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Abstract: The discrepancy among one-electron and two-electron densities for diverse N-electron
atomss, enclosing neutral systems (with nuclear charge Z = N) and charge-one ions (|N − Z| = 1), is
quantified by means of mutual information, I, and Quantum Similarity Index, QSI, in the conjugate
spaces position/momentum. These differences can be interpreted as a measure of the electron
correlation of the system. The analysis is carried out by considering systems with a nuclear charge
up to Z = 103 and singly charged ions (cations and anions) as far as N = 54. The interelectronic
correlation, for any given system, is quantified through the comparison of its double-variable electron
pair density and the product of the respective one-particle densities. An in-depth study along the
Periodic Table reveals the importance, far beyond the weight of the systems considered, of their
shell structure.

Keywords: mutual information; quantum similarity index; electron correlation; multielectronic systems

1. Introduction

In any atomic system, the probability of finding an electron in a determinate region is
closely related to the value of one-electron density. Studying the atomic density in different
regions allows us to understand how electrons belonging to specific regions behave. In that
sense, monoelectronic densities ρ(~r) contain an enormous amount of encoded information.
In fact, ρ(~r) determines the physical and chemical properties of atoms and molecules, as it
is well known [1]. Nevertheless, information on interelectronic correlation is absent from
the one-electron density. Thus, ρ(~r) does not provide any information on the eventual
influence of the position of a given electron on those of the others. It is precisely in this
framework where two-electron densities arise. The electron pair density Γ(~r1,~r2) quantifies
the probability of finding two arbitrary electrons located at positions~r1 and~r2, respectively,
and constitutes an appropriate starting point to analyze explicitly the spatial electron–
electron interaction [2]. Moreover, in quantum chemistry, the pair density allows describing
the quantum-mechanical distribution of electron pairs so that it constitutes a fundamental
tool for studying chemical binding [3] as well as electronic correlation and structure in
molecules [4,5].

Moreover, the electron pair density determines the exact interaction energy of a
many-electron system, while the standard Kohn–Sham density functional models do not
approximate it properly [6,7]. Therefore, pair density functional theory is considered as
both an extension of the density functional theory and a reduced density matrix theory [8,9].
The main point of the pair density functional theory lies in its fundamental variable, namely
the pair density, more informative than the monoelectronic density regarding the electron–
electron interaction [10,11].

The electron pair density allows obtaining the expectation value of any arbitrary
two-particle operator. Moreover, the pair density functional theory has another virtue,
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related to the expansion of the approximate functional: the exchange-correlation energy
functional is rigorously expressed in terms of the pair density so that the only need is
to select properly the approximate form of the kinetic energy functional [12]. The recent
development of multiconfiguration pair density functional theory combines the advantages
of both wave function and density functional theories, thus improving the handling of
strongly correlated systems. The results obtained are comparable to those of some Kohn–
Sham density functionals, including both traditional and modern ones [13,14].

Consequently with the above, it appears logical to conjecture that electron pair densi-
ties for many-electron systems have been studied in depth, both in intensive and extensive
ways. However, that is not the case: More efforts have been devoted to analyses in terms
of one-electron densities, compared to those based on electron pair densities. It is worth
noting that, despite the vast amount of information encoded in monoelectronic densities,
they do not provide any clues on how the location of an electron in position/momentum
space constrains the respective locations of the others. Let us also highlight that within the
Waller–Hartree theory, the two-electron density is related to total X-ray scattering intensity,
an experimentally accessible quantity [15,16].

A relevant difficulty to handle the electron pair density, a function of six coordinates,
is its spatial interpretation. Normally, the visual representation of a distribution over its
domain constitutes a powerful analytical tool, but this is not a feasible procedure with
such a number of variables. In order to extract useful information from the electron pair
density, previous handlings must be performed. Particularly interesting are those giving
rise to so-called intracule and extracule distributions, with a huge variety of well-known
results based on them [17–21]. It is worth noting that these densities consider any pair
of electrons as a unit. A further simplification is achieved by spherically averaging the
electron pair density to obtain a function with only radial coordinates as variables. Of
course, two-electron information decreases as a consequence of dimensionality reduction.

At present, information theory of quantum systems is a compact theory that brings
together a large number of concepts, some of which have roots remote in the past and
with a very diverse origin, within the framework of disciplines that have followed a dif-
ferentiated evolution but are interconnected, e.g., physics, mathematics, chemistry and
biology. In fact, it is employed in a diversity of fields by means of measures and concepts at
both classical (e.g., Shannon entropy, Fisher information, complexity) and quantum levels
(e.g., von Neumann and other entanglement measures) [22,23]. Particularly for atomic and
molecular systems, their entropic characterization complements the energetic one based
on the wavefunction and within a density functional framework. The description of main
physical and chemical properties of those systems can be achieved in terms of entropic
spreading measures of the electron distribution [24,25], which quantify, for instance, un-
certainty, randomness, disorder and localization. These concepts have induced the birth
of a diversity of density functionals: Shannon entropy [26], Fisher information [24,27] and
complexity [28] among others. All these functionals play a relevant role in the study of
many-electron systems [29–35].

The analysis of the electron pair densities from an Information Theory point of view
has attracted the attention of researchers over the past years. In particular, information
theoretical measures such as Shannon-related ones [4,36,37], similarity measures [4,38–40]
or uncertainty relationships [38] have been obtained. Moreover, disequilibrium, Shannon
entropy, shape complexity and its corresponding information plane for the electron pair
densities throughout the periodic table in both position and momentum spaces have been
recently derived [41]. As a consequence, the applications of the electron pair densities
have increased in different ways including an alternative density functional theory with
electron pair density as the functional key [7,12,42]. These densities have been employed
as a scaledown method to study many particle systems [6,43–46] and for the analysis and
detection of chemical bonds in molecules for which its positions are directly related to
regions where electrons present higher correlation [47,48].
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According to the Density Functional Theory and the Hohenberg–Kohn theorem, phys-
ical and chemical properties of atomic and molecular systems are given by their electron
charge densities [1]. Therefore, it looks very attractive to establish proper methods of
quantifying differences among two or more systems attending to their respective distribu-
tions, and mostly regarding the higher/lower similarity among their main physicochemical
properties. This is the origin of the Quantum Similarity Theory (QST) [49] that arises from
the huge interest in chemical similarity in past years. Molecular modeling, quantitative
structure activity relationship (QSAR) and quantum information are simple examples of
such an interest [50,51]. In this sense, establishing density functionals that act as measures
of “distance” or similarity among probability distributions appears very interesting as well.
Different approaches have arised in probability, statistics and Information Theory with the
aim of establishing quantitative dissimilarity measures among two or more probability
densities in order to quantify how different these distribution are, resulting in the birth of
a diversity of divergence measures. Their usefulness has been widely contrasted in the
analysis of, e.g., different physical and chemical systems and processes, as described by
means of meaningful and relevant distributions [29,52–58]. Each measure is more or less
useful, firstly attending to its own properties and features but also considering the kind of
problem, the specific system or process as well as the elucidation we are dealing with.

The aim of this work is to quantify the similarity and differences of electron pair
distributions for correlated and uncorrelated variables are. In doing so, the Shannon entropy
S (which provides a first quantitative notion of the spreading for a given distribution),
the mutual information I (interpreted in terms of the Kullback–Leibler divergence) and
the Quantum Similarity Index QSI (which constitutes a measure of the ‘overlap’ among
distributions on their domain) are employed. In this analysis, neutral atoms and also their
singly charged ions are considered.

The paper is structured as follows: In Section 2, two-particle densities for atomic
systems and the entropic functionals used for this analysis (S, I and QSI) are defined and
presented. Numerical computations and results are shown in Section 3. Finally, the last
section briefly describes the conclusions, open problems and future work.

2. Electron Pairs in Atoms: Spreading and Correlation

The two-electron densities in conjugated spaces, obtained, respectively, from the
N-electron wave function Ψ, and its Fourier transform Φ, are given by the following:

Γ(~r1,~r2) =
∫

Ψ(~x1,~x2, · · · ,~xN)Ψ∗(~x1,~x2, · · · ,~xN)dσ1dσ2d~x3 · · · d~xN (1)

in position space, and by the following is given in momentum space.

Π(~p1,~p2) =
∫

Φ(~y1,~y2, · · · ,~yN)Φ∗(~y1,~y2, · · · ,~yN)dσ1dσ2d~y3 · · · d~yN (2)

The variable ~xi = ~riσi is a combined position–spin coordinate and similarly with
the momentum–spin one ~yi = ~piσi. The physical meaning of these densities accounts for
the probability of finding an electron within the region~r1d~r1 if there is another electron
within~r2d~r2, both them with allowed and compatible states. The same applies to respective
regions ~p1d~p1 and ~p2d~p2 in momentum space. Two-electron densities are straightforwardly
related to the interelectronic correlation, since the compatibility of an electron state is
determined by those of the others. Thus, these densities constitute distributional quantifiers
of correlation between electrons.

The Hartree–Fock approach is considered for calculating the two-electron densities so
that they become expressed for a N-electron system as follows [59]:

Γ(~r1,~r2) =
1

N − 1
[Nρ(~r1)ρ(~r2)− Γx(~r1,~r2)] (3)
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in position space, and the following in momentum space.

Π(~p1,~p2) =
1

N − 1
[Nγ(~p1)γ(~p2)−Πx(~p1,~p2)] (4)

The functions ρ(~ri) and γ(~pi) are the respective one-electron densities, and Γx(~r1,~r2)
and Πx(~p1,~p2) denote the exchange densities in position and momentum space, respec-
tively. Let us emphasize that the use of Hartree–Fock functions focuses the study on the
Fermi correlation between same-spin electrons, derived from the antisymmetry of the
wave function. This means that the term electron correlation, above mentioned, refers to
the statistical correlation. It is necessary to clarify this point to avoid misleading when
considering correlated systems beyond the Hartree–Fock approach (the Löwdin definition
of correlation energy).

Remark that the information content of one-particle densities is lower than that of
two-particle ones because they arise from the integrations ρ(~r1) =

∫
Γ(~r1,~r2)d~r2 and

γ(~p1) =
∫

Π(~p1,~p2)d~p2. Thus, monoparticular densities are marginal distributions of the
electron pair ones so that the latter cannot be obtained from the former.

The Shannon entropy, S, of the normalized-to-unity electron pair densities is given by
the following:

SΓ = −
∫

Γ(~r1,~r2) ln Γ(~r1,~r2)d~r1d~r2 (5)

for the position space, and the following for the momentum space.

SΠ = −
∫

Π(~p1,~p2) ln Π(~p1,~p2)d~p1d~p2 (6)

Entropy quantifies the spreading extent of the distribution, thus constituting a measure
of uncertainty/delocalization. Let us note that, attending to the definitions above, the
Shannon entropy could be negative. To guarantee non-negative uncertainties, sometimes it
is useful to handle the so-called exponential Shannon entropy, defined as L = eS. Such a
definition of the exponential Shannon entropy is considered that way also to deal with a
measure having the same dimensions as the variable involved, as the variance does (maybe
the most widely used uncertainty measure).

Considering the spherically averaged forms of each the monoelectronic and the elec-
tron pair densities, higher values of the two-electron Shannon entropy can be expected,
as compared to those in the one-electron case. This appears natural, taking into account
the bidimensionality of the former and the monodimensionality of the latter, thus with
respective higher/lower spreadings. Let us also observe the use of the past electron pair
Shannon entropy for studying the corresponding distribution [4,36,38,40]. Some of those
studies successfully revealed correlation effects and other atomic properties by means of
two-electron Shannon entropy.

In order to perform a comparative analysis among atomic one-particle and two-
particle densities from an informational theoretic point of view, i.e., to better understand
the differences between these densities, it would be necessary to have at our disposal
density functionals enabling us to quantify the “distance” and/or similarity among them.

The interest in designing adequate tools for the quantitative comparison of two or
more systems or processes, as characterized by means of distribution functions, becomes en-
hanced due to the strong link between diverse information measures and many significant
physical and chemical properties of the systems/processes. The term ‘distance’, within this
context, refers to a measure of dissimilarity between functions, being not necessarily a true
distance in a rigorous mathematical sense. Nevertheless, all these types of distances retain
some of the well-known characteristic properties, in particular non-negativity, symmetry
(invariance under exchange of functions) and saturation (minimal zero value only for
identical distributions).

One of the pioneering global measures of dissimilarity between probability distri-
butions is the so-called ‘relative entropy’ or Kullback–Leibler divergence (KL) [52]. It
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accounts for the amount of information supplied by the data for discriminating among the
distributions. Being a ‘directed divergence’, it is not symmetric:

KL( f , g) =
∫

f (~x) ln
f (~x)
g(~x)

d~x (7)

where f (~x) and g(~x) are arbitrary distributions over the same domain. The applications of
KL for different procedures, such as the obtention of minimum cross entropy estimations
or the determination of atomic and molecular properties [31], among others, cause it to be
set as an information-theoretic fundamental tool.

This measure could be used to quantify differences between atomic one-particle
and two-particle densities. If we compare the two-electron density with the product
of the monoparticular densities, this magnitude could be interpreted as a measure of
the correlation between variables [29]. It is called Mutual Information, I, and has been
introduced into quantum chemistry [60]:

Ir =
∫

Γ(~r1, ~r2) ln
Γ(~r1, ~r2)

ρ(~r1)ρ(~r2)
d~r1d~r2 (8)

for the position space, and the following for the momentum space.

Ip =
∫

Π(~p1, ~p2) ln
Π(~p1, ~p2)

γ(~p1)γ(~p2)
d~p1d~p2 (9)

A recent study of the authors [61] have considered the Jensen–Shannon divergence
(JSD) as a comparative measure with similar purposes to those presented here. In that case,
the measure employed is a symmetrized version of KL, thus loosing the ‘directed character’
which makes KL an appropriate measure of mutual information, in the sense that it takes
the uncorrelated distribution as the reference/a priori one.

Quantum Similarity Theory (QST) [49] was originally developed in order to establish
quantitative comparisons between molecular systems by means of their fundamental
structural magnitudes (i.e., electron density functions), and the Quantum Similarity Index
(QSI) is its principal measure. This quantity provides a measure of the overlapping among
the distributions under consideration. Using it to perform a comparative analysis among
atomic one-particle and two-particle densities, QSI is given by the following:

QSIr =

∫
Γ(~r1, ~r2)ρ(~r1)ρ(~r2)d~r1d~r2√∫

Γ2(~r1, ~r2)d~r1d~r2
∫

ρ2(~r1)ρ2(~r2)d~r1d~r2

(10)

for the position space, and the following for the momentum space.

QSIp =

∫
Π(~p1, ~p2)γ(~p1)γ(~p2)d~p1d~p2√∫

Π2(~p1, ~p2)d~p1d~p2
∫

γ2(~p1)γ2(~p2)d~p1d~p2

(11)

Since QSI is also a non-negative and symmetric measure, its main characteristic feature
is the upper-bounded property. The inequality QSI( f , g) ≤ 1 holds for arbitrary pairs of
functions, with the equality QSI = 1 reached only in the case of identical distributions.

3. Entropy and Comparative Measures

Three different measures are here considered for the informational-theoretic study of
atomic systems at the one-particle and two-particle levels. The Shannon entropy provides
a first quantitative notion of the spreading for a given distribution.

Then, two comparative functionals are employed to quantify, for a given system, how
similar/different the electron pair distributions for correlated and uncorrelated variables
are. These functionals are as follows: the mutual information I (interpreted in terms of the
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Kullback–Leibler divergence) and the Quantum Similarity Index QSI (as measure of the
‘overlap’ among distributions on their domain).

The entire next analysis is two-sided. On the one hand, parallel studies are carried out
by considering both conjugate spaces, namely position and momentum. On the other, not
only neutral atoms are analyzed (i.e., with identical values of their nuclear charge Z and
the number of electrons N as far as N = Z = 103) but also their singly charged ions up to
N = 54.

The results here provided, and their interpretation as well, are compared with similar
ones found in the literature. Main differences are related, normally, to the set of collected
systems and/or the quality of wavefunctions to describe them, as well as the employment
of some information-theoretic functionals at the two-particle level.

All calculations were performed, in the present work, by means of accurate and well
known near Hartree–Fock wavefunctions [62,63]. Thus, all computations are performed
here at a non-relativistic level, with future work planned by considering also relativistic
wavefunctions. The authors have recent works with quantitative informational measures
of relativistic effects in atomic systems at the one-electron level [64,65]. Those measures
include mutual information [64] and a generalized version of quantum similarity [65]. The
present work focuses on interelectronic correlation far beyond relativistic effects.

The study below is limited to ground-state distributions, with additional analyses of
excited systems planned as future work. In this sense, it is worthy to remark that Koga’s
wavefuntions here employed correspond to experimental ground states, as emphasized in
the corresponding references.

3.1. Shannon Entropy

Previous studies have considered the Shannon entropy of one-particle and two-particle
distributions as quantifiers of delocalization, in position (SΓ) and momentum (SΠ) spaces,
of the electron cloud in atomic systems. The results have been discussed on the basis of the
atomic shell structure [41,60] and also in terms of relevant physical properties, such as, e.g.,
the atomic ionization potential (AIP) [41]. A summary of previous conclusions, and some
additional ones, is given below.

In Ref. [60], the study was performed for the set of neutral atoms with number of
electrons N ≤ 36. There the main conclusions were as follows.

• Entropies display monotonic trends with N: decreasing for SΓ, increasing for SΠ;
• Both entropic curves are structured accordingly with the presence of noble gases and

systems with a semi or completely filled d valence subshell;
• The structure of position space curve is more prominent, but the interval the entropy

values belong to is wider in momentum space.

A more recent work [41] has extended the above study in two different ways:

1. By considering a much larger set of neutral systems, up to N ≤ 103;
2. By including ionized systems, particularly singly charged anions and cations with

N ≤ 54.

In most cases, conclusions of the pioneering work remain valid. Regarding neutral
systems, curves in Figure 1 display, overall, the respective monotonic behaviors. Moreover,
previous comments on structural prominency and ranges of values apply now.
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Figure 1. Two-electron Shannon entropies in position (SΓ) and momentum (SΠ) spaces, for neutral
atoms with number of electrons N = 2–103. Atomic units (a.u.) are used.

A detailed analysis of occurrence of extrema provides different results in each space.
Local minima for position space entropy SΓ of neutral atoms correspond to the following:

• Closed shell systems (noble gases): N = 10, 18, 36, 54, 86;
• Semi or completely filled d valence subshell: N = 24, 30, 42, 46, 79;
• Similarly with 5 f orbital: N = 95, 102.

No local extrema were referred in momentum space for the limited set N ≤ 36 [60]
of neutral atoms. The only ones displayed in Figure 1 occur beyond that threshold, the
minima being N = 38, 56, 88. All three are systems with filled valence subshell ns.

Figure 2 provides joint results for neutrals and ions, particularly singly charged cations
and anions. In all cases, systems with N ≤ 54 are considered. A comparative analysis of
curves, for each space, should be interpreted as follows: once fixed N, ordering of curves
provides information about how the entropy varies as far as the nuclear charge Z moves to
Z± 1.
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Figure 2. Two-electron Shannon entropies for neutral atoms and singly charged ions with number
of electrons N ≤ 54 in (a) position space (SΓ) and (b) momentum space (SΠ). Atomic units (a.u.)
are used.

The most relevant comments are as follows.

• Ordering: In position space, the inequalities S(cation) < S(neutral) < S(anion) hold
for arbitrary N. This means that increasing the nuclear charge (for fixed number of
electrons) makes the entropy decrease due to the contraction of the electron cloud
towards the nucleus.
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In momentum space, a not-so-strict inequality is verified, namely S(neutral) < S(ion).
Thus, modifying the nuclear charge of the neutral in any manner makes the dispersion
of speeds increase.

• Local extrema: All noble gases are displayed as local minima in position space for both
cations and anions. However, they appear as local maxima for anions in momentum
space. The momentum curve for cations is roughly increasing from N = 3 onward.
As for neutrals, the only (slight) minimum within this range is N = 38.
Few additional slight extrema appear in different curves.

It is worthy to remark that position–space curves are much more structured than
the momentum–space ones, at least for neutrals (as emphasized in Ref. [60]) and cations.
However, differences are not so prominent for anions, except the exchange of the roles
of maximum–minimum for noble gases in passing from a space to the conjugate one.
Justifying these different features for anions remains as an open question.

3.2. Mutual Information

In multielectronic systems, the electron pair density Γ(~r1,~r2) in position space repre-
sents (properly normalized) the probability distribution of finding any pair of electrons at
respective locations (~r1,~r2). Obviously, for uncorrelated electron systems, the pair distribu-
tion is merely a product of one-electron distributions ρ(~r1) and ρ(~r2) by considering the
indistinguishability of electrons.

The same reasoning applies in momentum space, dealing with the pair distribution
Π(~p1,~p2) and the respective one-electron functions γ(~p1) and γ(~p2). This means that,
in both spaces, determining electron correlation is equivalent to measuring differences
between the electron pair distribution in a given space and the product of one-electron
distributions in the same space.

Those differences have been studied in the past, by considering the so-called ‘mutual
information’ (I) between the respective pairs of variables in each conjugate space for some
specific atomic systems. A pioneering study is included in Ref. [60] for neutrals atoms
with a number of electrons up to N = 36, described in terms of the near Hartree–Fock
wavefunctions of Clementi and Roetti [66]. The present section provides an expanded
study of mutual information I in atoms, reaching up to N = 103 and also including ionized
systems. In performing this, the posterior wavefunctions of Koga [62,63] are employed.
Some of the known conclusions remain, but others are modified.

3.2.1. Mutual Information of Neutral Atoms

Let us remind the reader that, for neutral atoms, the nuclear charge (in a.u.) and the
number of electrons are identical, i.e., Z = N. The numerical results displayed in Figure 3a,
namely the I values for N = 3–40, include the aforementioned range N ≤ 36. The curves
correspond to mutual information in position (Ir) and momentum (Ip) spaces.
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Figure 3. Mutual information I in position and momentum spaces for neutral atoms with number of
electrons (a) N ≤ 40 and (b) N = 40–103. Atomic units (a.u.) are used.

Main conclusions derived in previous studies, particularly by Sagar et al. [60], are
as follows:

1. The global decreasing trends of both Ir and Ip;
2. The marked peaks (minima) at noble gas atoms, as systems with the smallest value

within a period;
3. The inequality Ir > Ip along the entire range, with a few exceptions: particularly for

N = 24, 29, both with anomalous shell-filling and 3d outermost orbital (half-filled for
N = 24, completely filled for N = 29).

The above conclusions for N ≤ 36 are fully ratified in the present work. The mentioned
ordering Ir > Ip is clearly appreciated in the figure, as well as the exceptions N = 24 and
N = 29, with respective differences 10% and 15% between position/momentum values.
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This means that, for most neutral atoms, the electron correlation is higher in position space
than in momentum space.

An additional exception, found here but not reported before, is N = 30. However, in
this case, Ir and Ip are almost identical, with differences below 0.4%. Notice that different
wavefunctions were employed in the respective works [62,66], possibly as justification of
the ‘opposite ordering’ for N = 30, an additional system with completely filled 3d subshell
(as is also N = 29).

In proceeding beyond N = 36, other ‘exceptions’ (i.e., systems with Ip > Ir) are found,
as observed in Figure 3b. The inverse inequality now holds for many systems; thus, perhaps
the term ‘exception’ becomes inappropriate. They are grouped into two blocks: N = 41–48
(excepting N = 46) and N = 72–80. Once again, an additional system (N = 103) verifies
the inequality but with extremely small position/momentum differences, below 0.1% (thus,
they are completely indistinguishable in the figure and almost numerically as well).

• The first group contains all neutral atoms in the periodic table with half-filled inner
5s subshell (N = 41–45, 47) and the closed-subshells one N = 48 with valence orbital
4d (the others have the same valence orbital, completely filled only for N = 47 as for
N = 48).
For this atomic set, Ir − Ip differences do not reach 8%, in some cases below 1%; thus,
they are not so prominent as for the well-known N = 24, 29 discrepancies.
It is worthy to remark that N = 46, staying out of this set, is the unique system
(within this range and in the entire periodic table as well) with completely empty
inner subshell 5s, which is what distinguishes it from others.

• The set N = 72–80 is characterized for the filling of the 5d valence orbital. Two systems
are remarkable: N = 78, 79 are the only ones with half-filled inner 6s subshell, and
they are emphasized in the figure. Their position–momentum deviations are clearly
appreciated, rounding 7% of numerical differences, remaining below 2% for all the
others.

• As for the range N ≤ 40 in the previous figure, marked minima are displayed again
for noble gases, namely N = 54, 86. Thus, it is concluded that, almost systematically,
both Ir and Ip decrease along a given period and notably increase as a new period
begins. Apart from the slight extrema N = 24, 29, the additional marked minimum
N = 46 in both spaces is found. Thus, this system ‘divides’ the monotonic decrease
along 4d into two pieces (including, respectively, atoms with completely filled valence
orbital or not).

We could say that, overall, conclusions derived in Ref. [60] regarding structure and
ordering of Ir and Ip for neutral atoms within the range N = 3–36 are here extended up to
N = 103. Perhaps the most relevant differences are as follows: (i) the existence of additional
systems with higher correlation in momentum space than in position space, once again
associated with the filling of d valence subshells; and (ii) the prominent local minimum
N = 46, in both spaces, in addition to those of noble gases.

3.2.2. Mutual Information of Singly Charged Ions

Ionization of a neutral system is achieved by breaking the equality N = Z between the
number of electrons and nuclear charge. Thus, for atomic ions, it is necessary to choose one
of the above variables to analyze the corresponding dependence of the mutual information
on it.

Attending to the preceeding results in this work and their interpretation, it appears
preferable to deal with N as the characterizer of the different ground-state systems, because
its value determines their shell structure.

Figure 4 displays Ir and Ip for both cations and anions. It is appropriate to perform a
study of structure and ordering of curves. In Figure 4a, for cations, the global decreasing
trend of both piece-wise curves is observed, almost systematically with the position one
above the momentum one (accordingly with the inequality Ir > Ip).
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Figure 4. Mutual information I, in position and momentum spaces, for singly charged ions with the
number of electrons N ≤ 54: (a) cations and (b) anions. Atomic units (a.u.) are used.

A detailed analysis shows us the following:

• Relevant extrema correspond to the following: (i) local minima at N = 10, 18, 36, 46, 54
(i.e., noble gases together with the anomalous N = 46) and (ii) local maxima at
N = 24, 29, 42. Let us emphasize that N = 42 possesses half-filled valence subshell 4d.

• The above extrema are common to both Ir and Ip. An extremely slight one (N = 48)
occurs only in position space.
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• Most cations verify Ir > Ip. The scarce and slight exceptions are (position/momentum
differences in parentheses): N = 4 (0.7%), N = 25 (2%), N = 29 (7%), N = 47 (3%)
and N = 48 (0.5%). Maybe N = 29 is the only one observed (hardly) in the figure.

The above discussion on cations is straightforwardly applied to anions, Figure 4b. The
analysis on structure becomes simpler (consider the absence, in the list of available anions,
of systems with a unique electron at the outermost subhell). A similar situation happens
with ordering due to the well-delimited set of atoms with higher mutual information in
momentum space:

• The only local minima, of both Ir and Ip, are noble gases (N = 10, 18, 36, 54). We could
say that the curve consists of four well-defined pieces (except for the ‘gaps’ due to the
aforementioned absences), corresponding to the respective periods.

• The exceptions to rule Ir > Ip are as follows: N = 38, 41–48. Notice that, apart
from N = 38, the rest of the systems correspond to the filling of the 4d subshell.
Position/momentum differences round to 2–3% in all cases.

Summarizing the results for ions, it is observed that (i) less correlated systems include
noble gases systematically, in both spaces, and (ii) the correlation is usually higher in
position space, with some exceptions associated to the filling of d subshells and with very
slight predominance of Ip over Ir.

3.3. Quantum Similarity

A different method of comparing the position–space distributions Γ(~r1,~r2) and
ρ(~r1)ρ(~r2), and similarly in momentum space, is to determine the quantum similarity
among them. This is performed quantitatively in terms of their QSI, which provides a
measure of the overlapping among both distributions. Both QSIr and QSIp are displayed
as functions of the number of electrons N for neutral atoms with N ≤ 103.

The most prominent feature displayed in Figure 5 is the extremely different structure
of the respective curves for position and momentum spaces: the former being roughly
monotonic and the latter with numerous extrema, with many of them being very apparent.
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Figure 5. Quantum Similarity Index QSI in position and momentum spaces, between the two-
electron distribution and the product of one-electron distributions for a neutral atoms with number
of electrons N = 3–103.
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3.3.1. Neutral Atoms: Position Space

The curve QSIr of similarity in position space demands a zoomed display because of
the absence of structure and the extremely narrow interval of values, at least from N ∼ 10
onward. These features are clearly appreciated in Figure 6.

A careful reading of the data suggests the following comments:

• The curve is unimodal, with absolute minimum QSIr = 0.962157 at N = 31.
• The starting and ending heights are QSIr = 0.999459 (N = 3) and QSIr = 0.967576

(N = 103), respectively.
• From the above, it is concluded that QSIr ∈ [0, 9621, 0.9995] for the entire set

N = 3–103.
• As an indication, let us notice that QSIr = 0.9683 for N = 11, a value close to that for

the right-hand-side extremum N = 103. This means that, for the range N = 11–103, the
similarity value belongs to the narrow interval 0.962 < QSIr < 0.969. Consequently,
the only systems with QSIr ≥ 0.97 correspond to 3 ≤ N ≤ 10.

The above comments indicate that, for reasons to be specified, QSIr progressively
decreases for very light systems, until reaching a roughly constant value for the rest of the
Periodic Table.

 0.96

 0.97

 0.98

 0.99

 1

 0  20  40  60  80  100  120
N

QSIr

N=3

N=10

Figure 6. Quantum Similarity Index QSIr ≡ QSI(Γ, ρ1ρ2) in position space, between the two-electron
distribution and the product of one-electron distributions, for neutral atoms with number of electrons
N = 3–103.

Looking for the origin of the different behaviors of QSIr for short and long-N values,
it is worthy to remember that the definition of the Quantum Similarity Index QSI includes
three terms: the overlap measure QSM(Γ(~r1,~r2), ρ(~r1)ρ(~r2)) in the numerator (to be de-
noted as MΓρ) and the respective ‘disequilibria’ within the square root at the denominator
(with simplified notations Mρρ and MΓΓ). Let us explore separately the behavior of each
integral defining QSIr, as is performed in Figure 7.

First, Figure 7a includes the curves for each integral, together with (i) QSIr, and (ii) an
orientative power-like curve to estimate the N-dependence of the integrals. As expected,
QSIr is displayed as a roughly straight line of height close to one. The similar shape
of curves for integrals and the power-like one is observed with soft and monotonically
increasing paths. Let us emphasize that the power N5/2 is only provided for a visual
orientation, and it is not the result of any numerical treatment.

Having in mind that an exact dependence on N, identical and separable for each
integral, would provide a constant QSIr (which is not the case), we feel enforced to perform
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a more detailed analysis of such a dependence. Figure 7b provides the relative behaviors
with respect to some power of N, by means of quotients as M/Nα. In this sense, a given
integral M with a dependence of proportionality to Nα would provide a constant quotient,
displayed as a horizontal line at some height.

Again for orientative powers, scaled curves in Figure 7b are roughly constant for
a wide range of N, estimatedly for N ≥ 20. Notice that the chosen powers imply the
invariance of QSIr for constant quotients. This means that including a factor 1/N2.6 in
the numerator of QSI, and the two factors 1/N2.5 and 1/N2.7 within the square root in
denominator, keeps the value of QSI unchanged. Thus, the analyses of QSIr are equivalent,
including the mentioned factors.

Focusing now on the region of light systems, some differences are appreciated. The
main one corresponds to the deviation from the respective constant values. However,
additionally, it is observed that the respective deviations occur at different places and with
different amplitudes. Most probably, this causes the ‘global deviation’ of QSIr from the
constant value reached for heavier systems.

 0.01
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/50

(a)
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Figure 7. (a) Integrals defining QSIr ≡ MΓρ/(Mρρ MΓΓ)
1/2, and (b) integrals scaled with powers of

N for neutral atoms with number of electrons N = 3–103. Atomic units (a.u.) are used.

What is especially remarkable is the unimodal shape of MΓρ and MΓΓ in the region
of low N, while Mρρ maintains an increasing behavior. Let us remember that Mρρ is
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included at the denominator of QSIr so that the different and increasing behavior of Mρρ

in that region provokes a decrease in QSIr, as previously displayed in Figure 6. Thus,
it is concluded that the integral containing only the uncorrelated distribution ρ(~r1)ρ(~r2)
is responsible for the decrease in QSIr for low N, once compared to the two integrals
including the correlated function Γ(~r1,~r2).

3.3.2. Neutral Atoms: Momentum Space

Local minima of the momentum similarity QSIp are clearly appreciated in Figure 5
for all alkalines, the only systems below the value 0.9, together with the pair of anomalous
N = 24, 29, as will be discussed below.

On the opposite, the highest QSIp is reached for systems with p valence subshell,
belonging to the narrow interval QSIp ∈ [0.981, 0.9995]. Moreover, alkaline-earth N = 4
with QSIp = 0.996 belongs to it, and the most uncorrelated system N = 46 is the unique
one above that interval (QSIp = 0.99990). Other alkaline-earths are within the values of
0.953 < QSIp < 0.971.

Before continuing the discussion in detail, let us observe that most heavier systems
(namely, N = 56–103 except the aforementioned alkalines and alkaline-earths and those filling
the 6p subshell) display extremely similar values. In fact, inequalities 0.951 < QSIp < 0.962
apply for them, with only two exceptions: N = 78, 79 is displayed slightly below, with
respective similarities 0.950 and 0.948. Their anomalies in shell-filling (i.e., half-filled inner
6s subshell) are revealed along the QSIp curve in the figure.

The analysis of systems with d valence subshells appears, in some cases, more difficult
because it requires considering the occupation of inner subshells. For systems N = 21–30
with outermost 3d subshell, the presence of the above-mentioned apparent peaks N = 24, 29
is due to the promotion of an electron from the inner 4s. Thus, they deviate notably from
the range [0.948, 0.954] to respective minima 0.847 and 0.829.

For the atomic set N = 39–48 corresponding to the filling of 4d, it is necessary to
distinguish different cases. As remarked above, N = 46 is especially relevant due to its
highest uncorrelation and because it is the unique system with a inner 5s subshell that
is completely empty. On the other hand, for atoms on that set with 5s completely filled
the QSIp belongs to [0.953, 0.955]. Finally, for anomalous systems with semi-filled 5s, the
similarities are as low as 0.917 < QSIp < 0.933, with the unique exception N = 43 (0.953,
as for non-anomalous 5s4d).

Here, again a study of the integral components is addressed. As was performed in
the position case, we adopt the simplified notation MΠγ, MΠΠ and Mγγ for the respective
momentum–space integrals, displayed in Figure 8. It is observed that (i) curves of the three
integrals are very similar, appearing as ‘embedded’, and (ii) in overall, all integrals display
local extrema at the positions where QSIp does.

Differences among curves do not consist merely on a shifting factor, which is what
would produce a constant similarity. For illustration, QSIp varies remarkably in passing
from a closed-shell system to an alkaline and similarly from this to an alkaline-earth. The
reason is the different rate of change for the disequilibrium Mγγ of the one-particle density
as compared to the other two integrals. There exist other examples: The ratios between the
respective integrals in passing from N = 3 to N = 4 are 3.4 and 3.5 (for MΠΠ and MΠγ,
respectively), while Mγγ decreases by a factor 0.5. For the marked peak N = 46, the ratios
are (2.2, 2.2, 2.6) when compared to its preceding neighbor N = 45 and (1.6, 1.6, 1.9) with
respect to its succeeding one N = 47. In both cases, the value that differs corresponds to
integral Mγγ.
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Figure 8. Integrals defining QSIp ≡ MΠγ/(Mγγ MΠΠ)1/2, for neutral atoms with number of elec-
trons N = 3–103. Atomic units (a.u.) are used.

3.3.3. Singly Charged Ions

The above study on correlation in neutral systems can be straightforwardly extended
to ionized ones by using the corresponding Hartree–Fock wavefunctions provided in
Ref. [62]. Their availability occurs for singly charged ions with N ≤ 54 but, in the case of
anions, excludes those with a unique electron in the outermost subshell.

Figure 9 displays QSI among correlated and uncorrelated distributions for a given
system, with a number of electrons N, in both conjugate spaces: position in Figure 9a and
momentum in Figure 9b. This was performed for neutrals (i.e., atoms with nuclear charge
Z = N), cations (Z = N + 1) and anions (Z = N − 1).

All position–space curves follow roughly the same path, as shown in Figure 9a. It is
noticeable that, as for neutrals, the ionic curves are unimodal, and their absolute minimum
is also characterized as the next one once the 3d subshell becomes completely filled. There-
fore, the minimum occurs at N = 31 for neutrals and cations and at N = 32 for anions (let
us remind the reader that N = 31 is not included in the available set of anions).

Another interesting feature that is hardly observed in the figure for medium-heavier
systems is the ordering of the values QSIr(cation), QSIr(neutral) and (if included)
QSIr(anion), for a given N (i.e., the relative vertical positions of the curves Z = N and
Z = N ± 1 at location N). In the following, the inequalities involving QSIr(anion) refer to
the cases in which the anion is available, focusing only on the neutral-cation relationship in
other cases.

Two orderings appear exactly:

(i) QSIr(anion) > QSIr(neutral) > QSIr(cation) for systems with N ≤ 30;
(ii) The reversed one QSIr(anion) < QSIr(neutral) < QSIr(cation) for N > 30.



Entropy 2022, 24, 233 18 of 23

 0.96

 0.97

 0.98

 0.99

 1

 0  10  20  30  40  50

N

QSIr

Cations

Anions

Neutrals

(a)

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50
N

QSIp

3

11

19

24
29

37

46

47

Cations
Anions

Neutrals

(b)

Figure 9. Quantum Similarity Index QSI between the two-electron distribution and the product of
one-electron distributions, for neutral atoms and some singly charged ions with a number of electrons
N ≤ 54 in (a) position space (QSIr) and (b) momentum space (QSIp). Atomic units (a.u.) are used.
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The first ordering (displayed for lighter systems) implies that, keeping N fixed, simi-
larity decreases as the nuclear charge Z increases. However, the opposite occurs for heavier
systems with completely filled 3d subshells: Increasing Z produces correlated and uncorre-
lated distributions to augment their similarity. Perhaps surprisingly, the exchange between
the neutral-anion curves occurs at exactly the same point as for the neutral-cation ones.

Therefore, it appears essential, for the study of position–space correlation based on
similarity in neutral atoms and singly charged ions, to distinguish the cases in which a d
subshell of the system is fulfilled or not.

A similar analysis in momentum space is more difficult, as observed in Figure 9b. How-
ever, in spite of the absence of a systematic ordering, the relevance of atomic shell-filling
for the interpretation of momentum curves is observed. This is more clearly appreciated in
Figure 10, where QSIp for the three atomic species (cations, neutrals and anions) is drawn
separately into respective figures. To visualize more clearly the structural patterns, an
appropriate vertical range has been chosen in spite of leaving out a couple of systems (the
previous Figure 9b encloses all of them).

Maybe the most relevant feature, common to the three figures, is the specific behavior
along different types of subshells and, at times, the global tendency of a given type. Some
comments are in order:

• Lines of high slope are displayed for the transitions from systems with half-filled
external s subshell to completely filled ones, thus with a relevant loss of correlation.
This applies to neutrals and cations (the anions set does not include the half-filled
case). A global decreasing tendency is observed in the three figures for both s-filling
cases.

• If the valence subshell is a np one, values are close to unity and quite close for lighter
systems. Along a given p subshell, an increasing behavior is observed, roughly
displayed for low n in anions.

• Valence subshells 3d and 4d require a more detailed analysis. Figure 10a for cations
displays prominent minima at N corresponding to the cases of d subshell (i) with a
unique electron, (ii) half-filled or (iii) completely filled. These two filling cases are
clearly appreciated also in Figure 10b for neutrals. Additionally, both for cations and
neutrals, it appears that there is a clearly distinguished N = 46 corresponding to the
unique system with empty internal 5s subshell (structure 5s04d10), with QSIp roughly
unity. As soon as an electron is added, similarity decreases markedly.

• Regarding anions, in Figure 10c, the half-filled case in the 3d subshell marks a change
of trend, from increase to decrease. A change of decreasing rate is observed in 4d, after
a very apparent fall in passing from the inner 5s2 to 5s1.

In summary, the structural features of QSIp are very similar for the three atomic
species with s or p valence subshells, but differences among them are much more noticeable
in the case of d valence subshells.
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Figure 10. Quantum Similarity Index QSIp in momentum space between the two-electron distribution
and the product of one-electron distributions for atomic systems with a number of electrons N ≤ 54:
(a) cations, (b) neutrals and (c) anions.
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4. Conclusions

Mutual information, I, and Quantum Similarity Index, QSI, have been applied as com-
parative functionals, for a large set of many-electron systems, by means of their respective
one-electron and two-electron distributions. The systems considered include both neutral
atoms (N = Z) and singly charged ions (N = Z± 1). An in-depth study was performed
by considering (i) both position/momentum conjugate spaces and (ii) neutral systems
with a nuclear charge up to Z = 103 and singly charged ions (cations and anions) with a
number of electrons as far as N = 54. The differences between the monoelectronic and
the electron pair densities can be interpreted as a measure of the electron correlation of
the system. This means that, in both spaces, determining electron correlation is equivalent
to measuring differences between the electron pair distribution in a given space and the
product of one-electron distributions in the same space.

Those differences, in terms of mutual information I, have been studied in the past [60]
for neutrals atoms with a number of electrons up to N = 36. The present work provides an
expanded study, reaching up to N = 103 and also including ionized systems. In performing
this, the posterior wavefunctions of Koga are employed. We could say that, overall, the
conclusions derived from that previous work regarding structure and ordering of Ir and Ip
for neutral atoms within the range N = 3–36 are here extended up to N = 103. Perhaps
the most relevant differences are as follows: (i) the existence of additional systems with
higher correlation in momentum space than in position space, once again associated with
the filling of d valence subshells; and (ii) the prominent local minimum N = 46, in both
spaces, in addition to those of noble gases. Summarizing the results for ions, it is observed
that (i) less correlated systems include noble gases systematically, in both spaces, and (ii)
correlation is usually higher in position space, with some exceptions associated to the filling
of d subshells and with very slight predominance of Ip over Ir.

A similar analysis has been performed in terms of the Quantum Similarity Index,
QSI. For neutral atoms, the curve QSIr of similarity in position space is characterized by
the absence of structure and the extremely narrow interval of values. The QSIr curve is
unimodal and belongs to the narrow interval 0.962–0.969 for most systems, except for the
lighter ones N ≤ 10. In momentum space, QSIp has a richer structure, with apparent local
minima for all alkalines, together with the pair of anomalous systems N = 24, 29.

The study on correlation in neutral systems has been straightforwardly extended to
ionized ones (anions and cations). All position–space curves (neutrals and ions) follow
roughly the same path. It is noticeable that, as for neutrals, the ionic curves are unimodal,
their absolute minimum determined also by the filling of the 3d subshell. Another in-
teresting feature is the ordering, for fixed N, of the values for the three atomic species:
For lighter systems, similarity decreases as the nuclear charge Z increases. However, the
opposite occurs for heavier systems, i.e., increasing Z produces correlated and uncorrelated
distributions that augment their similarity. In spite of the absence of a systematic ordering,
the relevance of atomic shell-filling for the interpretation of the curves in momentum space
is observed. The structural features of QSIp are very similar for the three atomic species
with s or p valence subshells, but differences among them are much more noticeable in the
case of d valence subshells.
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