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Abstract. We study the integration theory for general integral metrics when 
restricted to upper integrals q, finding improvements in the relation between the 
classes of the q-integrable and the ql-integrable functions. We give new results and 
notions which lead to the desirable characterizations of q-integrable functions as 
ql-integrable f with q(|f |) < ∞, and of ql-integrable functions via the integrability
of their upper truncations, under natural conditions which are fulfilled in most 
finitely additive integration theories.

1. Introduction

It is well known the general integration theory for integral metrics q, 
developed by Aumann and Schäfke in [1] and [11]–[14].

With the aid of this theory, Dı́az Carrillo and Günzler gave in [6] an ex-
tension process for an arbitrary Loomis system (X, B, I), without monotone
continuity assumptions on the elementary integral I, and proved convergence 
theorems using a suitable local mean convergence which can be traced back 
to Loomis in [10].
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Moreover, a unified treatment of proper Riemann, Riemann-µ, abstract 
Riemann–Loomis, Daniell and Bourbaki integrals was given (doing proper 
choices of q). For a recent account of extension procedures we refer the reader 
to [4].

However, in many of such applications q is in fact an upper integral. 
Thus, we wish to investigate the benefits that can be obtained in general 
theory if we start from upper integrals instead of integral metrics.

Section 2 presents some preliminaries where we set up notation and ter-
minology to be used throughout the paper.

In Section 3 we collect the most important results in integration theory 
with respect to upper integrals, giving natural conditions under which the 
q-integrable functions can be described as the class of q-regular functions.

Section 4 is devoted to the study of local integration. A partial subaddi-
tivity for the localized upper integral ql is obtained (Proposition 4.6) and it
is used to prove that ql(f) 5 (ql)∗(f) for all f ql-integrable (under regularity) 
in Theorem 4.10.

In Section 5 we introduce and study the notions of upper and lower 
strong measurability. These new concepts will prove extremely useful to our 
purposes.

In Section 6 our main results (Corollary 6.2 and Theorem 6.5) are stated 
and proved. The basic idea is to apply the results of Sections 3 and 4 in 
order to relate strong measurability for q and ql (see Theorem 6.1).

As an application of the developed theory we conclude in Section 7 by 
giving a unified treatment of the finitely additive integral extension theories. 
It makes evident that our viewpoint sheds some new light on the way of 
obtaining general proofs for facts which were known only in special cases.

2. General framework. Preliminaries

We extend the addition + on R to +, +̇ and .+ on R by

a + b := 0, a +̇ b := ∞, a +. b := −∞, if a = −b ∈ {−∞, ∞}.
We also note

a − b := a + (−b), a−̇ b := a +̇ (−b), a . b := a +. (−b), ∀a, b ∈ R.

The laws +, +̇ and .+ are commutative, + is distributive with 0 · (±∞)
:= 0, but not associative, and +̇ is associative.

The order 5 and absolute value | · | can also be extended to R by an 
obvious way and, setting a ∧ b := inf {a, b}, a ∨ b := sup {a, b}, a+ := a ∨ 0,
a− := (−a) ∨ 0, ∀a, b ∈ R we still have the Birkhoff inequalities

|a ∧ c − b ∧ c| 5 |a − b|, |a ∨ c − b ∨ c| 5 |a − b|, ∀a, b, c ∈ R



and these other properties which will be used without a further explicit ref-
erence:

a 5 |a|, |a| 5 c ⇔ −c 5 a 5 c, ∀a, b, c ∈ R, c = 0

a 5 b +̇ (a− b), ∀a, b ∈ R
a 5 b +̇ c ⇒ a− b 5 c, ∀a, b, c ∈ R, c = 0

(a− b) ∧ c =
[
a ∧ (c + b)

] − b, ∀a, b, c ∈ ]−∞,∞] , c = 0

(a +̇ b) ∧ c 5
[
a ∧ (c− b)

]
+̇ b, ∀a, b, c ∈ R

∣∣ |a| − |b|∣∣ 5 |a− b| 5 |a− c|+ |c− b|, ∀a, b, c ∈ R.

For a nonempty set X, RX denotes the class of all R-valued functions
defined on X. All operations and relations between functions are defined
pointwise.

Given M j RX , let +M := {f ∈ M : f = 0}. M is said to be a vector
lattice if it is a real linear space under pointwise +, α · , such that f ∧ g,
f ∨ g ∈ M for all f, g ∈ M ; then f ∈ M implies |f | ∈ M .

For each ∅ 6= A j R, inf A, supA ∈ R, where we use inf ∅ := +∞ and
sup ∅ = −∞.

3. Integration with respect to upper integrals

3.1. Upper integrals. We begin by introducing the abstract concept of
upper integral, which will be the basic tool in all this paper.

Definition 3.1. A mapping q : RX → R is said to be an upper integral if
(1) q(0) = 0,

(2) q(f +̇ g) 5 q(f) +̇ q(g) ∀f, g ∈ RX ,

(3) q(f) 5 q(g) ∀f, g ∈ RX with f 5 g.
We also recall the notion of integral metric in the sense of Schäfke. Ac-

tually, this is a simplified version of Schäfke’s definition [14, p. 120].

Definition 3.2. A mapping q : +RX → +R is said to be an integral
metric if

(1) q(0) = 0,

(2) q(f) 5 q(g) + q(h) ∀f, g, h ∈ +RX , f 5 g + h.

We extend this definition to a mapping q : RX → R saying that q is an in-
tegral metric if q|+RX is an integral metric as above.



It is clear that if q is an upper integral then q is an integral metric, and
for each integral metric q, dq : RX ×RX → R given by dq(f, g) := q

( |f − g|)

is a distance on RX , so one can do the next

Definition 3.3. A function f ∈ RX is called q-M -integrable if it belongs
to the closure of M in RX with respect to the distance dq, i.e.

∀ε > 0, ∃h ∈ M : q
( |f − h|) < ε.

The class of all q-M -integrable functions is denoted by M q.

Lemma 3.4. If q is an integral metric, 0 ∈ M j RX and M is closed
with respect to ∗, being ∗ ∈ {+,−,∧,∨, | · |, α · with α ∈ R}, then M q is also
closed with respect to ∗.

We give now the basic property of the upper integrals and its principal
consequences.

Proposition 3.5. If q is an upper integral then
∣∣q(f)− q(g)

∣∣ 5 q
( |f − g|) , ∀f, g ∈ RX

.

Proof. From f 5 g +̇ (f − g) we deduce that

q(f) 5 q(g) +̇ q(f − g) 5 q(g) +̇ q
( |f − g|)

and so q(f)− q(g) 5 q
( |f − g|) . Interchanging f and g gives q(g)− q(f)

5 q
( |g − f |) . Hence

−q
( |f − g|) 5 q(f)− q(g) 5 q

( |g − f |) ,

i.e.
∣∣q(f)− q(g)

∣∣ 5 q
( |f − g|) . ¤

Remark 3.6. Notice that all properties (1)–(3) of Definition 3.1 have
been used to prove this one.

Corollary 3.7. Every upper integral q is q-continuous on RX , i.e.

q
( |f − fn|

) → 0 ⇒ q(fn) → q(f), ∀f, fn ∈ RX
.

Corollary 3.8. Let be q an upper integral finite on M j RX . Then q
is finite on M q. Moreover, for each f ∈ M q, and each sequence {hn} in M

such as q
( |f − hn|

) → 0 (we say that {hn} defines f in M q) we have

q(f) = lim
n→∞ q(hn) ∈ R.

3.2. Regularity and bidetermination. We are now concerned with addi-
tional conditions on q (fulfilled in most applications) yielding good properties 
on integration.



Definition 3.9. Given q : RX → R, we define q∗ by

q∗(f) := −q(−f), ∀f ∈ RX
.

If q is an upper integral then q∗ is called the lower integral of q.
Lemma 3.10. If q is an upper integral, then q∗ satisfies:
(i) q∗ 5 q on RX ,

(ii) q∗(f +. g) = q∗(f) +. q∗(g) ∀f, g ∈ RX ,

(iii) q∗(f) 5 q∗(g) ∀f, g ∈ RX with f 5 g.
Proof. From

0 = q(0) = q
(
f + (−f)

)
5 q

(
f +̇ (−f)

)
5 q(f) +̇ q(−f)

one deduces that q∗(f) 5 q(f). The rest is left to the reader. ¤
Remark 3.11. Notice that, once again, it is needed to use all properties

(1)–(3) of Definition 3.1 to prove (i).

Definition 3.12. Let q : RX → R and f ∈ RX . We say that f is q-
regular if q∗(f) = q(f) ∈ R.

The class of all q-regular functions on X is denoted by Reg (q), i.e.

Reg (q) :=
{

f ∈ RX : q∗(f) = q(f) ∈ R}
.

It follows directly from the properties of q and q∗ (Definition 3.1 and
Lemma 3.10) that the class Reg (q) has a good behaviour with respect to
addition +̇ when q is an upper integral; exactly:

Proposition 3.13. If q is an upper integral and f, g ∈ Reg (q) then f +̇
g ∈ Reg (q) and q(f +̇ g) = q(f) + q(g).

Definition 3.14. Given M j RX and q : RX → R, we say that q is M -
regular if q(h) = q∗(h) ∈ R, ∀h ∈ M , i.e. if M j Reg (q).

The regularity of q on M can be extended to M q for every upper integral,
as shown by the next proposition.

Proposition 3.15. If q is an M -regular upper integral then q is M q-
regular; that is, M q j Reg (q).

Proof. Let g ∈ M q. There exists {hn} in M such that {hn} defines g

in M q, and so q(
∣∣(−f)− (−hn)

∣∣)→ 0. Therefore, using Corollaries 3.7 and
3.8 and the M -regularity of q, we have

q∗(g) = − lim
n→∞ q(−hn) = lim

n→∞ q∗(hn) = lim
n→∞ q(hn) = q(g) ∈ R. ¤



Simple examples (for instance Example 7.5 below) make evident that this
proposition becomes false without M -regularity.

Combining the two previous propositions we obtain the +̇-additivity of
q on M q.

Corollary 3.16. If q is an M -regular upper integral and f, g ∈ M q,
then f +̇ g ∈ M q and q(f +̇ g) = q(f) + q(g).

The opposite relation between the classes M q and Reg (q) depends on
the following property of q.

Definition 3.17. q : RX → R is said to be determined by M j RX if

q(f) = inf
{

q(h) : f 5 h ∈ M
}

, ∀f ∈ RX
.

Proposition 3.18. If q is determined by M and f ∈ RX with q(f) =
q∗(f) ∈ R then f ∈ M q.

Proof. Since q(f) = inf
{

q(h) : f 5 h ∈ M
} ∈ R, given ε > 0, there ex-

ists h ∈ M , f 5 h such that q(f) + ε > q(h), and we have

q
( |f − h|) = q(h− f) 5 q(h) + q(−f) = q(h)− q∗(f) = q(h)− q(f) < ε

which gives f ∈ M q. ¤
Example 7.6 shows that this is no longer true if the determination by M

is dropped.
Therefore, for M -regular upper integrals q determined by M , the clas-

sical characterization of q-M -integrability in terms of the equality of upper
and lower integrals, follows by combining the preceding results, i.e.

Corollary 3.19. If q is an M -regular upper integral determined by M
then

M q =
{

f ∈ RX : q∗(f) = q(f) ∈ R}
.

We have generalized this result to the case of an upper integral deter-
mined by a class M ′ bigger than the class M where it is regular.

Definition 3.20. Given M,M ′ j RX with M j M ′ and q : RX → R,
q is said to be bidetermined by (M, M ′) if q is determined by M ′, q∗|−M ′ is
determined by M and q > −∞ on M ′.

Note that, under M -regularity and with −M j M , to be bidetermined
by (M, M) is equivalent to be determined by M .

Theorem 3.21. If q is an M -regular upper integral bidetermined by
(M, M ′) and −M j M then

M q =
{

f ∈ RX : q∗(f) = q(f) ∈ R}
.



Proof. M q j Reg (q) by Proposition 3.15. To prove the opposite inclu-

sion, let f ∈ RX with q∗(f) = q(f) ∈ R and let ε > 0. From q(f) = inf
{

q(h) :
f 5 h ∈ M ′} ∈ R, we deduce that there exists h ∈ M ′, f 5 h such that q(h)
< q(f) + ε

2 . Since q∗|−M ′ is determined by M and −M j M , an easy compu-
tation shows that q(h) = sup

{
q(u) : u 5 h, u ∈ M

}
. Clearly q(h) ∈ R and

consequently there exists u ∈ M , u 5 h such that q(h)− ε
2 < q(u). Thus, we

have

q
( |f − u|) 5 q

( |f − h|+ |h− u|) 5 q
( |f − h|) + q

( |h− u|)

5 q(h− f) + q(h− u) 5 q(h)− q∗(f) + q(h)− q∗(u)

= q(h)− q(f) + q(h)− q(u) <
ε

2
+

ε

2
= ε. ¤

Taking M ′ = M with −M j M we reobtain Corollary 3.19. This generalized
version will be needed for some applications.

Thus, regularity and bidetermination turn out to be natural conditions
for the integration with respect to upper integrals, because under such con-
ditions integrability can be decided by an intrinsic criterion for this type of
functionals: to check that upper and lower integrals are equal and finite.

4. Local integration with respect to upper integrals

Definition 4.1. Let q be a functional defined on RX . We define the
functional ql on RX by the formula

ql(f) := sup
{

q(f ∧ h) : h ∈ +M
}

, ∀f ∈ RX

and, when q is an upper integral, ql is called the localized integral of q.
Lemma 4.2. If q is an upper integral then ql is an integral metric.
Proof. We only note that the inequality

(f + g) ∧ h 5 f ∧ h + g ∧ h

is valid for f, g ∈ +RX and h ∈ +M . ¤
Definition 4.3. The class of all ql-M -integrable functions with respect

to the distance dql
(f, g) := ql

( |f − g|) on RX is denoted by M ql .
We collect some elementary properties of ql that we will use without

explicit reference.



Proposition 4.4. If q is a nondecreasing functional, then
(i) ql 5 q. In particular, M q j M ql.
(ii) If ∃h ∈ +M , f 5 h then ql(f) = q(f).
(iii) If |M | j M and ∃h ∈ M , f 5 h then ql(f) = q(f).
It is clear that q∗∗ = q and qll = ql, but we can also consider the func-

tionals given by iterated applications of the operations “∗” and “l” on q:
ql∗, q∗l, q∗l∗, . . . . For instance,

ql∗(f) := (ql)∗(f) = −ql(−f) = inf {q∗
(
f ∨ (−k)

)
: k ∈ +M}, ∀f ∈ RX

.

Proposition 4.5. Let q be an upper integral. The general relations
among the functionals q, ql, q∗, ql∗, q∗l and q∗l∗ are given by the following
diagram (arrows mean 5):

q∗l∗

q

(4′)
=={{{{{{{{

ql∗

(3′)
bbDDDDDDDD

ql

(2)

OO

q∗

(1)

hhQQQQQQQQQQQQQQQQ
(2′)

OO

q∗l
(3)

aaCCCCCCCC (4)

<<zzzzzzzz

Proof. (1) and (2) are already known. (3) follows from q∗(f ∧ h) 5
q(f ∧ h), ∀h ∈ +M and (4) from q∗(f ∧ h) 5 q∗(f), ∀h ∈ +M , both taking
suprema. (2′), (3′) and (4′) are obtained by applying ∗ to (2), (3) and (4)
respectively. ¤

We cannot expect as good behavior to local integration as to integration
with respect to upper integrals, because the process of localization does not
preserve upper integrals.

However, we have proved that localization of upper integrals preserves
some amount of additivity, which will be the key to find the relationship
between the classes M q and M ql ; exactly:

Proposition 4.6. Let q be an upper integral and M be a vector lattice.
Then

ql(f +̇ h) 5 ql(f) +̇ ql(h), ∀f ∈ RX
, ∀h ∈ M.

Proof. If ql(f +̇ h) = −∞ then the inequality is trivial.
If ql(f +̇ h) ∈ R then, given ε > 0, there exists k ∈ +M such that

ql(f +̇ h)− ε 5 q
(
(f +̇ h) ∧ k

)
5 q(f ∧ (k − h) +̇ h)



+ + +
5 q

(
f ∧ (k − h)

) 
˙ q(h) 5 q

(
f ∧ |k − h|) 

˙ q(h) 5 ql(f) ˙ ql(h).
Since ε > 0 is arbitrary, it follows that ql(f +̇ h) 5 ql(f) +̇ ql(h). Finally, if
ql(f +̇ h) = ∞ then, given α ∈ R there exists k ∈ +M such that α 5 q

(
(f +̇

h)∧ k
)

and, as above, we have α 5 ql(f) +̇ ql(h) so ql(f) +̇ ql(h) = ∞. ¤
Corollary 4.7. Let M be a vector lattice and q be an M -regular upper

integral. Then

ql(f +̇ h) = ql(f) + ql(h), ∀f ∈ RX
, ∀h ∈ M.

Proof. The reverse inequality uses the one just proved:

ql(f) 5 ql(
(
f − (−h)

)
+̇ (−h)) 5 ql(f + h) +̇ ql(−h)

5 ql(f + h) +̇ q(−h) 5 ql(f + h)− q(h)

where q(h) = −q(−h) ∈ R. ¤
As for the partial subadditivity of ql let us consider the following prop-

erty, which is the best approximation to Proposition 3.5 that we get for ql:
Corollary 4.8. If q is an upper integral and M is a vector lattice then

ql(f)− q(h) 5 ql

( |f − h|) , ∀f ∈ RX
, ∀h ∈ M.

Proof. It follows immediately from

ql(f) 5 ql

(
(f − h) +̇ h

)
5 ql(f − h) +̇ ql(h) 5 ql

( |f − h|) +̇ q(h). ¤

We will now use this property to prove that ql(f) 5 (ql)∗(f) for all f in
M ql when q is an M -regular upper integral. The following lemma is needed.

Lemma 4.9. Let q be an upper integral. Assume that M is a vector lat-
tice, q is finite on M , f ∈ M ql and {hn} defines f in M ql. Then

{
q(hn)

}
is

a Cauchy sequence in R.
Proof. Since {hn} defines f , given ε > 0 there exists n0 ∈ N such that

∀n = n0, ql

( |f − hn|
)

< ε.

Thus, for n,m = n0 we have, by Proposition 3.5
∣∣q(hn)− q(hm)

∣∣ 5 q
( |hn − hm|

)
= ql

( |hn − hm|
)

5 ql

( |hn − f |) + ql

( |f − hn|
)

< ε. ¤



Theorem 4.10. Let M be a vector lattice and q be an M -regular upper
integral. If f ∈ M ql and {hn} defines f in M ql then

ql(f) 5 lim
n→∞ q(hn) 5 (ql)∗(f).

In particular
ql(f) 5 (ql)∗(f), ∀f ∈ M ql .

Proof. Let f ∈ RX and {hn} in +M such that ql

( |f − hn|
) → 0. Since{

q(hn)
}

is a Cauchy sequence in R (Lemma 4.9), there exists α ∈ R such
that q(hn) → α. By Corollary 4.8 we have

ql(f)− q(hn) 5 ql

( |f − hn|
)
, ∀n ∈ N

and, letting n →∞ yields ql(f)− α 5 0, that is, ql(f) 5 α. Since q(−hn)
= −q(hn) →−α (q is M -regular), by using once again Corollary 4.8, we have

ql(−f)− q(−hn) 5 ql

( |hn − f |) , ∀n ∈ N
and we now deduce that ql(−f) + α 5 0, and so α 5 (ql)∗(f). Hence ql(f)
5 α 5 (ql)∗(f). ¤

What can be said for the localized integral ql when it is also assumed that
q is bidetermined by (M,M ′)? The next proposition addresses this question
for the particular case of determination by M . It gives conditions that make
equality for (2′) in the diagram of Proposition 4.5.

Proposition 4.11. If q is an upper integral determined by M , |M | j M

and f ∈ RX with q∗(f) > −∞ then (ql)∗(f) = q∗(f).
Proof. Since q(−f) = −q∗(f), that is, inf

{
q(h) : −f 5 h ∈ M

}
=

−q∗(f) < ∞, there exists h ∈ M such that −f 5 h. Therefore ql(−f) =
q(−f), i.e., (ql)∗(f) = q∗(f). ¤

In order to generalize this proposition to the case of bidetermined upper
integrals we need the following fact:

Proposition 4.12. Let M j RX with |M | j M and q be an upper inte-

gral. If f ∈ RX such that f 5 g ∈ M q then ql(f) = q(f).

Proof. We can assume that g ∈ +M q. Given ε > 0, there exists h ∈ +M
such that q

( |g − h|) < ε. Since

f 5 f ∧ h +̇ (f − f ∧ h) = f ∧ h +̇ (f ∧ g − f ∧ h) 5 f ∧ h +̇ |f ∧ g − f ∧ h|
we have

q(f) 5 q(f ∧ h) +̇ q
( |f ∧ g − f ∧ h|) 5 q(f ∧ h) +̇ q

( |g − h|) < ql(f) + ε

and, letting ε → 0, it follows q(f) 5 ql(f). ¤



Theorem 4.13. Let M be a vector lattice. If q is an M -regular upper
integral bidetermined by (M,M ′) and f ∈ RX with q∗(f) > −∞ then (ql)∗(f)
= q∗(f).

Proof. Since inf
{

q(h) : −f 5 h ∈ M
}

= −q∗(f) < ∞, there exists
h ∈ M ′ such that−f 5 h and q(h) <∞. From−q(h) = q∗(−h) = inf

{
q∗(u) :

−h 5 u ∈ M
} ∈ R we deduce that there exists u ∈ M , −h 5 u such that

q∗(u) < q∗(−h) + ε. Thus, we have

q(
∣∣(−h)− u

∣∣) = q
(
u− (−h)

)
5 q(u)− q∗(−h) = q∗(u)− q∗(−h) < ε.

Therefore −h ∈M q and so h ∈M q. Since −f 5 h ∈M q, it follows by Propo-
sition 4.12 that ql(−f) = q(−f), that is, (ql)∗(f) = q∗(f). ¤

Summarizing, the situation for local integration with respect to upper
integrals is the following:

Corollary 4.14. Let M be a vector lattice. If q is an M -regular upper
integral bidetermined by (M,M ′) then

(i) M ql j
{

f ∈ RX : ql(f) 5 (ql)∗(f)
}
.

(ii) (ql)∗ = q∗ on
{

f ∈ RX : q∗(f) > −∞}
.

These two properties will be sufficient to our purposes.

5. Upper and lower strong measurability

From now on M will be a vector lattice in RX and, in this section, q will
be a general integral metric.

Following the notion of measurability in the sense of Stone (i.e. (f ∧ h)∨
(−h) ∈M q, ∀h ∈ +M), we introduce new concepts of upper and lower strong
measurability and derive their basics properties.

Definition 5.1. Let q be an integral metric and f ∈ RX . The classes
of the upper strongly q-M -measurable functions and of the lower strongly
q-M -measurable functions are defined, respectively, as:

M q
∧ := {f ∈ RX : f ∧ h ∈ M q, ∀h ∈ +M}

and

M q
∨ :=

{
f ∈ RX : f ∨ (−k) ∈ M q, ∀k ∈ +M

}
.

Proposition 5.2. Let q be an integral metric. Then
(i) f ∈ M q

∧ if and only if −f ∈ M q
∨.



(ii) If f ∈ M q then f ∈ M q
∧ ∩M q

∨.
(iii) If f ∈ M q

∧ ∪M q
∨ then f is q-measurable.

(iv) M q
∧, M q

∨ are lattices.

Proof. (i) (−f) ∨ (−k) = −(f ∧ k), (−f) ∧ h = −(
f ∨ (−k)

)
, ∀h, k ∈

+M and M q is closed for the operation −.
(ii) It is easily seen, by using the Birkhoff inequalities, that if f is in M q

then so are f ∧ h and f ∨ (−k), for all h, k ∈ +M . Hence f ∈ M q
∧ ∩M q

∨.
(iii) If f ∈ M q

∧, that is, f ∧ h ∈ M q,∀h ∈ +M , then, by (ii), f ∧ h ∈ M q
∨.

Therefore (f ∧ h) ∨ (−h) ∈ M q, ∀h ∈ +M which gives the q-measurability
of f .

Analogously, if f ∈ M q
∨ then f is q-measurable, keeping in mind that

(f ∧ h) ∨ (−h) =
(
f ∨ (−h)

) ∧ h.
(iv) For all f, g ∈ M q

∧ and h ∈ +M one has

(f ∧ g) ∧ h = (f ∧ h) ∧ (g ∧ h) ∈ M q,

(f ∨ g) ∧ h = (f ∨ h) ∧ (g ∨ h) ∈ M q,

and dual arguments apply to M q
∨. ¤

The next results make evident the relation between these new concepts
and q-integrability.

Corollary 5.3. For each integral metric q, M q = M q
∧ ∩M q

∨.

Proof. M q j M q
∧ ∩M q

∨ is (ii) of Proposition 5.2.
To prove the other inclusion, let f ∈ M q

∧ ∩M q
∨. Then f− = −(f ∧ 0) ∈

M q and f+ = f ∨ 0 ∈ M q and so f = f+ − f− ∈ M q. ¤
Theorem 2 of [6] on measurability can be split in two strong measurabil-

ity counterparts. These results gain interest if we realize that a hypothesis is
strengthened whereas the companion one is weakened, so they are far from
the measurable version.

Theorem 5.4. For each integral metric q the following are equivalent:
(i) f ∈ M q,
(ii) f ∈ M q

∧ and f+ ∈ M q,
(iii) f ∈ M q

∧ and ∃ϕ ∈ M q such that f 5 ϕ.

Proof. (i) ⇒ (ii). f ∈ M q
∧ and f+ = f ∨ 0 ∈ M q because f ∈ M q

∧ ∩M q
∨.

(ii) ⇒ (iii). It is sufficient to take ϕ := nf+.
(iii) ⇒ (i). Since M is a vector lattice we(can assume) that ϕ = 0. Thus, 

given ε > 0, there exists h ∈ +M such that q |ϕ − h| < ε, and from

|f − f ∧ h| = |f ∧ ϕ − f ∧ h| 5 |ϕ − h|



we deduce that
q
( |f − f ∧ h|) 5 q

( |ϕ− h|) < ε.

Moreover, f ∧ h ∈ M q and this leads to f ∈ (M q)q = M q. ¤
Corollary 5.5. For each integral metric q the following are equivalent:
(i) f ∈ M q,
(ii) f ∈ M q

∨ and f− ∈ M q,
(iii) f ∈ M q

∨ and ∃ϕ ∈ M q such that ϕ 5 f .
As a consequence, we give a characterization of strong measurability by

truncations with, not only functions in +M , but integrable functions of ar-
bitrary sign.

Corollary 5.6. Let q be an integral metric. Then
(i) M q

∧ = {f ∈ RX : f ∧ u ∈ M q, ∀u ∈ M q},
(ii) M q

∨ = {f ∈ RX : f ∨ v ∈ M q, ∀v ∈ M q}.
Proof. (i) Let f ∈ M q

∧. Given u ∈ M q, f ∧ u ∈ M q
∧ by Proposition 5.2

(items (ii) and (iv)), and f ∧u 5 u ∈M q. Therefore, Theorem 5.4 gives f ∧ u
∈ M q. The opposite inclusion is trivial.

(ii) Analogously. ¤
The last corollary enables us to show that the classes M q

∧ and M q
∨ are

closed with respect to +.
Theorem 5.7. Let q be an integral metric. If f, g ∈ M q

∧ (resp. f, g ∈
M q
∨) then f + g ∈ M q

∧ (resp. f + g ∈ M q
∨).

Proof. Given f, g ∈ M q
∧, set ϕ := f+ + g+ and ψ := f− + g−. It is clear

that ϕ,ψ = 0, ψ ∈ M q and f + g = ϕ−ψ. Fix h ∈ +M . A trivial verification
shows that

ϕ ∧ h = (f+ + g+) ∧ h =
[
(f+ ∧ h) + (g+ ∧ h)

] ∧ h

which gives ϕ ∈ M q
∧. Thus

(f + g) ∧ h = (ϕ− ψ) ∧ h = ϕ ∧ (h + ψ)− ψ ∈ M q,

that is, f + g ∈ M q
∧. ¤



6. Relations between M q and M ql

We are ready to establish some general descriptions for M q and M ql in
terms of each other. The results in Section 4 are now used to find condi-
tions to derive upper (resp. lower) strongly q-measurability from upper (resp.

lower) strongly ql-measurability. M keeps on being a vector lattice in RX .
Theorem 6.1. Let q be an upper integral. Assume that q is M -regular

and bidetermined by (M,M ′).
(i) If f ∈ M ql∧ and q(f−) < ∞ then f ∈ M q

∧,
(ii) If f ∈ M ql∨ and q(f+) < ∞ then f ∈ M q

∨.
Proof. (i) Let h ∈ +M . We have f ∧ h ∈ M ql and we want to prove

that, in fact, f ∧ h ∈ M q. Since q is an M -regular upper integral bideter-
mined by (M, M ′), Theorem 3.21 says that this is equivalent to prove that
q∗(f ∧ h) = q(f ∧ h) ∈ R.

Clearly q∗(f ∧h) 5 q(f ∧h) 5 q(h) <∞. Furthermore, from f ∧h = −f−
we deduce that

q∗(f ∧ h) = q∗(−f−) = −q(f−) > −∞
and now, using Corollary 4.14 (both items), it follows that

q(f ∧ h) = ql(f ∧ h) 5 (ql)∗(f ∧ h) = q∗(f ∧ h).

Therefore
−∞ < q∗(f ∧ h) = q(f ∧ h) < ∞

that is, f ∧ h ∈ M q as claimed.
(ii) We have only to apply (i) to −f , since f+ = (−f)−. ¤
Corollary 6.2. If q is an M -regular upper integral bidetermined by

(M, M ′), then

M q = {f ∈ M ql : q
( |f |) < ∞}.

Proof. On the one hand, it is clear that f ∈ M q implies f ∈ M ql and
q
( |f |) < ∞. On the other hand, if f ∈ M ql with q

( |f |) < ∞ then f ∈ M ql∧
and f ∈ M ql∨ (Theorem 5.3) and q(f−), q(f+) < ∞. Therefore, Theorem 6.1
guarantees that f ∈ M q

∧ and f ∈ M q
∨, that is, f ∈ M q (Theorem 5.3 once

again). ¤
We now study the relation between the functionals q∗ and ql in order to

get a characterization of M ql .
Proposition 6.3. Let q be an M -regular upper integral. Then

ql(f) 5 q∗(f), ∀f ∈ M q
∧.



Proof. Let h ∈ +M . Since f ∧ h ∈ M q and q is M -regular we deduce
that q∗(f ∧ h) = q(f ∧ h), by Proposition 3.15, and hence q∗l(f) = ql(f) by
taking suprema. A look at the diagram of Proposition 4.5 gives ql(f) 5 q∗(f).
¤

Proposition 6.4. If q is an upper integral bidetermined by (M, M ′),
then q∗ 5 ql.

Proof. An easy computation shows that bidetermination by (M,M ′)
leads to

q∗(f) = sup
{

q(−k) : k ∈ M ′, −k 5 f
}

, ∀f ∈ RX

and
q∗(−k) = inf

{
q∗(u) : −k 5 u ∈ M

}
, ∀k ∈ M ′

We can obviously assume that q∗(f) > −∞. If q∗(f) ∈ R, given ε > 0, there
exists k ∈ M ′ with −k 5 f such that q∗(f)− ε < q∗(−k). Moreover, there
exists u ∈ +M with −k 5 u. Therefore

q∗(f)− ε < q∗(−k) 5 q∗(f ∧ u) 5 q(f ∧ u) 5 ql(f)

and letting ε → 0 it follows that q∗(f) 5 ql(f).
If q∗(f) = +∞, given α ∈ R, there exists k ∈ M ′ with −k 5 f such that

α < q∗(−k). Moreover, there exists u ∈ +M with −k 5 u. Therefore

α < q∗(−k) 5 q∗(f ∧ u) 5 q(f ∧ u) 5 ql(f)

and consequently ql(f) = +∞ = q∗(f). ¤
Theorem 6.5. Let M j RX be a vector lattice and q an M -regular upper

integral bidetermined by (M,M ′). Then

+M ql = {f ∈ +RX : f ∈ M q
∧, q∗(f) < ∞}

and therefore

M ql = {f ∈ RX : f± ∈ M q
∧, q∗

( |f |) < ∞}.

Proof. Let us assume f ∈ +M q
∧ with q∗(f) < ∞. In particular f is

q-measurable and, by Proposition 6.3, ql

( |f |) = ql(f) 5 q∗(f) < ∞. Theo-
rem 5 in [6] guarantees that f ∈ M ql (q is M -semiadditive because q is, in
fact, M -additive).

To prove the opposite inclusion, let f ∈ +M ql . Proposition 5.2 (item (ii))
says that f ∈ M ql∧ and, since q(f−) = q(0) = 0 < ∞, Theorem 6.1 provides
f ∈ M q

∧.
Moreover, q∗(f) 5 ql(f) < ∞, by Proposition 6.4 and Theorem 4.10.

¤



7. Applications and examples

We now present a standard procedure to construct upper integrals from
functionals on an M j RX .

Definition 7.1. For ∅ 6= M j P j RX and T : P → R we define TM :

RX → R by

TM (f) := inf
{

T (h) : f 5 h ∈ M
}

, ∀f ∈ RX
.

With a slightly modified version of Lemma 11 in [6] and some related
results, a unified treatment of the finitely additive integral extension theories
can still be obtained.

Lemma 7.2. Let M j RX with 0 ∈ M and M +̇ M j M . If T : M → R
is nondecreasing, T (0) = 0, and

T (u +̇ v) 5 T (u) +̇ T (v), ∀u, v ∈ M,

then TM is an upper integral, TM = T on M , and (TM )M = TM on RX .
Therefore, TM is an upper integral determined by M which extends T .

Moreover, TM is M -regular under closely related conditions:
Lemma 7.3. Let q be an upper integral and M j RX with −M j M . The

following are equivalent:
(i) q is M -regular.
(ii) q is +-additive and finite on M .
Proof. (i) ⇒ (ii). By Corollaries 3.16 and 3.8.
(ii) ⇒ (i). 0 = q

(
h + (−h)

)
= q(h) + q(−h) ⇒ q(h) = −q(−h) = q∗(h)

∈ R. ¤
Corollary 7.4. Let M j RX be a vector space. Assume T : M → R is

nondecreasing, T (0) = 0, and additive for +, i.e.

T (u + v) = T (u) + T (v), ∀u, v ∈ M.

Then TM is an M -regular upper integral determined by M which extends T .
A. Proper Riemann Integration. Given (X, Ω, µ), where Ω is a semiring

of sets from X and µ : Ω → [0,∞[ is additive, let us consider BΩ := S(Ω,R),
the step functions, and Iµ :=

∫ · dµ on Ω, [9]. With q = I−µ := (Iµ)BΩ , Corol-
lary 7.4 says that q is a BΩ-regular upper integral determined by BΩ and so
Corollary 3.19 yields

(BΩ)I−µ =
{

f ∈ RX : I−µ (f) = I+
µ (f) ∈ R}

= R1
e(µ,R) [9].



B. Abstract Riemann-µ-integration. With B := BΩ, I := Iµ, q = I−µ the
BΩ-regular upper integral determined by BΩ of A, and R1(µ,R) := Bql

it follows that R1(µ,R) ∩ RX = R1(µ,R) ([9, p. 70–144]) k L(X,Ω, µ,R)
([8, p. 112]), the latter inclusion being an equality if X ∈ Ω.

Corollary 6.2 and Theorem 6.5 say that

R1
e(µ,R) = {f ∈ R1(µ,R) : I−µ

( |f |) < ∞},

R1(µ,R) = {f ∈ RX : f± ∧ h ∈ R1
e(µ,R),∀h ∈ +B, I+

µ

( |f |) < ∞}.

C. Loomis completions. Given a Loomis system (X,B, I) (B j RX vector
lattice, I : B → R linear and positive) and q = I− := IB, Corollary 7.4 guar-
antees that q is a B-regular upper integral determined by B and therefore
Theorem 3.19 gives

Bq ∩ RX = R1
e two-sided completion R of Loomis [10, p. 170]

= Rprop(B, I) [7].

Moreover, it is known that Bql k R1
e (one-sided completion U of Loomis

[10, p. 178]), Bql = R1(B, I) (I-integrable functions of [7, p. 147]).
A and B above are special cases.
Corollary 6.2 and Theorem 6.5 here give the familiar descriptions in [7,

Corollaries 1.7, 1.8]

Rprop(B, I) = {f ∈ R1(B, I) : I−
( |f |) < ∞},

R1(B, I) = {f ∈ RX : f± ∧ h ∈ Rprop(B, I), ∀h ∈ +B, I+
( |f |) < ∞}

but nothing is said about the classes Bq
∧ and Bq

∨ in this case. These results
are obtained by other methods (using local convergence).

D. Finitely-additive Daniell extension. For a Loomis system (X,B, I),
the following are introduced in [2]:

I+(f) := sup
{

I(h) : h 5 f, h ∈ B
}

,

B+ :=
{

f ∈ RX : f = sup {h : f = h ∈ B}, I+(f) > −∞}
,

B+ :=
{

f ∈ B+ : I+(f + g) 5 I+(f) + I+(g), ∀g ∈ B+
}

.

By Lemmas 7.2 and 7.3, q = I := (I+)B+ is a B-regular upper integral
determined by B+. In fact, q is a B-regular upper integral bidetermined by
(B,B+) and, therefore, applying Theorem 3.21, we still have

B := Bq =
{

f ∈ RX : I(f) = I(f) ∈ R}
,



the summable functions B0 of [2].
Moreover, Corollary 5.6 guarantees that Bq

∧ = B∗
+ = L∧, Bq

∨ = B∗− = L∨

of [2] and [3], respectively. Section 5 generalizes several properties, known
for these classes B∗

+ and B∗−, to our general setting on upper integrals.

E. Localization of the Daniell-analogue. For a Loomis system (X,B, I),
q = I of D leads to Bql = L of [5].

We are able to apply all results in Section 6, yielding the new descriptions

B = {f ∈ L : I
( |f |) < ∞}

and

L = {f ∈ RX : f± ∧ h ∈ B,∀h ∈ +B, I
( |f |) < ∞}.

Since I 5 I−, one has B j L and Rprop(B, I) j R1(B, I) j L, with co-
inciding integrals.

Example 7.5. For q : R→ R given by q(x) = x if x = 0 and q(x) = 0
elsewhere, it is clear that {0} = Reg (q) ⊂ R = Rq.

Example 7.6. Let X = {1,2,3} and q : RX → R defined by q(x) := x1 +̇

x2 +̇ x3, ∀x = (x1, x2, x3) ∈ RX = R3.
It is clear that q(0) = 0, q is monotone and q(x +̇ y) = q(x) +̇ q(y) (since

+̇ is associative). Thus, q is an upper integral (it is even a Bourbaki-
continuous integral norm). For Ω :=

{∅, {1}, {2, 3}, X}
(a σ-algebra) and

taking B := BΩ, the step functions with respect to Ω (see A above), one has
Bq = B whereas Reg (q) = RX . Obviously q is B-regular (see Lemma 7.3),
but q is not determined by B. For instance, with x0 := (0, 0, 1), q(x0) = 1
< 2 = q(0, 1, 1) = inf

{
q(u) : x0 5 u ∈ B

}
. Moreover, q is not bidetermined

by (B,B′) for any B′ k B. If there exists an x0 ∈ B′ such that x0 6∈ B then
x0(2) 6= x0(3) and therefore q∗(x0) 6= inf

{
q∗(u) : x0 5 u ∈ B

}
.
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[12] F. W. Schäfke, Integrationstheorie II, J. Reine Angew. Math., 248 (1971), 147–171.
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