs' for the sequence of seminorms given by (2.1) (provided X is complete in the latter case) ([26], Theorems 4.4.2 and 4.4.8). Clearly $\mathcal{L}^p(\nu) \subseteq \mathcal{L}^p_w(\nu)$ for all $p \ge 1$. By Lemma II.1.2 of [19], for each $n \in \mathbb{N}$,

(2.2)
$$\sup_{E\in\Sigma}\left\|\int_{E}fd\nu\right\|^{(n)} \leq \|f\|_{\nu}^{(n)} \leq 2\sup_{E\in\Sigma}\left\|\int_{E}fd\nu\right\|^{(n)}, \quad f\in\mathcal{L}^{1}(\nu).$$

Fix $n \in \mathbb{N}$. Then X_n is the completion of the quotient normed space X/M_n , where $M_n := \{x \in X : ||x||^{(n)} = 0\}$, and $\pi_n : X \to X_n$ is the corresponding quotient map. Hence, $\nu_n : \Sigma \to X_n$ defined by

(2.3)
$$\nu_n(A) := \pi_n(\nu(A)), \quad A \in \Sigma,$$

is a *Banach-space*-valued vector measure. Its variation measure $|\nu_n| : \Sigma \to [0, \infty]$ is defined analogous to that for scalar measures ([11], Chapter I, Definition 1.4).

LEMMA 2.1. Let X be a Fréchet space and $v : \Sigma \to X$ be a vector measure. If $f \in \mathcal{L}^0(v)$, then $||f||_{v}^{(n)} = ||f||_{v_n}$, for $n \in \mathbb{N}$. Moreover,

(i) *f* is scalarly *v*-integrable if and only if *f* is scalarly v_n -integrable for each $n \in \mathbb{N}$.

(ii) *f* is *v*-integrable if and only if *f* is v_n -integrable for each $n \in \mathbb{N}$.

(iii) For $n \in \mathbb{N}$, if f is scalarly v_{n+1} -integrable, then f is also scalarly v_n -integrable.

(iv) For $n \in \mathbb{N}$, if f is v_{n+1} -integrable, then f is also v_n -integrable.

Proof. The first statement and (i) follow from π_n^* being a linear isometric bijection between the Banach spaces X_n^* and $\text{Lin}(B_n^\circ)$ ([22], Remark 24.5(b)). For the details we refer to the proof of Proposition 2.1 in [4].

(ii) This is part of Lemma 2 in [24].

(iii) Let $f \in \mathcal{L}^1_w(\nu_{n+1})$. Given $y^* \in X_n^*$ we have $\pi_n^*(y^*) \in \operatorname{Lin}(B_n^\circ) \subseteq \operatorname{Lin}(B_{n+1}^\circ)$. So, there is $x^* \in X_{n+1}^*$ with $\pi_n^*(y^*) = \pi_{n+1}^*(x^*)$ and $\int_{\Omega} |f| d| \langle \nu_n, y^* \rangle |$

$$= \int_{\Omega} |f| \mathbf{d} |\langle \nu, \pi_n^*(y^*) \rangle| = \int_{\Omega} |f| \mathbf{d} |\langle \nu, \pi_{n+1}^*(x^*) \rangle| = \int_{\Omega} |f| \mathbf{d} |\langle \nu_{n+1}, x^* \rangle| < \infty.$$
 That is,
 $f \in \mathcal{L}^1_{\mathbf{w}}(\nu_n).$

(iv) Let $f \in \mathcal{L}^1(\nu_{n+1})$. Since $\|\cdot\|^{(n)} \leq \|\cdot\|^{(n+1)}$, we have $M_{n+1} \subseteq M_n$ and hence, there is a continuous linear map $\pi_{n+1,n} : X_{n+1} \to X_n$ satisfying $\pi_n = \pi_{n+1,n} \circ \pi_{n+1}$. Given $A \in \Sigma$, let $x_A := \int_A f d\nu_{n+1} \in X_{n+1}$ in which case $u_A := \pi_{n+1,n}(x_A) \in X_n$. For each $y^* \in X_n^*$ we have $\pi_n^*(y^*) = \pi_{n+1}^*(x^*)$ for some $x^* \in X_{n+1}^*$ (see the proof of (iii)) and so

$$\begin{aligned} \langle u_A, y^* \rangle &= \langle \pi_{n+1,n}(x_A), y^* \rangle = \langle x_A, \pi_{n+1,n}^*(y^*) \rangle \\ &= \langle x_A, (\pi_{n+1}^*)^{-1} \circ \pi_n^*(y^*) \rangle = \langle x_A, (\pi_{n+1}^*)^{-1} \circ \pi_{n+1}^*(x^*) \rangle \\ &= \langle x_A, x^* \rangle = \int_A f d\langle v_{n+1}, x^* \rangle = \int_A f d\langle v, \pi_{n+1}^*(x^*) \rangle \\ &= \int_A f d\langle v_n, \pi_n^*(y^*) \rangle = \int_A f d\langle v_n, y^* \rangle. \end{aligned}$$

It follows that $f \in \mathcal{L}^1(\nu_n)$ and

(2.4)
$$\int_{A} f d\nu_n = u_A = \pi_{n+1,n} \Big(\int_{A} f d\nu_{n+1} \Big), \quad A \in \Sigma. \quad \blacksquare$$

For Banach spaces, the following version of Hölder's inequality occurs in Theorem 3.1.13 of [26] for (i) and in Theorem 3.5.1 of [26] for (ii).

PROPOSITION 2.2. Let X be a Fréchet space, $v : \Sigma \to X$ be a vector measure and $1 < p, q < \infty$ satisfy 1/p + 1/q = 1.

(i) If
$$f \in \mathcal{L}^{p}_{w}(v)$$
 and $g \in \mathcal{L}^{q}_{w}(v)$, then $fg \in \mathcal{L}^{1}_{w}(v)$.

(ii) If $f \in \mathcal{L}^p(v)$ and $g \in \mathcal{L}^q(v)$, then $fg \in \mathcal{L}^1(v)$. In both cases, $\|fg\|_{v}^{(n)} \leq \|f\|_{v,p}^{(n)} \|g\|_{v,q}^{(n)}$, for $n \in \mathbb{N}$.

Proof. (i) By definition $|f|^p \in \mathcal{L}^1_w(\nu)$, $|g|^q \in \mathcal{L}^1_w(\nu)$. Fix $x^* \in X^*$. Then, both $|f|^p$, $|g|^q \in \mathcal{L}^1(|\langle \nu, x^* \rangle|)$. By the classical Hölder inequality for scalar measures, $fg \in \mathcal{L}^1(|\langle \nu, x^* \rangle|)$ and

$$\int_{\Omega} |fg|\mathbf{d}|\langle \nu, x^*\rangle| \leq \left(\int_{\Omega} |f|^p \mathbf{d}|\langle \nu, x^*\rangle|\right)^{1/p} \left(\int_{\Omega} |g|^q \mathbf{d}|\langle \nu, x^*\rangle|\right)^{1/q} < \infty$$

This shows that $fg \in \mathcal{L}^1_w(\nu)$.

Fix $n \in \mathbb{N}$. For $x^* \in B_n^\circ$, the previous inequality yields $\int_{\Omega} |fg| d| \langle v, x^* \rangle | \leq ||f||_{\nu,p}^{(n)} ||g||_{\nu,q}^{(n)}$ and so

$$\|fg\|_{\nu}^{(n)} = \sup_{x^* \in B_n^{\circ}} \int_{\Omega} |fg| \mathbf{d} |\langle \nu, x^* \rangle| \leq \|f\|_{\nu, p}^{(n)} \|g\|_{\nu, q}^{(n)}$$

(ii) Here $|f|^p \in \mathcal{L}^1(v), |g|^q \in \mathcal{L}^1(v)$. By Lemma 2.1, $|f|^p \in \mathcal{L}^1(v_n), |g|^q \in \mathcal{L}^1(v_n)$, that is, $f \in \mathcal{L}^p(v_n), g \in \mathcal{L}^q(v_n)$, for all $n \in \mathbb{N}$. Applying Theorem 3.5.1 of [26] to each complete seminormed space $\mathcal{L}^1(v_n)$ we deduce that $fg \in \mathcal{L}^1(v_n)$, for all $n \in \mathbb{N}$; see also the proof of Lemma 2.21(i) in [25]. Again Lemma 2.1 ensures that $fg \in \mathcal{L}^1(v)$.

Since $\chi_{\Omega} \in \mathcal{L}^{q}(\nu) \subseteq \mathcal{L}^{q}_{w}(\nu)$, the following result is clear from Proposition 2.2; see also Theorem 4.5.13(v)(a) of [26] for part of the conclusion.

COROLLARY 2.3. Let v be a Fréchet-space-valued measure and $1 < p, q < \infty$ satisfy 1/p + 1/q = 1. Let $f \in \mathcal{L}^p_w(v)$. Then

(2.5)
$$\|f\|_{\nu}^{(n)} \leq \|f\|_{\nu,p}^{(n)}(\|\chi_{\Omega}\|_{\nu}^{(n)})^{1/q}, \quad n \in \mathbb{N}.$$

Also, $\mathcal{L}^{p}(\nu) \subseteq \mathcal{L}^{1}(\nu)$ and $\mathcal{L}^{p}_{w}(\nu) \subseteq \mathcal{L}^{1}_{w}(\nu)$ with continuous inclusions.

Scalarly v-p-integrable functions are more than scalarly v-integrable. For Banach spaces the next result is Proposition 3.1 of [15].

PROPOSITION 2.4. Let X be a Fréchet space and $v : \Sigma \to X$ be a vector measure. If p > 1, then $\mathcal{L}^p_{w}(v) \subseteq \mathcal{L}^1(v)$ with a continuous inclusion.

Proof. Let $f \in \mathcal{L}^p_{\mathbf{w}}(\nu)$. For any $k \in \mathbb{N}$, consider the set $A_k := \{\omega \in \Omega : |f(w)| \leq k\}$ and the function $f_k := f\chi_{A_k}$. Each $f_k \in \mathcal{L}^1(\nu)$ since it is bounded ([19], p. 26). Moreover, (f_k) converges pointwise to f. To verify that $f \in \mathcal{L}^1(\nu)$ it suffices to show that $(\int_E f_k d\nu)$ is Cauchy in X uniformly with respect to $E \in \Sigma$ ([21], Theorem 2.4). Fix $n \in \mathbb{N}$. For i > j, by Proposition 2.2 and (2.2) we have, for $E \in \Sigma$, that

$$\begin{split} \left\| \int_{E} f_{i} \mathrm{d}\nu - \int_{E} f_{j} \mathrm{d}\nu \right\|^{(n)} &\leq \sup_{F \in \Sigma} \left\| \int_{F} (f_{i} - f_{j}) \mathrm{d}\nu \right\|^{(n)} \leq \|f_{i} - f_{j}\|_{\nu}^{(n)} = \||f|\chi_{(A_{i} \setminus A_{j})}\|_{\nu}^{(n)} \\ &\leq \|f\|_{\nu,p}^{(n)} \|\chi_{(\Omega \setminus A_{j})}\|_{\nu,q}^{(n)} = \|f\|_{\nu,p}^{(n)} (\|\chi_{(\Omega \setminus A_{j})}\|_{\nu}^{(n)})^{1/q}. \end{split}$$

Since $\chi_{(\Omega \setminus A_j)} \downarrow 0$ pointwise, the dominated convergence theorem ([19], p. 30) implies that $\|\chi_{(\Omega \setminus A_j)}\|_{\nu}^{(n)} \to 0$ as $j \to \infty$. Thus $f \in \mathcal{L}^1(\nu)$.

Continuity of the inclusion $\mathcal{L}^{p}_{w}(\nu) \subseteq \mathcal{L}^{1}(\nu)$ is clear from (2.5).

A set $A \in \Sigma$ is called *v*-null if v(B) = 0 for every $B \in \Sigma$ with $B \subseteq A$. Equivalently, A is v_n -null for all $n \in \mathbb{N}$. Denote the σ -ideal of all *v*-null sets by $\mathcal{N}_0(v)$. Let $f \in \mathcal{L}^0(v)$. Then f is called *v*-null whenever $||f||_v^{(n)} = 0$ for all $n \in \mathbb{N}$. If $f^{-1}(\mathbb{R} \setminus \{0\}) \in \mathcal{N}_0(v)$, then it is also $|\langle v, x^* \rangle|$ -null for all $x^* \in X^*$. Hence, f is a *v*-null function because

$$\|f\|_{\nu}^{(n)} = \sup_{x^* \in B_n^{\circ}} \int_{f^{-1}(\mathbb{R} \setminus \{0\})} |f| \mathbf{d} |\langle \nu, x^* \rangle| = 0, \quad n \in \mathbb{N}.$$

Conversely, suppose f is a ν -null function. Fix $n \in \mathbb{N}$. For the Banach-spacevalued measure ν_n , Rybakov's theorem states that there is a unit vector $\xi^* \in X_n^*$ (i.e., $\pi_n^*(\xi^*) \in B_n^\circ$) such that ν_n and $|\langle \nu_n, \xi^* \rangle|$ have the same null sets ([11], p. 268). Since $\int_{f^{-1}(\mathbb{R}\setminus\{0\})} |f| d| \langle \nu, \xi^* \rangle| \leq ||f||_{\nu}^{(n)} = 0$, the set $f^{-1}(\mathbb{R}\setminus\{0\})$ is $|\langle \nu_n, \xi^* \rangle|$ -null

and hence, also ν_n -null. But, $n \in \mathbb{N}$ is arbitrary and so $f^{-1}(\mathbb{R}\setminus\{0\}) \in \mathcal{N}_0(\nu)$. So, the subspace $\mathcal{N}(\nu)$ of $\mathcal{L}^0(\nu)$ consisting of all ν -null functions is the space of all $f \in \mathcal{L}^0(\nu)$ such that $f^{-1}(\mathbb{R}\setminus\{0\}) \in \mathcal{N}_0(\nu)$ (briefly, we say f is ν -null). Observe that $\mathcal{N}(\nu) \subseteq \mathcal{L}^1(\nu)$. Two functions from $\mathcal{L}^0(\nu)$ are ν -equivalent if their difference is a ν -null function. Noting that $\mathcal{N}(\nu)$ is a closed ideal in both $\mathcal{L}^p_w(\nu)$ and $\mathcal{L}^p(\nu)$, the quotient spaces $L^p_w(\nu) := \mathcal{L}^p_w(\nu)/\mathcal{N}(\nu)$ and $L^p(\nu) := \mathcal{L}^p(\nu)/\mathcal{N}(\nu)$, for $1 \leq p < \infty$, are then complete Fréchet lattices for the (quotient) seminorms induced via (2.1) ([26], Theorem 4.5.11). So, Proposition 2.2, Corollary 2.3 and Proposition 2.4 also hold for the corresponding statements with the Fréchet spaces $L^p(\nu)$ and $\mathcal{L}^p_w(\nu)$. Define $L^0(\nu) := \mathcal{L}^0(\nu)/\mathcal{N}(\nu)$.

A vector measure $\nu : \Sigma \to X$ is called σ -decomposable if Σ admits countably infinite many pairwise disjoint non- ν -null sets ([25], p. 129). For X a Banach space the natural inclusion $L^p(\nu) \subseteq L^q(\nu)$ is proper whenever $1 \leq q < p$, ([25], Proposition 3.28).

PROPOSITION 2.5. Let X be a Fréchet space not admitting a continuous norm. There exists an X-valued, σ -decomposable measure ν such that

$$L^p_{\mathbf{w}}(\nu) = L^p(\nu) = L^q_{\mathbf{w}}(\nu) = L^q(\nu), \quad 1 \leq q \leq p < \infty.$$

Proof. By a classical result of Bessaga and Pelczynski ([3] and Theorem 7.2.7 of [18]) *X* contains a complemented subspace isomorphic to the Fréchet sequence space $\omega := \mathbb{R}^{\mathbb{N}}$, equipped with the seminorms $q_n(x) := \max_{1 \le j \le n} |x_j|$, for $x = (x_1, x_2, \ldots) \in \omega$. So, it suffices to establish the result for $X = \omega$. Let $\Omega = \mathbb{N}$ and $\Sigma = 2^{\Omega}$. Define $v : \Sigma \to \omega$ by $v(A) = \chi_A$, for $A \in \Sigma$. Then v is a vector measure with \emptyset as its only v-null set and $\mathcal{L}^0(v) = \mathbb{R}^{\mathbb{N}}$. Observe that $\omega^* = \{\xi \in \mathbb{R}^{\mathbb{N}} : \sup p(\xi) \text{ is finite}\}$ with duality $\langle x, \xi \rangle = \sum_{n=1}^{\infty} x_n \xi_n$ (a finite sum), for each $x \in \omega$ and $\xi \in \omega^*$. It is routine to check that $L^p_w(v) = L^p(v) = L^0(v) \simeq \omega$, for $1 \le p < \infty$, with equality as vector spaces and topologically.

In *Banach spaces X*, the continuous inclusion of $L^p_w(\nu)$ into $L^1(\nu)$ is weakly compact for all p > 1 ([15], Proposition 3.3). So, the restriction to $L^p(\nu)$ of the (continuous) integration map $I_{\nu} : L^1(\nu) \to X$ (i.e., $f \mapsto I_{\nu}(f) := \int_{\Omega} f d\nu$ for $f \in L^1(\nu)$), is also weakly compact. For *X* a Fréchet space, this may fail. Via (2.2), $I_{\nu} : L^1(\nu) \to X$ is still continuous and so, by Corollary 2.3, also the restriction $I_{\nu} : L^p(\nu) \to X$ is continuous for all $p \ge 1$. The problem lies with weak compactness.

A continuous linear map *T* from a lc-space *Y* into a Fréchet space *X* is *weakly compact* (respectively *compact*) if there is a neighbourhood *U* of $0 \in Y$ such that the closure of T(U) is weakly compact (respectively compact) in *X*.

PROPOSITION 2.6. Let X be any Fréchet space which does not admit a continuous norm. Then there exists an X-valued measure v such that:

(i) the continuous inclusion $L^p_{\mathbf{w}}(v) \subseteq L^1(v)$ is not weakly compact, for every p > 1; (ii) the continuous integration map $I_v : L^p(v) \to X$ is not weakly compact, for every $p \ge 1$.

Proof. As in the proof of Proposition 2.5 it suffices to consider $X = \omega$ and $\nu : \Sigma \to \omega$ as given there. Since $L_{\mathbf{w}}^p(\nu) = L^1(\nu) \simeq \omega$ for all $p \ge 1$, the natural inclusion $L_{\mathbf{w}}^p(\nu) \subseteq L^1(\nu)$ is the identity map on ω . If this map was weakly compact, then ω would have a bounded neighbourhood of 0 and hence, would be normable (which is not so). This establishes (i). It is also routine to check that the integration map $I_{\nu} : L^p(\nu) \to \omega$ is the identity map on ω and so the same argument yields (ii).

For a Banach-space-valued measure $v : \Sigma \to X$ it is known, for each $1 , that the restriction of the integration map <math>I_v : L_w^p(v) \to X$ (well defined by Proposition 3.1 of [15]) is a compact operator if and only if the range $R(v) := \{v(A) : A \in \Sigma\}$ is a relatively compact subset of X ([15], Theorem 3.6 and [25], Proposition 3.56(I)). What if X is a Fréchet space? According to Proposition 2.4 the restriction map $I_v : L_w^p(v) \to X$ is again well defined. If this map is compact, then there exists $n \in \mathbb{N}$ such that $I_v(W_n)$ is relatively compact in X, where $W_n := \{f \in L_w^p(v) : \|f\|_{v,p}^{(n)} \leq 1\}$ is a basic neighbourhood of 0 in $L_w^p(v)$. Since $(\||f|^p\|_v^{(n)})^{1/p} = \|f\|_{v,p}^{(n)}$, for every $f \in L_w^1(v)$, we have

$$\|\chi_A\|_{\nu,p}^{(n)} = (\||\chi_A|^p\|_{\nu}^{(n)})^{1/p} = (\|\chi_A\|_{\nu}^{(n)})^{1/p} \leqslant (\|\chi_\Omega\|_{\nu}^{(n)})^{1/p}, \quad A \in \Sigma.$$

Accordingly, $R(\nu) \subseteq (\|\chi_{\Omega}\|_{\nu}^{(n)})^{1/p} \cdot I_{\nu}(W_n)$, which shows that $R(\nu)$ is necessarily a relatively compact subset of *X*. Unfortunately, the converse statement does not hold for general non-normable *X*.

PROPOSITION 2.7. Let X be any Fréchet space which does not admit a continuous norm. There exists an X-valued measure v such that:

(i) R(v) is a relatively compact subset of X, but

(ii) the restricted integration map $I_{\nu} : L^{p}_{w}(\nu) \to X$ fails to be compact for every 1 .

Proof. As in the proof of Proposition 2.5 it suffices to consider $X = \omega$ and $\nu : \Sigma \to X$ as given there. Since $R(\nu)$ is a bounded subset of ω (being relatively weakly compact ([19], p. 76) and ω is a Montel space, it follows that $R(\nu)$ is a relatively compact subset of ω , i.e., (i) holds. The same argument as in the

proof of Proposition 2.6, with "compact" in place of "weakly compact" establishes part (ii).

3. IDEAL PROPERTIES OF THE INTEGRATION MAP I_{ν}

The aim of this section is to investigate how certain ideal properties of I_{ν} influence the nature of its domain space $L^{1}(\nu)$.

Let $v : \Sigma \to X$ be a Fréchet-space-valued vector measure and v_n , for $n \in \mathbb{N}$, be as in (2.3). According to (2.4) we have $\mathcal{N}(v_{n+1}) \subseteq \mathcal{N}(v_n)$ and hence, via Lemma 2.1(iv), that $L^1(v_{n+1}) \subseteq L^1(v_n)$, $n \in \mathbb{N}$, with a continuous inclusion.

We point out that the equality $L^1(\nu) = L^1_w(\nu)$ is equivalent to $L^1(\nu)$ (or $L^1_w(\nu)$) being weakly sequentially complete; see Proposition 3.4 of [5].

THEOREM 3.1. Let $\nu : \Sigma \to X$ be a Fréchet-space-valued measure. Then the integration map $I_{\nu} : L^{1}(\nu) \to X$ is weakly compact if and only if there exists $r \in \mathbb{N}$ such that for all $k \ge r$ we have:

(i) $I_{\nu_k}: L^1(\nu_k) \to X_k$ is weakly compact, and

(ii) $L^1(\nu) = L^1(\nu_k) = L^1(\nu_r)$, with equality as lc-spaces.

In this case, $L^1(v)$ *is necessarily a Banach space.*

First we require a preliminary lemma. Recall that a convex balanced subset *B* of a lc-space *X* is a *Banach disc* if $X_B := \text{span}(B)$, equipped with its Minkowski functional, is a Banach space ([22], p. 267).

LEMMA 3.2. Let X be a Fréchet space and $v : \Sigma \to X$ be a vector measure. Then the integration map $I_v : L^1(v) \to X$ is weakly compact if and only if there exist a Banach disc $B \subseteq X$ and a vector measure $\mu : \Sigma \to X_B$ such that:

(i) $X_B \hookrightarrow X$ continuously via the natural injection *J*;

(ii) $L^{1}(\mu) = L^{1}(\nu)$ as lc-spaces;

(iii) $I_{\mu}: L^{1}(\mu) \to X_{B}$ is weakly compact; and

(iv) $I_{\nu} = J \circ I_{\mu}$ (i.e. ν factors through X_B via μ and J).

Proof. Clearly (i)–(iv) imply that I_{ν} is weakly compact.

Conversely, let I_{ν} be weakly compact. We adapt the proof of Lemma 3.2 in [23]. Take a convex balanced neighbourhood V of 0 in $L^{1}(\nu)$ with $A := \overline{I_{\nu}(V)}$ weakly compact in X. Then choose a weakly compact Banach disc B of X such that $A \subseteq B$ and A is weakly compact in X_{B} ([27], p. 422 Lemma). Then (i) follows from Corollary 23.14 of [22]; see also its proof. Since the range $R(I_{\nu}) \subseteq X_{B}$, let $I_{\nu}^{(B)} : L^{1}(\nu) \to X_{B}$ denote I_{ν} considered as being X_{B} -valued. Arguing as in [23] the map $I_{\nu}^{(B)}$ is weakly compact (hence, continuous). Moreover, $\mu : \Sigma \to X_{B}$ defined by $E \mapsto I_{\nu}^{(B)}(\chi_{E})$, for $E \in \Sigma$, is a vector measure satisfying (ii), (iv); see the proof in [23]. Since $L^{1}(\nu) = L^{1}(\mu)$ as lc-spaces, V is also a 0-neighbourhood in the Banach space $L^{1}(\mu)$ and so, is contained in a multiple of the unit ball in $L^{1}(\mu)$. Moreover, $I_{\mu}(V) = I_{\nu}^{(B)}(V) \subseteq A$ is relatively weakly compact in X_{B} from which (iii) follows.

Proof of Theorem 3.1. Suppose that I_{ν} is weakly compact. By Lemma 3.2, $L^{1}(\nu)$ is a Banach space. According to p. 25 of [17] there exists $r \in \mathbb{N}$ such that (ii) of Theorem 3.1 holds. Then $I_{\nu_{k}} = \pi_{k} \circ I_{\nu}$ is weakly compact, for all $k \ge r$, after noting that the domain $\mathcal{D}(I_{\nu_{k}}) = L^{1}(\nu_{k}) = L^{1}(\nu) = \mathcal{D}(I_{\nu})$ by (ii). Hence, (i) is valid.

Suppose that (i), (ii) of Theorem 3.1 hold. By (ii), $L^1(\nu)$ is a Banach space. Then apply the version of Lemma 2.3 of [23] with "compact" replaced throughout by "weakly compact" (the "same" proof applies), together with (i), to conclude that I_{ν} is weakly compact.

A version of Theorem 3.1 is known for *compactness* of the integration map I_{ν} ([23], Theorem 2).

For Banach spaces the following result occurs in Corollary 2.3 of [7].

COROLLARY 3.3. The Fréchet space $L^1(v)$ is weakly sequentially complete whenever the integration map $I_v : L^1(v) \to X$ is weakly compact.

Proof. Let $r \in \mathbb{N}$ be as in Theorem 3.1. Then $I_{\nu_r} : L^1(\nu_r) \to X_r$ is weakly compact. Since X_r is a Banach space, $L^1(\nu_r)$ is weakly sequentially complete ([7], Corollary 2.3). By (ii) of Theorem 3.1, $L^1(\nu)$ is also weakly sequentially complete (and a Banach space).

COROLLARY 3.4. Let X be a Fréchet space such that each Banach space X_k , for $k \in \mathbb{N}$, is reflexive. Then an X-valued measure v satisfies I_v is weakly compact if and only if $L^1(v)$ is a Banach space.

Proof. If I_{ν} is weakly compact, then Theorem 3.1 implies that $L^{1}(\nu)$ is a Banach space. Conversely, suppose $L^{1}(\nu)$ is a Banach space. Then $\pi_{k} \circ I_{\nu} : L^{1}(\nu) \to X_{k}$ is weakly compact from the Banach space $L^{1}(\nu)$ into the Banach space X_{k} , for $k \in \mathbb{N}$. By the "weakly compact" version of Lemma 2.3 in [23] it follows that I_{ν} is weakly compact.

We point out that if each Banach space X_k , $k \in \mathbb{N}$, is reflexive, then X itself is necessarily reflexive ([22], Proposition 25.15).

For *Y*, *Z* Fréchet spaces, a continuous linear map $T : Y \to Z$ is called *completely continuous* (or Dunford–Pettis) if it maps weakly convergent sequences in *Y* to convergent sequences in *Z*. For Banach spaces, such operators form a classical operator ideal. If *Z* is a Fréchet–Montel space, then every continuous linear map $T : Y \to Z$ is completely continuous. The same is true whenever *Z* has the Schur property.

LEMMA 3.5. For a continuous linear operator $T : Y \rightarrow Z$ between Fréchet spaces *Y*, *Z* the following assertions are equivalent:

- (i) *T* maps weakly compact subsets of *Y* to compact subsets of *Z*;
- (ii) *T* is completely continuous;
- (iii) T maps weakly Cauchy sequences in Y to convergent sequences in Z.

Proof. (i) \Leftrightarrow (ii) is known ([16], p. 43), and depends on the fact that a subset of a Fréchet space is weakly compact if and only if it is weakly sequentially compact ([16], pp. 30-31 and (1) p. 39; [20], (9) p. 318).

(iii) \Rightarrow (ii). Immediate.

(ii) \Rightarrow (iii). For Banach spaces, see p. 333 of [2]. Suppose there is a weak Cauchy sequence $\{y_n\}_{n=1}^{\infty} \subseteq Y$ such that $\{T(y_n)\}_{n=1}^{\infty}$ is *not* convergent in *Z*. With *d* denoting a translation invariant metric in *Z* which determines its given Fréchet space topology, there is $\varepsilon > 0$ and positive integers $p(1) < q(1) < p(2) < q(2) < \cdots$ such that $d(T(y_{p(n)}), T(y_{q(n)})) > \varepsilon$ for $n \in \mathbb{N}$. It is routine to check that $\{y_{p(n)} - y_{q(n)}\}_{n=1}^{\infty}$ is weakly convergent to $0 \in Y$. Since *T* is also continuous when *Y*, *Z* have their weak topology, it follows that $T(y_{p(n)} - y_{q(n)}) \rightarrow 0$ weakly in *Z*. Now, (ii) implies that $\{T(y_{p(n)} - y_{q(n)})\}_{n=1}^{\infty}$ is convergent in *Z* (to 0 by the previous sentence). This contradicts $d(T(y_{p(n)}), T(y_{q(n)})) > \varepsilon$ for $n \in \mathbb{N}$. So, no such weak Cauchy sequence $\{y_n\}_{n=1}^{\infty}$ exists.

Corollary 3.3 shows that compactness/weak compactness of I_{ν} has a strong influence on $L^{1}(\nu)$, i.e., it is weakly sequentially complete. We will see in Section 4 that this, in turn, forces *all* spaces $L^{p}(\nu)$ and $L_{w}^{p}(\nu)$, for $1 \leq p < \infty$, to be weakly sequentially complete. The complete continuity of I_{ν} has the same effect on $L^{1}(\nu)$.

THEOREM 3.6. Let X be a Fréchet space and ν be an X-valued measure. If the integration map $I_{\nu} : L^{1}(\nu) \to X$ is completely continuous, then $L^{1}_{w}(\nu) = L^{1}(\nu)$.

The proof proceeds via a series of lemmata, using the notation of Theorem 3.6. In particular, *X* is always a Fréchet space and $\nu : \Sigma \to X$ a (fixed) vector measure with Σ a σ -algebra of subsets of Ω .

Let $L^1(\nu)_{\sigma}$ denote $L^1(\nu)$ with its weak topology $\sigma(L^1(\nu), L^1(\nu)^*)$. The strong bidual $L^1(\nu)^{**}$ is a Fréchet space which contains $L^1(\nu)$ as a closed subspace via the canonical embedding $J : L^1(\nu) \to L^1(\nu)^{**}$ ([22], Corollary 25.10). The space $L^1(\nu)^{**}$ equipped with its weak-* topology $\sigma(L^1(\nu)^{**}, L^1(\nu)^*)$ is denoted by $L^1(\nu)^{**}_{\sigma^*}$; it is a *sequentially complete* Hausdorff lcs ([20], (3) p. 396). The following fact is routine to establish.

LEMMA 3.7. The embedding $J : L^1(\nu)_{\sigma} \to L^1(\nu)_{\sigma^*}^{**}$ is a topological isomorphism onto its range $J(L^1(\nu))$.

Given $f \in L^1(\nu)$, define $m_f : \Sigma \to L^1(\nu)$ by $m_f(A) := f\chi_A$, for $A \in \Sigma$. If $A_n \downarrow \emptyset$ in Σ , then $f\chi_{A_n} \to 0$ pointwise ν -a.e. on Ω and $|f\chi_{A_n}| \leq |f| \in L^1(\nu)$, for $n \in \mathbb{N}$. By the dominated convergence theorem ([19], p. 30), $m_f(A_n) = f\chi_{A_n} \to 0$ in $L^1(\nu)$ as $n \to \infty$, i.e., m_f is σ -additive in the Fréchet space $L^1(\nu)$.

LEMMA 3.8. Let $\{f_n\}_{n=1}^{\infty} \subseteq L^1(v)$ be a weak Cauchy sequence, i.e., Cauchy in the lcs $L^1(v)_{\sigma}$.

(i) For each $A \in \Sigma$, the following limit exists in the Hausdorff lcs $L^1(\nu)_{\sigma^*}^{**}$:

(3.1)
$$\xi(A) := \lim_{n \to \infty} J(f_n \chi_A).$$

(ii) The set function $\xi : \Sigma \to L^1(\nu)^{**}_{\sigma^*}$ defined by (3.1) is a vector measure and satisfies $\mathcal{N}_0(\nu) \subseteq \mathcal{N}_0(\xi)$.

Proof. (i) Fix $A \in \Sigma$. It is clear from (2.1), with p = 1, that the operator of multiplication by χ_A is continuous from $L^1(\nu)$ to itself. It is then also continuous from $L^1(\nu)_{\sigma}$ to itself and hence, $\{f_n\chi_A\}_{n=1}^{\infty}$ is a weak Cauchy sequence in $L^1(\nu)$. By Lemma 3.7 the limit (3.1) exists in the sequentially complete lcs $L^1(\nu)_{\sigma}^{**}$.

(ii) For $k \in \mathbb{N}$ fixed the discussion prior to Lemma 3.8 ensures that the set function $m_{f_k} : \Sigma \to L^1(\nu)$ is a vector measure and hence, is also σ -additive when considered to be $L^1(\nu)_{\sigma}$ -valued. Lemma 3.7 implies that $J \circ m_{f_k} : \Sigma \to L^1(\nu)_{\sigma^*}^{**}$ is also σ -additive. Given $u \in L^1(\nu)^*$ we have via (3.1) that $\langle u, \xi \rangle (A) = \lim_{n \to \infty} \langle u, (J \circ m_{f_n})(A) \rangle$, for each $A \in \Sigma$. Since $\langle u, J \circ m_{f_n} \rangle$ is a scalar measure, for each $n \in \mathbb{N}$, the Vitali–Hahn–Saks theorem ensures that $\langle u, \xi \rangle$ is σ -additive. But, the continuous seminorms generating the topology of $L^1(\nu)_{\sigma^*}^{**}$ are given by $\eta \mapsto |\langle u, \eta \rangle|$, for $\eta \in L^1(\nu)_{\sigma^*}^{**}$, as u varies in $L^1(\nu)^*$. Accordingly, ξ is σ -additive as an $L^1(\nu)_{\sigma^*}^{**-}$ valued set function.

To see that $\mathcal{N}_0(\nu) \subseteq \mathcal{N}_0(\xi)$, let $A \in \mathcal{N}_0(\nu)$. For each $B \in \Sigma$ with $B \subseteq A$ the functions $\{f_n\chi_B : n \in \mathbb{N}\}$ are ν -null. Hence, $J(f_n\chi_B) = 0$ for $n \in \mathbb{N}$. Then (3.1) implies that $\xi(B) = 0$. So, $A \in \mathcal{N}_0(\xi)$.

LEMMA 3.9. Let I_{ν} be completely continuous and $\{f_n\}_{n=1}^{\infty} \subseteq L^1(\nu)_{\sigma}$ be Cauchy. (i) For each $A \in \Sigma$, the following limit exists in X:

(3.2)
$$m(A) := \lim_{n \to \infty} I_{\nu}(f_n \chi_A).$$

(ii) The set function $m : \Sigma \to X$ defined by (3.2) is a vector measure and satisfies $\mathcal{N}_0(\nu) \subseteq \mathcal{N}_0(m)$.

Proof. (i) For $A \in \Sigma$, the sequence $\{f_n \chi_A\}_{n=1}^{\infty}$ is Cauchy in $L^1(\nu)_{\sigma}$ (c.f. proof of Lemma 3.8(i)). So, by complete continuity the limit (3.2) exists.

(ii) Since $f_n \in L^1(\nu)$, the Orlicz–Pettis theorem ensures that $u_n : A \mapsto \int f_n d\nu = I_{\nu}(f_n \chi_A)$ is a σ -additive, X-valued measure on Σ for each $n \in \mathbb{N}$. In A particular, for each $x^* \in X^*$, the scalar valued set functions $\langle u_n, x^* \rangle$, for $n \in \mathbb{N}$, are σ -additive. By the Vitali–Hahn–Saks theorem, also $\langle m, x^* \rangle(A) := \langle m(A), x^* \rangle = \lim_{n \to \infty} \langle u_n(A), x^* \rangle$, for $A \in \Sigma$, is σ -additive. By the Orlicz–Pettis theorem m is σ -additive in X.

To verify that $\mathcal{N}_0(\nu) \subseteq \mathcal{N}_0(m)$, adapt that part of the argument in the proof of Lemma 3.8(ii) showing that $\mathcal{N}_0(\nu) \subseteq \mathcal{N}_0(\xi)$.

Since X is a Fréchet space, there exists a sequence $\{x_j^*\}_{j=1}^{\infty} \subseteq X^*$ (fixed from now on) which satisfies $\mathcal{N}_0(v) = \bigcap_{j=1}^{\infty} \mathcal{N}_0(\langle v, x_j^* \rangle)$; see the proof of Theorem 2.5 in [4], for example. Fix $j \in \mathbb{N}$. It is clear from (2.1), with p = 1, and the fact that $x_j^* \in \alpha B_m^\circ$ for some $\alpha > 0$ and $m \in \mathbb{N}$, that the natural identity map from $L^1(v)$ into the Banach space $L^1(\langle v, x_j^* \rangle)$ is continuous and hence, also continuous from $L^1(v)_{\sigma}$ into $L^1(\langle v, x_j^* \rangle)_{\sigma}$. So given a Cauchy sequence $\{f_n\}_{n=1}^{\infty} \subseteq L^1(v)_{\sigma}$ (fixed henceforth), it is also Cauchy in the sequentially complete lcs $L^1(\langle v, x_j^* \rangle)_{\sigma}$. Accordingly, there exists $\varphi_j \in L^1(\langle v, x_j^* \rangle)$ such that $f_n \to \varphi_j$ weakly in $L^1(\langle v, x_j^* \rangle)$ as $n \to \infty$. By the weak Banach–Saks property of $L^1(\langle v, x_j^* \rangle)$ ([29]) there exists a subsequence $\{f_{n(k)}^{(j)}\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ whose arithmetic means $N^{-1}\sum_{k=1}^{N} f_{n(k)}^{(j)} \to \varphi_j$ in the *norm* of $L^1(\langle v, x_j^* \rangle)$ as $N \to \infty$. These arithmetic means admit a subsequence

(3.3)
$$g_{N(\ell)}^{(j)} := \frac{1}{N(\ell)} \sum_{k=1}^{N(\ell)} f_{n(k)}^{(j)}, \quad \ell \in \mathbb{N},$$

converging $\langle v, x_j^* \rangle$ -a.e. to φ_j . So, there exists $B_j \in \Sigma$ with $(\Omega \setminus B_j) \in \mathcal{N}_0(\langle v, x_j^* \rangle)$ and $g_{N(\ell)}^{(j)} \to \varphi_j$ pointwise on B_j as $\ell \to \infty$. Set $A_1 := B_1$ and $A_k := B_k \setminus \bigcup_{j=1}^{k-1} B_j$, for $k \ge 2$. Then $\bigcup_{j=1}^k A_j = \bigcup_{j=1}^k B_j$, for $k \in \mathbb{N}$, and

(3.4)
$$\lim_{\ell \to \infty} g_{N(\ell)}^{(j)} \chi_{A_j} = \varphi_j \chi_{A_j}, \text{ pointwise on } \Omega, \quad \forall j \in \mathbb{N}.$$

LEMMA 3.10. In the setting of the above construction and with I_{ν} assumed to be completely continuous we have the following facts:

(i) The sets {A_k}[∞]_{k=1} are pairwise disjoint with (Ω\∪[∞]_{k=1} A_k) ∈ N₀(ν).
(ii) For each j ∈ ℕ the function φ_jχ_{A_j} belongs to L¹(ν) with

(3.5)
$$\int_{A} \varphi_{j} \chi_{A_{j}} d\nu = m(A \cap A_{j}), \quad A \in \Sigma, and$$

(3.6)
$$J(\varphi_j \chi_{A_j}) = \xi(A_j), \text{ as elements of } L^1(\nu)_{\sigma^*}^{**}$$

Proof. (i) The sets $\{A_k\}_{k=1}^{\infty}$ are pairwise disjoint by construction. Also

$$|\langle \nu, x_j^* \rangle|(\Omega \setminus \bigcup_{k=1}^{\infty} A_k) \leq |\langle \nu, x_j^* \rangle|(\Omega \setminus B_j) = 0, \quad \forall j \in \mathbb{N},$$

and so $(\Omega \setminus \bigcup_{k=1}^{\infty} A_k) \in \bigcap_{j=1}^{\infty} \mathcal{N}_0(\langle \nu, x_j^* \rangle) = \mathcal{N}_0(\nu).$

(ii) Fix $j \in \mathbb{N}$. For each $A \in \Sigma$ it follows from (3.2) that $m(A \cap A_j) = \lim_{N \to \infty} I_{\nu} \left(N^{-1} \sum_{k=1}^{N} f_{n(k)}^{(j)} \chi_{A_j} \chi_A \right)$ in X and hence, from (3.3), that also

(3.7)
$$\lim_{\ell \to \infty} \int_{A} g_{N(\ell)}^{(j)} \chi_{A_j} \mathrm{d}\nu = \lim_{\ell \to \infty} I_{\nu}(g_{N(\ell)}^{(j)} \chi_{A_j} \chi_A) = m(A \cap A_j).$$

Fix $x^* \in X^*$. As a consequence of (3.7) the scalar measures $\lambda_{\ell}(A) := \int_A g_{N(\ell)}^{(j)} \chi_{A_j} d\langle \nu, x^* \rangle$ (recall that $g_{N(\ell)}^{(j)} \chi_{A_j} \in L^1(\nu)$, for $\ell \in \mathbb{N}$) have a limit for each $A \in \Sigma$ namely, $\lim_{\ell \to \infty} \lambda_{\ell}(A) = \langle m(A \cap A_j), x^* \rangle$. It follows from (3.4) and Lemma 2.3 of [21] that $\varphi_j \chi_{A_j} \in L^1(\langle \nu, x^* \rangle)$ and

(3.8)
$$\int_{A} \varphi_{j} \chi_{A_{j}} \mathrm{d} \langle \nu, x^{*} \rangle = \langle m(A \cap A_{j}), x^{*} \rangle, \quad A \in \Sigma.$$

Since $x^* \in X^*$ is arbitrary, we have $\varphi_j \chi_{A_j} \in L^1_w(\nu)$. Moreover, for each $A \in \Sigma$ it follows from (3.8) that the vector $m(A \cap A_j) \in X$ satisfies

$$\langle m(A \cap A_j), x^* \rangle = \int\limits_A \varphi_j \chi_{A_j} \mathrm{d} \langle \nu, x^* \rangle, \quad x^* \in X^*.$$

According to the definition of ν -integrability we can conclude that $\varphi_j \chi_{A_j} \in L^1(\nu)$, for each $j \in \mathbb{N}$, and that (3.5) is valid.

Again fix $j \in \mathbb{N}$. Since $\{g_{N(\ell)}^{(j)}\chi_{A_j}\}_{\ell=1}^{\infty} \subseteq L^1(\nu)$, Lemma 2.1(ii) yields that $\{g_{N(\ell)}^{(j)}\chi_{A_j}\}_{\ell=1}^{\infty} \subseteq L^1(\nu_n)$, for all $n \in \mathbb{N}$. Moreover, (3.7) implies that $\lim_{\ell \to \infty} \int_A g_{N(\ell)}^{(j)}\chi_{A_j} d\nu_n = \pi_n(m(A \cap A_j))$ exists in X_n , for each $A \in \Sigma$ and $n \in \mathbb{N}$. Via (3.4) it follows from Theorem 2.2.8 of [26] that

$$\lim_{\ell\to\infty}\int\limits_A g_{N(\ell)}^{(j)}\chi_{A_j}\mathrm{d}\nu_n=\int\limits_A \varphi_j\chi_{A_j}\mathrm{d}\nu_n,\quad A\in\Sigma,$$

with the limit in X_n existing *uniformly* for $A \in \Sigma$. Hence, (2.2) and the identities $||f||_{\nu}^{(n)} = ||f||_{\nu_n}$, valid for all $n \in \mathbb{N}$ and $f \in L^1(\nu)$, imply

(3.9)
$$\lim_{\ell \to \infty} g_{N(\ell)}^{(j)} \chi_{A_j} = \varphi_j \chi_{A_j}, \text{ in the Fréchet space } L^1(\nu).$$

To establish (3.6), note that (3.9) implies $g_{N(\ell)}^{(j)}\chi_{A_j} \to \varphi_j\chi_{A_j}$ in $L^1(\nu)_{\sigma}$ as $\ell \to \infty$ and hence, by Lemma 3.7, that $J(g_{N(\ell)}^{(j)}\chi_{A_j}) \to J(\varphi_j\chi_{A_j})$ in $L^1(\nu)_{\sigma^*}^{**}$ as $\ell \to \infty$. On the other hand, it follows from (3.1) that $J\left(N^{-1}\sum_{k=1}^N f_{n(k)}^{(j)}\chi_{A_j}\right) \to \xi(A_j)$ in $L^1(\nu)_{\sigma^*}^{**}$ as $N \to \infty$. Via (3.3), also $J(g_{N(\ell)}^{(j)}\chi_{A_j}) \to \xi(A_j)$ in $L^1(\nu)_{\sigma^*}^{**}$ as $\ell \to \infty$. So, (3.6) is valid.

Proof of Theorem 3.6. To show $L^1(\nu)$ is weakly sequentially complete (equivalent to $L^1(\nu) = L^1_w(\nu)$) let $\{f_n\}_{n=1}^{\infty}$ be a weak Cauchy sequence in $L^1(\nu)$. In the notation of the above construction, define $f := \sum_{j=1}^{\infty} \varphi_j \chi_{A_j}$ pointwise on Ω (recall the sets $A_j, j \in \mathbb{N}$, are pairwise disjoint). The aim is to show that $f \in L^1(\nu)$ and $f_n \to f$ in $L^1(\nu)_{\sigma}$.

By Lemma 3.10(ii), each function $\psi_r := \sum_{j=1}^r \varphi_j \chi_{A_j} \in L^1(\nu)$, for $r \in \mathbb{N}$. Moreover, $\psi_r \to f$ pointwise on Ω as $r \to \infty$. By Lemma 3.9(ii) and Lemma 3.10(i) the set $\Omega \setminus (\bigcup_{j=1}^{\infty} A_j)$ is *m*-null. Due to (3.5), the σ -additivity of *m* (c.f. Lemma 3.9(ii)), and the fact that $\Omega \setminus (\bigcup_{j=1}^{\infty} A_j) \in \mathcal{N}_0(m)$, we can conclude, for each $A \in \Sigma$, that the sequence

$$\int_{A} \psi_r \mathrm{d}\nu = \sum_{j=1}^r \int_{A} \varphi_j \chi_{A_j} \mathrm{d}\nu = \sum_{j=1}^r m(A \cap A_j) = m(A \cap (\bigcup_{j=1}^r A_j)), \quad r \in \mathbb{N},$$

converges in *X* to $m(A \cap (\bigcup_{j=1}^{\infty} A_j)) = m(A)$ as $r \to \infty$. Repeating the argument used to establish (3.9) it follows that $f \in L^1(\nu)$ with $\int_A f d\nu = m(A)$, for $A \in \Sigma$

and that $\psi_r \to f$ in $L^1(\nu)$ as $r \to \infty$. In particular, $\psi_r \to f$ in $L^1(\nu)_{\sigma}$ and so, by Lemma 3.7, $J(\psi_r) \to J(f)$ in $L^1(\nu)_{\sigma^*}^{**}$. On the other hand, applying Lemma 3.8(ii) and (3.6) yields

$$\xi(\Omega) = \sum_{j=1}^{\infty} \xi(A_j) = \sum_{j=1}^{\infty} J(\varphi_j \chi_{A_j}) = \lim_{r \to \infty} J(\psi_r) = J(f)$$

with the limit existing in $L^1(\nu)_{\sigma^*}^{**}$. In view of (3.1), with $A := \Omega$, we conclude that $J(f_n - f) \to 0$ in $L^1(\nu)_{\sigma^*}^{**}$ which, by Lemma 3.7, implies that $f_n \to f$ in $L^1(\nu)_{\sigma}$ as $n \to \infty$.

REMARK 3.11. (i) If there is a *single* (Rybakov) functional $x_1^* \in X^*$ such that $\mathcal{N}_0(\nu) = \mathcal{N}_0(\langle \nu, x_1^* \rangle)$, then clearly the proof of Theorem 3.6 can be simplified. For Fréchet spaces X which admit a continuous norm (i.e., all Banach spaces and many non-normable Fréchet spaces), *every* X-valued measure has such a Rybakov functional, [12].

(ii) By Corollary 3.3 and Theorem 3.6, any one of compactness, weak compactness or complete continuity of I_{ν} force $L^{1}(\nu)$ to be weakly sequentially complete. The converse fails. The following example is over \mathbb{C} rather than \mathbb{R} . But, via the usual complexification of Banach (and Fréchet) lattices and function spaces over \mathbb{R} (cf. [14], Chapters 2 and 3 of [25] and [26]), this causes no difficulties in passing to spaces over \mathbb{C} . If *G* is any infinite compact abelian group and λ any \mathbb{C} valued, regular Borel measure on *G*, then the convolution operator $C_{\lambda} : L^{1}(G) \to$ $L^{1}(G)$, i.e., $f \mapsto \lambda * f$, for $f \in L^{1}(G)$, is continuous and induces the $L^{1}(G)$ -valued measure $m_{\lambda} : A \mapsto C_{\lambda}(\chi_{A})$. For *every* such λ the space $L^{1}(m_{\lambda}) = L^{1}(G)$ and so $L^1(m_{\lambda})$ is weakly sequentially complete ([25], Proposition 7.35). But, $I_{m_{\lambda}}$ is compact (= weakly compact) if and only if λ is absolutely continuous with respect to Haar measure whereas $I_{m_{\lambda}}$ is completely continuous if and only if the Fourier–Stieltjes transform $\hat{\lambda}$ of λ belongs to $c_0(\Gamma)$, with Γ the dual group of G ([25], Remark 7.36). Since there always exist λ with $\hat{\lambda} \notin c_0(\Gamma)$, for such λ we see that $L^1(m_{\lambda})$ is weakly sequentially complete, but $I_{m_{\lambda}}$ is neither compact, weakly compact or completely continuous.

The Fréchet space $L^1(\nu)$ can also be weakly sequentially complete for a different reason. A Fréchet-space-valued measure ν is said to have *finite variation* if $|\nu_n|(\Omega) < \infty$ for each $n \in \mathbb{N}$, where ν_n , for $n \in \mathbb{N}$, is given by (2.3).

We have seen that $L^1(\nu_{n+1}) \subseteq L^1(\nu_n)$, for $n \in \mathbb{N}$, with a continuous inclusion. Similarly, $L^1(|\nu_{n+1}|) \subseteq L^1(|\nu_n|)$ continuously, for each $n \in \mathbb{N}$. Then $L^1(\nu) := \mathcal{L}^1(\nu)/\mathcal{N}(\nu)$ is the Fréchet space $\bigcap_{n=1}^{\infty} L^1(\nu_n)$ with the increasing sequence of *norms* $\{\|\cdot\|_{\nu_n}\}_{n=1}^{\infty}$. Define $L^1(|\nu|) := \bigcap_{n=1}^{\infty} L^1(|\nu_n|) = (\bigcap_{n=1}^{\infty} \mathcal{L}^1(|\nu_n|)/\mathcal{N}(\nu)$, equipped with the increasing sequence of *norms*

(3.10)
$$|||f|||_{\nu}^{(n)} := \int_{\Omega} |f| \mathbf{d} |\nu_n|, \quad f \in \bigcap_{k=1}^{\infty} L^1(|\nu_k|), \quad n \in \mathbb{N}.$$

Then $L^1(|\nu|)$ is also a Fréchet space ([17], p. 17) and is continuously included in $L^1(\nu)$ ([23], Lemma 2.4; [24], Lemma 2).

PROPOSITION 3.12. Let v be any Fréchet-space-valued measure with finite variation. Then $L^1(|v|)$ is weakly sequentially complete.

Proof. Since each lc-space $L^1(|v_n|)_{\sigma}$, $n \in \mathbb{N}$, is sequentially complete, the product lc-space $\prod_{n=1}^{\infty} L^1(|v_n|)_{\sigma}$ is also sequentially complete ([20], (2) p. 296). Moreover, we have $(\prod_{n=1}^{\infty} L^1(|v_n|))_{\sigma} = \prod_{n=1}^{\infty} L^1(|v_n|)_{\sigma}$ ([20], (3) p. 285) and so $\prod_{n=1}^{\infty} L^1(|v_n|)$ is weakly sequentially complete. But, $L^1(|v|)$ is topologically isomorphic to a closed (hence, also weakly closed) subspace of $\prod_{n=1}^{\infty} L^1(|v_n|)$; Lemma 25.4 of [22] or see the proof of (7) p. 208 in [20] as applied to $L^1(|v|)$ and recall (3.10). Accordingly, $L^1(|v|)$ is weakly sequentially complete.

COROLLARY 3.13. Let v be any Fréchet-space-valued measure such that $L^1(v) = L^1(|v|)$ as vector spaces. Then $L^1(v)$ is weakly sequentially complete. In particular, $L^1(v) = L^1_w(v)$.

Proof. Since $\chi_{\Omega} \in L^{1}(\nu)$, also $\chi_{\Omega} \in L^{1}(|\nu|) = \bigcap_{k=1}^{\infty} L^{1}(|\nu_{k}|)$ and hence, ν has

finite variation. As already noted, the natural inclusion of $L^1(|\nu|)$ into $L^1(\nu)$ is always continuous and injective. So, as it is also surjective, the open mapping theorem ensures that $L^1(\nu)$ and $L^1(|\nu|)$ are topologically isomorphic. Then apply Proposition 3.12.

Whenever I_{ν} is a compact map the vector measure ν necessarily satisfies $L^{1}(\nu) = L^{1}(|\nu|)$ ([23], Theorems 1 and 2). The converse is false, even for Banach spaces; see Remark 3.11(ii).

Since $L^1(|\nu|)$ is a Fréchet AL-space, we point out that Corollary 3.13 also follows from Corollary 2.6 of [13].

It is instructive to analyze some non-trivial examples of vector measures ν in *non-normable* Fréchet spaces and the ideal properties of I_{ν} . So, let us consider Examples 4.1–4.4 in [23]; the vector measures presented there, all denoted by *m*, will here be denoted by ν .

For Examples 4.1 and 4.2 the Fréchet space *X* is, respectively, ω and *s* (rapidly decreasing sequences). In both examples it is shown that $L^1(\nu)$ is non-normable, satisfies $L^1(\nu) = L^1(|\nu|)$ but, I_{ν} is not compact. So, I_{ν} cannot be weakly compact either (ω and *s* are Montel). As already noted, whenever *X* is a Montel, I_{ν} is completely continuous.

In the case of Example 4.4 in [23], where *X* is the reflexive Fréchet space $\ell^{p+} = \bigcap_{q>p} \ell^q$, $1 , it is shown that <math>L^1(\nu)$ is a *Banach* space, satisfies $L^1(\nu) = L^1(|\nu|)$ but, I_{ν} is not compact. Since each Banach space $X_k = \ell^{p_k}$ for some $p < p_k < \infty$, it is reflexive. By Corollary 3.4, I_{ν} is weakly compact. The claim is that I_{ν} is also completely continuous. To see this, let $\{f_n\}_{n=1}^{\infty}$ be a null sequence in $L^1(\nu)_{\sigma}$ and observe that $I_{\nu}(f_n) \to 0$ in *X* if and only if $(\pi_k \circ I_{\nu})(f_n) = I_{\nu_k}(f_n) \to 0$ in the Banach space X_k as $n \to \infty$, for each $k \in \mathbb{N}$. Fix $k \in \mathbb{N}$. Since $L^1(\nu) = L^1(\nu_k)$ as lc spaces ([23], p. 226) also $f_n \to 0$ in $L^1(\nu_k)_{\sigma}$ as $n \to \infty$. Moreover, it follows from p. 225 of [23] that $I_{\nu_k} : L^1(\nu_k) = L^1(|\nu_k|) \to X_k$ is Bochner representable. So, by Corollary 9(c) in p. 56 of [11], ν_k has relatively compact range in X_k . Hence, I_{ν_k} is completely continuous ([25], Corollary 2.43) and so $I_{\nu_k}(f_n) \to 0$ in X_k as $n \to \infty$. This shows that $I_{\nu}(f_n) \to 0$ in X, i.e., I_{ν} is completely continuous.

For Example 4.3 of [23], where $X = \ell^{p+}$, $1 , the inclusion <math>L^1(|\nu|) \subseteq L^1(\nu)$ is *proper* with $L^1(|\nu|)$ a Banach space whereas $L^1(\nu)$ is non-normable. Since the X_k , $k \in \mathbb{N}$, are all reflexive, Corollary 3.4 yields that I_{ν} is not weakly compact (hence, not compact). To show I_{ν} is *not* completely continuous is more involved. The notation below is as in [23] except that *m* there is here denoted by ν .

Set $h_n := (n+1)n\alpha_n^{-1}\chi_{F(n)} \ge 0$, for $n \in \mathbb{N}$. With $\{e_n\}_{n=1}^{\infty}$ being the standard basis vectors of X, fix $x = \sum_{n=1}^{\infty} x(n)e_n$. Since $v_k : \Sigma \to X_k := \ell^{p_k}$ is a *positive* vector measure, for each $k \in \mathbb{N}$, it follows from Lemma 3.13 of [25] and pairwise

disjointness of the sets $\{F(n)\}_{n=1}^{\infty}$ that

$$\begin{aligned} \left\| \sum_{n=1}^{N} x(n)h_{n} - \sum_{n=1}^{M} x(n)h_{n} \right\|_{\nu_{k}} \\ (3.11) \qquad &= \left\| \sum_{n=M+1}^{N} x(n)h_{n} \right\|_{\nu_{k}} = \left\| \int_{\Omega} \left\| \sum_{n=M+1}^{N} x(n)h_{n} \right| d\nu_{k} \right\|_{X_{k}} \\ &= \left\| \sum_{n=M+1}^{N} |x(n)| \int_{\Omega} h_{n} d\nu_{k} \right\|_{X_{k}} = \left\| \sum_{n=M+1}^{N} |x(n)|e_{n} \right\|_{X_{k}} = \left\| \sum_{n=M+1}^{N} x(n)e_{n} \right\|_{X_{k}} \end{aligned}$$

for all M < N in \mathbb{N} . So, $\{\sum_{n=1}^{N} x(n)h_n\}_{N=1}^{\infty}$ is Cauchy in $L^1(\nu)$, with limit h, say. For each $j \in \mathbb{N}$, multiplication by $\chi_{F(j)}$ is a continuous operator from $L^1(\nu)$ into itself, which implies that

$$h\chi_{F(j)} = \lim_{N \to \infty} \sum_{n=1}^{N} x(n) h_n \chi_{F(j)} = x(j) h_j \quad (\text{in } L^1(\nu))$$

Accordingly, $h = \sum_{n=1}^{\infty} x(n)h_n$ pointwise on Ω and with the series converging in $L^1(\nu)$. By continuity of I_{ν} we can conclude that

(3.12)
$$I_{\nu}(h) = \sum_{n=1}^{\infty} x(n) I_{\nu}(h_n) = \sum_{n=1}^{\infty} x(n) e_n = x \quad (\text{in } X).$$

Moreover, since also $\sum_{n=1}^{\infty} x(n)h_n = h$ in $L^1(\nu_k)$ and $x = \sum_{n=1}^{\infty} x(n)e_n$ in $X_k = \ell^{p_k}$, for each $k \in \mathbb{N}$, where we now interpret $\{e_n\}_{n=1}^{\infty}$ as the canonical basis in X_k , it follows from (3.12) that

(3.13)
$$||h||_{\nu_k} = \lim_{N \to \infty} \left\| \sum_{n=1}^N x(n)h_n \right\|_{\nu_k} = \lim_{N \to \infty} \left\| \sum_{n=1}^N x(n)e_n \right\|_{X_k} = ||x||_{X_k};$$

here we have used $\left\|\sum_{n=1}^{N} x(n)h_n\right\|_{\nu_k} = \left\|\sum_{n=1}^{N} x(n)e_n\right\|_{X_k}$ for each $N \in \mathbb{N}$, which can be verified as in (3.11).

Define $\Phi : X \to L^1(\nu)$ by $\Phi(x) := \sum_{n=1}^{\infty} x(n)h_n$, for $x \in X$. Then Φ is injective and, by (3.13) continuous since, for each $k \in \mathbb{N}$, we have

$$\|\Phi(x)\|_{\nu_k} = \|x\|_{X_k}, \quad x \in X.$$

The range of Φ is precisely the subspace $W \subseteq L^1(\nu)$ given by

$$W := \Big\{ h \in L^1(\nu) : h = \sum_{n=1}^{\infty} x(n)h_n \text{ pointwise, for some } x \in X \Big\}.$$

From (3.14) we see that $||h||_{\nu_k} = ||\Phi^{-1}(h)||_{X_k}$, $h \in W$, for $k \in \mathbb{N}$, that is, $\Phi^{-1} : W \to X$ is continuous when W is equipped with the relative topology from $L^1(\nu)$. So,

 Φ is a topological isomorphism of *X* onto *W*, i.e., the restriction $I_{\nu}|_{W} = \Phi^{-1}$ is a surjective isomorphism of *W* onto *X*. Since $h_n \to 0$ in W_{σ} (as $e_n \to 0$ in X_{σ} and $h_n = \Phi^{-1}(e_n)$, $n \in \mathbb{N}$), but $I_{\nu}|_{W}(h_n) = e_n \nrightarrow 0$ in the Fréchet topology of *X*, the operator $I_{\nu}|_{W}$ is not completely continuous. So, if $H : W \to L^{1}(\nu)$ denotes the canonical inclusion, then the identity $I_{\nu}|_{W} = I_{\nu} \circ H : W \to X$ implies that I_{ν} cannot be completely continuous either.

Accordingly, for Example 4.3 of [23] the integration map I_{ν} is *neither* compact, weakly compact or completely continuous and it fails to satisfy $L^{1}(\nu) = L^{1}(|\nu|)$. Nevertheless, since the reflexive space *X* cannot contain an isomorphic copy of c_{0} we still have $L^{1}(\nu) = L^{1}_{w}(\nu)$ ([19], p. 31 Theorem 1) that is, $L^{1}(\nu)$ is weakly sequentially complete. For a Banach space example exhibiting these features (i.e., those of Example 4.3 in [23]) we refer to Example 3.26(ii) of [25].

4. LATTICE PROPERTIES OF $L_{\mathbf{w}}^{p}(\nu)$ AND $L^{p}(\nu)$

Let (F, τ) be a metrizable lc-solid Riesz space with a fundamental sequence of Riesz seminorms $\{q_n\}_{n\in\mathbb{N}}$ ([1], Chapter 2, Section 6). Recall that τ is called a *Lebesgue* (respectively σ -*Lebesgue*) *topology*, if $u_{\alpha} \downarrow 0$ implies $u_{\alpha} \stackrel{\tau}{\to} 0$ in F (respectively $u_k \downarrow 0$ implies $u_k \stackrel{\tau}{\to} 0$ in F) ([1], Chapter 3). The space F has the *Fatou* (respectively σ -*Fatou*) *property* if, for every increasing net $\{u_{\alpha}\}_{\alpha}$ (respectively increasing sequence $\{u_k\}_k$) in the positive cone F^+ of F which is topologically bounded in F, the element $u := \sup u_{\alpha}$ exists in F^+ and $q_n(u_{\alpha}) \uparrow_{\alpha} q_n(u)$ (respectively $u := \sup u_k$ exists in F^+ and $q_n(u_k) \uparrow_k q_n(u)$), for $n \in \mathbb{N}$.

Let (Ω, Σ, μ) be a σ -finite measure space, $\mathcal{M} := L^0(\mu)$, and $\{\rho_n\}_{n \in \mathbb{N}}$ be a fundamental (i.e. $\bigcap_{n \in \mathbb{N}} \rho_n^{-1}(\{0\}) = \{0\}$) increasing sequence of function seminorms on \mathcal{M} (see Chapter 15 of [31] for the definition of a function seminorm). The *metrizable function space* induced by $\{\rho_n\}_{n \in \mathbb{N}}$ is the locally solid, metrizable lcs

$$L_{\{\rho_n\}} := \{f \in \mathcal{M} : \rho_n(f) < \infty, \, \forall n \in \mathbb{N}\}$$

equipped with the topology induced by $\{\rho_n\}_{n \in \mathbb{N}}$; see Lemma 22.5 of [22]. If $L_{\{\rho_n\}}$ is also complete, then it is called a *Fréchet function space* (briefly, F.f.s.). Given a F.f.s. there is no distinction between using nets or sequences when specifying either a Lebesgue topology or the Fatou property ([5], Section 2). A function seminorm ρ in \mathcal{M} is said to have the *Fatou property* if $\rho(u_k) \uparrow \rho(u)$ whenever $0 \leq u_k \uparrow u$ in \mathcal{M} .

Let *X* be a Fréchet space and $\nu : \Sigma \to X$ be a measure. It was noted in Theorem 4.5.11(ii) of [26] that $L^p(\nu)$, $L^p_w(\nu)$ are Fréchet lattices for the pointwise order. Actually, they are "better" than just being Fréchet lattices. Let μ be any control measure for ν (e.g., the one in the proof of Theorem 2.5 in [4]). It was shown in Example 1 of [5] that both $L^1_w(\nu)$, $L^1(\nu)$ are F.f.s.' relative to (Ω, Σ, μ) .

The next result shows the same is true of $L_w^p(\nu) L^p(\nu)$ and that they have special properties.

THEOREM 4.1. Let X be a metrizable lcs, $v : \Sigma \to X$ be a vector measure and μ be a control measure for v. Then, for each $1 \leq p < \infty$, the increasing sequence of functions seminorms $\{(\rho_v)_n^{(p)}\}_{n \in \mathbb{N}}$ defined, relative to (Ω, Σ, μ) , by

$$(\rho_{\nu})_{n}^{(p)}(f) := \|f\|_{\nu,p}^{(n)} \quad f \in L^{0}(\mu) = L^{0}(\nu), \quad n \in \mathbb{N},$$

makes $L_{w}^{p}(v)$ a F.f.s. with the Fatou property.

Moreover, if X is a Fréchet space, then $L^p(\nu)$ is a F.f.s. for the topology $\tau^{(p)}$ induced by the increasing sequence of function seminorms $\{(\tilde{\rho}_{\nu})_n^{(p)}\}_{n\in\mathbb{N}}$ defined, relative to (Ω, Σ, μ) , by

$$(\widetilde{\rho}_{\nu})_{n}^{(p)}(f) := \begin{cases} (\rho_{\nu})_{n}^{(p)}(f) & \text{if } f \in L^{p}(\nu), \\ \infty & \text{if } f \in L^{0}(\mu) \setminus L^{p}(\nu) = L^{0}(\nu) \setminus L^{p}(\nu), \end{cases}$$

and $\tau^{(p)}$ is a Lebesgue topology.

Proof. By Example 1 of [5] we know that $L_{\mathbf{w}}^{1}(\nu) = L_{\{(\rho_{\nu})_{n}^{(1)}\}}$ and that $L^{1}(\nu) = L_{\{(\tilde{\rho}_{\nu})_{n}^{(1)}\}}$. Hence, $L_{\mathbf{w}}^{p}(\nu) = L_{\{(\rho_{\nu})_{n}^{(p)}\}}$ and $L^{p}(\nu) = L_{\{(\tilde{\rho}_{\nu})_{n}^{(p)}\}}$. According to Section 65, Theorem 4 of [31] and the formula (2.1), the func-

According to Section 65, Theorem 4 of [31] and the formula (2.1), the function seminorm $(\rho_{\nu})_n^{(p)}$ has the Fatou property for each $n \in \mathbb{N}$ (since the norm of the L^p -space of any positive measure has the Fatou property). Then $L_{\{\rho_n\}}$ is a F.f.s. with the Fatou property ([5], Theorem 2.4).

To check that $\tau^{(p)}$ is a Lebesgue topology, let $\{u_k\}_k$ be a sequence in $L^p(\nu)^+$ with $u_k \downarrow 0$. Then each $u_k^p \in L^1(\nu)^+$ and $u_k^p \downarrow 0$. Fix $n \in \mathbb{N}$. As $\tau^{(1)}$ is a Lebesgue topology ([4], Section 3) it follows that $(\tilde{\rho}_{\nu})_n^{(1)}(u_k^p) \to 0$ as $k \to \infty$. Hence, also $(\tilde{\rho}_{\nu})_n^{(p)}(u_k) \to 0$ as $k \to \infty$. As $n \in \mathbb{N}$ is arbitrary, this shows that $\tau^{(p)}$ is a Lebesgue topology.

For ν a Banach-space-valued measure, Theorem 4.1 is known. Indeed, that $L^p_{w}(\nu)$ has the Fatou property occurs in Proposition 1 of [10], Proposition 2.1 and Lemma 3.8 of [15], and for $\tau^{(p)}$ being a Lebesgue topology (i.e., the norm is order continuous) we refer to p. 291 of [10], and Proposition 2.1 of [15].

The *Lorentz function seminorm* ρ_L , associated to any function seminorm ρ : $\mathcal{M} \to [0, \infty]$, is defined by

$$\rho_{\mathrm{L}}(u) := \inf \left\{ \lim_{k} \rho(u_{k}) : u_{k} \in \mathcal{M}^{+}, u_{k} \uparrow u \right\}, \quad u \in \mathcal{M}^{+},$$

in which case $\rho_L \leq \rho$. Moreover, ρ_L is the largest function seminorm with the Fatou property which is majorized by ρ ([31], Chapter 15, Section 66). Let $\{\rho_n\}_{n \in \mathbb{N}}$ be any increasing fundamental sequence of function seminorms on \mathcal{M} . According to Definition 2.6 of [5] the *Fatou completion* of the metrizable function space

 $L_{\{\rho_n\}}$ is defined as the F.f.s. $(L_{\{\rho_n\}})^F := L_{\{(\rho_n)_L\}}$ (i.e., the *minimal* F.f.s. in $L^0(\mu)$ with the Fatou property and containing $L_{\{\rho_n\}}$ continuously, as $(\rho_n)_L \leq \rho_n$, $\forall n \in \mathbb{N}$). It is known that $(L^1(\nu))^F = L^1_w(\nu)$ ([5], Theorem 3.1); see p. 191 of [8] for Banach spaces. For the notion of the σ -order continuous part $(L_{\{\rho_n\}})_a$ of $L_{\{\rho_n\}}$ see pp. 331–332 of [32]. It is known that $(L^1_w(\nu))_a = L^1(\nu)$ ([4], Theorem 3.2); for Banach spaces see p. 192 of [8]. The above relationships remain valid for all L^p -spaces; for Banach spaces see p. 289 and p. 291 of [10].

THEOREM 4.2. Let v be a Fréchet space-valued measure and $p \ge 1$. Then we have $(L^p(v))^F = L^p_w(v)$ and $(L^p_w(v))_a = L^p(v)$.

Proof. Let μ be any control measure for ν . Fix $n \in \mathbb{N}$. Clearly $(\rho_{\nu})_{n}^{(p)} \leq (\tilde{\rho}_{\nu})_{n}^{(p)}$ in $L^{0}(\mu)$ with the function seminorms $(\rho_{\nu})_{n}^{(p)}$, $n \in \mathbb{N}$, having the Fatou property; see Theorem 4.1. By maximality of the Lorentz seminorm $((\tilde{\rho}_{\nu})_{n}^{(p)})_{L}$ it follows that $(\rho_{\nu})_{n}^{(p)} \leq ((\tilde{\rho}_{\nu})_{n}^{(p)})_{L}$ in $L^{0}(\mu)$. Hence, $(L^{p}(\nu))^{F} \subseteq L_{w}^{p}(\nu)$. On the other hand, given $f \in L_{w}^{p}(\nu)^{+}$, choose Σ -simple functions $0 \leq s_{k} \uparrow f$. Since $((\tilde{\rho}_{\nu})_{n}^{(p)})_{L} \leq (\tilde{\rho}_{\nu})_{n}^{(p)}$ with $\{s_{k}\}_{k} \subseteq L^{p}(\nu)$, we have, for each $n \in \mathbb{N}$, that

$$((\widetilde{\rho}_{\nu})_{n}^{(p)})_{\mathsf{L}}(s_{k}) \leqslant (\widetilde{\rho}_{\nu})_{n}^{(p)}(s_{k}) = (\rho_{\nu})_{n}^{(p)}(s_{k}) \leqslant (\rho_{\nu})_{n}^{(p)}(f) < \infty, \quad k \in \mathbb{N}.$$

Accordingly, $\{s_k\}_k$ is topologically bounded in $(L^p(\nu))^F$ with $s_k \uparrow f$. By the Fatou property of $(L^p(\nu))^F$ we conclude that $f \in (L^p(\nu))^F$. This shows that $(L^p(\nu))^F = L^p_w(\nu)$, with equality as vector spaces and also topologically (by the open mapping theorem).

As already noted, $\tau^{(p)}$ is a Lebesgue topology for $L^p(v)$. Since $L^p(v)$ has the relative topology from $L^p_w(v)$, we have $L^p(v) \subseteq (L^p_w(v))_a$. Conversely, let $f \in (L^p_w(v))_a$ and assume $f \ge 0$. Choose Σ -simple functions $\{s_k\}_k$, with $0 \le s_k \uparrow f$ (*v*-a.e.). Then $0 \le (f - s_k) \le f$ for all k with $(f - s_k) \downarrow 0$. By definition of $f \in (L^p_w(v))_a$ this implies that $\{f - s_k\}_k$ converges to 0 in $L^p_w(v)$, i.e., $\{s_k\}_k$ converges to f in $L^p_w(v)$. But, $\{s_k\}_k \subseteq L^p(v)$ with $L^p(v)$ closed in $L^1_w(v)$. So, $f \in L^p(v)$. Since every $f \in (L^p_w(v))_a$ has a decomposition $f = f^+ - f^-$ with $f^+, f^- \in (L^p_w(v))_a$, we have $(L^p_w(v))_a \subseteq L^p(v)$. Thus, $(L^p_w(v))_a = L^p(v)$.

The previous results yield information about $L^p(\nu)$, $L^p_w(\nu)$; for p = 1 see Proposition 3.4 of [5]. For the Banach space version of the following result see Proposition 3 of [10], Corollary 3.10 of [15]. A Fréchet lattice *F* is a KB-space if every topologically bounded, increasing sequence in *F*⁺ is convergent.

COROLLARY 4.3. Let v be a Fréchet-space-valued measure and $p \ge 1$. Then the following statements are equivalent:

(i) $L^1_w(v) = L^1(v)$. (ii) $L^p_w(v) = L^p(v)$. (iii) The topology of $L^p_w(v)$ is Lebesgue. (iv) $L^p(v)$ has the Fatou property. (v) $L_{\mathbf{w}}^{p}(v)$ is a KB-space.

(vi) $L^p(\nu)$ is a KB-space.

(vii) $L_{w}^{p}(\nu)$ contains no lattice copy of c_{0} .

(viii) $L^{p}(\nu)$ contains no lattice copy of c_{0} .

(ix) $L_{\mathbf{w}}^{p}(v)$ is weakly sequentially complete.

(x) $L^{p}(v)$ is weakly sequentially complete.

Proof. (i) \Leftrightarrow (ii) Evident from the definitions.

(ii) \Leftrightarrow (iii) Theorem 4.1 and the second equality in Theorem 4.2.

(ii) \Leftrightarrow (iv) Theorem 4.1 and the first equality in Theorem 4.2.

(iii) \Leftrightarrow (v) \Leftrightarrow (vii) \Leftrightarrow (ix) are inmediate from Lemma 3.3 of [5] since $L_{w}^{p}(\nu)$ always has the Fatou property; see Theorem 4.1.

(iv) \Leftrightarrow (vi) \Leftrightarrow (viii) \Leftrightarrow (x) follow from Lemma 3.3 of [5] since $\tau^{(p)}$ is always a Lebesgue topology for $L^p(\nu)$; see Theorem 4.1.

Acknowledgements. The first author acknowledges the support of the Ministerio de Educación y Ciencia of Spain under the program "José Castillejo" and the Ministerio Ciencia y Innovación under project MTM2009-14483-C02-01, and the second author the Maximilian Bickhoff Stiftung.

REFERENCES

- C.D. ALIPRANTIS, O. BURKINSHAW, Locally Solid Riesz Spaces, Academic Press, New York 1978.
- [2] C.D. ALIPRANTIS, O. BURKINSHAW, Positive Operators, Academic Press, Orlando 1985.
- [3] C. BESSAGA, A.A. PELCZYNSKI, On a class of B₀-spaces, Bull. Acad. Polon. Sci. 5(1957), 375–377.
- [4] R. DEL CAMPO, W.J. RICKER, The space of scalarly integrable functions for a Fréchet space-valued measure, J. Math. Anal. Appl. 354(2009), 641–647.
- [5] R. DEL CAMPO, W.J. RICKER, The Fatou completion of a Fréchet function space and applications, J. Austral. Math. Soc. 88(2010), 49–60.
- [6] G.P. CURBERA, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293(1992), 317–330.
- [7] G.P. CURBERA, O. DELGADO, W.J. RICKER, Vector measures: where are their integrals?, *Positivity* 13(2009), 61–87.
- [8] G.P. CURBERA, W.J. RICKER, Banach lattices with the Fatou property and optimal domains of kernel operators, *Indag. Math.* (N.S.) 17(2006), 187–204.
- [9] G.P. CURBERA, W.J. RICKER, Vector measures, integration and applications, in *Positivity*, Trends Math., Birkhäuser Verlag, Basel-Berlin-Boston 2007, pp. 127–160.

- [10] G.P. CURBERA, W.J. RICKER, The Fatou property in *p*-convex Banach lattices, J. Math. Anal. Appl. 328(2007), 287–294.
- [11] J. DIESTEL, J.J. UHL, JR., Vector Measures, Amer. Math. Soc., Providence, RI 1977.
- [12] A. FERNÁNDEZ, F. NARANJO, Rybakov's theorem for vector measures in Fréchet spaces, Indag. Math (N.S.) 8(1997), 33–42.
- [13] A. FERNÁNDEZ, F. NARANJO, AL- and AM-spaces of integrable scalar functions with respect to a Fréchet-valued measure, *Quaestiones Math.* 23(2000), 247–258.
- [14] A. FERNÁNDEZ, F. NARANJO, W.J. RICKER, Completeness of L¹-spaces for measures with values in complex vector spaces, J. Math. Anal. Appl. 223(1998), 76–87.
- [15] A. FERNÁNDEZ, F. MAYORAL, F. NARANJO, C. SÁEZ, E.A. SÁNCHEZ-PÉREZ, Spaces of *p*-integrable functions with respect to a vector measure, *Positivity* 10(2006), 1–16.
- [16] K. FLORET, Weakly Compact Sets, Lecture Notes in Math., vol. 801, Springer Verlag, Berlin-Heidelberg-New York 1980.
- [17] I.M. GEL'FAND, G.E. SHILOV, Generalized Functions, Vol. 2, Academic Press, New York-San Francisco 1968.
- [18] H. JARCHOW, Locally Convex Spaces, Teubner, Stuttgart 1981.
- [19] I. KLUVÁNEK, G. KNOWLES, Vector Measures and Control Systems, North Holland, Amsterdam 1976.
- [20] G. KÖTHE, Topological Vector Spaces. I, 2nd printing revised, Springer Verlag, Berlin-Heidelberg-New York 1983.
- [21] D.R. LEWIS, Integration with respect to vector measures, Pacific J. Math. 33(1970), 157–165.
- [22] R.G. MEISE, D. VOGT, Introduction to Functional Analysis, Clarendon Press, Oxford 1997.
- [23] S. OKADA, W.J. RICKER, Compact integration operators for Fréchet-space-valued measures, *Indag. Math.* (N.S.) 13(2002), 209–227.
- [24] S. OKADA, W.J. RICKER, Fréchet-space-valued measures and the AL-property, Rev. R. Acad. Cien. Serie A. Mat. RACSAM 97(2003), 305–314.
- [25] S. OKADA, W.J. RICKER, E.A. SÁNCHEZ PÉREZ, Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Operator Theory Adv. Appl., vol. 180, Birkhäuser Verlag, Basel-Berlin-Boston 2008.
- [26] T.V. PANCHAPAGESAN, *The Bartle–Dunford–Schwartz Integral*, Birkhäuser, Basel-Boston-Berlin 2008.
- [27] W. RUESS, Weakly compact operators and DF spaces, Pacific J. Math. 98(1982), 419– 441.
- [28] E.A. SÁNCHEZ-PÉREZ, Compactness arguments for spaces of *p*-integrable functions with respect to a vector measure and factorization of operators through Lebesgue– Bochner spaces, *Illinois J. Math.* 45(2001), 907–923.
- [29] W. SZLENK, Sur les suites faiblement convergentes dans l'espace L, Studia Math. 25(1965), 337–341.
- [30] G.F. STEFANSSON, L¹ of a vector measure, Matematiche 48(1993), 219–234.

[31] A.C. ZAANEN, *Integration*, 2nd rev. ed., North Holland, Amsterdam; Interscience, New York 1967.

[32] A.C. ZAANEN, *Riesz Spaces*. II, North Holland, Amsterdam 1983.

R. DEL CAMPO, DPTO. MATEMÁTICA APLICADA I, UNIVERSIDAD DE SEVILLA, EUITA, CTRA. DE UTRERA KM. 1, 41013–SEVILLA, SPAIN *E-mail address*: rcampo@us.es

S. OKADA, 112 MARCONI CRESCENT, KAMBACH ACT 2902, AUSTRALIA *E-mail address*: suoka@upvnet.upv.es

W.J. RICKER, MATHEMATISCH-GEOGRAPHISCHE FAKULTÄT, KATHOLISCHE UNI-VERSITÄT EICHSTÄTT-INGOLSTADT, D–85072 EICHSTÄTT, GERMANY *E-mail address*: werner.ricker@ku-eichstaett.de

-