

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The space of scalarly integrable functions for a Fréchet-space-valued measure

R. del Campo^{a,*,1}, W.J. Ricker^b

^a Departamento Matemática Aplicada I, EUITA, Ctra. de Utrera Km. 1, 41013-Sevilla, Spain

^b Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany

ARTICLE INFO

Article history: Received 18 November 2008 Available online 24 January 2009 Submitted by B. Cascales

Keywords: Fréchet space (lattice) Vector measure Fatou property Lebesgue topology Scalarly integrable function

ABSTRACT

The space $L^1_w(\nu)$ of all scalarly integrable functions with respect to a Fréchet-space-valued vector measure ν is shown to be a complete Fréchet lattice with the σ -Fatou property which contains the (traditional) space $L^1(\nu)$, of all ν -integrable functions. Indeed, $L^1(\nu)$ is the σ -order continuous part of $L^1_w(\nu)$. Every Fréchet lattice with the σ -Fatou property and containing a weak unit in its σ -order continuous part is Fréchet lattice isomorphic to a space of the kind $L^1_w(\nu)$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let *X* be a Fréchet space and $\nu : \Sigma \to X$ be a vector measure (i.e. ν is σ -additive), where (Ω, Σ) is a measurable space. A measurable function $f : \Omega \to \mathbb{R}$ is said to be ν -integrable if

(I-1) f is scalarly ν -integrable, that is, f is integrable with respect to the scalar measure $\langle \nu, x^* \rangle : A \mapsto \langle \nu(A), x^* \rangle$, for each $x^* \in X^*$ (the continuous dual space of X), and

(I-2) for each $A \in \Sigma$ there exists an element $\int_A f \, d\nu \in X$ such that

$$\left\langle \int\limits_A f d\nu, x^* \right\rangle = \int\limits_A f d\langle \nu, x^* \rangle, \quad x^* \in X^*.$$

For *X* a Banach space, the space $L^1(\nu)$, consisting of all (equivalence classes of) ν -integrable functions equipped with the norm

$$\|f\|_{\nu} := \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| d| \langle \nu, x^* \rangle|, \quad f \in L^1(\nu),$$

$$\tag{1}$$

is also a Banach space. Here B_{X^*} is the closed unit ball of X^* and $|\langle v, x^* \rangle|$ is the variation measure of $\langle v, x^* \rangle$, for $x^* \in X^*$. The space $L^1(v)$ was introduced and investigated in [14], even for vector measures taking values in a locally convex Hausdorff

^{*} Corresponding author.

E-mail addresses: rcampo@us.es (R. del Campo), werner.ricker@ku-eichstaett.de (W.J. Ricker).

¹ The author thanks the support of the Ministerio de Educación y Ciencia of Spain, under the program "José Castillejo".

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,\, @$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.01.036

space (briefly, lcHs). Since then, $L^{1}(\nu)$ has been intensively studied in the Banach setting by many authors; see, e.g. [4,25] and the references therein.

G. Stefansson introduced the space $L_w^1(\nu)$ of all (classes of) scalarly ν -integrable functions and showed that the same functional (1) above is a norm in $L_w^1(\nu)$ [28]. This is to be interpreted to mean that if f is scalarly ν -integrable, then $\|f\|_{\nu} < \infty$ and that (1) specifies a norm in $L_w^1(\nu)$. Actually, Stefansson also showed that $L_w^1(\nu)$ is complete for $\|\cdot\|_{\nu}$. It is then clear that $L^1(\nu)$ is a closed subspace of $L_w^1(\nu)$.

In contrast to $L^1(\nu)$, the Banach space $L^1_w(\nu)$ has received relatively little attention up to now; see, for example, [12], [25, Chapter 3], [28]. Recently however, new features of $L^1_w(\nu)$ have emerged, based on the theory of Banach function spaces, which indicate the importance of this space in its own right [3,5]. In particular, it is closely related to the "optimal domain property" for certain kernel operators.

For a *Fréchet space* X and a vector measure $\nu : \Sigma \to X$, the corresponding (Fréchet) space $L^1(\nu)$ is well understood; see, e.g. [8–11,14,21,23,24,26] and the references therein. Although the notion of an *individual* scalarly ν -integrable function already occurs in the Fréchet and even more general lcHs setting [14,16,17], there is no study made there or elsewhere (as far as we aware) of what the corresponding *space* $L^1_w(\nu)$ should be and what properties it might have. Our aim here is to address this deficiency: we introduce and investigate various properties of $L^1_w(\nu)$, for ν a Fréchet space-valued measure, and identify its connection to $L^1(\nu)$.

Let us indicate a sample of some of the results. In Section 2 we establish that $L_w^1(v)$ is always complete, even if X is merely a metrizable lcHs. Even for normed spaces, this seems to have been overlooked. In contrast, $L^1(v)$ is typically not complete if the metrizable lcHs X fails to be complete. In Section 3 it is shown that every Fréchet lattice F with the σ -Fatou property and possessing a weak unit in its σ -order continuous part is Fréchet lattice isomorphic to $L_w^1(v)$ for a suitable vector measure v. This shows how extensive the family of all spaces of the type $L_w^1(v)$ is within the class of all Fréchet lattices.

2. The space $L_w^1(v)$

Let *X* be a metrizable lcHs generated by a fundamental sequence of increasing seminorms $(\|\cdot\|^{(n)})_{n\in\mathbb{N}}$. The sets $B_n := \{x \in X : \|x\|^{(n)} \leq 1\}$ form a fundamental sequence of zero neighbourhoods for *X* and their polars $B_n^\circ := \{x^* \in X^* : |\langle x, x^* \rangle| \leq 1, \forall x \in B_n\}$, for $n \in \mathbb{N}$, are absolutely convex [19, Theorem 23.5]. Moreover, $\{B_n^\circ : n \in \mathbb{N}\}$ is a fundamental sequence of bounded sets in the strong dual X_{β}^* (i.e., each bounded set in X_{β}^* is contained in a multiple of B_n° for some $n \in \mathbb{N}$). In addition, each set B_n° , for $n \in \mathbb{N}$, is a *Banach disc* [19, Lemma 25.5], that is, the linear hull $Lin(B_n^\circ) = \bigcup_{t>0} tB_n^\circ$ of B_n° (formed in X^*) is a Banach space when equipped with its Minkowski functional

$$||x^*||_{B^{\circ}_{n}} := \inf\{s > 0: x^* \in sB^{\circ}_n\}, x^* \in Lin(B^{\circ}_n).$$

For each $n \in \mathbb{N}$, the *local Banach space* X_n is the completion of the quotient X/M_n endowed with the quotient norm induced by $\|\cdot\|^{(n)}$, where $M_n := \{x \in X : \|x\|^{(n)} = 0\}$. Let $\pi_n : X \to X_n$ be the quotient map. Then its dual map π_n^* is an isometric bijection between the Banach spaces X_n^* and $Lin(B_n^\circ)$ [19, Remark 24.5(b)].

Given a vector measure $v : \Sigma \to X$, defined on a measurable space (Ω, Σ) , a set $A \in \Sigma$ is *v*-null if v(B) = 0 for all $B \in \Sigma$ with $B \subseteq A$. Let $L^0(v)$ denote the σ -Dedekind complete Riesz space of all (classes, modulo *v*-a.e., of) scalar-valued, Σ -measurable functions defined on Ω , with respect to the *v*-a.e. pointwise order [18, pp. 126–127]. For each $n \in \mathbb{N}$, define a $[0, \infty]$ -valued seminorm $\|\cdot\|_{v}^{(n)}$ in $L^0(v)$ by

$$\|f\|_{\nu}^{(n)} := \sup_{x^* \in B_n^{\circ}} \int_{\Omega} |f| d| \langle \nu, x^* \rangle|, \quad f \in L^0(\nu).$$
⁽²⁾

The map $v_n : \Sigma \to X_n$ given by

$$\nu_n(A) := \pi_n(\nu(A)), \quad A \in \Sigma,$$

is a Banach-space-valued vector measure. Observe that $A \in \Sigma$ is ν -null if and only if it is ν_n -null for all $n \in \mathbb{N}$.

Proposition 2.1. Let X be a metrizable lcHs, ν an X-valued measure and $f \in L^0(\nu)$. Then $f \in L^1_w(\nu)$ if and only if $||f||_{\nu}^{(n)} < \infty$, for $n \in \mathbb{N}$.

Proof. Let f satisfy $||f||_{\nu}^{(n)} < \infty$, for all $n \in \mathbb{N}$. Given $x^* \in X^*$, there exist $m \in \mathbb{N}$ and C > 0 such that $|\langle x, x^* \rangle| \leq C ||x||^{(m)}$ for all $x \in X$, i.e. $C^{-1}x^* \in B_m^\circ$, and so

$$\int_{\Omega} |f| d |\langle v, x^* \rangle| = C \int_{\Omega} |f| d |\langle v, C^{-1} x^* \rangle| \leq C ||f||_{\nu}^{(m)} < \infty.$$

Conversely, if $f \in L^1_w(\nu)$, then f is scalarly ν_n -integrable, for $n \in \mathbb{N}$, since $\langle \nu, \pi_n^*(\xi^*) \rangle = \langle \nu_n, \xi^* \rangle$ as measures, for $\xi^* \in X_n^*$. Furthermore,

$$\|f\|_{\nu_n} := \sup_{\xi^* \in B_{X_n^*}} \int_{\Omega} |f| d| \langle \nu_n, \xi^* \rangle = \sup_{\xi^* \in B_{X_n^*}} \int_{\Omega} |f| d| \langle \nu, \pi_n^*(\xi^*) \rangle$$

(3)

and hence,

$$\|f\|_{\nu}^{(n)} := \sup_{x^* \in B_n^{\circ}} \int_{\Omega} |f| \, d |\langle \nu, x^* \rangle| = \|f\|_{\nu_n} \tag{4}$$

where, for the last equality, we use the fact that π_n^* is an isometry and so $\pi_n^*(B_{X_n^*}) = B_n^\circ$. But, X_n is a Banach space and so $\|f\|_{\nu_n} < \infty$. \Box

Corollary 2.2. Let X be a metrizable lcHs and ν be an X-valued vector measure. Then, $L_w^1(\nu)$ is an ideal in $L^0(\nu)$ and the restricted functionals $\|\cdot\|_{\nu}^{(n)} : L_w^1(\nu) \to [0, \infty)$ given by (2), for each $n \in \mathbb{N}$, are an increasing sequence of Riesz seminorms which turn $L_w^1(\nu)$ into a metrizable, locally convex-solid Riesz space.

Proof. As $B_{n+1} \subseteq B_n$, the seminorms $(\|\cdot\|_{\nu}^{(n)})_{n\in\mathbb{N}}$ are increasing in $L^1_w(\nu)$. Also, if $g \in L^0(\nu)$ and $f \in L^1_w(\nu)$ with $|g| \leq |f|$, then $g \in L^1_w(\nu)$ and $\|g\|_{\nu}^{(n)} \leq \|f\|_{\nu}^{(n)}$, for $n \in \mathbb{N}$. This shows that $L^1_w(\nu)$ is an ideal in $L^0(\nu)$ and each $\|\cdot\|_{\nu}^{(n)}$ is a Riesz seminorm in $L^1_w(\nu)$.

Suppose that $f \in L^1_w(\nu)$ satisfies $||f||_{\nu}^{(n)} = 0$ for all $n \in \mathbb{N}$. According to (4) we have $f \in L^1_w(\nu_n)$ with $||f||_{\nu_n} = ||f||_{\nu}^{(n)} = 0$ for all $n \in \mathbb{N}$. That is, the set $A := \{w \in \Omega : |f(w)| > 0\}$ is ν_n -null for each $n \in \mathbb{N}$. Hence, A is a ν -null set and so f = 0 in $L^1_w(\nu)$. Now general theory can be invoked to conclude that $L^1_w(\nu)$ becomes a metrizable, locally convex-solid Riesz space when equipped with the topology induced by the seminorms $(|| \cdot ||_{\nu}^{(n)})_{n \in \mathbb{N}}$; see, for example, [1, Theorem 6.1], [19, Lemma 22.5]. \Box

Functions f from $L^1_w(\nu)$ differ from those of $L^1(\nu)$ in that not all of their "integrals" belong to X. For X a Banach space, given any $A \in \Sigma$ there always exists a "generalized integral" $x_A^{**} \in X^{**}$ satisfying

$$\langle x^*, x_A^{**} \rangle = \int_A f d \langle v, x^* \rangle, \quad x^* \in X^*;$$

see [5,16,28], for example. For *X* a metrizable lcHs, we now show that a similar phenomenon occurs. First some notation: given $f \in L^1_W(\nu)$ and $A \in \Sigma$, define a linear functional $(w) \int_A f d\nu : X^* \to \mathbb{R}$ by

$$(\mathsf{w}) \iint_{A} f \, d\nu : x^* \mapsto \int_{A} f \, d\langle \nu, x^* \rangle, \quad x^* \in X^*.$$

$$(5)$$

The continuous dual space $(X_{\beta}^*)^*$ of X_{β}^* is denoted simply by X^{**} .

Proposition 2.3. Let X be a metrizable lcHs and v be an X-valued vector measure. For each $f \in L^1_w(v)$ and $A \in \Sigma$, the linear functional $(w) - \int_A f \, dv$ given by (5) belongs to X^{**}.

Proof. Since $L_w^1(\nu)$ is an ideal in $L^0(\nu)$ (see Corollary 2.2), it suffices to consider $0 \le f \in L_w^1(\nu)$. Fix $A \in \Sigma$. Select Σ -simple functions $0 \le f_k \uparrow f$ pointwise on Ω . Given $x^* \in X^*$, we have $f \in L^1(|\langle \nu, x^* \rangle|)$ and so the Dominated convergence theorem for scalar measures yields

$$\lim_{k\to\infty}\int_A f_k d\langle \nu, x^*\rangle = \int_A f d\langle \nu, x^*\rangle = \left\langle x^*, (w) \int_A f d\nu \right\rangle.$$

Hence, $C := \{\int_A f_k d\nu\}$ is a bounded set in *X*. From the previous formula, we have $|\langle x^*, (w) - f_A f d\nu \rangle| \le 1$ for all $x^* \in C^\circ$, which is a neighbourhood of zero in $(X^*_\beta)^*$. So, $(w) - f_A f d\nu \in X^{**}$. \Box

Remark 2.4. If *X* is weakly sequentially complete, then it follows that (w) $\int_A f d\nu \in X$, for every $A \in \Sigma$ and every $f \in L^1_w(\nu)$. That is, $L^1_w(\nu) = L^1(\nu)$ in this case. Actually, whenever *X* does not contain an isomorphic copy of the Banach space c_0 , it is known that $L^1_w(\nu) = L^1(\nu)$; see, for example, [14, p. 31], [17, Theorem 5.1].

If X is a Fréchet space, then it is known that $L^{1}(\nu)$ is also a Fréchet space for every X-valued vector measure ν ([10], [14, Chapter 4, Theorems 4.1 and 7.1]). The same is true of $L^{1}_{w}(\nu)$, even without completeness of X!

Theorem 2.5. Let X be a metrizable lcHs and ν be an X-valued vector measure. Then $L^1_w(\nu)$ is complete and, in particular, is a Fréchet lattice. If, in addition, X is a Fréchet space, then the Fréchet lattice $L^1_w(\nu)$ contains $L^1(\nu)$ as a closed subspace.

Proof. Fix $n \in \mathbb{N}$. Let $\nu_n : \Sigma \to X_n$ be the *Banach*-space-valued vector measure given by (3). Rybakov's theorem states that there exists $\xi_n^* \in X_n^*$ such that $|\langle \nu_n, \xi_n^* \rangle|$ is a control measure for ν_n (i.e. ν_n and $|\langle \nu_n, \xi_n^* \rangle|$ have the same null sets) [6, p. 268]. In particular, $|\langle \nu_n, \xi_n^* \rangle| \ll |\langle \nu_n, \xi_n^* \rangle|$, for every $\xi^* \in X_n^*$. Since π_n^* is a bijection from X_n^* onto $Lin(B_n^\circ)$, it follows that the linear functional $x_n^* := \pi_n^*(\xi_n^*) \in Lin(B_n^\circ) \subseteq X^*$ satisfies

$$|\langle v, x^* \rangle| \ll |\langle v, x_n^* \rangle|, \quad x^* \in Lin(B_n^\circ).$$
(6)

Let $\mu_n := |\langle v, x_n^* \rangle|$, for $n \in \mathbb{N}$. Then

$$\mu := \sum_{n=1}^{\infty} \frac{\mu_n}{2^n (1 + \mu_n(\Omega))}$$
(7)

is a positive, finite control measure for ν ; this follows from (6) and the fact that $\{B_n^\circ\}_{n\in\mathbb{N}}$ is a fundamental sequence of bounded sets in X_β^* .

Let τ_u and τ denote the topology of converge in measure in $L^0(\mu)$ and the topology in $L^0(\mu)$ defined (in a standard way) by the (extended valued) seminorms (2), respectively. Then $(L^0(\mu), \tau_u)$ is a complete metrizable topological vector space and $(L^0(\mu), \tau)$ is a Hausdorff topological vector group. Let $f_k \xrightarrow{\tau} 0$. Since $\int_{\Omega} |f_k| d\mu_n \leq ||f_k||_{\nu}^{(n)}$ for all $n \in \mathbb{N}$, we get $f_k \to 0$ in μ_n -measure for each $n \in \mathbb{N}$. Consequently, $f_k \xrightarrow{\tau_u} 0$ and so $\tau_u \subseteq \tau$. On the other hand, it follows from the (classical) Fatou lemma that the closed $||\cdot||_{\nu}^{(n)}$ -balls centred at 0 are τ_u -closed. Therefore, $(L^0(\mu), \tau)$ is complete [15, Section 18.4(4)]. Noting that $L^1_w(\nu)$ is a closed subspace of $(L^0(\mu), \tau)$, also $L^1_w(\nu)$ is complete. \Box

Remark 2.6. Let \widehat{X} denote the completion of the metrizable lcHs *X* and let $\hat{\nu}$ denote the *X*-valued vector measure ν when interpreted as taking its values in \widehat{X} . Then $L_w^1(\nu) = L_w^1(\hat{\nu})$ as vector spaces with $\|\cdot\|_v^{(n)} = \|\cdot\|_{\hat{\nu}}^{(n)}$, for each $n \in \mathbb{N}$. This explains why $L_w^1(\nu)$ is always complete, independent of whether *X* is complete or not.

For $L^1(\nu)$ the situation is different. Indeed, $L^1(\hat{\nu})$ is always complete but, $L^1(\nu)$ may fail to be complete if X is not complete; explicit examples can be found in [22,27], for instance. Since $L^1(\nu)$ has the relative topology from the *complete* space $L^1_w(\nu)$, we see that the completion $(L^1(\nu))$ is the closure of $L^1(\nu)$ in the Fréchet space $L^1_w(\nu) = L^1_w(\hat{\nu})$. On the other hand, $L^1(\hat{\nu})$ is always complete in itself and has the relative topology from $L^1_w(\hat{\nu})$. Since the Σ -simple functions are dense in both $L^1(\nu)$ and $L^1(\hat{\nu})$, by the Dominated convergence theorem [16, Theorem 2.2], we see that $L^1(\hat{\nu})$ is also the closure of $L^1(\nu)$ in $L^1_w(\hat{\nu}) = L^1_w(\nu)$. So, $(L^1(\nu))$ can also be identified with $L^1(\hat{\nu})$.

Let *F* be a Fréchet lattice with topology generated by a fundamental sequence of Riesz seminorms $\{q_n\}_{n\in\mathbb{N}}$. We say that *F* has the σ -*Fatou property* if, for every increasing sequence $(u_k)_k$ contained in the positive cone F^+ (of *F*) which is topologically bounded in *F*, the element $u := \sup u_k$ exists in F^+ and $q_n(u_k) \uparrow_k q_n(u)$, for each $n \in \mathbb{N}$. This terminology is not "standard"; e.g. in [1, p. 94] such an *F* is called a σ -Nakano space.

Theorem 2.7. Let ν be a vector measure taking its values in a metrizable lcHs. Then $L^1_w(\nu)$ is a Fréchet lattice with the σ -Fatou property.

Proof. Let μ be any control measure for ν . Fix $n \in \mathbb{N}$. Observe that $\|\cdot\|_{\nu}^{(n)}$, as given by (2), is a classical function seminorm in $L^{0}(\mu)$ in the sense of [29, §63]. Since the norm of the L^{1} -space of any positive measure has the Fatou property and $\|\cdot\|_{\nu}^{(n)}$ is the supremum of such norms (see (2)), it is known that $\|\cdot\|_{\nu}^{(n)}$ also has the Fatou property (in the sense of [29, §65]); see [29, §65, Theorem 4].

Now, let $(u_k)_k$ be any positive, increasing, topologically bounded sequence in $L^1_w(v)$. Then, Theorem 3 of [29, §65] implies that $||u||_v^{(n)} \leq \sup_k ||u_k||_v^{(n)} < \infty$, for $n \in \mathbb{N}$, where $u = \sup_k u_k = \lim_k u_k$ (pointwise). Hence, $u \in L^1_w(v)$ by Proposition 2.1. Moreover, $||u_k||_v^{(n)} \uparrow ||u||_v^{(n)}$ because $||\cdot||_v^{(n)}$ has the Fatou property as a function seminorm. \Box

3. A representation theorem for Fréchet lattices

Let us begin with a summary of some fundamental properties of spaces of the kind $L^{1}(\nu)$.

Let (F, τ) be a Fréchet lattice. A positive element *e* in *F* is called a *weak unit* if, for every $u \in F$ we have $u \land (ne) \uparrow u$ [13, 141]. Note, for any vector measure ν with values in a metrizable lcHs, that the constant function χ_{Ω} is a weak unit for both $L^1_w(\nu)$ and $L^1(\nu)$.

We say that *F* has a *Lebesgue* (resp. σ -*Lebesgue*) topology, if $u_{\alpha} \downarrow 0$ implies $u_{\alpha} \stackrel{\tau}{\to} 0$ in *F* (resp. $u_k \downarrow 0$ implies $u_k \stackrel{\tau}{\to} 0$ in *F*) [1, Definition 8.1]. It is a direct consequence of the Dominated convergence theorem for vector measures [14, p. 30], [16], that if ν is any vector measure with values in a Fréchet space, then $L^1(\nu)$ always has a σ -Lebesgue topology. Actually, $L^1(\nu)$ even has a Lebesgue topology. To see this, let μ be given by (7) and recall that the classical Riesz space $L^0(\mu) = L^0(\nu)$ is always Dedekind complete [18, Example 23.3(iv)]. Since $L^1(\nu)$ is an ideal in $L^0(\nu)$, it follows that $L^1(\nu)$ is also Dedekind complete [18, Theorem 25.2]. It is well known that this property of $L^1(\nu)$, together with a σ -Lebesgue topology, imply that $L^1(\nu)$ has a Lebesgue topology [1, Theorem 17.9]. The above three properties of $L^1(\nu)$, namely, Dedekind completeness, having a Lebesgue topology and possessing a weak unit, are known to characterize a large class of Fréchet lattices.

Proposition 3.1. Let $(F, \{q_n\}_{n \in \mathbb{N}})$ be a Dedekind complete Fréchet lattice with a Lebesgue topology and having a weak unit $e \in F^+$. Then there is a vector measure $v : \Sigma \to F^+$ such that the integration map $I_v : L^1(v) \to F$, defined by $f \mapsto \int_{\Omega} f \, dv$, for $f \in L^1(v)$, is a Fréchet lattice isomorphism of $L^1(v)$ onto F satisfying $I_v(\chi_{\Omega}) = e$ and

$$q_n(I_{\nu}(f)) = \|f\|_{\nu}^{(n)}, \quad f \in L^1(\nu), \ n \in \mathbb{N}.$$
(8)

For *F* a Banach lattice, Proposition 3.1 occurs in [2]. In the setting of a Fréchet lattice *F* we refer to [7, Proposition 2.4(vi)], after reading its proof carefully, together with p. 364 of [7]. A similar but, somewhat different proof of Proposition 3.1 occurs in [21, Theorem 1.22]. Unlike in [7], the proof given in [21] does not rely on the theory of band projections.

An element u of a Fréchet lattice (F, τ) is σ -order continuous if it has the property that $u_k \xrightarrow{\tau} 0$ as $k \to \infty$ for every sequence $(u_k)_k \subseteq F^+$ satisfying $|u| \ge u_k \downarrow 0$. The σ -order continuous part F_a of F is the collection of all σ -order continuous elements of F; it is a closed ideal in F [30, pp. 331–332], and clearly has a σ -Lebesgue topology.

Theorem 3.2. For any vector measure v taking values in a Fréchet space, $(L_w^1(v))_a = L^1(v)$.

Proof. As already noted, $L^1(\nu)$ has a σ -Lebesgue topology. Since $L^1(\nu)$ has the relative topology from $L^1_w(\nu)$, we have $L^1(\nu) \subseteq (L^1_w(\nu))_a$. On the other hand, let $f \in (L^1_w(\nu))_a$ and assume (without loss of generality) that $f \ge 0$. Select Σ -simple functions $(s_k)_k$ such that $0 \le s_k \uparrow f$ (ν -a.e.). Then $0 \le f - s_k \le |f|$ for all k and $(f - s_k) \downarrow 0$. Hence, $(f - s_k)_k$ converges to 0 in $L^1_w(\nu)$, that is, $(s_k)_k$ converges to f in $L^1_w(\nu)$. But, $(s_k)_k \subseteq L^1(\nu)$ with $L^1(\nu)$ closed in $L^1_w(\nu)$. Hence, $f \in L^1(\nu)$ and so $(L^1_w(\nu))_a \subseteq L^1(\nu)$. \Box

It is known that every *Banach lattice* E having the σ -Fatou property and a weak unit which belongs to E_a , is Banach lattice isomorphic to $L^1_w(\nu)$ for some vector measure ν taking values in E^+_a [3, Theorem 2.5]. Our final result extends this fact to the Fréchet lattice setting. The proof proceeds along the lines of that of Theorem 2.5 in [3] but, with various differences due to the more general setting.

Theorem 3.3. Let $(F, \{q_n\}_{n \in \mathbb{N}})$ be any Fréchet lattice with the σ -Fatou property and possessing a weak unit e which belongs to F_a . Then there exists an F_a^+ -valued vector measure v such that F is Fréchet lattice isomorphic to $L_w^1(v)$ via an isomorphism $T : L_w^1(v) \to F$ which satisfies $T(\chi_\Omega) = e$ and

$$q_n(Tf) = ||f||_{\nu}^{(n)}, \quad f \in L^1_w(\nu), \ n \in \mathbb{N}$$

Moreover, the restriction map $T|_{L^1(\nu)} = I_{\nu}$.

Proof. The proof proceeds via a series of steps.

(i) Since *F* satisfies the σ -Fatou property, *F* is σ -Dedekind complete and hence, so is F_a . Therefore, F_a is a σ -Dedekind complete Fréchet lattice with a σ -Lebesgue topology. Theorem 17.9 in [1] then guarantees that F_a has a Lebesgue topology and is Dedekind complete. Since *e* is also a weak unit of F_a , Proposition 3.1 ensures that there exists a measurable space (Ω, Σ) and a positive vector measure $\nu : \Sigma \to F_a^+$ such that F_a is Fréchet lattice isomorphic to $L^1(\nu)$ via the integration map $T := I_{\nu}$. Moreover, (8) is also satisfied.

(ii) We extend T to $L_w^1(\nu)^+$. Given $0 \le f \in L_w^1(\nu)$, choose Σ -simple functions $0 \le f_k \uparrow f$. Since $f_k \in L^1(\nu)$, we have $0 \le x_k := Tf_k \in F_a$ and $q_n(x_k) = ||f_k||_{\nu}^{(n)} \le ||f||_{\nu}^{(n)}$ for all $k \in \mathbb{N}$ and all $n \in \mathbb{N}$. Hence, $(x_k)_k$ is an increasing, topologically bounded sequence in $F_a \subseteq F$. By the σ -Fatou property of F the element $x := \sup_k x_k$ exists in F^+ and $q_n(x) = \lim_k q_n(x_k)$. Define $Tf := x \ge 0$. Fix $n \in \mathbb{N}$. By the σ -Fatou property of $L_w^1(\nu)$ and (8) we have

$$q_n(Tf) = \lim_k q_n(x_k) = \lim_k q_n(Tf_k) = \lim_k \|f_k\|_{\nu}^{(n)} = \|f\|_{\nu}^{(n)}.$$

Let us see that this extension of *T* is well defined. First note that if $0 \le h_k \uparrow h$ in $L^1(\nu)$, then $h_k \to h$ in $L^1(\nu)$. Hence, by continuity, $Th_k \to Th$ in *F* with $(Th_k)_k$ increasing and, consequently, $Th = \sup_k Th_k$ in *F* [1, Theorem 5.6(iii)]. Now, let $f \in L^1_w(\nu)$ and suppose that f_k and g_k are Σ -simple functions such that $0 \le f_k \uparrow f$ and $0 \le g_k \uparrow f$. Then $f_k \land g_m \uparrow_k g_m$ for all $m \in \mathbb{N}$ and so $Tg_m = \sup_k T(f_k \land g_m)$. Likewise, $Tf_k = \sup_m T(f_k \land g_m)$. Therefore, $\sup_k Tf_k = \sup_{m,k} T(f_k \land g_m) = \sup_{m,k} Tf_k \land Tg_m = \sup_m Tg_m$.

(iii) T is positive, additive and positively homogeneous on $L_w^1(v)^+$ and so, can be uniquely extended to a positive linear map $T: L_w^1(v) \to F$ in a standard way. Indeed, T is clearly positive and $T(\alpha f) = \alpha T f$ for all $\alpha \in [0, \infty)$ and $f \in L_w^1(v)^+$. To check additivity, let $0 \leq f, g \in L_w^1(v)$ and choose Σ -simple functions $0 \leq f_k \uparrow f$ and $0 \leq g_j \uparrow g$. Define $x_k := Tf_k$ and $y_j := Tg_j$ for all $k, j \in \mathbb{N}$. By the definition of T(f + g), T(f) and T(g) and [1, Theorem 1.6] we have

 $T(f+g) = \sup(x_k + y_j) = \sup x_k + \sup y_j = Tf + Tg.$

(iv) T is a Riesz space homomorphism on $L_w^1(\nu)$ (equivalently, |Tf| = T|f| for all $f \in L_w^1(\nu)$ [1, Theorem 1.17]). Suppose first that $0 \leq f, g \in L_w^1(\nu)$ satisfy $f \wedge g = 0$. Choose simple functions $0 \leq f_k \uparrow f$ and $0 \leq g_k \uparrow g$. Then $f_k \wedge g_k = 0$ for all $k \in \mathbb{N}$. Since T is a Riesz space isomorphism of $L^1(\nu)$ onto F_a , it follows that $Tf_k \wedge Tg_k = T(f_k \wedge g_k) = T(0) = 0$ for all $k \in \mathbb{N}$ and hence, via [18, Theorem 15.3], that $Tf \wedge Tg = (\sup Tf_k) \wedge (\sup Tg_k) = \sup(Tf_k \wedge Tg_k) = 0$. For arbitrary $f \in L_w^1(\nu)$ we have that $f^+, f^- \in L_w^1(\nu)^+$ with $f^+ \wedge f^- = 0$ and so the previous argument yields $Tf^+ \wedge Tf^- = 0$. Hence, T is a Riesz space homomorphism on $L_w^1(\nu)$ [20, Proposition 1.3.11].

space homomorphism on $L_w^1(\nu)$ [20, Proposition 1.3.11]. (v) Fix $n \in \mathbb{N}$. Let $f \in L_w^1(\nu)$. From (iv) it follows that $q_n(Tf) = q_n(|Tf|) = q_n(T|f|)$. But, in (ii) it was shown that T satisfies $q_n(T|f|) = ||f||_{\nu}^{(n)} = ||f||_{\nu}^{(n)}$ (because $|f| \in L_w^1(\nu)^+$). Therefore,

$$q_n(Tf) = ||f||_{\nu}^{(n)}, \quad f \in L^1_W(\nu).$$

Since this holds for every $n \in \mathbb{N}$, we see that *T* is also injective.

(vi) *T* is surjective. Fix $x \in F^+$. Since *e* is a weak unit of *F*, we have $x_k \uparrow x$, where $x_k = x \land (ke) \ge 0$, for $k \in \mathbb{N}$. Moreover, $q_n(x_k) \uparrow_k q_n(x)$, for $n \in \mathbb{N}$, as *F* has the σ -Fatou property. Since $e \in F_a$ and F_a is an ideal, it is clear that $(x_k)_k \subseteq F_a$. But, *T* is a Riesz space isomorphism of $L^1(v)$ onto F_a and so there is an increasing sequence $(f_k)_k \subseteq L^1(v)^+$ such that $x_k = Tf_k$ for $k \in \mathbb{N}$. Fix $n \in \mathbb{N}$. By (v) it follows that $||f_k||_v^{(n)} = q_n(Tf_k) = q_n(x_k) \leq q_n(x)$, for $k \in \mathbb{N}$, and so $\sup_k ||f_k||_v^{(n)} \leq q_n(x) < \infty$. Hence, the σ -Fatou property of $L^1_w(v)$ ensures that $f = \sup_k f_k \in L^1_w(v)$ and $||f_k||_v^{(n)} \uparrow ||f||_v^{(n)}$. From the definition of the extension we have Tf = x. For arbitrary $x \in F$ there exist $f, g \in L^1_w(v)^+$ such that $x^+ = Tf$ and $x^- = Tg$. So, x = T(f - g). \Box

Example 3.4. Any increasing sequence $A = (a_n)_n$ of functions $a_n : \mathbb{N} \to (0, \infty)$ is called a Köthe matrix on \mathbb{N} , where increasing means $0 < a_n \leq a_{n+1}$ pointwise on \mathbb{N} , for each $n \in \mathbb{N}$. The Köthe echelon space $\lambda_{\infty}(A)$ is the vector space

$$\lambda_{\infty}(A) := \{ x \in \mathbb{R}^{\mathbb{N}} : a_n x \in \ell_{\infty} \text{ for all } n = 1, 2, \dots \},\$$

equipped with the increasing sequence of solid Riesz seminorms

$$\|x\|_k := \sup_{m \in \mathbb{N}} a_k(m) |x_m|, \quad x = (x_m) \in \lambda_{\infty}(A).$$

Of course, the order in $\lambda_{\infty}(A)$ is the pointwise order on \mathbb{N} . Then $\lambda_{\infty}(A)$ is a Fréchet lattice and $(\lambda_{\infty}(A))_a$ is the proper closed ideal

$$\lambda_0(A) := \{ x \in \lambda_\infty(A) : a_n x \in c_0 \text{ for all } n = 1, 2, \dots \}.$$

It is routine to check that $\lambda_{\infty}(A)$ has the σ -Fatou property and contains a weak unit $e \in \lambda_0(A)^+$. Indeed, any $e \in \lambda_0(A)^+$ satisfying $e_m > 0$ for all $m \in \mathbb{N}$ suffices. According to Theorem 3.3, the space $\lambda_{\infty}(A)$ is Fréchet lattice isomorphic to $L^1_w(\nu)$ for some vector measure ν . However, since $\lambda_{\infty}(A)$ does not have a Lebesgue topology, it cannot be Fréchet lattice isomorphic to $L^1(\eta)$ for any vector measure η .

References

- [1] C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
- [2] G.P. Curbera, Operators into L^1 of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992) 317–330.
- [3] G.P. Curbera, W.J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators, Indag. Math. (N.S.) 17 (2006) 187-204.
- [4] G.P. Curbera, W.J. Ricker, Vector measures, integration and applications, in: K. Boulabiar, G. Buskes, A. Triki (Eds.), Positivity, in: Trends Math., Birkhäuser Verlag, Basel, 2007, pp. 127–160.
- [5] G.P. Curbera, O. Delgado, W.J. Ricker, Vector measures: Where are their integrals?, Positivity 13 (2009) 61-87.
- [6] J. Diestel, J.J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
- [7] P.G. Dodds, B. de Pagter, W.J. Ricker, Reflexivity and order properties of scalar-type spectral operators in locally convex spaces, Trans. Amer. Math. Soc. 293 (1986) 355–390.
- [8] A. Fernández, F. Mayoral, F. Naranjo, P. J Paúl, Weakly sequentially complete Fréchet spaces of integrable functions, Arch. Math. 71 (1998) 223-228.
- [9] A. Fernández, F. Naranjo, Operators and the space of integrable scalar functions with respect to a Fréchet-valued measure, J. Aust. Math. Soc. Ser. A 65 (1998) 176–193.

[10] A. Fernández, F. Naranjo, W.J. Ricker, Completeness of L¹-spaces for measures with values in complex vector spaces, J. Math. Anal. Appl. 223 (1998) 76–87.

- [11] A. Fernández, F. Naranjo, AL- and AM-spaces of integrable scalar functions with respect to a Fréchet-valued measure, Quaest. Math. 23 (2000) 247–258.
- [12] A. Fernández, F. Mayoral, F. Naranjo, C. Sáez, E.A. Sánchez-Pérez, Spaces of *p*-integrable functions with respect to a vector measure, Positivity 10 (2006) 1–16.
- [13] D.H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974.
- [14] I. Kluvánek, G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, 1976.
- [15] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
- [16] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970) 157-165.
- [17] D.R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972) 294–307.
- [18] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1971.
- [19] R.G. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [20] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991.
- [21] F. Naranjo, Espacio de Funciones Integrables Respecto de una Medida Vectorial con Valores en un Espacio de Fréchet, PhD thesis, Univ. de Sevilla, 1997.
- [22] S. Okada, W.J. Ricker, Vector measures and integration in non-complete spaces, Arch. Math. 63 (1994) 344-353.
- [23] S. Okada, W.J. Ricker, Compact integration operators for Fréchet-space-valued measures, Indag. Math. (N.S.) 13 (2002) 209-227.

- [24] S. Okada, W.J. Ricker, Fréchet-space-valued measures and the AL-property, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 97 (2003) 305-314.
- [25] S. Okada, W.J. Ricker, E.A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Oper. Theory Adv. Appl., vol. 180, Birkhäuser Verlag, Basel, 2008.
- [26] W.J. Ricker, Rybakov's theorem in Fréchet spaces and completeness of L¹-spaces, J. Aust. Math. Soc. Ser. A 64 (1998) 247-252.
- [27] W.J. Ricker, M. Väth, Spaces of complex functions and vector measures in incomplete spaces, J. Funct. Spaces Appl. 2 (2004) 1-16.
- [28] G.F. Stefansson, L^1 of a vector measure, Matematiche 48 (1993) 219–234.
- [29] A.C. Zaanen, Integration, second revised ed., North-Holland/Interscience, Amsterdam/New York, 1967.
- [30] A.C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.