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Dpto. Matemática Aplicada II, Universidad de Sevilla, Escuela Técnica Superior de Ingenieros, 

Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain

E-mail : afernandez@esi.us.es mayoral@us.es naranjo@us.es

Enrique A. S ́ANCHEZ-PÉREZ
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Abstract Let (Ω, Σ) be a measurable space and m0 : Σ → X0 and m1 : Σ  → X1 be positive vector 
measures with values in the Banach Köthe function spaces X0 and X1. If 0 < α < 1, we define a new 
vector measure [m0, m1]α with values in the Calderón lattice interpolation space X1−αX1

α and we
0

analyze the space of integrable functions with respect to measure [m0, m1]α in order to prove suitable 
extensions of the classical Stein–Weiss formulas that hold for the complex interpolation of Lp-spaces. 
Since each p-convex order continuous Köthe function space with weak order unit can be represented as 
a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to 
obtain representations of the corresponding complex interpolation spaces. As applications, we provide a 
Riesz–Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula 
for representing the interpolation of the injective tensor product of such spaces.
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1 Introduction

One of the classical areas on interpolation theory is the investigation of complex interpolation
spaces between Lp-spaces with different measures, where the theorem by Stein and Weiss [1]
plays a central role. One of its extension reads as follows. Let μ be a positive scalar measure
and assume that 1 ≤ p0, p1 < ∞. Then we have, with equal norms,

[Lp0(f0μ), Lp1(f1μ)]θ = Lp(f1−α
0 fα

1 μ), 0 < θ < 1, (1.1)
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where 1
p := 1−θ

p0
+ θ

p1
, and α := p θ

p1
, see [2, Theorem 5.5.3]. Observe that the weighted mea-

sure f1−α
0 fα

1 μ is a certain interpolated measure of the weighted measures f0μ and f1μ. Later,
Calderón considers the extension of (1.1) to the context of Lp-spaces of Banach vector-valued
functions, see [3] for details. In this paper we analyze what happens with the formula (1.1) in
the context of integration of scalar functions with respect to vector measures. Indeed, for two
given countably additive vector measures m0 and m1 we show how to construct a new countably
additive vector measure [m0, m1]α , that we call the interpolated vector measure, which allows
us how relate its associated space of p-integrable functions with the corresponding lattice in-
terpolation space of the spaces of p-integrable functions with respect to m0 and m1; all this,
under a certain compatibility requirement between the measures. Indeed, the aim of the paper
is to study when the following result holds:

Let 1 ≤ p0, p1 < ∞ and 0 < θ < 1. Consider the corresponding spaces of integrable functions
Lp0(m0) and Lp1(m1) with respect to the vector measures m0 and m1. Then [Lp0(m0), Lp1(m1)]θ
= Lp ([m0, m1]α) holds isometrically, where 1

p := (1−θ)
p0

+ θ
p1

and α := p θ
p1

.

The spaces L1(m) of integrable functions with respect to a vector measure m define a broad
class of Köthe function spaces. In fact, integration with respect to a vector measure can be
used as a representation technique for order continuous Banach lattices with weak order unit,
since every such space can be written as an L1(m) of a vector measure m (see [4, Theorem 8]).
The same representation procedure can be applied using Lp spaces of a vector measure when
the function space is moreover p-convex (see [5, 6] for the definition and main properties of such
spaces). Therefore, we provide our interpolation formulas as a general procedure for representing
the lattice interpolation space of couples of (order continuous Banach lattices with weak order
unit) Köthe function spaces. Moreover, it is enough to look at the proofs of the results that
relate spaces of integrable functions with general Banach lattices (see [4, Theorem 8] and [5,
Proposition 2.4]) to understand that we can use positive vector measures for representing the
corresponding class of Banach lattices. In this sense, the requirement of positivity for the vector
measures that we deal with is not a strong restriction for the aim of representation of Banach
lattices.

But let us provide in what follows in a systematic way the assumptions that are necessary
for defining the setting in which our interpolation technique can be applied. Our framework is
the theory of Köthe function spaces (see p. 28 and subsequent in [7]). A Köthe function space
on a complete σ-finite measure space (Θ, Λ, η) is a Banach lattice X, consisting of equivalence
classes, modulo equality η-a.e., of locally integrable, real valued functions on Θ, that satisfies

(1) if |f | ≤ |g| η-a.e. with f measurable and g ∈ X, then f ∈ X and ‖f‖X ≤ ‖g‖X , and

(2) for every A ∈ Λ of finite measure, the characteristic function χA of A is an element of X.

If X is a Köthe function space we denote by X× the Köthe dual space of X. It is well known
that X× coincides with the dual space X ′ if X has order-continuous norm. See p. 29 on [7].

For a couple of Köthe function spaces (X0, X1) over the same measure space (Θ, Λ, η), and
0 < α < 1, consider the Calderón lattice interpolation space X(α) := X1−α

0 Xα
1 of the spaces

X0 and X1 defined as the set of all x ∈ L0(η) for which |x| ≤ x1−α
0 xα

1 , for some 0 ≤ x0 ∈ X0,



and 0 ≤ x1 ∈ X1. The norm of x in X(α) is defined by

‖x‖X(α) := inf
{ ‖x0‖1−α

X0
‖x1‖α

X1
: |x| ≤ x1−α

0 xα
1 , 0 ≤ x0 ∈ X0, 0 ≤ x1 ∈ X1

}
.

Endowed with this norm, X(α) becomes a Köthe function space over the same measure space.
See [8, 9] or [10, IV §1.11]. From the definition of the norm we have immediately the following
inequality

∥
∥x1−α

0 xα
1

∥
∥

X(α)
≤ ‖x0‖1−α

X0
‖x1‖α

X1
, 0 ≤ x0 ∈ X0, 0 ≤ x1 ∈ X1. (1.2)

It is well known that this space coincides with the complex interpolation space [X0, X1]α of the
involved spaces X0 and X1 (see [3, 13.6] or [10, Theorem §1.14] and Remark after) if at least one
of the spaces X0 or X1 has order continuous norm. As the reader will see, this assumption of
order continuity of the interpolated space X(α) provides the order properties that are necessary
for the definition of the interpolated measure [m0, m1]α .

In what follows we also need some relation between the dual of the space X(α) and the
duals of spaces X0 and X1. It is known that

(
X1−α

0 Xα
1

)′
= (X ′

0)
1−α (X ′

1)
α

, where the equality
means coincidence of sets (as classes of functions on a certain strange space of measure outside
of (Θ, Λ, η)) as well as equality of norms, provided that X0∩X1 is dense in both spaces X0 and
X1. See [8] or the comments after the proof of [9, Theorem 1]. A consequence of this fact is
that the equality

(
X1−α

0 Xα
1

)×
=

(
X×

0

)1−α (
X×

1

)α
holds for the Köthe duals of the spaces X0

and X1. Equality means also equality of norms. In addition, if we assume order continuity of
the norm on both spaces X0 and X1, we know that the dual and the Köthe dual coincide, and
the duality in the lattice interpolation space X(α) can be represented by means of integrals of
products of functions with respect to the measure η. In particular, we have the following result.
See [8] or [11, Theorem 1].

Lemma 1.1 Suppose X0 and X1 are Köthe function spaces with order continuous norms.
Then for (Köthe) duals we have the following coincidence of sets

(
X1−α

0 Xα
1

)×
=

(
X×

0

)1−α

· (X×
1

)α
, as well as equality of norms. In particular, for all 0 ≤ x′ ∈ X(α)× and every ε > 0,

there exist two elements 0 ≤ x′
0 ∈ X×

0 and 0 ≤ x′
1 ∈ X×

1 such that ‖x′‖X(α)× ≤ ‖x′
0‖1−α

X×
0

‖x′
1‖α

X×
1

≤ ‖x′‖X(α)× + ε, and moreover

〈
x′, x1−α

0 xα
1

〉 ≤
∫

Θ

(x′
0 · x0)

1−α · (x′
1 · x1)

α
dη, (1.3)

for all 0 ≤ x0 ∈ X0 and 0 ≤ x1 ∈ X1.

As we said before, we will deal with a particular subclass of Köthe function spaces, the one
defined by the spaces of integrable functions with respect to a vector measure. We briefly recall
the definitions in what follows. Let X be a Banach space and m an X-valued countably additive
vector measure on the measurable space (Ω, Σ). Let μ be a Rybakov measure for m (see [12,
Ch. IX]), that is, a scalar measure 〈m, x′〉, where x′ ∈ X ′, defined by 〈m, x′〉(A) := 〈m(A), x′〉,
A ∈ Σ, and such that m is absolutely continuous with respect to the variation of 〈m, x′〉. The
space L1(m) of integrable functions with respect to m is an order-continuous Köthe function
space over μ with weak order unit, and its elements are the (classes of μ-a.e.) measurable
functions f : Ω → R that are scalarly integrable, that is, integrable with respect to each scalar



measure 〈m, x′〉, x′ ∈ X ′, and satisfy also that for every A ∈ Σ there is an element
∫

A
fdm ∈ X

such that 〈∫

A

fdm, x′
〉

=
∫

A

fd〈m, x′〉, x′ ∈ X ′.

The reader can find the definitions and fundamental results concerning the space L1(m) in
[4, 13–15]. If 1 ≤ p < ∞, the space of p-integrable functions with respect to m is defined as the
linear space of real measurable functions that satisfy |f |p ∈ L1(m), with the norm

‖f‖Lp(m) := sup
{( ∫

Ω

|f |p d|〈m, x′〉|
) 1

p

: x′ ∈ BX′

}
, f ∈ Lp(m).

It is also an order-continuous Köthe function space with weak order unit over any Rybakov
measure for m, and the simple functions are dense in it. See [5, 6] for more information about
this space. In the case where X is a Banach lattice and m is a positive vector measure, the
norm can be directly computed by means of the formula

‖f‖Lp(m) =
∥∥
∥
∥

∫

Ω

|f |p dm

∥∥
∥
∥

1
p

X

, f ∈ Lp(m).

Consider a couple of Köthe function spaces (X0, X1) over the same measure space (Θ, Λ, η), a
measurable space (Ω, Σ), and a pair of countably additive positive vector measures m0 : Σ → X0

and m1 : Σ → X1. Let 1 ≤ p0, p1 < ∞. In order to assure that the couple (Lp0(m0), Lp1(m1)) of
spaces of p-integrable functions with respect to the vector measures m0 and m1 is a compatible
couple, we need our second fundamental assumption on the measures m0 and m1. They must
be equivalent, that is, they have a common Rybakov control measure μ. This property is not
connected with the range space of the measures m0 and m1, but with the sets of the σ-algebra
Σ where the semivariation of the measures is zero. In particular, in our setting, two equivalent
vector measures have the same null sets. Under this assumption we know that classes a.e. with
respect to m0, m1 and μ coincide, and also we can embed continuously both spaces Lp0(m0)
and Lp1(m1) in the same topological vector space L0(μ) of real-valued measurable (classes of
μ-a.e) functions on Ω. Moreover, for every 0 < α < 1 the equality

[Lp0(m0), Lp1(m1)]α = (Lp0(m0))
1−α (Lp1(m1))

α (1.4)

holds, since Lp0(m0) and Lp1(m1) have order continuous norms. At this point let us mention
that (when the measures m0 and m1 coincide) the space [Lp0(m), Lp1(m)]α , with 0 < α < 1
and 1 ≤ p0, p1 ≤ ∞, and also others related interpolation spaces have been deeply studied
in [16].

2 Interpolation of Countably Additive Positive Vector Measures

Let us start this section with a motivation, based on the formula (1.1), of the construction
that follows. Consider a couple of positive (scalar) finite measures μ0, and μ1 on the same
measurable space (Ω, Σ) that are absolutely continuous with respect to another positive finite
measure μ. In this case, the Radon–Nikodym theorem gives two functions 0 ≤ f0, f1 ∈ L1(μ)
such that μ0(A) =

∫
A

f0 dμ and μ1(A) =
∫

A
f1 dμ, for every A ∈ Σ. Let 0 < θ < 1 ≤ p0, p1 < ∞,



and denote 1
p := 1−θ + θ , and α := p θ  

p0 p1 p1

. Observe that 0 < α < 1. Consider the interpolated
measure [μ0, μ1]α : Σ → R defined by the formula

[μ0, μ1]α(A) := inf
{ ∑

B∈π

μ0(A ∩ B)1−α μ1(A ∩ B)α : π ∈ Π(Ω)
}

, (2.1)

where Π(Ω) is the set of all finite Σ-partitions of Ω. It is not difficult to prove that [μ0, μ1]α
is actually the measure with density f1−α

0 fα
1 , that is, [μ0, μ1]α(A) =

∫
A

f1−α
0 fα

1 dμ, for A ∈ Σ.

Thus, the formula of Stein–Weiss (1.1) reads as

[Lp0(μ0), Lp1(μ1)]θ = Lp ([μ0, μ1]α) , 0 < θ < 1. (2.2)

In the case of two arbitrary positive scalar measures μ0 and μ1 it is clear that they are absolutely
continuous with respect to the measure μ := μ0 +μ1, and so it is always possible to find Radon–
Nikodým derivatives f0, f1 ∈ L1(μ) such that μ0(A) =

∫
A

f0 dμ and μ1(A) =
∫

A
f1 dμ, for all

A ∈ Σ. This means that the formula (2.1) always defines a positive scalar measure such that
[μ0, μ1]α(A) ≤ μ0(A)1−αμ1(A)α, for all A ∈ Σ and [μ0, μ1]α(A) = 0 if and only μ0(A) = 0 or
(and) μ1(A) = 0. In what follows the following lemma will be useful.

Lemma 2.1 Let 0 ≤ ϕ, φ be simple functions. Then
∫

Ω

ϕ1−αφα d [μ0, μ1]α ≤
(∫

Ω

ϕ dμ0

)1−α (∫

Ω

φ dμ1

)α

. (2.3)

Proof We know that [μ0, μ1]α is actually the measure with density f1−α
0 fα

1 , with respect to a
positive measure μ, so Hölder’s inequality gives
∫

Ω

ϕ1−αφα d [μ0, μ1]α =
∫

Ω

ϕ1−αφαf1−α
0 fα

1 dμ =
∫

Ω

(ϕf0)
1−α (φf1)

α dμ

≤
(∫

Ω

ϕf0 dμ

)1−α (∫

Ω

φf1 dμ

)α

=
(∫

Ω

ϕ dμ0

)1−α (∫

Ω

φ dμ1

)α

. �

However, this argument that provides a representation of a couple of positive scalar measures
defined on the same σ-algebra with respect to their sum fails in the case of vector measures,
even if they are positive and take their values on the same Köthe function space. The following
easy example shows this.

Example 1 Let ([0, 1], M , λ) be the Lebesgue measure space. Consider the vector measures

m0 : A ∈ M −→ m0(A) := (λ(A), 0) ∈ R
2,

m1 : A ∈ M −→ m1(A) := (0, λ(A)) ∈ R
2.

It is easy to see that L1(m0 + m1) = L1[0, 1] isometrically and
∫

[0,1]

fd(m0 + m1) =
( ∫

[0,1]

fdλ,

∫

[0,1]

fdλ

)
, f ∈ L1(m0 + m1).

Moreover it is clear that m0 ([0, 1]) = (1, 0) and m1 ([0, 1]) = (0, 1). This makes evident that
there are no functions f0, f1 ∈ L1(m0 + m1) such that

∫

Ω

f0 d(m0 + m1) = m0(Ω) and
∫

Ω

f1 d(m0 + m1) = m1(Ω).



What is more, if we compute (2.1) formally for the measures m0 and m1 we obtain trivially
[m0, m1]α(A) = (0, 0) for all A ∈ M .

This fact — the nonexistence of Radon–Nikodým derivatives in the vector valued case
— becomes the main difference between the scalar- and the vector-valued theory regarding
interpolation of the corresponding spaces of integrable functions. The aim of this section is to
provide a vector-valued version of the representation formula (2.1), and to show some of its
properties. The main result is the following equality (see Proposition 2.6 below)

[f0m0, f1m1]α(A) =
∫

A

f1−α
0 fα

1 d [m0, m1]α, A ∈ Σ,

if m0 and m1 are adequate vector measures and 0 ≤ f0 ∈ L1(m0), 0 ≤ f1 ∈ L1(m1); that will
become a basic tool for the calculations of Section 3.

Let 0 < α < 1 and consider two countably additive positive vector measures m0 : Σ → X0

and m1 : Σ → X1 on the same measurable space (Ω, Σ) such that the lattice interpolation
space X(α) := X1−α

0 Xα
1 is order-continuous. Let A ∈ Σ and π ∈ Π(Ω) be the sets of finite

measurable partitions of Ω. Denote Cπ(A) :=
∑

B∈π m0(A ∩ B)1−α m1(A ∩ B)α. This element
Cπ(A) is a well-defined element of X(α), since m0 and m1 are positive. Now consider the
set C (A) := {Cπ(A) : π ∈ Π(Ω)} of X(α). With the natural order by refinement in Π(Ω),
a pointwise evaluation using Hölder’s inequality gives that Cπ2(A) ≤ Cπ1(A) if π1 ≤ π2 in
Π(Ω), so C (A) defines a downward directed positive net in X(α). The order-continuity of the
interpolation space gives directly that the limit [m0, m1]α(A) := limπ Cπ(A) exists in the norm
of X(α) for every A ∈ Σ, and in fact is given by the infimum inf C (A). Thus, the map

[m0, m1]α : A ∈ Σ → [m0, m1]α(A) := lim
π

Cπ(A) = inf C (A) ∈ X(α)

is well defined. The definition of [m0, m1]α makes clear that

[m0, m1]α(A) ≤ m0(A)1−αm1(A)α, A ∈ Σ. (2.4)

Note that this formula must be read as an inequality η-a.e. between elements of the Köthe
function space X(α). Moreover, having in mind (1.2), we get

‖[m0, m1]α(A)‖X(α) ≤ ‖m0(A)‖1−α
X0

‖m1(A)‖α
X1

, A ∈ Σ. (2.5)

Lemma 2.2 The map [m0, m1]α defines a countably additive positive vector measure that
satisfies

〈[m0, m1]α(A), x′〉 ≤ 〈m0(A), x′
0〉1−α 〈m1(A), x′

1〉α , A ∈ Σ (2.6)

for every 0 ≤ x′ ∈ X(α)′ such that x′ ≤ (x′
0)

1−α(x′
1)

α, with 0 ≤ x′
0 ∈ X ′

0 and 0 ≤ x′
1 ∈ X ′

1. In
particular, we have

〈[m0, m1]α, x′〉 ≤ [〈m0, x
′
0〉 , 〈m1, x

′
1〉]α . (2.7)

Proof Let us show first that it is finitely additive. Consider two disjoint sets A, B ∈ Σ. Since
{Cπ(A ∪ B) : π ∈ Π(Ω)} is downward directed, we can always choose a partition π ∈ Π(Ω) such
that

∑

C∈π

m0 ((A ∪ B) ∩ C)1−α m1 ((A ∪ B) ∩ C)α =
∑

C∈π, C⊆A

m0 (A ∩ C)1−α m1 (A ∩ C)α



+
∑

C∈π, C⊆B

m0 (B ∩ C)1−α m1 (B ∩ C)α .

Therefore, we have [m0, m1]α(A) + [m0, m1]α(B) ≤ [m0, m1]α(A ∪ B). On the other hand, if
π1 ∈ Π(Ω) and π2 ∈ Π(Ω), consider the partition

π := {A ∩ C : C ∈ π1} ∪ {B ∩ C : C ∈ π2} ∪ {Ω \ (A ∪ B)} .

For this partition we have
∑

C∈π

m0 ((A ∪ B) ∩ C)1−α
m1 ((A ∪ B) ∩ C)α =

∑

C∈π1

m0 (A ∩ C)1−α
m1 (A ∩ C)α

+
∑

C∈π2

m0 (B ∩ C)1−α m1 (B ∩ C)α .

This implies that [m0, m1]α(A ∪ B) ≤ [m0, m1]α(A) + [m0, m1]α(B). The countable additivity
now follows directly from (2.5).

The formula (2.6) is a direct consequence of the following calculations. Now, consider
0 ≤ x′ ≤ (x′

0)
1−α(x′

1)
α ∈ (X ′

0)
1−α(X ′

1)
α, where 0 ≤ x′

0 ∈ X ′
0 and 0 ≤ x′

1 ∈ X ′
1. Then, since x′

is positive, we obtain from Hölder’s inequality and the relation (2.4)

〈[m0, m1]α(A), x′〉 ≤ 〈
m0(A)1−αm1(A)α, x′〉 ≤

∫

Θ

(
m0(A)1−αm1(A)α · (x′

0)
1−α(x′

1)
α
)

dη

=
∫

Θ

(m0(A) · x′
0)

1−α · (m1(A) · x′
1)

α
dη

≤
(∫

Θ

m0(A) · x′
0 dη

)1−α (∫

Θ

m1(A) · x′
1 dη

)α

= 〈m0(A), x′
0〉1−α 〈m1(A), x′

1〉α , A ∈ Σ.

This finishes the proof. �
Remark 2.3 For a couple of equivalent measures m0 and m1, from the formula (2.5) we
deduce the following inequality for the semivariations:

‖[m0, m1]α‖ (A) ≤ (‖m0‖ (A))1−α (‖m1‖ (A))α , A ∈ Σ. (2.8)

In particular, this tell us that a null set for the measures m0 and m1 (they are equivalent) is
also a null set for the interpolated measure [m0, m1]α.

Example 2 Let ([0, 1], M , λ) be Lebesgue measure space, a couple of real numbers 1 ≤ s1 ≤
s0 < ∞ and a function 0 < g ∈ Lt[0, 1], where 1

s0
+ 1

t = 1
s1

. Consider the positive countably
additive vector measures

m0 : A ∈ M −→ m0(A) := χA ∈ Ls0 [0, 1],

m1 : A ∈ M −→ m1(A) := g · χA ∈ Ls1 [0, 1].

Let us compute explicitly the interpolated vector measure [m0, m1]α, for 0 < α < 1. Consider
a partition π ∈ Π(Ω) and a set A ∈ M . Then we have

Cπ(A) =
∑

B∈π

m0(A ∩ B)1−αm1(A ∩ B)α =
∑

B∈π

χA∩B · gα = gα · χA.



Consequently, [m0, m1]α(A) = gα · χA for all A ∈ M . In this case the measure [m0, m1]α takes
values in the space (Ls0 [0, 1])1−α (Ls1 [0, 1])α = Ls[0, 1], where 1

s = (1−α)
s0

+ α
s1

. Observe that
αs < t, and then gα ∈ Ls[0, 1], since g belongs to Lt[0, 1].

Example 3 Consider a couple of order-continuous Köthe function spaces X0 and X1 over
the σ-finite measure space (Θ, Λ, η). Take a pair of positive unconditionally convergent series
∑∞

n=1 fn in X0 and
∑∞

n=1 gn in X1. Then we can define, on the σ-algebra P(N) of all subsets
of the natural numbers N, the vector measures

m0 : A ∈ P(N) −→ m0(A) :=
∑

n∈A

fn ∈ X0,

m1 : A ∈ P(N) −→ m1(A) :=
∑

n∈A

gn ∈ X1.

If 0 < α < 1, note that
∑∞

n=1 f1−α
n gα

n defines also a positive unconditionally convergent series
in X1−α

0 Xα
1 , as a consequence of the application pointwise of Hölder’s inequality on series as

∑

n∈A

f1−α
n gα

n ≤
( ∑

n∈A

fn

)1−α( ∑

n∈A

gn

)α

, A ∈ P(N).

Thus, the expression mα : A ∈ P(N) −→ mα(A) :=
∑

n∈A f1−α
n gα

n ∈ X1−α
0 Xα

1 provides also a
positive vector measure. Let us prove that the interpolated vector measure [m0, m1]α and mα

coincide. If A ∈ P(N), then knowing that [m0, m1]α is a countably additive measure, we have

[m0, m1]α(A) =
∑

n∈A

[m0, m1]α({n}) =
∑

n∈A

f1−α
n gα

n = mα(A).

Lemma 2.4 Let m0 : Σ → X0 and m1 : Σ → X1 be a couple of equivalent positive countably
additive vector measures on (Ω, Σ). Let 0 ≤ ϕ, φ be simple functions. Then

‖ϕ1−αφα‖L1([m0,m1]α) ≤ ‖ϕ‖1−α
L1(m0)

‖φ‖α
L1(m1)

. (2.9)

Proof Note that ‖ϕ1−αφα‖L1([m0,m1]α) = ‖ ∫
Ω

ϕ1−αφα d [m0, m1]α ‖X(α) since the measure
[m0, m1]α is positive. Then there is an element 0 ≤ x′ ∈ X(α)′, with ‖x′‖X(α)′ ≤ 1, such that

∥∥
∥
∥

∫

Ω

ϕ1−αφα d [m0, m1]α

∥∥
∥
∥

X(α)

=
〈∫

Ω

ϕ1−αφα d [m0, m1]α , x′
〉

=
∫

Ω

ϕ1−αφα d 〈[m0, m1]α, x′〉 .

Given ε > 0, we know from Lemma 1.1 that there exist two elements 0 ≤ x′
0 ∈ X ′

0 and
0 ≤ x′

1 ∈ X ′
1 such that x′ ≤ (x′

0)
1−α(x′

1)
α, and ‖x′‖X(α)′ ≤ ‖x′

0‖1−α
X′

0
‖x′

1‖α
X′

1
≤ ‖x′‖X(α)′ + ε.

By inequalities (2.7) from Lemma 2.2 and (2.3) from Lemma 2.1 we obtain
∫

Ω

ϕ1−αφα d 〈[m0, m1]α, x′〉 ≤
∫

Ω

ϕ1−αφα d [〈m0, x
′
0〉 , 〈m1, x

′
1〉]α

≤
(∫

Ω

ϕ d 〈m0, x
′
0〉

)1−α (∫

Ω

φ d 〈m1, x
′
1〉

)α

≤ ‖ϕ‖1−α
L1(m0)

‖x′
0‖1−α

X′
0

‖φ‖α
L1(m1)

‖x′
1‖α

X′
0

≤ ‖ϕ‖1−α
L1(m0)

‖φ‖α
L1(m1)

(‖x′‖X(α)′ + ε)



≤ ‖ϕ‖1−α
L1(m0)

‖φ‖α
L1(m1)

(1 + ε) .

Since ε was arbitrary we obtain ‖ϕ1−αφα‖L1([m0,m1]α) ≤ ‖ϕ‖1−α
L1(m0)

‖φ‖α
L1(m1)

. �
Lemma 2.5 Let m0 : Σ → X0 and m1 : Σ → X1 be a couple of equivalent positive countably
additive vector measures on (Ω, Σ). Let 0 ≤ ϕ0, ϕ1, φ0, φ1 simple functions. Then

∥
∥ϕ1−α

0 φα
0 − ϕ1−α

1 φα
1

∥
∥

L1([m0,m1]α)

≤ ‖ϕ0‖1−α
L1(m0)

‖φ0 − φ1‖α
L1(m1)

+ ‖ϕ0 − ϕ1‖1−α
L1(m0)

‖φ1‖α
L1(m1)

. (2.10)

Proof To obtain (2.10) we apply the inequality (2.9) of Lemma 2.4 and also that |sα − tα| ≤
|s − t|α for all numbers 0 ≤ s, t, and 0 < α < 1.

∥∥ϕ1−α
0 φα

0 − ϕ1−α
1 φα

1

∥∥
L1([m0,m1]α)

≤ ∥
∥ϕ1−α

0 φα
0 − ϕ1−α

0 φα
1

∥
∥

L1([m0,m1]α)
+

∥
∥ϕ1−α

0 φα
1 − ϕ1−α

1 φα
1

∥
∥

L1([m0,m1]α)

≤ ∥
∥ϕ1−α

0 |φ0 − φ1|α
∥
∥

L1([m0,m1]α)
+

∥
∥ |ϕ0 − ϕ1|1−α

φα
1

∥
∥

L1([m0,m1]α)

≤ ‖ϕ0‖1−α
L1(m0)

‖φ0 − φ1‖α
L1(m1)

+ ‖ϕ0 − ϕ1‖1−α
L1(m0)

‖φ1‖α
L1(m1)

. �

Let 0 ≤ f0 ∈ L1(m0) and 0 ≤ f1 ∈ L1(m1). Then the formula

(fkmk)(A) :=
∫

A

fk dmk, A ∈ Σ,

defines a countably additive vector measure for k = 0, 1 (see [14]). Since the functions are also
positive, we have a couple of countably additive positive vector measures. Thus, under the
adequate requirements on the Köthe function spaces where the vector measures are defined, we
obtain that [f0m0, f1m1]α is a positive countably additive vector measure. Recall that we are
under the assumptions that have been indicated in Section 1 for the couple of Köthe function
spaces (X0, X1).

Proposition 2.6 Let m0 : Σ → X0 and m1 : Σ → X1 be a couple of equivalent positive
countably additive vector measures on (Ω, Σ). Let 0 ≤ f0 ∈ L1(m0) and 0 ≤ f1 ∈ L1(m1). Then
the function f1−α

0 fα
1 is [m0, m1]α-integrable, and

[f0m0, f1m1]α(A) =
∫

A

f1−α
0 fα

1 d [m0, m1]α , A ∈ Σ. (2.11)

Proof Let us show first that the function f1−α
0 fα

1 is [m0, m1]α-integrable. Note now that
since 0 ≤ f0 ∈ L1(m0), there is a sequence of simple functions (ϕn)n such that 0 ≤ ϕn → f0 in
L1(m0) and pointwise, and 0 ≤ ϕn ≤ f0. In the same way, there is another sequence of simple
functions (φn)n such that 0 ≤ φn → f1 in L1(m1) and pointwise, and 0 ≤ φn ≤ f1. Thus,
ϕ1−α

n φα
n → f1−α

0 fα
1 pointwise, and by (2.10) of Lemma 2.5 applied to the simple functions

0 ≤ ϕn, ϕm, φn, φm we obtain
∥∥ϕ1−α

n φα
n − ϕ1−α

m φα
m

∥∥
L1([m0,m1]α)

≤ ‖ϕn‖1−α
L1(m0)

‖φn − φm‖α
L1(m1)

+ ‖ϕn − ϕm‖1−α
L1(m0)

‖φm‖α
L1(m1)

≤ ‖f0‖1−α
L1(m0)

‖φn − φm‖α
L1(m1)

+ ‖ϕn − ϕm‖1−α
L1(m0)

‖f1‖α
L1(m1)

.



Therefore,
(
ϕ1−α

n φα
n

)
n

is a Cauchy sequence in L1([m0, m1]α), and so f1−α
0 fα

1

 ∈ L1([m0, m1]α).

Moreover, we have that
∫

Ω

f1−α
0 fα

1 d [m0, m1]α = lim
n

∫

Ω

ϕ1−α
n φα

n d [m0, m1]α (2.12)

in X(α). Let us show now that

lim
n

[ϕnm0, φnm1]α (Ω) = [f0m0, f1m1]α (Ω). (2.13)

Clearly [ϕnm0, φnm1]α(Ω) ≤ [f0m0, f1m1]α(Ω), for all n = 1, 2, . . . . In order to show the
equality, consider an arbitrary partition π ∈ Π(Ω); the same kind of calculations that we have
used above in Lemma 2.5 give

∥∥
∥
∥

∑

B∈π

(f0m0(B))1−α(f1m1(B))α −
∑

B∈π

(ϕnm0(B))1−α(φnm1(B))α

∥∥
∥
∥

X(α)

=
∥∥
∥
∥

∑

B∈π

(f0m0(B))1−α ((f1m1(B))α − (φnm1(B))α)
∥∥
∥
∥

X(α)

+
∥∥
∥
∥

∑

B∈π

(
(f0m0(B))1−α − (ϕnm0(B))1−α

)
(φnm1(B))α

∥∥
∥
∥

X(α)

≤
∥∥
∥
∥

∑

B∈π

f0m0(B)
∥∥
∥
∥

1−α

X0

∥∥
∥
∥

∑

B∈π

(f1m1(B)) − (φnm1(B))
∥∥
∥
∥

α

X1

+
∥∥
∥∥

∑

B∈π

(f0m0(B)) − (ϕnm0(B))
∥∥
∥∥

1−α

X0

∥∥
∥∥

∑

B∈π

φnm1(B)
∥∥
∥∥

α

X1

≤ ‖f0‖1−α
L1(m0)

‖f1 − φn‖α
L1(m1)

+ ‖f0 − ϕn‖1−α
L1(m0)

‖f1‖α
L1(m1)

→ 0

whenever n → ∞. This means that the formula (2.13) holds. Consequently, if formula (2.11) in
the statement of the proposition holds for simple functions, then it must hold for each couple
of functions 0 ≤ f0 ∈ L1(m0) and 0 ≤ f1 ∈ L1(m1) since by (2.12) and (2.13),

∫

Ω

f1−α
0 fα

1 d [m0, m1]α = lim
n

∫

Ω

ϕ1−α
n φα

n d [m0, m1]α = lim
n

[ϕnm0, φnm1]α (Ω)

= [f0m0, f1m1]α (Ω).

Let us prove now (2.11) for simple functions; it is enough to do it for A = Ω, since if the for-
mula (2.11) holds for Ω and A ∈ Σ, then we can consider the functions g0 = f0χA and g1 = f1χA,

in which case, g1−α
0 gα

1 = χAf1−α
0 fα

1 , and then
∫
Ω

g1−α
0 gα

1 d [m0, m1]α =
∫

A
f1−α
0 fα

1 d [m0, m1]α .

Note also that g0m0(B) =
∫

B
g0 dm0 =

∫
B

f0χA dm0 = f0m0(A ∩B). Analogously, g1m1(B) =
f1m1(A ∩ B). Therefore, [g0m0, g1m1]α (Ω) = [f0χAm0, f1χAm1]α (Ω) = [f0m0, f1m1]α (A).
Consider two positive simple functions ϕ0 and ϕ1. It is always possible to find coefficients
0 ≤ a1, . . . , an ∈ R and 0 ≤ b1, . . . , bn ∈ R, and disjoint subsets A1, A2, . . . , An ∈ Σ such that
ϕ0 =

∑n
k=1 akχAk

and ϕ1 =
∑n

k=1 bkχAk
. For these functions, clearly, we have

∫

Ω

ϕ1−α
0 ϕα

1 d [m0, m1]α =
n∑

k=1

a1−α
k bα

k [m0, m1]α (Ak).



On the other hand, [ϕ0m0, ϕ1m1]α (Ω) = 
∑

k
n
=1

[ϕ0m0, ϕ1m1]α (Ak), but

[ϕ0m0, ϕ1m1]α (Ak) = inf
{ ∑

B∈π

(ϕ0m0(B ∩ Ak))1−α (ϕ1m1(B ∩ Ak))α : π ∈ Π(Ω)
}

= inf
{ ∑

B∈π

(∫

B∩Ak

ϕ0 dm0

)1−α (∫

B∩Ak

ϕ1 dm1

)α

: π ∈ Π(Ω)
}

= inf
{ ∑

B∈π

a1−α
k (m0(B ∩ Ak))1−α

bα
k (m1(B ∩ Ak))α : π ∈ Π(Ω)

}

= a1−α
k bα

k inf
{ ∑

B∈π

(m0(B ∩ Ak))1−α (m1(B ∩ Ak))α : π ∈ Π(Ω)
}

= a1−α
k bα

k [m0, m1] (Ak).

Thus
∫
Ω

ϕ1−α
0 ϕα

1 d [m0, m1]α = [ϕ0m0, ϕ1m1]α (Ω). This with the arguments before clearly im-
plies that formula (2.11) holds for simple functions. Therefore, it holds for each couple of
functions. This finishes the proof. �
Corollary 2.7 Let m0 : Σ → X0 and m1 : Σ → X1 be a couple of equivalent positive countably
additive vector measures on (Ω, Σ). Then the inclusion

(
L1(m0)

)1−α(
L1(m1)

)α ⊆ L1
(
[m0, m1]α

)

is continuous for all 0 < α < 1.

Proof Let f ∈ (
L1(m0)

)1−α(
L1(m1)

)α. Then there exist two functions 0 ≤ f0 ∈ L1(m0)
and 0 ≤ f1 ∈ L1(m1) such that |f | ≤ f1−α

0 fα
1 . The above Proposition 2.6 assures that f ∈

L1 ([m0, m1]α) . The comments in Remark 2.3 assure that there is no conflict with the classes,
so the inclusion is well defined. Moreover, from (2.11) we have

‖f‖L1([m0,m1]α) ≤
∥
∥f1−α

0 fα
1

∥
∥

L1([m0,m1]α)
=

∥∥
∥
∥

∫

Ω

f1−α
0 fα

1 d [m0, m1]α

∥∥
∥
∥

X(α)

= ‖[f0m0, f1m1]α (Ω)‖X(α) ≤ ‖f0m0(Ω)‖1−α
X0

‖f1m1(Ω)‖α
X1

= ‖f0‖1−α
L1(m0)

‖f1‖α
L1(m1)

.

By the definition of the norm in
(
L1(m0)

)1−α (
L1(m1)

)α we obtain

‖f‖L1([m0,m1]α) ≤ ‖f‖(L1(m0))
1−α(L1(m1))

α . �

However, in general we cannot establish the existence of an isometry between these spaces.
In fact, the situation might be dramatic: [m0, m1]α can be the trivial measure 0, even if m0 and
m1 are non-trivial. Indeed, the vector measures m0 and m1 defined in Example 1 provide a
simple proof of this fact. In this case a direct calculation shows that [m0, m1]α = 0, for all 0 <

α < 1. However, we obviously have that (L1(m0))1−α(L1(m1))α = (L1[0, 1])1−α(L1[0, 1])α =
L1[0, 1]. In this case the inclusion is simply the zero map. This situation motivates us to
introduce the following definition that we will analyze and exploit in the next section.

Definition 2.8 Let 0 < α < 1. A couple of equivalent vector measures m0 and m1 is said to
be α-compatible if the following equality holds : (L1(m0))1−α(L1(m1))α = L1([m0, m1]α).



In other words, two vector measures are α-compatible if the space L1 ([m0, m1]α) of inte-
grable functions with respect to the interpolated vector measure coincides with the interpolation
space [L1(m0), L1(m1)]α.

3 Interpolation Formulas for α-Compatible Vector Measures

In this section we consider two α-compatible vector measures m0 and m1 with values in two
order-continuous Köthe function spaces X0 and X1. We provide a generalization of the complex
interpolation formulas (1.1) for Lp-spaces. In particular, we prove, for two functions 0 ≤ f0 ∈
L1(m0) and 0 ≤ f1 ∈ L1(m1), the following equality:

[Lp0(f0m0), Lp1(f1m1)]θ = Lp
(
f1−α
0 fα

1 [m0, m1]α
)
, 0 < θ < 1

for all 1 ≤ p0, p1 < ∞, where 1
p = 1−θ

p0
+ θ

p1
, and α = p θ

p1
.

As the statement above shows, the α-compatibility relation becomes the keystone of our
technique for obtaining interpolation formulas for Lp(m)-spaces.

The α-compatibility relation is clearly satisfied for any couple of positive scalar finite mea-
sures. Moreover, obviously, each vector measure is α-compatible with itself. Of course, the
measures m0 and m1 in Example 1 are not α-compatible. Let us start this section with some
examples that illustrate that there are also other situations in which α-compatible couples of
vector measures appear.

Example 4 Let 1 ≤ p0, p1 < ∞, and consider a finite measure space (Ω, Σ, μ) and the vector
measures

m0 : A ∈ Σ → m0(A) := χA ∈ Lp0(μ),

m1 : A ∈ Σ → m1(A) := χA ∈ Lp1(μ).

These vector measures are obviously countably additive, and the corresponding spaces of in-
tegrable functions are L1(m0) = Lp0(μ) and L1(m1) = Lp1(μ). Let 0 < α < 1. The complex
interpolation formula for Lp-spaces of scalar measures gives (Lp0(μ))1−α (Lp1(μ))α = Lp(μ),
where 1

p = 1−α
p0

+ α
p1

. A direct calculation shows that the interpolated vector measure [m0, m1]α
takes values in Lp(μ) and is given by [m0, m1]α (A) = χA, for all A ∈ Σ. Then obviously

(
L1(m0)

)1−α (
L1(m1)

)α
= (Lp0(μ))1−α (Lp1(μ))α = Lp(μ) = L1 ([m0, m1]α) .

Example 5 Now we show that the interpolated vector measure given in Example 2 provides
also an α-compatible couple of vector measures. Recall that 1

s0
+ 1

t = 1
s1

, m0(A) = χA ∈
Ls0 [0, 1] and m1(A) = g · χA ∈ Ls1([0, 1]) for all A ∈ M . In this case, L1(m0) = Ls0 [0, 1] and
L1(m1) = Ls1(gs1λ). Therefore, if 1

s = 1−α
s0

+ α
s1

and β = s α
s1

, the complex interpolation formula
for Lp-spaces of scalar measures gives

(
L1(m0)

)1−α (
L1(m1)

)α
= (Ls0 [0, 1])1−α (Ls1(gs1λ))α = Ls(gβ s1) = Ls(gs αλ).

This clearly coincides (isometrically) with L1([m0, m1]α), since the measure of Example 2 is
given, as we computed there, by [m0, m1]α(A) = gα · χA ∈ Ls([0, 1]), for all A ∈ M , and so
L1 ([m0, m1]α) = Ls(gs αλ).



In what follows we also show that in particular, if two positive vector measures m0 and
m1 with values in the same Köthe function space X satisfy that there is a measure m on X

and functions 0 < f0, f1 ∈ L1(m) such that m0 = f0m and m1 = f1m, then m0 and m1

are α-compatible for every 0 < α < 1. The reader can find in [17] the conditions that assure
the existence of functions f0, f1 ∈ L1(m) with the mentioned property (see also Corollary 3.4
below).

In the proof of the next result we use the following well-known fact: For any positive vector
measure m and any function 0 ≤ f ∈ L1(m), a measurable function g belongs to L1(fm) if and
only if gf belongs to L1(m); moreover, in this case, ‖g‖L1(fm) = ‖gf‖L1(m).

Theorem 3.1 Let m0 : Σ → X0 and m1 : Σ → X1 be two α-compatible vector measures, and
consider two functions 0 ≤ f0 ∈ L1(m0) and 0 ≤ f1 ∈ L1(m1). Then

(
L1(f0m0)

)1−α (
L1(f1m1)

)α
= L1(f1−α

0 fα
1 [m0, m1]α).

Proof Take the function f := f1−α
0 fα

1 . We already know by Corollary 2.7 that f ∈ L1([m0,

m1]α) and also from (2.11) we know that
∫

A
f1−α
0 fα

1 d[m0, m1]α = [f0m0, f1m1]α(A), for all
A ∈ Σ, that is, [f0m0, f1m1]α = f1−α

0 fα
1 [m0, m1]α . Consider now a function

g ∈ (L1(f0m0))
1−α (L1(f1m1))

α

and let ε > 0. Then there are functions 0 ≤ u0 ∈ L1(f0m0) and 0 ≤ u1 ∈ L1(f1m1) such that
|g| ≤ u1−α

0 uα
1 and ‖u0‖1−α

L1(f0m0)
‖u1‖α

L1(f1m1)
≤ ‖g‖(L1(f0m0))

1−α(L1(f1m1))
α + ε. Then we have

|g|f ≤ u1−α
0 uα

1 f = h1−α
0 hα

1 , where h0 := u0f0 and h1 := u1f1. Note that h0 ∈ L1(m0) since
u0 ∈ L1(f0m0). Analogously h1 ∈ L1(m1). This means that

gf ∈ (L1(m0))
1−α (L1(m1))

α = L1 ([m0, m1]α)

by the α-compatibility assumption for the measures m0 and m1. Thus g ∈ L1(f1−α
0 fα

1 [m0,

m1]α). Moreover, using again the α-compatibility we have

‖g‖L1(f [m0,m1]α) = ‖gf‖L1([m0,m1]α) = ‖gf‖(L1(m0))
1−α(L1(m1))

α

≤ ‖h0‖1−α
L1(m0)

‖h1‖α
L1(m1)

= ‖u0f0‖1−α
L1(m0)

‖u1f1‖α
L1(m1)

= ‖u0‖1−α
L1(f0m0)

‖u1‖α
L1(f1m1)

≤ ‖g‖(L1(f0m0))
1−α(L1(f1m1))

α + ε.

This means that ‖g‖L1(f1−α
0 fα

1 [m0,m1]α) ≤ ‖g‖(L1(f0m0))
1−α(L1(f1m1))

α , since ε > 0 was taken
arbitrarily.

Now we prove the converse. Let g ∈ L1(f [m1, m0]α). Recall that this is the same to say
that gf ∈ L1([m0, m1]α) and

‖g‖L1(f [m0,m1]α) = ‖gf‖L1([m0,m1]α) = ‖gf‖(L1(m0))
1−α(L1(m1))

α . (3.1)

The last equality follows from the α-compatibility assumption on the measures m0 and m1. Now,
if ε > 0, there are functions 0 ≤ u0 ∈ L1(m0) and 0 ≤ u1 ∈ L1(m1) such that |g| f ≤ u1−α

0 uα
1

and

‖u0‖1−α
L1(m0)

‖u1‖α
L1(m1)

≤ ‖gf‖(L1(m0))
1−α(L1(m1))

α + ε. (3.2)



Since u0 ∈ L1(m0), we obtain h0 := u0
f0

∈ L1(f0m0). The fact that u1 ∈ L1(m1) gives also

h1 := u1
f1

∈ L1(f1m1). Therefore, we have |g| ≤ h1−α
0 hα

1 . Consequently, g ∈ (
L1(f0m0)

)1−α

· (L1(f1m1)
)α

. Moreover using (3.1) and (3.2) we obtain

‖g‖(L1(f0m0))
1−α(L1(f1m1))

α ≤ ‖h0‖1−α
L1(f0m0)

‖h1‖α
L1(f1m1)

= ‖u0‖1−α
L1(m0)

‖u1‖α
L1(m1)

≤ ‖g‖L1(f [m0,m1]α) + ε.

Since ε > 0 was arbitrary we obtain ‖g‖(L1(f0m0))
1−α(L1(f1m1))

α ≤ ‖g‖L1(f1−α
0 fα

1 [m0,m1]α). With
these all arguments together we get (L1(f0m0))1−α(L1(f1m1))α = L1(f1−α

0 fα
1 [m0, m1]α), and

the equality of norms in these spaces. �
In what follows we show that this approach can also be used to characterize the class of

couples of vector measures for which the interpolation formulas hold.

Theorem 3.2 Let 1 ≤ p0, p1 < ∞, and α = p θ
p1

, where 1
p = 1−θ

p0
+ θ

p1
and 0 < θ < 1. Consider

two α-compatible vector measures m0 : Σ → X0 and m1 : Σ → X1, and let 0 ≤ f0 ∈ L1(m0),
and 0 ≤ f1 ∈ L1(m1). Then [Lp0(f0m0), Lp1(f1m1)]θ = Lp

(
f1−α
0 fα

1 [m0, m1]α
)
.

Proof Consider first the case f0 = f1 = χΩ. Let g ∈ [Lp0(m0), Lp1(m1)]θ and ε > 0. Then
by the definition of the interpolation space there are functions 0 ≤ u0 ∈ Lp0(m0) and 0 ≤
u1 ∈ Lp1(m1) such that |g| ≤ u1−θ

0 uθ
1 and ‖u0‖1−θ

Lp0 (m0)
‖u1‖θ

Lp1 (m1)
≤ ‖g‖[Lp0 (m0),Lp1 (m1)]θ

+ ε.

Note that h0 := up0
0 ∈ L1(m0) and h1 := up1

1 ∈ L1(m1). Thus, |g| ≤ h
1−θ
p0

0 h
θ

p1
1 , and therefore

|g|p ≤ h
(1−θ)p

p0
0 h

θp
p1
1 = h1−α

0 hα
1 . Moreover we know that ‖u0‖1−θ

Lp0 (m0)
= ‖up0

0 ‖
1−θ
p0

L1(m0)
= ‖h0‖(1−α)p

L1(m0)
,

which implies ‖h0‖1−α
L1(m0)

= ‖u0‖
1−θ

p

Lp0 (m0)
. Similarly, ‖h1‖α

L1(m1)
= ‖u1‖

θ
p

Lp1 (m1)
. Thus, |g|p ≤

|h0|1−α|h1|α and

‖h0‖1−α
L1(m1)

‖h1‖α
L1(m1)

≤ ( ‖g‖[Lp0 (m0),Lp1 (m1)]θ
+ ε

) 1
p , (3.3)

which implies that |g|p ∈ [L1(m0), L1(m1)]α, which is equal to L1([m0, m1]α) in order to the
α-compatibility assumption. Moreover, by the definition of the norms and (3.3) we obtain

‖g‖Lp([m0,m1]α) = ‖|g|p‖
1
p

L1([m0,m1]α) = ‖|g|p‖
1
p

[L1(m0),L1(m1)]α
≤ ‖g‖[Lp0 (m0),Lp1 (m1)]θ

+ ε.

Since ε > 0 was arbitrary we obtain ‖g‖Lp([m0,m1]α) ≤ ‖g‖[Lp0 (m0),Lp1 (m1)]θ .

Let us prove now the converse. Let g ∈ Lp([m0, m1]α). Then

|g|p ∈ L1 ([m0, m1]α) =
[
L1(m0), L1(m1)

]
α

.

The last equality follows from the α-compatibility for the measures m0 and m1. Let ε > 0.

Then there are 0 ≤ u0 ∈ L1(m0) and 0 ≤ u1 ∈ L1(m1) such that |g|p ≤ u1−α
0 uα

1 and

‖u0‖1−α
L1(m0)

‖u1‖α
L1(m1)

≤ ‖|g|p‖[L1(m0),L1(m1)]α
+ ε. (3.4)

Thus, |g|p ≤ u
(1−θ)p

p0
0 u

θp
p1
1 , and then |g| ≤ u

1−θ
p0

0 u
θ

p1
1 . Now we define h0 := u

1
p0
0 ∈ Lp0(m0) and

h1 := u
1

p1
1 ∈ Lp1(m1). Clearly, |g| ≤ h1−θ

0 hθ
1, and moreover

‖h0‖Lp0 (m0)
= ‖hp0

0 ‖
1

p0
L1(m0)

= ‖u0‖
1

p0
L1(m0)

,

‖h1‖Lp1 (m1)
= ‖hp1

1 ‖
1

p1
L1(m1)

= ‖u1‖
1

p1
L1(m1)

.



LThus, by (3.4), we obtain ‖h0‖1−
p0

θ
(m0)

‖h1‖θ
Lp1 (m1)

≤ (‖|g|p‖[L1(m0),L1(m1)]α +ε)
1
p . Consequently,

g ∈ [Lp0(m0), Lp1(m1)]θ and ‖g‖[Lp0 (m0),Lp1 (m1)]θ ≤ ‖g‖Lp([m0,m1]α). We conclude that

[Lp0(m0), Lp1(m1)]θ = Lp([m0, m1]α).

This proves the result for f0 = f1 = χΩ.

The general case is given from this just using Theorem 3.1; if m0 and m1 are α-compatible,
then f0m0 and f1m1 are also α-compatible, so we have

[Lp0(f0m0), Lp1(f1m1)]θ = Lp ([f0m0, f1m1]α) .

Moreover we know that [f0m0, f1m1]α = f1−α
0 fα

1 [m0, m1]α. Therefore,

[Lp0(f0m0), Lp1(f1m1)]θ = Lp ([f0m0, f1m1]α) = Lp(f1−α
0 fα

1 [m0, m1]α).

This finishes the proof. �
The following corollary is a direct consequence of Proposition 2.6 and Theorem 3.2. Recall

that the measures f0m and f1m are α-compatible for every 0 < α < 1 and 0 ≤ f0, f1 ∈ L1(m).

Corollary 3.3 Let m be a countably additive positive vector measure with values in a Köthe
function space, and consider 0 ≤ f0, f1 ∈ L1(m). Then [Lp0(f0m), Lp1(f1m)]θ = Lp(f1−α

0 fα
1 m),

where 1 ≤ p0, p1 < ∞, 1
p = 1−θ

p0
+ θ

p1
and α = p θ

p1
.

We say that a countably additive vector measure n : Σ → X, with values in a Banach
space X, is scalarly uniformly absolutely continuous with respect to another countably additive
vector measure m : Σ → X if for each ε > 0 there exists δ > 0 such that for each x′ ∈ X ′

and each A ∈ Σ the inequality |〈m, x′〉| (A) < δ yields |〈n, x′〉| (A) < ε. Theorem 1 in [17]
and the results above provide the following interpolation formula. Note that the requirement of
equivalence of m0 and m1 implies that we can restrict the σ-algebra to assure that the functions
f0 and f1 are in fact μ-almost everywhere positive for a Rybakov measure μ of m. Moreover,
Theorem 1 in [17] gives that the corresponding Radon–Nikoým derivatives of m0 and m1 with
respect to m belong to L∞(μ) ⊆ L1(m); furthermore the results in that paper should provide
Radon–Nikodým derivatives just belonging to L1(m).

Corollary 3.4 Let m0 and m1 be a couple of equivalent countably additive positive vector
measures that are scalarly uniformly absolutely continuous with respect to the positive countably
additive vector measure m : Σ → X, with values in a Köthe function space X. Let μ be a
Rybakov control measure for m. Then there are functions 0 ≤ f0, f1 ∈ L∞(μ) such that

[Lp0(m0), Lp1(m1)]θ = Lp(f1−α
0 fα

1 m),

where 1 ≤ p0, p1 < ∞, 1
p = 1−θ

p0
+ θ

p1
and α = θp

p1
.

Let us finish the paper by writing two direct applications of our results in interpolation
theory. The first one provides a Riesz–Thorin Theorem for spaces of p-integrable functions
with respect to a vector measure, and is a direct consequence of the properties of the complex
interpolation method (see for instance [2]). The second one provides a formula for interpolation
of injective tensor products of such spaces and is a direct consequence of the results of [18] (see
also [19]).



Corollary 3.5 Let 0 < θ < 1 ≤ p0, p1 < ∞, and α = p θ
p1

, where 1
p = 1−θ

p0
+ θ

p1
. Let

1 ≤ q0, q1 < ∞, and β = q θ
q1

, where 1
q = 1−θ

q0
+ θ

q1
. Let m0 and m1 be a couple of α-compatible

vector measures, and similarly let n0 and n1 be another couple of β-compatible vector measures.
Consider an operator T : Lp0(m0) + Lp1(m1) −→ Lq0(n0) + Lq1(n1) that is also well defined
and continuous when restricted to T : Lp0(m0) ∩ Lp1(m1) −→ Lq0(n0) ∩ Lq1(n1). Then T :
Lp ([m0, m1]α) −→ Lq ([n0, n1]β) is well defined and continuous.

Corollary 3.6 Under the assumptions of Corollary 3.5, if all the spaces in the left hand side
of the following formula are 2-concave, then

[
Lp0(m0)⊗̂εL

q0(n0), Lp1(m1)⊗̂εL
q1(n1)

]
θ

= Lp ([m0, m1]α) ⊗̂εL
q ([n0, n1]β) .
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