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The space L1
w (ν) of all scalarly integrable functions with respect to a Fréchet-space-valued

vector measure ν is shown to be a complete Fréchet lattice with the σ -Fatou property
which contains the (traditional) space L1(ν), of all ν-integrable functions. Indeed, L1(ν) is
the σ -order continuous part of L1

w (ν). Every Fréchet lattice with the σ -Fatou property
and containing a weak unit in its σ -order continuous part is Fréchet lattice isomorphic to
a space of the kind L1

w (ν).
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a Fréchet space and ν : Σ → X be a vector measure (i.e. ν is σ -additive), where (Ω,Σ) is a measurable space.
A measurable function f : Ω → R is said to be ν-integrable if

(I-1) f is scalarly ν-integrable, that is, f is integrable with respect to the scalar measure 〈ν, x∗〉 : A �→ 〈ν(A), x∗〉, for each
x∗ ∈ X∗ (the continuous dual space of X ), and

(I-2) for each A ∈ Σ there exists an element
∫

A f dν ∈ X such that〈∫
A

f dν, x∗
〉
=

∫
A

f d
〈
ν, x∗〉, x∗ ∈ X∗.

For X a Banach space, the space L1(ν), consisting of all (equivalence classes of) ν-integrable functions equipped with the
norm

‖ f ‖ν := sup
x∗∈B X∗

∫
Ω

| f |d
∣∣〈ν, x∗〉∣∣, f ∈ L1(ν), (1)

is also a Banach space. Here B X∗ is the closed unit ball of X∗ and |〈ν, x∗〉| is the variation measure of 〈ν, x∗〉, for x∗ ∈ X∗ . The
space L1(ν) was introduced and investigated in [14], even for vector measures taking values in a locally convex Hausdorff
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space (briefly, lcHs). Since then, L1(ν) has been intensively studied in the Banach setting by many authors; see, e.g. [4,25]
and the references therein.

G. Stefansson introduced the space L1
w(ν) of all (classes of) scalarly ν-integrable functions and showed that the same

functional (1) above is a norm in L1
w(ν) [28]. This is to be interpreted to mean that if f is scalarly ν-integrable, then

‖ f ‖ν < ∞ and that (1) specifies a norm in L1
w(ν). Actually, Stefansson also showed that L1

w(ν) is complete for ‖ · ‖ν . It is
then clear that L1(ν) is a closed subspace of L1

w(ν).
In contrast to L1(ν), the Banach space L1

w(ν) has received relatively little attention up to now; see, for example, [12], [25,
Chapter 3], [28]. Recently however, new features of L1

w(ν) have emerged, based on the theory of Banach function spaces,
which indicate the importance of this space in its own right [3,5]. In particular, it is closely related to the “optimal domain
property” for certain kernel operators.

For a Fréchet space X and a vector measure ν : Σ → X , the corresponding (Fréchet) space L1(ν) is well understood;
see, e.g. [8–11,14,21,23,24,26] and the references therein. Although the notion of an individual scalarly ν-integrable function
already occurs in the Fréchet and even more general lcHs setting [14,16,17], there is no study made there or elsewhere (as
far as we aware) of what the corresponding space L1

w(ν) should be and what properties it might have. Our aim here is to
address this deficiency: we introduce and investigate various properties of L1

w(ν), for ν a Fréchet space-valued measure,
and identify its connection to L1(ν).

Let us indicate a sample of some of the results. In Section 2 we establish that L1
w(ν) is always complete, even if X is

merely a metrizable lcHs. Even for normed spaces, this seems to have been overlooked. In contrast, L1(ν) is typically not
complete if the metrizable lcHs X fails to be complete. In Section 3 it is shown that every Fréchet lattice F with the σ -Fatou
property and possessing a weak unit in its σ -order continuous part is Fréchet lattice isomorphic to L1

w(ν) for a suitable
vector measure ν . This shows how extensive the family of all spaces of the type L1

w(ν) is within the class of all Fréchet
lattices.

2. The space L1
w(ν)

Let X be a metrizable lcHs generated by a fundamental sequence of increasing seminorms (‖ · ‖(n))n∈N . The sets Bn :=
{x ∈ X: ‖x‖(n) � 1} form a fundamental sequence of zero neighbourhoods for X and their polars B◦

n := {x∗ ∈ X∗: |〈x, x∗〉| � 1,

∀x ∈ Bn}, for n ∈ N, are absolutely convex [19, Theorem 23.5]. Moreover, {B◦
n: n ∈ N} is a fundamental sequence of bounded

sets in the strong dual X∗
β (i.e., each bounded set in X∗

β is contained in a multiple of B◦
n for some n ∈ N). In addition, each

set B◦
n , for n ∈ N, is a Banach disc [19, Lemma 25.5], that is, the linear hull Lin(B◦

n) = ⋃
t>0 t B◦

n of B◦
n (formed in X∗) is a

Banach space when equipped with its Minkowski functional∥∥x∗∥∥
B◦

n
:= inf

{
s > 0: x∗ ∈ sB◦

n

}
, x∗ ∈ Lin

(
B◦

n

)
.

For each n ∈ N, the local Banach space Xn is the completion of the quotient X/Mn endowed with the quotient norm
induced by ‖ · ‖(n) , where Mn := {x ∈ X: ‖x‖(n) = 0}. Let πn : X → Xn be the quotient map. Then its dual map π∗

n is an
isometric bijection between the Banach spaces X∗

n and Lin(B◦
n) [19, Remark 24.5(b)].

Given a vector measure ν : Σ → X , defined on a measurable space (Ω,Σ), a set A ∈ Σ is ν-null if ν(B) = 0 for all
B ∈ Σ with B ⊆ A. Let L0(ν) denote the σ -Dedekind complete Riesz space of all (classes, modulo ν-a.e., of) scalar-valued,
Σ-measurable functions defined on Ω , with respect to the ν-a.e. pointwise order [18, pp. 126–127]. For each n ∈ N, define
a [0,∞]-valued seminorm ‖ · ‖(n)

ν in L0(ν) by

‖ f ‖(n)
ν := sup

x∗∈B◦
n

∫
Ω

| f |d
∣∣〈ν, x∗〉∣∣, f ∈ L0(ν). (2)

The map νn : Σ → Xn given by

νn(A) := πn
(
ν(A)

)
, A ∈ Σ, (3)

is a Banach-space-valued vector measure. Observe that A ∈ Σ is ν-null if and only if it is νn-null for all n ∈ N.

Proposition 2.1. Let X be a metrizable lcHs, ν an X-valued measure and f ∈ L0(ν). Then f ∈ L1
w(ν) if and only if ‖ f ‖(n)

ν < ∞, for
n ∈ N.

Proof. Let f satisfy ‖ f ‖(n)
ν < ∞, for all n ∈ N. Given x∗ ∈ X∗ , there exist m ∈ N and C > 0 such that |〈x, x∗〉| � C‖x‖(m) for

all x ∈ X , i.e. C−1x∗ ∈ B◦
m , and so∫

Ω

| f |d
∣∣〈ν, x∗〉∣∣ = C

∫
Ω

| f |d
∣∣〈ν, C−1x∗〉∣∣ � C‖ f ‖(m)

ν < ∞.

Conversely, if f ∈ L1
w(ν), then f is scalarly νn-integrable, for n ∈ N, since 〈ν,π∗

n (ξ∗)〉 = 〈νn, ξ∗〉 as measures, for ξ∗ ∈ X∗
n .

Furthermore,

‖ f ‖νn := sup
ξ∗∈B X∗

n

∫
| f |d

∣∣〈νn, ξ∗〉∣∣ = sup
ξ∗∈B X∗

n

∫
| f |d

∣∣〈ν,π∗
n

(
ξ∗)〉∣∣
Ω Ω
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and hence,

‖ f ‖(n)
ν := sup

x∗∈B◦
n

∫
Ω

| f |d
∣∣〈ν, x∗〉∣∣ = ‖ f ‖νn (4)

where, for the last equality, we use the fact that π∗
n is an isometry and so π∗

n (B X∗
n
) = B◦

n . But, Xn is a Banach space and so
‖ f ‖νn < ∞. �
Corollary 2.2. Let X be a metrizable lcHs and ν be an X-valued vector measure. Then, L1

w(ν) is an ideal in L0(ν) and the restricted

functionals ‖ · ‖(n)
ν : L1

w(ν) → [0,∞) given by (2), for each n ∈ N, are an increasing sequence of Riesz seminorms which turn L1
w(ν)

into a metrizable, locally convex-solid Riesz space.

Proof. As Bn+1 ⊆ Bn , the seminorms (‖ · ‖(n)
ν )n∈N are increasing in L1

w(ν). Also, if g ∈ L0(ν) and f ∈ L1
w(ν) with |g| � | f |,

then g ∈ L1
w(ν) and ‖g‖(n)

ν � ‖ f ‖(n)
ν , for n ∈ N. This shows that L1

w(ν) is an ideal in L0(ν) and each ‖ · ‖(n)
ν is a Riesz

seminorm in L1
w(ν).

Suppose that f ∈ L1
w(ν) satisfies ‖ f ‖(n)

ν = 0 for all n ∈ N. According to (4) we have f ∈ L1
w(νn) with ‖ f ‖νn = ‖ f ‖(n)

ν = 0
for all n ∈ N. That is, the set A := {w ∈ Ω: | f (w)| > 0} is νn-null for each n ∈ N. Hence, A is a ν-null set and so f = 0
in L1

w(ν). Now general theory can be invoked to conclude that L1
w(ν) becomes a metrizable, locally convex-solid Riesz

space when equipped with the topology induced by the seminorms (‖ · ‖(n)
ν )n∈N; see, for example, [1, Theorem 6.1], [19,

Lemma 22.5]. �
Functions f from L1

w(ν) differ from those of L1(ν) in that not all of their “integrals” belong to X . For X a Banach space,
given any A ∈ Σ there always exists a “generalized integral” x∗∗

A ∈ X∗∗ satisfying

〈
x∗, x∗∗

A

〉 = ∫
A

f d
〈
ν, x∗〉, x∗ ∈ X∗;

see [5,16,28], for example. For X a metrizable lcHs, we now show that a similar phenomenon occurs. First some notation:
given f ∈ L1

w(ν) and A ∈ Σ , define a linear functional (w)-
∫

A f dν : X∗ → R by

(w)-

∫
A

f dν : x∗ �→
∫
A

f d
〈
ν, x∗〉, x∗ ∈ X∗. (5)

The continuous dual space (X∗
β)∗ of X∗

β is denoted simply by X∗∗ .

Proposition 2.3. Let X be a metrizable lcHs and ν be an X-valued vector measure. For each f ∈ L1
w(ν) and A ∈ Σ , the linear functional

(w)-
∫

A f dν given by (5) belongs to X∗∗ .

Proof. Since L1
w(ν) is an ideal in L0(ν) (see Corollary 2.2), it suffices to consider 0 � f ∈ L1

w(ν). Fix A ∈ Σ . Select Σ-simple
functions 0 � fk ↑ f pointwise on Ω . Given x∗ ∈ X∗ , we have f ∈ L1(|〈ν, x∗〉|) and so the Dominated convergence theorem
for scalar measures yields

lim
k→∞

∫
A

fk d
〈
ν, x∗〉 = ∫

A

f d
〈
ν, x∗〉 = 〈

x∗, (w)-

∫
A

f dν

〉
.

Hence, C := {∫A fk dν} is a bounded set in X . From the previous formula, we have |〈x∗, (w)-
∫

A f dν〉| � 1 for all x∗ ∈ C◦ , which
is a neighbourhood of zero in (X∗

β)∗ . So, (w)-
∫

A f dν ∈ X∗∗ . �
Remark 2.4. If X is weakly sequentially complete, then it follows that (w)-

∫
A f dν ∈ X , for every A ∈ Σ and every f ∈ L1

w(ν).
That is, L1

w(ν) = L1(ν) in this case. Actually, whenever X does not contain an isomorphic copy of the Banach space c0, it is
known that L1

w(ν) = L1(ν); see, for example, [14, p. 31], [17, Theorem 5.1].

If X is a Fréchet space, then it is known that L1(ν) is also a Fréchet space for every X-valued vector measure ν ([10],
[14, Chapter 4, Theorems 4.1 and 7.1]). The same is true of L1

w(ν), even without completeness of X!

Theorem 2.5. Let X be a metrizable lcHs and ν be an X-valued vector measure. Then L1
w(ν) is complete and, in particular, is a Fréchet

lattice. If, in addition, X is a Fréchet space, then the Fréchet lattice L1
w(ν) contains L1(ν) as a closed subspace.
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Proof. Fix n ∈ N. Let νn : Σ → Xn be the Banach-space-valued vector measure given by (3). Rybakov’s theorem states that
there exists ξ∗

n ∈ X∗
n such that |〈νn, ξ∗

n 〉| is a control measure for νn (i.e. νn and |〈νn, ξ∗
n 〉| have the same null sets) [6, p. 268].

In particular, |〈νn, ξ∗〉| � |〈νn, ξ∗
n 〉|, for every ξ∗ ∈ X∗

n . Since π∗
n is a bijection from X∗

n onto Lin(B◦
n), it follows that the linear

functional x∗
n := π∗

n (ξ∗
n ) ∈ Lin(B◦

n) ⊆ X∗ satisfies∣∣〈ν, x∗〉∣∣ � ∣∣〈ν, x∗
n

〉∣∣, x∗ ∈ Lin
(

B◦
n

)
. (6)

Let μn := |〈ν, x∗
n〉|, for n ∈ N. Then

μ :=
∞∑

n=1

μn

2n(1 + μn(Ω))
(7)

is a positive, finite control measure for ν; this follows from (6) and the fact that {B◦
n}n∈N is a fundamental sequence of

bounded sets in X∗
β .

Let τu and τ denote the topology of converge in measure in L0(μ) and the topology in L0(μ) defined (in a standard
way) by the (extended valued) seminorms (2), respectively. Then (L0(μ), τu) is a complete metrizable topological vector

space and (L0(μ), τ ) is a Hausdorff topological vector group. Let fk
τ→ 0. Since

∫
Ω

| fk|dμn � ‖ fk‖(n)
ν for all n ∈ N, we get

fk → 0 in μn-measure for each n ∈ N. Consequently, fk
τu→ 0 and so τu ⊆ τ . On the other hand, it follows from the (classical)

Fatou lemma that the closed ‖ · ‖(n)
ν -balls centred at 0 are τu-closed. Therefore, (L0(μ), τ ) is complete [15, Section 18.4(4)].

Noting that L1
w(ν) is a closed subspace of (L0(μ), τ ), also L1

w(ν) is complete. �
Remark 2.6. Let X̂ denote the completion of the metrizable lcHs X and let ν̂ denote the X-valued vector measure ν when
interpreted as taking its values in X̂ . Then L1

w(ν) = L1
w(ν̂) as vector spaces with ‖ ·‖(n)

ν = ‖·‖(n)

ν̂
, for each n ∈ N. This explains

why L1
w(ν) is always complete, independent of whether X is complete or not.

For L1(ν) the situation is different. Indeed, L1(ν̂) is always complete but, L1(ν) may fail to be complete if X is not
complete; explicit examples can be found in [22,27], for instance. Since L1(ν) has the relative topology from the complete
space L1

w(ν), we see that the completion (L1(ν))̂ is the closure of L1(ν) in the Fréchet space L1
w(ν) = L1

w(ν̂). On the other
hand, L1(ν̂) is always complete in itself and has the relative topology from L1

w(ν̂). Since the Σ-simple functions are dense
in both L1(ν) and L1(ν̂), by the Dominated convergence theorem [16, Theorem 2.2], we see that L1(ν̂) is also the closure
of L1(ν) in L1

w(ν̂) = L1
w(ν). So, (L1(ν))̂ can also be identified with L1(ν̂).

Let F be a Fréchet lattice with topology generated by a fundamental sequence of Riesz seminorms {qn}n∈N . We say
that F has the σ -Fatou property if, for every increasing sequence (uk)k contained in the positive cone F + (of F ) which is
topologically bounded in F , the element u := sup uk exists in F + and qn(uk) ↑k qn(u), for each n ∈ N. This terminology is
not “standard”; e.g. in [1, p. 94] such an F is called a σ -Nakano space.

Theorem 2.7. Let ν be a vector measure taking its values in a metrizable lcHs. Then L1
w(ν) is a Fréchet lattice with the σ -Fatou

property.

Proof. Let μ be any control measure for ν . Fix n ∈ N. Observe that ‖ · ‖(n)
ν , as given by (2), is a classical function seminorm

in L0(μ) in the sense of [29, §63]. Since the norm of the L1-space of any positive measure has the Fatou property and
‖ · ‖(n)

ν is the supremum of such norms (see (2)), it is known that ‖ · ‖(n)
ν also has the Fatou property (in the sense of [29,

§65]); see [29, §65, Theorem 4].
Now, let (uk)k be any positive, increasing, topologically bounded sequence in L1

w(ν). Then, Theorem 3 of [29, §65] implies

that ‖u‖(n)
ν � supk ‖uk‖(n)

ν < ∞, for n ∈ N, where u = supk uk = limk uk (pointwise). Hence, u ∈ L1
w(ν) by Proposition 2.1.

Moreover, ‖uk‖(n)
ν ↑ ‖u‖(n)

ν because ‖ · ‖(n)
ν has the Fatou property as a function seminorm. �

3. A representation theorem for Fréchet lattices

Let us begin with a summary of some fundamental properties of spaces of the kind L1(ν).
Let (F , τ ) be a Fréchet lattice. A positive element e in F is called a weak unit if, for every u ∈ F we have u ∧ (ne) ↑ u [13,

14I]. Note, for any vector measure ν with values in a metrizable lcHs, that the constant function χΩ is a weak unit for both
L1

w(ν) and L1(ν).

We say that F has a Lebesgue (resp. σ -Lebesgue) topology, if uα ↓ 0 implies uα
τ→ 0 in F (resp. uk ↓ 0 implies uk

τ→ 0
in F ) [1, Definition 8.1]. It is a direct consequence of the Dominated convergence theorem for vector measures [14, p. 30],
[16], that if ν is any vector measure with values in a Fréchet space, then L1(ν) always has a σ -Lebesgue topology. Actually,
L1(ν) even has a Lebesgue topology. To see this, let μ be given by (7) and recall that the classical Riesz space L0(μ) = L0(ν)

is always Dedekind complete [18, Example 23.3(iv)]. Since L1(ν) is an ideal in L0(ν), it follows that L1(ν) is also Dedekind
complete [18, Theorem 25.2]. It is well known that this property of L1(ν), together with a σ -Lebesgue topology, imply that
L1(ν) has a Lebesgue topology [1, Theorem 17.9].
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The above three properties of L1(ν), namely, Dedekind completeness, having a Lebesgue topology and possessing a weak
unit, are known to characterize a large class of Fréchet lattices.

Proposition 3.1. Let (F , {qn}n∈N) be a Dedekind complete Fréchet lattice with a Lebesgue topology and having a weak unit e ∈ F + .
Then there is a vector measure ν : Σ → F + such that the integration map Iν : L1(ν) → F , defined by f �→ ∫

Ω
f dν , for f ∈ L1(ν), is

a Fréchet lattice isomorphism of L1(ν) onto F satisfying Iν(χΩ) = e and

qn
(

Iν( f )
) = ‖ f ‖(n)

ν , f ∈ L1(ν), n ∈ N. (8)

For F a Banach lattice, Proposition 3.1 occurs in [2]. In the setting of a Fréchet lattice F we refer to [7, Proposition 2.4(vi)],
after reading its proof carefully, together with p. 364 of [7]. A similar but, somewhat different proof of Proposition 3.1 occurs
in [21, Theorem 1.22]. Unlike in [7], the proof given in [21] does not rely on the theory of band projections.

An element u of a Fréchet lattice (F , τ ) is σ -order continuous if it has the property that uk
τ→ 0 as k → ∞ for every

sequence (uk)k ⊆ F + satisfying |u| � uk ↓ 0. The σ -order continuous part Fa of F is the collection of all σ -order continuous
elements of F ; it is a closed ideal in F [30, pp. 331–332], and clearly has a σ -Lebesgue topology.

Theorem 3.2. For any vector measure ν taking values in a Fréchet space, (L1
w(ν))a = L1(ν).

Proof. As already noted, L1(ν) has a σ -Lebesgue topology. Since L1(ν) has the relative topology from L1
w(ν), we have

L1(ν) ⊆ (L1
w(ν))a . On the other hand, let f ∈ (L1

w(ν))a and assume (without loss of generality) that f � 0. Select Σ-simple
functions (sk)k such that 0 � sk ↑ f (ν-a.e.). Then 0 � f − sk � | f | for all k and ( f − sk) ↓ 0. Hence, ( f − sk)k converges to 0
in L1

w(ν), that is, (sk)k converges to f in L1
w(ν). But, (sk)k ⊆ L1(ν) with L1(ν) closed in L1

w(ν). Hence, f ∈ L1(ν) and so
(L1

w(ν))a ⊆ L1(ν). �
It is known that every Banach lattice E having the σ -Fatou property and a weak unit which belongs to Ea , is Banach

lattice isomorphic to L1
w(ν) for some vector measure ν taking values in E+

a [3, Theorem 2.5]. Our final result extends
this fact to the Fréchet lattice setting. The proof proceeds along the lines of that of Theorem 2.5 in [3] but, with various
differences due to the more general setting.

Theorem 3.3. Let (F , {qn}n∈N) be any Fréchet lattice with the σ -Fatou property and possessing a weak unit e which belongs to Fa.
Then there exists an F +

a -valued vector measure ν such that F is Fréchet lattice isomorphic to L1
w(ν) via an isomorphism T : L1

w(ν) → F
which satisfies T (χΩ) = e and

qn(T f ) = ‖ f ‖(n)
ν , f ∈ L1

w(ν), n ∈ N.

Moreover, the restriction map T |L1(ν) = Iν .

Proof. The proof proceeds via a series of steps.
(i) Since F satisfies the σ -Fatou property, F is σ -Dedekind complete and hence, so is Fa . Therefore, Fa is a σ -Dedekind

complete Fréchet lattice with a σ -Lebesgue topology. Theorem 17.9 in [1] then guarantees that Fa has a Lebesgue topology
and is Dedekind complete. Since e is also a weak unit of Fa , Proposition 3.1 ensures that there exists a measurable space
(Ω,Σ) and a positive vector measure ν : Σ → F +

a such that Fa is Fréchet lattice isomorphic to L1(ν) via the integration
map T := Iν . Moreover, (8) is also satisfied.

(ii) We extend T to L1
w(ν)+ . Given 0 � f ∈ L1

w(ν), choose Σ-simple functions 0 � fk ↑ f . Since fk ∈ L1(ν), we have

0 � xk := T fk ∈ Fa and qn(xk) = ‖ fk‖(n)
ν � ‖ f ‖(n)

ν for all k ∈ N and all n ∈ N. Hence, (xk)k is an increasing, topologically
bounded sequence in Fa ⊆ F . By the σ -Fatou property of F the element x := supk xk exists in F + and qn(x) = limk qn(xk).
Define T f := x � 0. Fix n ∈ N. By the σ -Fatou property of L1

w(ν) and (8) we have

qn(T f ) = lim
k

qn(xk) = lim
k

qn(T fk) = lim
k

‖ fk‖(n)
ν = ‖ f ‖(n)

ν .

Let us see that this extension of T is well defined. First note that if 0 � hk ↑ h in L1(ν), then hk → h in L1(ν). Hence,
by continuity, T hk → T h in F with (T hk)k increasing and, consequently, T h = supk T hk in F [1, Theorem 5.6(iii)]. Now, let
f ∈ L1

w(ν) and suppose that fk and gk are Σ-simple functions such that 0 � fk ↑ f and 0 � gk ↑ f . Then fk ∧ gm ↑k gm

for all m ∈ N and so T gm = supk T ( fk ∧ gm). Likewise, T fk = supm T ( fk ∧ gm). Therefore, supk T fk = supm,k T ( fk ∧ gm) =
supm,k T fk ∧ T gm = supm T gm .

(iii) T is positive, additive and positively homogeneous on L1
w(ν)+ and so, can be uniquely extended to a positive linear

map T : L1
w(ν) → F in a standard way. Indeed, T is clearly positive and T (α f ) = αT f for all α ∈ [0,∞) and f ∈ L1

w(ν)+ .
To check additivity, let 0 � f , g ∈ L1

w(ν) and choose Σ-simple functions 0 � fk ↑ f and 0 � g j ↑ g . Define xk := T fk and
y j := T g j for all k, j ∈ N. By the definition of T ( f + g), T ( f ) and T (g) and [1, Theorem 1.6] we have

T ( f + g) = sup(xk + y j) = sup xk + sup y j = T f + T g.
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(iv) T is a Riesz space homomorphism on L1
w(ν) (equivalently, |T f | = T | f | for all f ∈ L1

w(ν) [1, Theorem 1.17]). Suppose
first that 0 � f , g ∈ L1

w(ν) satisfy f ∧ g = 0. Choose simple functions 0 � fk ↑ f and 0 � gk ↑ g . Then fk ∧ gk = 0 for all
k ∈ N. Since T is a Riesz space isomorphism of L1(ν) onto Fa , it follows that T fk ∧ T gk = T ( fk ∧ gk) = T (0) = 0 for all k ∈ N

and hence, via [18, Theorem 15.3], that T f ∧ T g = (sup T fk) ∧ (sup T gk) = sup(T fk ∧ T gk) = 0. For arbitrary f ∈ L1
w(ν) we

have that f +, f − ∈ L1
w(ν)+ with f + ∧ f − = 0 and so the previous argument yields T f + ∧ T f − = 0. Hence, T is a Riesz

space homomorphism on L1
w(ν) [20, Proposition 1.3.11].

(v) Fix n ∈ N. Let f ∈ L1
w(ν). From (iv) it follows that qn(T f ) = qn(|T f |) = qn(T | f |). But, in (ii) it was shown that T sat-

isfies qn(T | f |) = ‖| f |‖(n)
ν = ‖ f ‖(n)

ν (because | f | ∈ L1
w(ν)+). Therefore,

qn(T f ) = ‖ f ‖(n)
ν , f ∈ L1

w(ν).

Since this holds for every n ∈ N, we see that T is also injective.
(vi) T is surjective. Fix x ∈ F + . Since e is a weak unit of F , we have xk ↑ x, where xk = x ∧ (ke) � 0, for k ∈ N. Moreover,

qn(xk) ↑k qn(x), for n ∈ N, as F has the σ -Fatou property. Since e ∈ Fa and Fa is an ideal, it is clear that (xk)k ⊆ Fa . But, T is
a Riesz space isomorphism of L1(ν) onto Fa and so there is an increasing sequence ( fk)k ⊆ L1(ν)+ such that xk = T fk for
k ∈ N. Fix n ∈ N. By (v) it follows that ‖ fk‖(n)

ν = qn(T fk) = qn(xk) � qn(x), for k ∈ N, and so supk ‖ fk‖(n)
ν � qn(x) < ∞. Hence,

the σ -Fatou property of L1
w(ν) ensures that f = sup fk ∈ L1

w(ν) and ‖ fk‖(n)
ν ↑ ‖ f ‖(n)

ν . From the definition of the extension
we have T f = x. For arbitrary x ∈ F there exist f , g ∈ L1

w(ν)+ such that x+ = T f and x− = T g . So, x = T ( f − g). �
Example 3.4. Any increasing sequence A = (an)n of functions an : N → (0,∞) is called a Köthe matrix on N, where increas-
ing means 0 < an � an+1 pointwise on N, for each n ∈ N. The Köthe echelon space λ∞(A) is the vector space

λ∞(A) := {
x ∈ R

N: anx ∈ 
∞ for all n = 1,2, . . .
}
,

equipped with the increasing sequence of solid Riesz seminorms

‖x‖k := sup
m∈N

ak(m)|xm|, x = (xm) ∈ λ∞(A).

Of course, the order in λ∞(A) is the pointwise order on N. Then λ∞(A) is a Fréchet lattice and (λ∞(A))a is the proper
closed ideal

λ0(A) := {
x ∈ λ∞(A): anx ∈ c0 for all n = 1,2, . . .

}
.

It is routine to check that λ∞(A) has the σ -Fatou property and contains a weak unit e ∈ λ0(A)+ . Indeed, any e ∈ λ0(A)+
satisfying em > 0 for all m ∈ N suffices. According to Theorem 3.3, the space λ∞(A) is Fréchet lattice isomorphic to L1

w(ν) for
some vector measure ν . However, since λ∞(A) does not have a Lebesgue topology, it cannot be Fréchet lattice isomorphic
to L1(η) for any vector measure η.
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