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Abstract. Absolute continuity for functionals is studied in the context of proper and
abstract Riemann integration examining the relation to absolute continuity for finitely ad-
ditive measures and giving results in both directions: integrals coming from measures and
measures induced by integrals.

To this end, we look for relations between the corresponding integrable functions of abso-
lutely continuous integrals and we deal with the possibility of preserving absolute
continuity when extending the elemental integrals.
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1. INTRODUCTION

It is well known that there are two classical ways of developing an Integration
Theory:

On the one hand, there is the set theoretic starting point, which we will denote
as (u/9): X is a non empty set, 2 is a o-algebra of the power set of X and p is a
measure on . In this context, standard and classical methods lead to the L1 (€, i)
class of the Lebesgue integrable functions (see [11]).

On the other hand, there exists a functional setting which we will denote as (I/B):
The starting point here is a Daniell Loomis system, that is a triple (X, B, I) where
B is a vector lattice of real functions defined on X and I is a Daniell integral on
B ({hn} € B, hy, | 0 = I(h,) — 0). In this case we get the corresponding class
Li(B,I) of Daniell integrable functions. For a recent account of the functional

extension procedures we refer the reader to [6].



Both contexts have a common hypothesis which plays the central role: continuity.
For the (/) context it is the o-additivity of p and for the (I/B) setting it is the
Daniell (or Bourbaki) condition on I.

The interplay between these two schemes, (/) and (I/B), is well known: We
obtain the corresponding Loomis system (X, Bo,I,,) induced by the measure space
(X,Q,p) and, when B is stonean (i.e., 1 A B C B) the Loomis system (X, B,T)
induces the corresponding measure space (X,Qpg, 7). A classical text which clearly
shows these facts is the book by Pfeffer [15].

When the continuity of the measure is dropped (and we work without or with
weaker continuity conditions) two new paradigms arise: the class Ry(p) of the ab-
stract Riemann p-integrable functions with respect to a finitely additive measure p
(see [13]) versus its functional analogue, the class R;(B, I) of the abstract Riemann
I-integrable functions in [9].

We can trace this back to the works of Loomis [14] and Aumann [4] on integral
extension of positive linear functionals. For those attempts there are no Lebesgue
convergence theorems. In this functional context, the class Ry (B, ) of the abstract
Riemann [-integrable functions was obtained. For this class it is possible to establish
results such as Lebesgue convergence type theorems and the usual characterizations
of integrability. Moreover, a unified treatment for the Dunford-Schwartz, abstract
p-Riemann, Daniell and Bourbaki integrals is achieved (see [9] and [10]).

The papers [7]-[10] by Diaz-Carrillo and Giinzler, and by Diaz-Carrillo and Mufioz-
Rivas are the references for this approach. This will be the framework for what
follows.

2. PRELIMINARIES

For R := RU{—o00, +0oo}, where R is the real line, we extend the usual addition in
R to R by the conventions 7 + s := 0 if 7 = —s € {—00, +00} and r — s := r + (—s).

We also set a Vb := max{a, b}, a Ab:=min{a, b}, a* :=aV0and a™ := —(aA0).

Given an arbitrary nonempty set X, let R™ consist of all functions defined on X
with values in R. All operations and relations in R are defined pointwise, with the
convention inf () := +oo and sup (} := —oo.

A functional T: R — R will be called subadditive if T(f+9) <T(f)+T(9)
for all f,g € R but T(f)=—-T(g9) = +o0 and T(f) = —T(g) = —oc. The notion
of a superadditive functional is introduced in a completely dual way.

A triple (X, B, 1) is called a Loomis system if B C RX is a vector lattice of

real functions and I: B — R is a positive linear functional. We set +B := {h €
B: h>0}.



Given (X,Q,u) with p a finite finitely additive measure and Q a ring, we call
(X, Bq, 1,) the induced Loomis system, where Bq is the vector lattice of p-simple
functions,

Bq = {he RX h:ZQiXAw a; € R, A; €Q, ,u([h;é()])<+oo},

i=1

and I, is its canonical elemental integral given by

I.(h) =" aiu(A;), Vh € Bq.
i=1

3. PROPER AND ABSTRACT RIEMANN INTEGRATION

Let (X, B,I) be a Loomis system. For f € ﬁx, following Loomis in [14] we define
by

[}

I7(f) :=1inf{I(h): h € B,h >
h< f}

I't(f) :==sup{I(h): h € B,

the corresponding upper and lower integrals of f, which verify —oco < IT(f) <
I=(f) < 400, Vf € EX, I~ is subadditive, IT is superadditive, and both are
positively homogeneous.

The class of the properly Riemann integrable functions is defined by

Rorop(B, 1) := {f € RY : I*(f) = I"(f) € R},
or, equivalently, by
Rpvop(B, I) ={f € R*: ¥e >0, Fh,ge B, h< f<gand I(g—h) <e}

and it is a vector lattice where the functional I := I™ = [~ is linear and increasing,
i.e., it is an integral which extends the original I.

For this class there are no satisfactory Lebesgue convergence type theorems to
make a consistent Integration Theory. Therefore, it is necessary to introduce a
“local convergence” to ensure this kind of results.

The local I-convergence for sequences of functions {f,} in R toa function f in
EX, denoted by {f,}—f(I), means that {I~(|f, — f|[AR)} — 0, Vh € +B, and it



has been used in [9] to define the class Ry(B,I) of the abstract Riemann integrable
functions as

Ri(B,I):={f € R : 3{hn} in B, I-Cauchy; {hn}—f(I")}

where {h,} I-Cauchy means that I(|h, — h,,|) — 0, for n,m — +o0.
Moreover, for f € Ry(B,I) we set I(f) := lir}rl I(hy,) for any sequence {hy} in

B I-Cauchy and such that {h,}—f(I7).
The definition does not depend on the particular sequence {h, } and no confusion
arises with this notation since Rprop(B,I) C R1(B,I) with coinciding integrals I.
Further relations between the classes Rprop(B, ) and R1(B, I) are given in [9] by
the following characterizations:

(1) fE€R(B,I) & fE*AhE Ryop, Yh € +Band IT(|f]) < +oc.
(2) f € Rpeop(B,I) & f € Ri(B,I)and 3h € +B: |f] < h.

In fact, in [9, Th.1.6], it is proved that
3) I(f) =I*(f), Yf € +Ra(B, ).

We recall that the class of the null-functions is introduced in this context by

Ni(B,I) = {f € Ru(B,I): I(|f]) =0}
or, equivalently, by
Ny(B,I)={f €R : I"(|f| Ah) =0,Yh € +B}.
On the other hand, the localized functional I; in the sense of [17] is defined as
I7(f) :==sup{I (fAh): he +B}.

It is easily verified that I;” is positively homogeneous, monotone and subadditive.
Moreover, (I; )y =1, , 1" <I; <I”and I, (f) =1 (f)if f < h for some h € +B.

Theorem 2 in [10] guarantees that Ry (B, I) is the closure of B in R™ with respect
to the integral seminorm I, (|- |) and I, (f) = I(f), Vf € Ri(B,I) (I is the only
I, -continuous extension of I from B to Ri(B,I)).

Finally, we consider the functional

I"*(f) :==inf{I(g9): g € Ri(B,I),9 > f},

which is also positively homogenous, monotone, subadditive and, evidently, extends
I from Ry (B, 1) to R™.



Definition 3.1. A Loomis system (X, B,T) is called C or upper continuous
if
lim I*(f—fAr)=0, Vfe+B.

r——4o00

Upper continuity on B is hereditary for the class Ry (B, I); that is:

Lemma 3.2. If (X, B,I) is Cy, then so is Ry (B, I).

In general Ry(B,I) need not be closed under multiplication, but we will use the
following two facts which can be easily checked.

Lemma 3.3. If BB C B, f € Ri(B,I) and k € B is bounded, then fk €
Ry (B, ).

Lemma 3.4. If (X, B,I) is a C1 o Loomis system and h and x4 are in Ry(B,I)
then so is hx 4.

There are three basic theorems to obtain a good Measure and Integration The-
ory: Lebesgue, Fubini and Radon-Nikodym type theorems. For the class Ri(B, 1),
Lebesgue theorems were given by Diaz-Carrillo and Munoz-Rivas in [9] and Fubini
type theorems were found by de Amo and Diaz-Carrillo in [3]. Partial attempts in
order to obtain Radon-Nikodym type theorems were done by de Amo, Chitescu and
Diaz-Carrillo (see [1] and [2]). We will now study the notion of absolute continuity
in this functional setting of proper and abstract integration and its relations to the
notion of absolute continuity for finitely additive measures.

4. ABSOLUTE CONTINUITY

We recall that, given two finitely additive measures p and v on a ring €2, v is said
to be absolutely continuous with respect to u, and is denoted by v < p, if

Ve>0,36>0: AeQ, p(d)<d=v(l)<e

(see Bochner [5, p. 778], Fefferman [12, p. 35], Dunford-Schwartz [11, p. 131]).
This definition clearly implies the classical one,

pw(A)=0 = v(4) =0, VA e Q,

and both are, in fact, equivalent when p and v are measures such that v(A) < +o00
for all A € Q with p(A) < 4o0.



The most natural transcription for absolute continuity to the analogous functional
context (I/B) is the following one: Let I and J be two positive functionals on B.
We say that J is I-continuous (continuous with respect to I) if

Ve>0,36>0: he+B, I(h) <d=J(h)<e.

Unfortunately, this definition fails since I-continuity is, in fact, a kind of bound-
edness condition.

Proposition 4.1. Let (X, B,I) be a Loomis system and J a positive functional
on B. The following conditions are equivalent:

(i) J is I-continuous;
(i) I M >0: J(h) < MI(h), Vh € +B (J < MI, for abbreviation).

This equivalence allows us to show that integrals induced by absolute measures
need not be continuous in this sense, that is, there exist measures p and v such that
v < p but I, is not I,-continuous.

Example 4.2. Let X = [0,1], let A be the Lebesgue measure in X and v the
measure given by v(A) = [, hd), where h: X — R is the M-integrable function
defined by h(0) = 0 and h(t) = 1/v/t, Vt # 0.

Evidently, p is absolutely continuous with respect to A, but there is no positive
M such that J, < MIy: If we assume that such an M exists then, in particular, we
have v([0,1/n]) < M([0,1/n]), Vn € N, that is

1/n 1 M2
/ ht)dt < M— = n< —, VneN,
0 n 4

which leads to contradiction.

Therefore we have to weaken [-continuity in order to define a satisfactory notion
of absolute continuity for functionals. The latter was introduced in [1] and reads as
follows:

Definition 4.3. Let (X, B,I) be a Loomis system and J a positive functional
on B. J is said to be absolutely I-continuous (absolutely continuous with respect
to I) and is denoted by J <« I, if

Ve>0,Yh € +B, 36 > 0: Vk € +B, k< h, I(k) <5 = J(k) <e.

The next theorem makes evident when absolutely continuous finitely additive mea-
sures yield absolutely continuous elementary integrals.



Theorem 4.4. Let p and v be finitely additive measures such that v(A) < 400
for all A € Q with u(A) < +oo. If v < p then I, < I,.

Proof. Assume that v < p, let ¢ > 0 and f € +Bq. There are a; > 0
n n

and pairwise disjoint A; € Q such that f = > a;x4,. Set A := |J 4; € Q and
i=1 i=1
B :=sup{a;: i=1,...,n} > 0. Note that u(A) < +oo, since u([f # 0]) < +oo.

If v(A) =0, then I,(f) < fv(A) = 0 and therefore I, (h) < I,(f) =0< ¢, VYh €
+Bq with h < .
Assume that v(A) > 0 and let a := 3e/v(A) > 0. Since v < p, there exists 0 > 0
such that
VECQ, u(EF)<po=v(E)< %
Let § := ap > 0 and h € +Bq with A < f and I,(h) < 6. There are e; > 0 and

pairwise disjoint E; € Q such that h = ) e;xg;. Moreover, since h < f we have
j=1

m n
E=UE,CJA=Aande; <3, Vj=1,...,m.
=1 i=1
Let us now consider sets

T:={teN:
S:={teN:

which are disjoint with SUT = {1,...,m}, and define functions

hy = ZetXEt and hy = ZesXEs-

teT SES

Evidently h1,ho € +Bq and h = hy + ho. Furthermore,

I,(h) < aZV(Et) <av(A) =
teT

€
2

and an easy computation shows that u( U Es> < §/a = p. Hence, 1/( U Es) <
s€ES s€S

%a /3 and, consequently,

L(he) = Y es(By) < gv( |J B.) <

seS sES

| ™

Therefore I,(h) = I, (h1) + I, (h2) < &, which completes the proof. O



5. ABSOLUTE CONTINUITY AND PROPER RIEMANN INTEGRATION

In this section we will study the good behaviour of absolute continuity with respect
to proper Riemann integration.

The first result says that absolute continuity of J with respect to I transfers
convergence to 0 for B-bounded sequences from the integral I to the integral .J:

Lemma 5.1. Assume that J < I and let {h,,} be a sequence in +B such that
there exists h € +B with h,, < h,¥n € N and I(h,) — 0. Then J(h,,) — 0.

In particular, we have the following facts:
Corollary 5.2. If J < I and I is Daniell, then so is J.

Corollary 5.3. If J < I and {hy} is an I-Cauchy sequence in +B such that
there exists h € +B with |hy, — hp,| < h Vn,m €N, then {h,} is J-Cauchy.

Theorem 5.4. If J < I, then
(i) Rprop(B,1) € Rprop(B, J),
(if) J < I on Rpop(B,I).

Proof. (i) Let f € Rprop(B,I) and € > 0. There are k., h. € B such that

ke < f<he and I(h. — k) <e.
For e > 0 and h. — k. € +B, since J < I, there exists § > 0 such that
Vge+B, g<h.—ke, I(g)<d=J(g) <e.

We can also find ks, hs € B such that
ks < f < hs and I(hs —ks) <.

Since § depends only on &, we can consider the functions:
kL :=keVks and h.:=h.V hg,

which verify that k., A, € B and k. < f < hL.
Therefore, we have found that

h. —kl € +B, hl — k. < h. — k. with I(h. — k') < I(hs; —ks) <

and, consequently, J(h. — kL) < e. Thus f € Rpwop(B, J).



(ii) Assume that J < I and let ¢ > 0. Given f € +Rpop(B,I) we can take
ke = ke(f) € +B such that f < k.. I-continuity of J gives 0 = d(e, f) > 0 such that

Vhe+B, h<ke, I(h)<d= J(h)<e.
Let o :=

%5. Given g € +Rprop(B, I), g < f with I(g) < o there are hs, ks € +B
with hs < g < ks and I(k}g — h5) < 0.

Taking h. := k. A ks € +B, we have g < k. A ks = h. and

I(he) < I(ks) < I(ks — hs) + I(hs) <o+ 1(9) <o+o=39.

Therefore, we deduce that J(h.) < e and hence

J(g) = J (9) = if{J(h): he +B, g <h} < J(he) <e,
that is, J < I on Rprop(B, ).

O
We are able to give a first sufficient condition for finitely additive measures induced

by absolutely continuous integrals to be absolutely continuous.

Given two positive functionals I and J, let (X, Q(I), ur) and (X, Q(J), vs) be their
respective finitely additive measure induced spaces, that is,

QU)={ACX: xa € Ri(B,I)}, pr(A) =1(xa), VA€ Q,
QJ) ={AC X: xa € Ri(B,J)}, vy(A)=J(xa), VA€

Proposition 5.5. If1 € Ry,,0p(B,I) and J < I, then vy < pp (on Q(I)NQ(JT)).
Proof.

Since J <« I, Theorem 5.4 says that J < I on Rpwop(B,I) C
Ryrop(B, J). Thus, for € > 0 and 1 € Rpop(B, I) there exists § > 0 such that

Vh € Rprop(B,I) with h < 1 and I(h) < 6 = J(h) < ¢

Given A € Q(I) N Q(J) with pr(A) < § we have x4 A h € Rprop(B, I),Vh € +B,
xaANh<land I(xaAh)<I(xa)=pr(A)<d.

Therefore, it follows that J(xa A h) < e, Vh € +B and, keeping in mind that
xa € +R1(B, J), we conclude that

vi(A) =J(xa) =J; (xa) =sup{J (xaAh): h€ +B} <e.

O
In the following section, the condition 1 € Ryop(B,I) will be relaxed to 1 €

Ri(B,I) and Q(I) N Q(J) will be, in fact, Q(I) (see Corollary 6.9).



6. ABSOLUTE CONTINUITY AND ABSTRACT RIEMANN INTEGRATION

From now on I and J will be two positive linear functionals defined on the same
vector lattice B.

The definition of absolute continuity given in 4.3 allows us to prove an analogous
with Lemma 5.1 where I and J are replaced by I~ and J—, respectively.

Proposition 6.1. Assume that J < I and let {g,} be a sequence in @f such
that there is h € +B with g, < h,¥n € N and I~ (g,) — 0. Then J (g,) — 0.

Proof. Lete > 0. Since J < I, for this € and for h from the proposition, there
exists § > 0 such that

Vke+B, k<h, I(k) <d= J(k) <e.

Since I~ (gn) — 0, there is ng € N such that Vn > ng, I~ (gn) < ¢. Therefore, for
each n > ng we can find k,, € B, g, < k,, with I(k,) <.

Set kI, := k, ANh € +B, Vn > ng. Obviously, k/, < h and I(k],) < I(k,) < 9.
Therefore, it follows that J(k],) < e, ¥n > ng. Since g, < kJ,, we deduce that

J(gn) < J(k],) < e, ¥Yn = ng. Thus, we have proved that J (g,) — 0, as we
wanted. g

As an immediate consequence of Proposition 6.1, local I-convergence implies local
J-convergence whenever J is absolutely continuous with respect to I.

Theorem 6.2. If J < I and fn, — f(I7), then fu — f(J7), Vfu, f € R,
Vn € N.

Proof. Assume that f,, — f(I~) and let h € +B. We have I (|f,— f|Ah) —
0, that is, I~ (gn) — O where g, := |fn — f| A h verifies 0 < g, < h Vn € N.
Proposition 6.1 says that J = (g,) — 0. Thus, J~(|fn, — f| Ah) — 0, Yh € +B, that
is, fo — f(J7). O

Theorem 6.2 allows us to see that the classical definition of absolute continuity by
null sets is weaker than this one (Definition 4.3), in the same way as in the finitely
additive measure context.

Corollary 6.3. If J < I, then N1(B,I) C N1(B,J).

Proof. Let f € Ni(B,I). Since I"(|f| Ah) = 0 Yh € +B, the sequence
h, := 0 € B verifies that h, — f(I-) and I(h,) — 0. From Lemma 5.1 and

Theorem 6.2 we deduce that h, — f(J7) and J(h,) — 0. Thus, f € Ri(B,J)
with J(|f|) =lim J(|hy,|) =0, that is, f € N1(B, J). O



At this point, since absolute continuity has a good behaviour with respect to local
convergence, one can expect that if J is absolutely I-continuous then R;(B,I) C
R1(B,J), but this is not, in general, true.

Example 6.4. Let X := ]0,1], let Q be the ring generated by the semi-ring
{Ja,b]: 0 < a < b< 1}, let B := Bg be the vector lattice of all Q-simple functions
and I its canonical elemental integral.

Consider the function f defined by

+oo
f((E) = an]l/(n+l)2,1/n2]uvx € ]07 1]7

n=1
and the linear functional J: B — R given by J(h) := I(fh), Yh € B.
Let us see that f € Ry(B,I). Since f Ah € B C Rpyop(B,I) for all h € B, we
only have to check that IT(f) < +oo. To see this, let I, = |1/(k+ 1)2,1/k?] for

each k € N and consider the functions h,, := > kx,. It is easy to check that for
k=1

each h € +B with h < f, there exists m € N such that h < hin + MX)0,1/(m+1)2]-

Therefore, I*(f) = sup{I(h): h < f,h € +B} can be bounded in the following

way:
too 2
ey < tim I(hm) + im m I(xj0,1/0m11)2) < 2 % < Foo.

Since f € R1(B,I), the functions in B are bounded and BB C B, Lemma 3.3
guaranties that J is well-defined.

Moreover, if A\ is the Lebesgue measure on X and v is the measure given by
v(A) := [, fdX, both defined on the o-algebra o(£2) generated by €, then it is clear
that v < X\ on ¢(2) and so, in particular, on Q. Thus, Theorem 4.4 says that J < I
on B (since I and J on B are induced by A and v on €2, respectively).

However, f & R1(B,J), since J*(f) = I't(f?) = +oc.

To find the condition under which Ry(B,I) C R;(B, J) holds, we have to consider
the measurable functions. The characterization (1) of Ry (B, I), given in [9], suggests
the following definition of measurability (in the sense of Stone, [16]).

Definition 6.5. The class of measurable functions with respect to a Loomis
system (X, B, I) (I-measurable functions) is defined by

Mi(B,I):={f €R": f£AhE Rpop(B,I), Vh € +B}.

Thus, we have that every integrable function is measurable and that every measur-
able function with I7(| f|) < 400 is, in fact, integrable. Moreover, note that we can



use either Ryop(B,I) or R1(B,I) in the second member of the previous definition
of Mi(B,I).

By Theorem 6.2 we deduce that every I-measurable function is .J-measurable
whenever J < I.

Corollary 6.6. If J < I, then My(B,I) C M(B,J).

Proof. Let f e Mi(B,I)and h € +B. We can assume that f > 0 (otherwise,
use f* and f~ instead of f). Since fAh € Ry(B, I) there exists {h, } € B, I-Cauchy,
such that

ho <hns1 < f AR, VR €N and hy — f AR(I7).

Moreover, we have
[h — | < By + By < 2R, Yn,m € N,

Therefore Corollary 5.3 and Theorem 6.2 say that {h,} is a J-Cauchy sequence
and h, — f Ah(J7), that is, f € R1(B,J), Yh € +B. Thus f € My(B, J). O

It is now easy to find the condition that we have to add to J < I in order to
obtain Ry(B,I) C Ri(B,J).

Corollary 6.7. If J < I and J*(|f]) < 400 for all f with I*(|f|) < 400, then
Rl(Bal) gRl(B7J)

Proof. Let f € Ri(B,I). In particular, f € M;(B,I) and, since J < I,
Corollary 6.6 yields f € M;(B,J). Moreover, we have I"(|f|) < +o0o and hence
JT(|f]) < 400 by hypothesis, which gives f € Ry (B, J). O

As we did in the preceding section for Riemann proper integration, once we know
when Ry(B,I) C Ry(B,J) for J < I we can now prove that the corresponding
extensions of I and J to Ry(B,I), which for positive values coincide, respectively,
with J© and I'" (see (3)), satisfy J < I.

Theorem 6.8. If J < [ and JT(f) < +oo for all f € +R with IT(f) < +o0,
then J < I on R1(B,I).

Proof. Assume that J < I on B and let ¢ > 0 and f € +Ry(B,I). Since
IT(f) < 400, it follows that J*(f) < +oo and, therefore, there exists h € +B with
JH(f) — 2e < J(h), that is, J*(f) — J(h) < e

By absolute continuity, we find § > 0 such that

Vke+B, k<h, I(k)<d=J(k) <

NS



Let g € +Ry(B,I) with g < f and I"(g) < 4, and let us prove that J*(g) < e.
Given u € +B with u < g, it is clear that u Ah € +B, u Ah < h and I(uAh) <
I(u) < I (g) < 6 and hence J(u A h) < e.

Thus, J(u)+J(h) = J(uAh)+J(uVh) < J(uAh)+JT(f) implies that J(u) < 3e.

Therefore, J(u) < %5 for all u € +B, u < g; that is, J*(f) < %5 < &, which gives
J < Ion Ry(B,I). O

We are now in a position to give the announced sufficient conditions for finitely
additive measures induced by absolute continuous functionals to be absolutely con-
tinuous.

Consider the finitely additive measure space induced by I, that is, (X, , ps) with
N={ACX: xa€R(B,I)}and ur(A) = I(xa) VA € Q. Under the assumptions
of Corollary 6.7, Ry(B,I) C Ry(B,J) and, therefore, we can also define the finitely
additive measure py on  as py(A) == J(xa), VA € Q.

Corollary 6.9. If1 € R((B,I), J < I and J"(f) < oo for all f € +RY with
It(f) < +oo, then vy < py.

Proof. Theorem 6.8 and Corollary 6.7 say that J < I on R;(B,I) C R1(B, J).
Thus, for ¢ > 0 and 1 € Ry(B, I) there exists § > 0 such that

Vg € R1(B,I) with g <1 and I(g) <d = J(g) < e.

Given A € Q(I) N Q(J) with us(A) < § we have xa A h € Rprop(B,I),Vh € +B,
xaANh<1land I(xaAh)<I(xa)=pr(A) <6.

Therefore, it follows that J(xa A h) < ¢, Yh € +B and, since x4 € R1(B,I) C
Ry1(B,J), we conclude that

vyi(A) =J(xa) =J; (xa) =sup{J (xaAh): he +B} <e.

O

Furthermore, assuming that the Loomis system (X, B,I) is Cyoo, we are able to
obtain the absolute continuity of certain induced finitely additive measures py with
respect to the finitely additive measure p induced by I.

To be more specific, given f € +R;(B,I), Lemma 3.4 allows us to define the
finitely additive measure py by ps(A) := I(fxa),VA € Q, where Q = {A C X: x4 €
Ry(B,I)}. Setting u(A) :=I(xa),VA € Q, we can prove that puy < p.



Theorem 6.10. If (X, B,I) is a C4o, Loomis system and f € R1(B,I), then

Ve>0,36>0: ACX, I"(xa) <d=I(|f|xa) <e.

Proof. There is no loss of generality in assuming that f € +Ry(B,I).
Given A C X, r > 0 and € > 0, we have the inequality

fxa=(—fAr+fAr)xa=(—fArxa+(fAr)xa<(f—fAr)+rxa.

Since B is Cyoo and so is R1(B,I) (see Lemma 3.2), there exists s > 0 such that
I"(f = fAs) < ie
Let 0 := 3e/s. Given A C X with I*(xa) < &, we have

I"(fxa) ST°(f = f A s) + 17 (sxa) < §+82% =e.

O
Corollary 6.11. If (X, B,I) is a C4o Loomis system and Oxf € R1(B,I), then

Ve>0,35>0: AeQ, pu(d) <d=pr(4) <e.
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