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ABSTRACT

Motivation: The application of information encoded in molecular
networks for prognostic purposes is a crucial objective of systems
biomedicine. This approach has not been widely investigated in
the cardiovascular research area. Within this area, the prediction of
clinical outcomes after suffering a heart attack would represent a
significant step forward. We developed a new quantitative prediction-
based method for this prognostic problem based on the discovery of
clinically relevant transcriptional association networks. This method
integrates regression trees and clinical class-specific networks, and
can be applied to other clinical domains.
Results: Before analyzing our cardiovascular disease dataset,
we tested the usefulness of our approach on a benchmark
dataset with control and disease patients. We also compared it to
several algorithms to infer transcriptional association networks and
classification models. Comparative results provided evidence of the
prediction power of our approach. Next, we discovered new models
for predicting good and bad outcomes after myocardial infarction.
Using blood-derived gene expression data, our models reported
areas under the receiver operating characteristic curve above 0.70.
Our model could also outperform different techniques based on
co-expressed gene modules. We also predicted processes that may
represent novel therapeutic targets for heart disease, such as the
synthesis of leucine and isoleucine.
Availability: The SATuRNo software is freely available at
http://www.lsi.us.es/isanepo/toolsSaturno/.
Contact: inepomuceno@us.es
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 BACKGROUND
A crucial objective of systems biomedicine is the application
of information encoded in molecular networks for prognostic
purposes. Standard approaches to biomarker discovery are based
on the identification of differentially expressed genes or proteins.
However, the multifactorial nature of common complex diseases
limits a discovery process that relies on the assumption that
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genes act independently. Furthermore, it is known that powerful
prognostic biomarkers may be encoded by genes that are not
highly differentially expressed across control and disease patients
(Azuaje et al., 2010) and vice versa, and differentially expressed
genes are not always strong biomarkers (Devaux et al., 2010).
A systems-level approach can provide insights into the interplay of
genes and their association with clinical phenotypes. In comparison
with cancer research, network-based prognostic approaches have
not been widely investigated in the cardiovascular research area.
Despite advances driven by functional genomics, there is a need to
propose new prognostic methodologies that exploit the outcomes
of systems biology in cardiovascular research. Within this area, the
prediction of clinical outcomes after suffering a heart attack and
personalized medicine would represent a significant contribution to
translational research (Azuaje et al., 2009). In this article, we report
a new supervised prediction method for this prognostic problem,
which is based on the discovery of clinically relevant transcriptional
association networks.

There are several models to infer gene–gene association
networks from microarray data. These models range from relatively
straightforward correlation-based methods to more sophisticated
models, such as Bayesian network models. In standard correlation-
based methods, the Pearson’s coefficient has been used to extract
gene–gene dependencies (D’Haeseleer et al., 1998). Different
versions of this method exist, such as one by Obayashi and Kinoshita
(2009) that uses correlation ranks instead of correlation values.
In De la Fuente et al. (2004), the authors used Partial Pearson’s
correlation to extract associations between pairs of genes when
this association can be explained by means of a third gene. Other
methods are based on Gaussian graphical models. In these models,
two genes are related if and only if their association can be explained
by other genes in the dataset (Dobra et al., 2004). These methods
are based on pairwise measurements and concepts of statistical
independence. Additionally, there are other methods that analyze
prior knowledge. For example, protein–protein interactions have
been integrated with gene expression profiles to obtain networks
as functional modules (Ulitsky and Shamir, 2007).

In this article, we analyzed gene expression biosignatures relevant
to the prediction of clinical outcome after myocardial infarction
(MI). The motivation of this study is to characterize two different
groups of patients, who exhibit different clinical outcomes. In this
context, the benefit of a network-based approach is 2-fold: (i) to
improve systems-based understanding of the biological problems
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through quantitative descriptions of functional associations relevant
to phenotypes and (ii) based on such knowledge, to contribute
new classification models of disease. Our method also provides
qualitative descriptions of mechanisms defining clinical classes that
can be interpreted by clinical experts. In particular, we aimed to
provide novel understandings of the molecular mechanisms that may
drive ventricular dysfunction in post-myocardial infarction patients.
Before reporting these results, we first present a comparative
analysis performed on a published benchmark dataset.

Our method discovers transcriptional association networks with
prognostic value for each clinical category. The networks are
inferred from microarray data based on an unsupervised learning
algorithm reported in Nepomuceno-Chamorro et al. (2010). This
algorithm estimates the dependency between genes for a localized
subspace of expression profiles instead of global similarities. The
latter is the case of traditional correlation-based methods. In this
article, we present a supervised prediction version of the approach
proposed by Nepomuceno-Chamorro et al. (2010). Our method
is also freely available as a Java-based application: Supervised
prognostic Approach Through Regression Networks (SATuRNo).

Because we are interested in characterizing phenotype-specific
networks, we built them taking into account the gene expression
changes that occur in patients with the same clinical category. Hence,
genes that are included in both networks are relevant to characterize
both groups of patients, although different gene expression relations
may be involved. Those genes that are unique to each class may
represent significant components altered in one of the clinical
conditions, e.g. poor prognosis. In addition, network differences
may be associated with lose or gain of function, or the presence
of compensatory functional mechanisms. Furthermore, the resulting
networks are relevant for their prediction ability. Given a new
patient, the method can predict the clinical category of this patient
using network-based information from each class. This patient will
be assigned to the class whose network is the likeliest to estimate
the observed gene expression pattern. Hence, class-specific networks
capture gene expression changes observed in a clinical category, and
together are used to differentiate between patients.

The remainder of this article is organized as follows. In Section 2,
a summary of the method is presented together with an explanation
of how the supervised prediction is carried out. Section 3 reports
results and discussions using different datasets, network inference
approaches and classification models. The prediction power, as
well as potential clinical relevance, of our approach was estimated
by several classification performance measures and functional
characterizations. A key outcome of this investigation was the
discovery of new biomarkers for distinguishing between clinical
response categories in MI patients: good outcome (normal left
ventricular function) and bad outcome (left ventricular dysfunction).
The last section provides conclusions and possible future research
directions.

2 METHODS
In this study, we aimed to discover new gene expression biosignatures
relevant to the prediction of ventricular dysfunction after MI. To deal with this
prognostic problem, we developed SATuRNo as a new supervised prediction
method based on the discovery of clinically relevant transcriptional
association networks. This means that SATuRNo discovers transcriptional
association networks with prognostic value for each clinical category. The

Fig. 1. Schematic view of the proposed method. The first step involves
building clinically relevant gene association networks from gene expression
data of patients with the same clinical category. These networks are built
based on the linear models generated by the model tree induction algorithm
called M5P (Witten and Frank, 2005), an extension of regression tree
algorithm. The second step involves predicting the clinical category of a
new patient through the inferred networks. The prediction is based on the
relative error between the true and predicted gene expression values of those
genes involved in the inferred networks.

networks were inferred from microarray data based on an unsupervised
learning algorithm reported in Nepomuceno-Chamorro et al. (2010).
SATuRNo is a supervised prediction version of that algorithm.

Our method consists of two main steps (Fig. 1). The first step involves
inferring clinically relevant gene association networks from gene expression
data. Each network is inferred from gene expression of patients with the
same clinical category. To infer these networks, the unsupervised learning
algorithm analyzes each gene by taking into account the remaining genes
as inputs to a mathematical model that estimates the expression value
of that gene. The latter is done by means of linear regression functions
using M5’ model tree algorithm (Witten and Frank, 2005). This technique
focuses on building linear models to separate areas of the search space,
i.e. optimal partitions of gene expression samples. Each linear model
represents localized similarities, i.e. specific groups of sample–sample
relationships. Furthermore, this technique constructs linear models under all
samples (global similarity) if the optimal partition is defined by the complete
set of gene expression samples. Consequently, we can state that this method
favors more localized similarities over global similarities. The second step
involves predicting the clinical category of a new patient (test mode) through
the inferred networks. Each network is based on localized linear models,
which estimate expression values of all the genes. The prediction is based
on the relative error between the true (i.e. observed expression value in
the dataset) and predicted expression values of those genes involved in the
inferred networks.
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2.1 Building networks
The first step involves the inference of class-specific networks. To this aim,
genes from the microarray are analyzed in an iterative process. In each
iteration, a gene is taken as a target gene and the remaining genes as inputs to
a mathematical model that estimates the expression value of the target gene.
These input genes are used for splitting the search space into subspaces,
i.e. into subset of gene expression samples to analyze localized similarities. In
each subspace, a localized linear model between the target gene and different
inputs genes is built by applying model trees. M5’ is a model tree algorithm,
an extension of the regression tree algorithm, which has linear regression
functions at the leaves.

Before describing our method in more detail, basic definitions are
provided. Let M be a microarray dataset, i.e. the measurements space,
which can be defined as: M = (C,G,L,Class) where C ={1,2,...n} is a
finite set of gene expression samples, G={1,2,...m} is a finite set of genes,
Class={c1,c2,...cp} is a finite set of clinical categories. Finally, L is a n×m
gene expression matrix. The matrix L can be defined as: L= (vij) with vij

representing the observed expression value of gene j under the sample i.
Throughout the article, we will refer to gene expression samples as patients
and to clinical categories as classes.

The class-specific network discovery algorithm is implemented as follows.
First, the microarray data are divided into p parts, each of them represents
the microarray set Mi formed by patients of the clinical class ci ∈Class, with
1≤ i≤p. The aim of this partition is to build the underlying class-specific
network that represents each group of patients with the same clinical class ci.
Second, a network is built from each Mi. This is done by generating a forest
of trees, i.e. a model tree is built for each gene gj ∈G with 1≤ j≤m. Previous
research conducted by (Zhang et al., 2003) has shown that this approach may
be more biologically interpretable than a random forest (Breiman, 2001) or a
single tree. In our method, the resulting forest of trees is called FT , and it can
be defined as FT ={MT1,MT2,...MTm} where MTj is the model tree built for
the target gene gj . We used the M5’ algorithm to build model trees (Witten
and Frank, 2005). M5’ is an extension of regression tree algorithms that
constructs tree-based piecewise linear models, i.e. it constructs several linear
models at the same time, each of them identified by a leaf in a tree. In this
way, the method favors more localized similarities over global similarities.

Finally, the FT is pruned taken into account a threshold value θ. This
pruning process consists in removing those MTj with relative error ε≥θ.
This error can be defined as follows:

ε=
∑ |̂ai −ai|∑|ai −a|

where a is the true target gene expression value, â is the estimated target gene
expression value for a patient i on the dataset. Each model tree belonging to
FT θ estimates or predicts the target gene expression value by means of the
linear models detected in its leaves. Gene association sets A={(gx,gy)} are
defined as follow:

• gx is the target gene of a MTx with ε≤θ, i.e. its model tree is not
removed after the pruning phase.

• gy is a gene that belongs to a linear model from MTx , i.e. one of the
independent variable of a linear model defined as LM :gx =∑

k akgk .

2.2 Network-based patient classification
This second step involves predicting the clinical class of a new patient
through the inferred clinical class-specific networks. The new patient can
be classified into one of the p classes after p networks have been built.

Let GNi be a network from a ci class with (1≤ i≤p), and let LMGNi be
the set of linear models that constitute this network, i.e. those representing
the set of associations A in network GNi. Given a new patient, the relative
error between the predicted and the true gene expression values defined by
each linear model from LMGNi is calculated. The mean value of such relative
prediction errors are used to assign patients to classes.

The computing cost of building the forest of trees is m times the cost
of building a M5’ tree, i.e. O(m2nlog(n)), where m is the number of

genes and n the number of patients. Extracting the gene–gene associations
is an iterative process which has a linear complexity O(m). Finally, the
procedure of estimating the expression value of each target gene has a linear
complexity. Consequently, the overall computing cost of our methodology
is O(m2nlog(n)).

2.3 Datasets
Before evaluating our method on our cardiovascular research problem, we
tested our approach on a published benchmark dataset.

2.3.1 The benchmark dataset. As a benchmark dataset, we used the
dataset reported in Dunckley et al. (2006) that consists of 13 control and
20 Alzheimer’s disease (AD) brain tissue samples. This single cell gene
expression dataset includes 35 722 gene probesets. We compared our method
to several transcriptional association network algorithms and classification
models. The experiments reported here focus on a pre-processed version of
this dataset, which included a total of 1663 genes (Dunckley et al., 2006) as
described in Ray et al. (2008).

2.3.2 The heart dataset. This dataset was generated at the Laboratory of
Cardiovascular Research and the Centre Hospitalier of Luxembourg. This
research was approved by the local ethics committees and written informed
consent was obtained from all patients. This dataset includes 32 patients with
acute MI. Gene expression data were extracted from blood samples obtained
on the day of MI. The clinical outcome of these patients, i.e. their prognostic
class, was evaluated after 30 days post-MI by means of the ejection fraction
(EF). The EF is an indicator of the blood pumping capacity of the heart
and is measured by echocardiography. Our dataset included 16 patients with
good prognosis (EF >40%) and 16 with ventricular dysfunction, i.e. bad
prognosis (EF ≤40%). Throughout the article, we will refer to this dataset
as the heart dataset, and to the clinical outcomes as good and bad prognosis
classes, respectively.

2.4 Software and experimental setting
SATuRNo was implemented as a Java stand-alone application and a prototype
can be downloaded from http://www.lsi.us.es/isanepo/toolsSaturno/. The
leave-one-out cross-validation (LOOCV) was applied to estimate the
classification performance of all the models investigated. The LOOCV
technique implies to run the software as many times as the number of patients
included in the input microarray dataset. Each SATuRNo’s run was executed
in one of the nodes of a computing platform that used the Sun Grid Engine
queuing system. Each node was a dual-core processor with 4 GB memory.
Furthermore, we have run the Windows version tools of PPC and Matisse on
a personal computer with dual-core and 4 GB memory.

3 RESULTS AND DISCUSSION

3.1 Benchmark analysis
We first assessed the predictive performance of our approach
on the benchmark dataset. In this and subsequent disease-
driven analyses, we compared our approach to other published
techniques on the basis of two tasks: network inference and
classification using the inferred networks. Consequently, to compare
the predictive capability of our approach against other methods, we
implemented prognostic models that differ in the way class-specific
transcriptional association networks are inferred, and in the
supervised classification methodology applied on the network
information.

For network inference, we applied a Pearson correlation (PC)-
based method (?), Partial PC-based method (De la Fuente et al.,
2004) and the Matisse tool (Ulitsky and Shamir, 2007). Matisse
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detects functional modules using gene expression and protein
interaction network data. After building class-specific networks, the
genes involved in these networks were used as inputs to several
classifiers: nearest neighbours (IB1), decision trees (C4.5 algorithm)
and Naive Bayes classifiers.

Results reported here were obtained with a threshold value
θ=15%, i.e. the model trees with relative error greater than θ were
removed. The threshold value theta was set within the LOOCV
procedure. This parameter was optimized: (i) to achieve good
classification performance and (ii) to obtain compact networks with
a tractable size that can facilitate expert interpretation and future
experimental validation. The parameters of the benchmark network
inference methods discussed here were set to generate networks of
sizes (34 nodes) comparable to those obtained with our approach.
In Table 1, several standard classification performance measures
are shown, such as the representative classification accuracy (Acc.),
the true positive rate (TPR), false positive rate (FPR), specificity,
sensitivity and the area under the receiver operating characteristic
curve (AUC).

In general, we showed that our approach can outperform the
other methodologies. For example, our approach showed one
of the highest Acc. values (90.9%). Only the Partial PC-based
method obtained a better performance when combined with the
IB1 algorithm. However, Partial PC-based method obtained the
same sensitivity value. In other words, all poor prognosis patients
tend to be recognized as having a poor clinical response. The fact
that only Partial PC-based method obtained a better performance
when combined with the IB1 algorithm suggests that the networks
estimated by our approach can provide the basis for relatively
accurate classification models.

We also compared key topological parameters of the networks
produced by these methods. The number of nodes, edges, connected
components, diameter and density are shown in Table 1 of
Supplementary Material. Note that the density is low in all
cases, i.e. the ratio of the number of edges and the number of
possible edges is similar. The intersections between the resulting
networks are shown in Tables 2–4 of Supplementary Material. Note
than only the resulting networks from SATuRNo and CoExpress

(http://bioinformatics.lu/CoExpress) has gene–gene associations in
common. The remaining possible intersections have genes but not
associations in common.

3.2 Systems-based prognosis after MI
The method identified, from an original input set of 15 307 genes,
networks with 17 edges (gene–gene associations) and 19 nodes
(genes) in patients with good prognosis, and a network with 59
edges and 48 genes in patients with bad prognosis (Fig. 2). The
bad and good prognosis networks were built from 12 and 5 linear
models, respectively. Representative Acc. values of 72% were
obtained (LOOCV). These class-specific networks have eight genes
in common (Table 2). In the case of the bad prognosis network, its
8 genes were involved in 23 transcriptional associations, whereas
in the case of good prognosis its 8 genes included 13 different
associations with other genes. It is worth mention that these networks
have a tractable size that facilitates expert interpretation and future
validations. Furthermore, the good prognosis network inferred by
our method is smaller than that from the bad prognosis category.
This indicates that the latter group requires more information to be
adequately characterized than the good prognosis group. Either, this
may suggest that the bad prognosis group is more heterogeneous
(genetically or clinically) than the good prognosis one, or that the
larger number of associations in the bad prognosis group reflects a
possible compensatory mechanism for the disruption of molecular
pathways.

In this analysis, a forest of model trees (MT ) was built in which
MT with a relative error ε greater than 15% were removed. As
explained above, this pruning has been made in order to select model
trees with low prediction errors. This threshold value was the one
that consistently generated relatively small networks with reasonable
classification Acc. We also obtained other prognosis models with
higher Acc. values, but with relatively very large networks (more
than 500 nodes).

Using the CoExpress tool (?), we applied the PC-based method
and we compared results with the networks provided by our
approach. Several topological parameters (i.e. diameter, number

Table 1. Results of the benchmark dataset: comparative analysis

Method classifier Our approach
(SATuRNo)

PC-based method Partial PC-based method Matisse method

IB1 C4.5 NB IB1 C4.5 NB IB1 C4.5 NB

Number of genes 34 29 79 20

Representative Acc. 90.9% 87.87% 78.78% 87.87% 93.93% 63.63% 84.84% 90.9% 87.87% 87.87%
Weighted Avg. TPR 0.90 0.87 0.78 0.87 0.93 0.63 0.84 0.90 0.87 0.87
Weighted Avg. FPR 0.08 0.16 0.24 0.13 0.06 0.39 0.15 0.14 0.13 0.13
Specificity 0.84 0.76 0.69 0.84 0.92 0.53 0.84 0.76 0.84 0.84
Sensitivity 0.95 0.95 0.85 0.90 0.95 0.70 0.85 1 0.90 0.90
AUC 0.89 0.86 0.70 0.91 0.937 0.64 0.92 0.88 0.94 0.93

We compared our approach to other published techniques on the basis of two tasks: network inference and classification using the inferred networks. For network inference, we
applied a PC-based method (?), Partial PC-based method (De la Fuente et al., 2004) and the Matisse tool (Ulitsky and Shamir, 2007). After building class-specific networks, the
genes involved in these networks were used as inputs to several classifiers: nearest neighbors (IB1), decision trees (C4.5 algorithm) and Naive Bayes classifiers. Several measures
as representative accuracy, TPR, FPR, specificity, sensitivity and AUC values are shown. The representative accuracy is the proportion of correctly classified patients. The TPR and
FPR are the weighted average true and positive rate. The specificity is the proportion of control patients, which were recognized as control category. The sensitivity is the proportion
of disease patients, which were recognized as disease category. Finally, the AUC values represent the area under the receiver operating characteristic curve. Avg., average.
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Bad prognosis Good prognosis

Fig. 2. Clinically relevant gene association networks obtained from the heart dataset. Both networks were built from a microarray with 15 307 genes and the
forest of trees was pruned using the threshold value θ=15. Furthermore, the representative accuracy of these prognostic transcriptional networks was 72%
(LOOCV).

Table 2. Genes in common between the networks from heart dataset

Gene name Full name Location Type

BANF1 Barrier-to-autointegration factor N O
RPS4Y1 40S ribosomal protein S4

Y isoform 1 C O
OBFC2B SOSS complex subunit B1 U O
APOF Apolipoprotein F ES T
CCNO Cyclin-O N TR
LOC125595 gene model ab initio U U
HIST1H2AE Histone H2A type 1-B/E N O
AK091188-2203 – U U

The overlap between networks from good and bad prognosis is small and it can be
observed at the node level only, i.e. there are not edges in common. ES, extracellular
space; C, cytoplasm; N, nucleus; U, unknown; O, other; T, transporter; TR, transcription
regulator.

of genes and number of associations) are shown in Table 3. The
networks obtained by PC-based method, with 0.95 as a threshold
correlation value, have a huge number of nodes and edges in
comparison with the networks obtained by our approach. Note that
larger networks are obtained for less stringent threshold values.
The capacity of our method to infer compact networks makes it
particularly suitable to expert interpretation and future experimental
validations.

We compared the predictive capability of our approach against
standard classification models based on gene expression data. We
trained several classifiers using the datasets under study. We trained
‘lazy learning’ classifiers, classifiers based on decision trees and
probabilistic classifiers based on Bayesian statistics. Finally, we
trained support vector machine classifiers, which have been shown
to be powerful and robust models in cancer and other research areas
[see (Chu and Wang, 2005) or (Lee and Lee, 2003)]. Although
SATuRNo did not outperform all the classifiers, it showed higher
classification accuracy than most of the models, including support

Table 3. Topological network parameters from heart dataset

Method Bad prognosis Good prognosis

Nodes Edges Diameter Nodes Edges Diameter

PC-based method 4297 16 407 21 3322 6228 29
SATuRNo 48 59 8 19 17 4

The networks obtained by PC-based method, with 0.95 as a threshold correlation value,
have a huge number of nodes and edges in comparison with the networks obtained by
our approach.

vector machine classifiers (see Supplementary Material with details
in Table 5). This result suggests that networks estimated by our
approach can provide the basis for relatively accurate classification
models. These results encouraged us to investigate our method as
a new strategy to discover potential biomarkers of clinical outcome
after myocardial infarction. This is specially motivated by the
fact that our method, unlike traditional approaches, can provide
mechanistic insights of processes and associations underlying the
clinical conditions through specific network-based visualizations.

We also compared the results reported by our approach against
different classification models, whose inputs represented the genes
detected by CoExpress. Our approach showed better classification
performance as estimated by different indicators (Table 4), including
the maximum AUC. The partial PC-based and Matisse methods
were unsuitable to generate inputs to classification models because
of the large number of genes in the input microarray (more than
15 000 genes). We used the software tools (Windows version)
provided by De la Fuente et al. (2004) and Ulitsky and Shamir
(2007). These experiments were run on a dual core personal
computer with 4 GB memory. We emphasize that it was not our
goal to provide a new optimal implementation of the PPC and
Matisse method to run in a parallelized way.
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Table 4. Heart dataset: comparison with others classifiers

Method classifier SATuRNo PC-based method

IB1 C4.5 NB

Representative Acc 72.41% 65.62% 50% 53.12%
Specificity 0.78 0.68 0.56 0.50
Sensitivity 0.67 0.62 0.43 0.56
AUC 0.72 0.65 0.39 0.59

Comparison between the performance of SATuRNo against different classification
models whose inputs represented the genes detected by PC-based method (CoExpress).

3.2.1 Gene Ontology analysis The resulting networks were
analyzed in the context of Gene Ontology (GO) with the
BINGO system (Maere et al., 2005). Detection of statistically
overrepresented GO terms was done with the hypergeometric test,
multiple-testing adjustments with the Benjamini and Hochberg false
discovery rate and a significance level α=0.05.

This analysis did not identify GO biological process terms
as significantly overrepresented in the bad prognosis network
discovered by our approach. In the good prognosis network,
this analysis identified the following GO biological process as
significantly overrepresented: isoleucine catabolic process (GO id:
6550) and leucine biosynthetic process (GO id: 9098). These
processes are particularly relevant in the context of remodeling
after myocardial infarction. Indeed, the small leucine-rich protein
biglycan, a component of the extracellular matrix of the heart, plays a
pivotal role in cardiac remodeling, notably through the formation of
a collagen matrix that aids in scar formation and in the preservation
of left ventricular function (Westermann et al., 2008). Another small
leucine-rich proteoglycan, decorin, prevents cardiac fibrosis, thereby
positively affecting left ventricular remodeling (Li et al., 2009).
Therefore, our networks, which were inferred from gene expression
profiles derived from bad and good prognosis patients, identified
potential prognostic biomarkers. Bad and good prognosis classes
referred to patient groups with and without ventricular dysfunction
after suffering a heart attack, respectively.

3.2.2 Literature and pathway knowledge mining To
further determine the potential biomedical relevance of
our class-specific networks, we performed large-scale
mining of the literature using the Agilent Literature Search
(http://www.agilent.com/labs/research/litsearch.html) and DAVID
Tools. The former is a Cytoscape plug-in (Shannon et al., 2003)
that identifies published gene–disease associations encoded in
PubMed abstracts. We implemented a search constrained by the
keywords ‘heart failure’, ‘cardiovascular disease’ and ‘myocardial
infarction’. The genes EDF1, BCAM and DLK1 were found to be
associated with these search terms. The David tool (Huang et al.,
2007a, b; Sherman et al., 2007), given a list of genes, allowed us
to search for gene–disease associations in the Genetic Association
Database (Becker et al., 2004) and the OMIM database (Hamosh
et al., 2005). In this case only an association between BCAM and
cardiovascular disease was found. The genes APOF (which appears
in the two networks) and DCTN1 (good prognosis network) have
previously been associated with neurological disorders including
Alzheimer’s disease (Kabbara et al., 2004; Vilarino-Guell et al.,
2009). Although these associations will require further experimental

and computational analyses, these findings are consistent with
research that have found functional links between cardiovascular
disease and Alzheimer’s disease (Rosendorff et al., 2007; Stewart,
1998).

Finally, we applied the Ingenuity Pathway Analysis (IPA)
(Ingenuity� Systems, Redwood City, CA, www.ingenuity.com )
to explore additional associations between our prognostic networks
and molecular pathways. Examples of significant associations
detected are as follows: Cell Cycle, Hematological Systems
Development and Function, Hematopoiesis (P=10−22 Fisher’s
exact test) and Cell Death, Hematological Disease, Immunological
Disease (P=10−19). From good prognosis, IPA reported Cardiac
Edema, Cardiovascular Disease (P=0.001) among others. For
more information see Supplementary Table S6 and S7. Furthermore,
IPA highlighted several genes as known disease biomarkers: BCAM
(breast cancer), RPS4Y1 and HINT1 (Ewing’s sarcoma) and SRNP
(bladder cancer).

3.3 General remarks
The outcome of algorithms based on building trees is influenced by
a stopping criterion. The stopping criterion of the M5′ algorithm
is as follows: the space is splitted unless the subset of samples
contains very few cases or their values vary slightly. Also note that
models based on decision trees have been shown to be useful to infer
biologically meaningful gene association networks using microarray
data (Soinov et al., 2003). This method used a supervised learning
approach to address this question by building decision tree-related
classifiers, which predict the state of a gene from the expression
data of other genes. Soinov’s method differs from ours in the sense
that the former applies a transformation procedure to set the state
of a gene as ‘expressed more than average’ and ‘expressed less than
average’ before applying the supervised learning method, i.e. each
gene is discretized before predicting its state. Moreover, Soinov et
al. (2003) reported results for a small group of yeast gene expression
dataset.

Finally, although it offers advantages for supporting clinical
decision making, we acknowledge that our method is not suitable
for the task of estimating detailed or dynamic representations of
gene regulatory networks. Other methods specifically designed for
this purpose are recommended [Meinshausen et al. (2006) and Wille
and Buhlmann (2006)].

4 CONCLUSIONS
We presented a new supervised prediction method for prognostic
applications. In particular, our method allowed us to discover
potential novel biomarkers (Fig. 2) and systems-level mechanistic
insights in cardiovascular research. Our method is based on the
discovery of clinically relevant transcriptional association networks.
It generates new hypotheses about clinically relevant interactions
among genes using gene expression data and regression trees. We
also demonstrated that, unlike traditional techniques, our method can
discover small biologically meaningful networks, which facilitate
human expert interpretation and targeted validations. Furthermore,
our method allows the automated classification of patients into
clinical categories. We also detected biological processes, such
as the synthesis of leucine and isoleucine, which may be used
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to characterize and possibly treat the development of ventricular
dysfunction after MI.

Our method can be applied to other biomedical applications
and its software implementation, SATuRNo, is freely available. We
also tested our approach on a published benchmark dataset with
control and disease patients, and compared it to several algorithms to
infer transcriptional association networks and classification models.
These comparative results provided additional evidence of the
prediction power of our approach.

In principle, the developed methodology can be used to infer
clinically relevant networks using different types of molecular data,
such as microarray gene expression and proteomics data. New
versions of SATuRNo will be available in the future. The predictions
reported here will require further in vitro investigations and their
independent validation in larger patient cohorts.
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