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Abstract: We deal with the problem of approximate representation of linear functionals and show how
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1. Introduction

Recently, in the context of the Daniell (continuous) integrals, sufficient conditions were given in [1]
for obtaining by a constructive method an “exact” Radon–Nikodým derivative v; i.e., J(h) = I(hv) for
an absolutely I-continuous linear functional J and all h in B. At the same time, without continuity
conditions (a functional analog of the case of a finitely additive measure), and in the spirit of the paper
by C. Fefferman [2], it was shown that AC(I) ⊂ R(I), i.e., the set of all absolutely I-continuous linear
functionals is (strictly) included in the set of all approximately I-representable linear functionals (see [3]).
In the initial paper by de Amo, Chiţescu, and Dı́az Carrillo [3], the hypothesis 1 ∈ B (i.e., B is a unital
algebra) still plays a crucial role. This result was generalized more recently to the context of a Riesz
algebra by Günzler in [4]. Some ideas and notation come from this paper, although the techniques are
quite different.
In this work, we give an approximate Radon–Nikodým theorem by a new procedure which falls

naturally into three parts: We first prove a basic representation theorem for certain continuous functionals
(Theorem 3.1) and then, with the aid of a sequential density property (Corollary 4.2), we deduce that
AC(I) ⊆ R(I) (see Theorem 5.2) in a straight way which makes natural the role that the hypothesis of
this result has played until now.
We make stress upon the naturalness and originality in proving Theorem 5.2: the completeness

property for dual spaces provides convergence in the norm of operators where there was only pointwise
convergence, and this is what allows us to obtain Theorem 5.2 as a natural extension of Theorem 3.1
via Corollary 4.2.

2. Preliminaries

Throughout this paper R will be the reals; N, the naturals; ∅, the empty set; X will be an arbitrary
nonempty set, and B ⊆ RX , an algebra of functions on X (i.e., a vector lattice or Riesz space closed
under the pointwise product: uv ∈ B for all u, v ∈ B). Let +B := {h ∈ B : h ≥ 0} be the positive cone
of X. Moreover h+ := h ∨ 0 and h− := (−h) ∧ 0 (and so |h| = h+ + h−).
Let B′ be the set of all linear functionals on B, and we consider the partial order of B′ given by

J ≥ 0⇔ J(h) ≥ 0, h ∈ +B.
We let B� denote the class of all linear functionals bounded on each interval [u, v] := {x ∈ B : u ≤

x ≤ v}, for u, v ∈ B, u ≤ v (“relativement bornée” in [5, p. 35], “order bounded” in [6, p. 150], “interval
bounded” in [7, p. 169]), which is a Riesz space under the pointwise operations and order induced from B′.
A Loomis algebra system or Loomis system is a triple (X,B, I) where X �= ∅ is an abstract set,

B ⊆ RX is an algebra of functions with pointwise operations and I : B → R is a positive (i.e., I(h) ≥ 0,
h ∈ +B) linear functional.



For our purpose, we need the following formula (see [5]) for the meet T ∧ S of two bounded linear
functionals T and S:

(T ∧ S)(h) := inf{T (h1) + S(h2) : h1, h2 ∈ +B, h1 + h2 = h} ∀h ∈ +B.
From now on I : B → R will denote a positive linear functional on B. This functional induces the

following seminorms on B: I1(h) := I(|h|) and I2(h) :=
√
I(h2) ∀h ∈ B.

The advantage of the seminorm I2 lies in the fact that it proceeds from the semi-inner product φ
defined on B by φ(h, g) := I(hg) ∀h, g ∈ B and, therefore, it satisfies the Cauchy–Schwarz inequality:

|I(hg)| ≤ I2(h)I2(g) ∀h, g ∈ B.
These seminorms yield the corresponding spaces of all continuous linear functionals on B:

C1(I) := {J ∈ B′ : ∃M ∈ R ∀h ∈ B |J(h)| ≤MI1(h)};
C2(I) := {J ∈ B′ : ∃M ∈ R ∀h ∈ B |J(h)| ≤MI2(h)},

which are the dual spaces of (B, I1) and (B, I2). The elements in C1(I) and C2(I) are called I1- and
I2-continuous functionals. Note that for positive J , I1-continuity is equivalent to J ≤ MI for some
M ≥ 0. The I1-continuity is generalized by the following definition (see [3, Example 1]):
Definition 2.1. For a given (X,B, I) Loomis system, J ∈ B′ is said to be absolutely continuous

with respect to I, which is denoted by J � I, if

(∀ε > 0 ∀h ∈ +B ∃δ > 0 ∀k ∈ +B) k ≤ h, I(k) < δ ⇒ |J(k)| < ε.

Put AC(I) := {J ∈ B′ : J � I}.
It is easy to show that C1(I) ⊆ AC(I) ⊆ B�. In fact, they are (order) ideals in B� and AC(I) is

even a band (with the notions in [8, p. 93]), but for our purposes we only need to know that they are
Riesz subspaces of B�.
Moreover, there is no general inclusion relation between C1(I) and C2(I) (see Examples 6.3 and 6.5

at the end of this paper).
Finally, we consider the spaces SR(I) and R(I), which were introduced in [3], of strongly and

approximately I-representable functions, respectively:

SR(I) := {Ig : g ∈ B}, where Ig(h) := I(gh) ∀h ∈ B;
R(I) := {J ∈ B′ : ∃vn ∈ B ∀h ∈ B Ivn(h)→ J(h)}.

Obviously, SR(I) ⊆ R(I). With this notation, an exact Radon–Nikodým theorem would claim that
AC(I) = SR(I). In [3, Example 2] it is seen that we cannot expect in general more than AC(I) ⊆ R(I)
(even on assuming that 1 ∈ B).

3. A Representation Theorem for C2(I)

In this section we prove a first approximate representation theorem for the class C2(I) of all I2-
continuous functionals via the classical Riesz–Fréchet theorem on Hilbert spaces. This is a modified
version of Proposition 1 in [3].

Theorem 3.1. Let (X,B, I) be a Loomis system and let J ∈ B′. If J is I2-continuous then J is ap-
proximately I-representable and, moreover, the approximate derivative of J is an I2-Cauchy sequence, i.e.,
for each J ∈ C2(I) there exists an I2-Cauchy sequence {vn} ⊆ B such that J(h) = limn→∞ I(hvn) ∀h ∈ B.
In particular, C2(I) ⊆ R(I).
Proof. Put K := {h ∈ B : I2(h) = 0}. By passing to equivalence classes in B modulo K, we obtain

the quotient space B̂ := B/K under the induced norm Î2(ĥ) := I2(h) ∀h ∈ ĥ. In fact, B̂ is a prehilbertian
space under the inner product ψ̂(û, v̂) := I(uv) ∀u ∈ û, v ∈ v̂.



The prehilbertian space (B̂, ψ̂) can be completed to a Hilbert space (B,ψ), and each element in B̂

can be identified with its image in B, thus yielding the natural inclusion B̂ ⊆ B.
Hence, for each h̄ ∈ B there exists an I2-Cauchy sequence {ĥn} in B̂ such that ĥn → h̄ in B, and

the inner product in B is given by:

ψ(ū, v̄) := lim
n→∞ ψ̂(ûn, v̂n) = limn→∞ I(unvn) ∀ū, v̄ ∈ B.

Take J ∈ C2(I). Then there exists M > 0 such that |J(h)| ≤ MI2(h) ∀h ∈ B. It follows that the
functional Ĵ : B̂ → R given by Ĵ(ĥ) := J(h) ∀h ∈ ĥ is well defined and, moreover,

|Ĵ(ĥ)| = |J(h)| ≤MI2(h) =MÎ2(ĥ).

Therefore, Ĵ is a linear and continuous functional on B̂ and we may extend Ĵ uniquely to a linear and

continuous functional J : B → R on the completion B of B̂. Now, the Riesz–Fréchet theorem guarantees
the existence of one, and only one, element v̄ ∈ B such that J(h̄) = ψ(h̄, v̄) ∀h̄ ∈ B. In particular, there
exists an I2-Cauchy sequence {vn} in B such that

J(h) = Ĵ(ĥ) = J(ĥ) = ψ(ĥ, v̄) = lim
n→∞ ψ̂(ĥ, v̂n) = limn→∞ I(h vn) ∀h ∈ B. �

4. Sequential Density of C1(I) in AC(I)

This section with no technique external to our context is devoted to a direct proof of a result that
is the cornerstone among the papers such as [3, 4], in order to prove their respective representation
theorems. It is possible to obtain this property via a classical result in the context of Riesz space theory
(as a consequence of [5, Corollary II.1.5]), on assuming that AC(I) is the band generated by I in B� (see
[5, p. 37]). The advantage of the proof we give here (based upon the ideas of [9]) lies in the fact that we
do not have to use the general theory (we avoid any result on bands), and so we are able to deduce this
result in the context of function spaces.

Theorem 4.1. Let (X,B, I) be a Loomis system and J ∈ +AC(I). Then
J(h) = lim

m→∞(J ∧mI)(h) ∀h ∈ +B.
Proof. Let h ∈ +B and ε > 0. Since J � I, there exists δ > 0 such that

(∀g ∈ +B) g ≤ h, I(g) < δ ⇒ J(g) < ε/2. (1)

Put k := J(h)
δ and n ≥ k. Then

|J(h)− (J ∧ nI)(h)| = J(h)− (J ∧ nI)(h) ≤ J(h)− (J ∧ kI)(h).
Moreover, by the formula

(J ∧ kI)(h) = inf{J(h1) + kI(h2) : h1, h2 ∈ +B, h1 + h2 = h}
there exist h1 and h2 such that (J ∧ kI)(h) + ε2 ≥ J(h1) + kI(h2).
So,

|J(h)− (J ∧ nI)(h)| ≤ J(h)− (J ∧ kI)(h) ≤ J(h)− (J(h1) + kI(h2)− ε/2)
= J(h2)− kI(h2) + ε/2.

Therefore, it is enough to show that g ≤ h implies J(g)− kI(g) ≤ ε/2 to complete the proof.
If I(g) < δ, by (1), then

J(g)− kI(g) = J(g)− J(h)

δ
I(g) <

ε

2
− J(h)

δ
δ <

ε

2
− J(h) ≤ ε

2
.

If I(g) ≥ δ then
J(g)− kI(g) = J(g)− J(h)

δ
I(g) = J(g)− J

(
I(g)

δ
h

)
< J

(
g − I(g)

δ
h

)

and I(g) ≥ δ and h ≥ g lead to
J(g)− kI(g) ≤ J(g − g) = 0 ≤ ε/2. �

Theorem 4.1 says that for each J ∈ +AC(I), there exists a sequence Jm := mI ∧ J , m ∈ N, in
+C1(I) such that Jm → J pointwise. (Note that Jm ∈ C1(I) because Jm ≤ mI and J ≥ 0.) Therefore,
C1(I) is sequentially dense in AC(I):



Corollary 4.2. ∀J ∈ AC(I) ∃{Jm} ⊆ C1(I) ∀h ∈ B Jm(h)→ J(h).

The sequential density property is the most important fact for us rather than the explicit form
of the sequence {Jm}. This viewpoint clarifies our techniques and enables us to solve the problem of
approximate representation in a natural context.

5. Representability of Absolutely Continuous Functionals

We are now in a position to deduce the approximate Radon–Nikodým Theorem 5.2 from Theorem 3.1
and Corollary 4.2. We call attention upon the completeness property of C2(I) which is, merely, the dual
space of B equipped with the I2-norm.
For these (a priori independent) results to be properly combined, it seems natural to impose the

relation C1(I) ⊆ C2(I) which is a weakening of the condition 1 ∈ B as showed by the next lemma.
Lemma 5.1. Let (X,B, I) be a Loomis system with 1 ∈ B. Then C1(I) ⊆ C2(I).
Proof. Let J be in C1(I). Given h ∈ B, there exists M > 0 such that

|J(h)| ≤MI1(h) =MI(|h|) =MI(1 |h|) ≤MI2(1) I2(|h|) =M0I2(h),
where M0 := MI2(1) and we have used the Cauchy–Schwarz inequality. Thus, J ∈ C2(I), and then
C1(I) ⊆ C2(I). �
The converse of Lemma 5.1 is false as shown by Example 6.3. As a consequence, the following

theorem strictly generalizes that in [3, p. 446].

Theorem 5.2 (An Approximate Radon–Nikodým Theorem). Let (X,B, I) be a Loomis system
verifying C1(I) ⊆ C2(I). Then AC(I) ⊆ R(I); i.e.,

J � I ⇒ ∃{vm} ⊆ B ∀h ∈ B J(h) = lim
m→∞ I(hvm).

Proof. Consider J in AC(I). By Corollary 4.2 there exists a sequence {Jm} in C1(I) such that
Jm → J pointwise. Using the hypothesis, the fact that Jm ∈ C1(I) ⊆ C2(I) for each m ∈ N, and applying
Theorem 3.1, we see that there exists an I2-Cauchy sequence {vm(n)}n∈N in B such that Ivm(n) → Jm
pointwise. By ‖·‖ we denote the dual norm for I2 in C2(I), i.e., the canonical norm of operators on C2(I).
In fact, Ivm(n) converges to Jm in this norm. (Note that Jm and Ivm(n) are in C2(I) for all m ∈ N.) Take
ε > 0. There exists n0 such that ∀p, q ≥ n0 I2(vm(p) − vm(q)) < ε. Now, if p, q ≥ n0 and h ∈ B with
I2(h) ≤ 1, it follows that

|(Ivm(p) − Ivm(q))(h)| = |Ivm(p)(h)− Ivm(q)(h)| = |I(h vm(p))− I(h vm(q))|
= |I(h [vm(p)− vm(q)])| ≤ I2(h) I2(vm(p)− vm(q)) ≤ I2(vm(p)− vm(q)) < ε

so that ‖Ivm(p)− Ivm(q)‖ < ε, i.e., for each m fixed in N, {Ivm(n)}n∈N is a Cauchy sequence in the Banach
(normed complete) space (C2(I), ‖ · ‖) (which is the dual space of (B, I2)). Hence {Ivm(n)} converges to
some element in (C2(I), ‖ · ‖). Moreover, Ivm(n) → Jm pointwise. Therefore, Ivm(n) → Jm in the norm
‖ · ‖ of C2(I).
Now, for each m ∈ N, we consider nm ∈ N such that ‖Ivm(nm) − Jm‖ < 1/m and put um :=

vm(nm) ∀m ∈ N. So that ‖Ium − Jm‖ < 1/m.
Given h ∈ B and ε > 0, let m1 ∈ N such that ∀m ≥ m1 ‖Ium − Jm‖ I2(h) < ε/2, and Jm(h)→ J(h)

implies that there exists too m2 ∈ N such that ∀m ≥ m2 |Jm(h)− J(h)| < ε/2.
Putting m ≥ max{m1,m2}, we deduce finally that

|J(h)− I(umh)| ≤ |J(h)− Jm(h)|+ |Jm(h)− Ium(h)|
≤ |J(h)− Jm(h)|+ ‖Jm − Ium‖I2(h) < ε/2 + ε/2 = ε

i.e., I(umh)→ J(h) ∀h ∈ B. �



6. Comments and Examples

This section is devoted to clarify, both at a theoretical and a practical level, the comprehension of
the conditions in Theorem 5.2, by establishing the relation between C1(I) ⊆ C2(I) and the existence of
I2-approximate I-units. For the benefit of the reader, some examples, mostly given in [4], are included.
A sequence {un} in B is an I2-approximate I-unit if I(unh)→ I(h) ∀h ∈ B and supn∈N I2(un) <∞.

If we put
R2(I) := {J ∈ B′ : ∃vn ∈ B; sup

n∈N
I2(vn) <∞, Ivn(h)→ J(h) ∀h ∈ B}

then the existence of I2-approximate I-units is equivalent to I ∈ R2(I).
Lemma 6.1. Let (X,B, I) be a Loomis system. Then the following are equivalent:
(i) C1(I) ⊆ C2(I),
(ii) I ∈ C2(I),
(iii) I1 ≤MI2 for some M > 0.

Proof. (i) ⇒ (ii) I ∈ C1(I) because |I(h)| ≤ I(|h|) ∀h ∈ B, and then, by (i), I ∈ C2(I).
(ii) ⇒ (iii) There exists M > 0 such that |I(h)| ≤ MI2(h) ∀h ∈ B. Therefore, if h ∈ +B then

I1(h) = I(h) = |I(h)| ≤MI2(h) and for arbitrary h ∈ B
I1(h) = I1(|h|) = I1(h+ + h−) ≤ I1(h+) + I1(h−)
≤MI2(h

+) +MI2(h
−) ≤ 2MI2(|h|) = 2MI2(h).

(iii) ⇒ (i) Let J ∈ C1(I). There exists M ′ > 0 such that |J(h)| ≤ M ′I1(h) ≤ M ′MI2(h) ∀h ∈ B,
and this gives J ∈ C2(I). �
Proposition 6.2. Let (X,B, I) be a Loomis system with I ∈ R2(I). Then C1(I) ⊆ C2(I).
Proof. If I ∈ R2(I) then there exists {un} in B with I2(un) ≤M ∀n ∈ N such that I(unh)→ I(h).
By the Cauchy–Schwarz inequality,

|I(unh)| ≤ I2(un)I2(h) ≤MI2(h) ∀h ∈ B
so that, by taking limits, it follows that |I(h)| ≤MI2(h) ∀h ∈ B and hence I ∈ C2(I). Now, Lemma 6.1
says that C1(I) ⊆ C2(I). �
This result makes easier to check the hypotheses of Theorem 5.2, as showed by the following

Example 6.3. Let B := C0([0, 1]) be the space of continuous functions f : [0, 1] → R such that
f(0) = f(1) = 0 and I(f) :=

∫ 1
0 f(t) dt ∀f ∈ B.

Note that, putting Lp := Lp([0, 1]), with the Lebesgue measure, B ⊆ L∞ ⊆ L2 ⊆ L1 and I1 = ‖ · ‖1,
I2 = ‖ ·‖2 restricted to B. Let u ∈ B be piecewise-linear and equal to 1 on [14 , 34 ], and un := (nu)∧1 ∈ B,
n ∈ N.
Since un is an I2-approximate I-unit, Proposition 6.2 gives C1(I) ⊆ C2(I). Therefore, we can apply

Theorem 5.2 and so AC(I) ⊆ R(I).
In fact, if we define π : L1 → B′ mapping g to π(g) := Ig, where Ig : B → R is given by π(g)(f) =

Ig(f) = I(gf) ∀f ∈ B, then it can be proved that
SR(I) = π(B) ⊂ C1(I) = π(L∞) ⊂ C2(I) = π(L2) ⊂ AC(I) = π(L1)

and all inclusions are strict. In particular, the inclusion C1(I) ⊂ C2(I) is strict.
However, the existence of I2-approximate I-units is not equivalent to the inclusion C1(I) ⊆ C2(I),

as the following example shows:

Example 6.4. Take the basic function system B = l2(N) =
{
x : N → R, ∑∞k=1 x2k ≤ ∞

}
, and

the linear functional I(x) =
∑∞
j=1 βjxj , x ∈ B, and fixed β ∈ l1 with βj > 0. Here SR(I) = π(βl2) ⊂

C1(I) = π(βl
∞) ⊂ C2(I) = π(

√
βl2), and there is no I2-approximate I-units.



Finally, we give an example showing that C1(I) ⊆ C2(I) is not true in general.
Example 6.5. We now consider B = l1(N) =

{
x : N → R, ∑∞k=1 |xk| ≤ ∞

}
and the integral

I(x) =
∑∞
j=1 xj ∀x ∈ B. In this case SR(I) = π(l1) ⊂ C2(I) = π(l2) ⊂ C1(I) = π(l∞), and all inclusions

are strict.
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