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Extending the polarizable continuum model to effective ab initio pair
potentials in multicomponent solutions: A test on calcium–water
and calcium–ammonia potentials

F. M. Floris, José M. Martı́nez,a) and J. Tomasi
Dipartimento di Chimica e Chimica Industriale, Universita´ di Pisa, Via Risorgimento 35, 56126 Pisa, Italy

~Received 16 July 2001; accepted 7 January 2002!

The use of the polarizable continuum model to developab initio effective pair potentials is extended
to multicomponent solutions. The methodology takes into account nonadditivity effects on pair
interactions computing wave functions perturbed by the solvent. Ca21 –water and Ca21 –ammonia
potentials suitable for aqueous ammonia solutions are presented. These effectiveab initio pair
potentials present smaller binding energies with respect to strictlyab initio two-body potentials. The
reduction is higher in Ca21 –ammonia~28%! than in Ca21 –water~22%! and brings to a small gap
the difference between the binding energies of the two ligands with Ca21 when solvent effects are
considered. As a first test, metal-ligand clusters of different size and composition have been studied.
The comparison with restricted Hartree–Fockab initio calculations shows good agreement for the
largest clusters considered. Results confirm that the presented methodology, based on the polarizable
continuum model, describes in a proper way the interactions in the condensed phase, where the ion
completes its coordination sphere. The cluster results also show that ammonia can displace water in
the first ion coordination with a tendency to change the coordination number from 8 to 9 when the
ion is fully surrounded by the former, the ninth ammonia molecule being positioned in an
intermediate situation between the first and the second coordination shells. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1453956#

I. INTRODUCTION

In the last two decades the number of published theoret-
ical and experimental works in the field of solution chemistry
has substantially increased, metal ion solvation being one of
the subjects that has received much attention,1–12 probably
due to its relevance in a large part of chemical and physico-
chemical processes in nature, living organisms, and indus-
trial technology.

From a theoretical point of view, there is an increasing
interest in the combined application of quantum methodol-
ogy with statistical simulations. In this sense the appearance
of hybrid quantum mechanics/molecular mechanics
methodologies13 andab initio molecular dynamics14 has al-
lowed one to get insight, at a very detailed level, into the
solvation phenomenon of some metal ions.15–25 However
these techniques still suffer from some disadvantages, mainly
the computational costs, which considerably limit the simu-
lation times and the number of particles present in the simu-
lation cell. This fact reduces the spectrum of accessible prop-
erties that can be studied using these methodologies. In this
sense, classical statistical simulations,26 Monte Carlo~MC!
and molecular dynamics~MD!, are still very useful and pow-
erful tools that can provide valuable information. One of the
key aspects for the successful outcome of the simulations is
the use of proper interaction potentials, i.e., reliable results
need realistic potentials.

In the case of metal ions, and particularly those multiply
charged, the importance of so-called many-body effects is
well known ~see Refs. 27 and 28, and references therein!,
which must be taken into account to properly describe the
ion–solvent interactions. The origin of these effects can be
found in the induction phenomena caused by the ion electric
field and in the charge transfer processes among the nearest
solvent molecules and the metal ion. Polarizable models~see
references in Ref. 28! become an interesting, and physically
sound, way of including instantaneous polarization effects,
usually by means of isotropic dipolar polarizability ap-
proaches. However, their use in statistical simulations is ex-
pensive because of the set of coupled linear equations to be
solved. A reduction of costs is possible by the extended La-
grangian method in which charges are treated as additional
dynamic variables.

Because of computer time savings, however, most of the
classical simulations are performed under the assumption of
pairwise additivity for the total interaction energy, soeffec-
tive potentials which take into account these nonadditive ef-
fects must be used. Otherwise, misleading outcomes can be
inferred from simulation results. This effectiveness can be
introduced in the pair potentials using a set of experimental
data, which is used as a source of information. Alternatively,
one can explore quantum mechanically the potential energy
surface~PES! of a cluster composed of one metal ion and a
given number of solvent molecules as the source of energetic
and structural information to develop ion–solvent intermo-
lecular potentials.

This second strategy has become one of the most suc-
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cessful ones to overcome the problem of using pair potentials
to study metal ion solvation by means of classical simula-
tions ~see Ref. 28, and references therein!. If the cluster,
whose PES is studied, containsN solvent molecules, contri-
butions up toN11 terms are explicitly included in the ion–
solvent potential. This supermolecule approach is, in some
cases, demanding in terms of computational times because of
the size of the cluster.29–31 One has to keep in mind that, in
most of the cases, several hundreds of calculations are nec-
essary to properly consider the different representative ar-
rangements, although specific strategies can considerably re-
duce this figure.32–34

An alternative way of including the effects of the sur-
rounding medium is to consider solvent effects in an implicit
way. This type of methodology has already been successfully
applied by some of us35–37 with the help of the polarizable
continuum model~PCM!,38,39 which describes the solvent as
a dielectric continuum characterized by a permittivitye. In
this way, many-body effects are included in the ion–solvent
potential but keeping at the same time the computational
convenience and simplicity of two-body functions in the de-
velopment process.

The methodology has allowed the development and ap-
plication on MD simulations of effective potentials for a se-
ries of cations in water.35–37The final validation of this type
of theory-based potentials is done on the basis of the com-
parison between the simulation results and the available ex-
perimental information for the simulated system. Good
agreement has been observed for structural28,35,36,40,41and
thermodynamic37,41 properties for a certain number of cat-
ions with charge11, 12, and13.

Interesting enough, and by far quite less studied, are
those complex situations where more than one solvent is
present in the ionic solution. Particularly, aqueous solutions
containing small proportions of other potential ligands con-
stitute the most common situation in the biological media. In
addition to this biochemical interest, the development of
methodologies able to treat these complex media at the same
level as that reached in the case of pure aqueous solutions is
a theoretical challenge, and steps in this direction must be
given to properly understand the metal complexation phe-
nomena with different species in solution.

The work presented here, motivated by this fact, sup-
poses an extension of the previously applied strategy35–37 to
develop ion–waterab initio interaction potentials on the ba-
sis of the PCM methodology to include solvent effects. The
study will be performed using Ca21 as the metal ion, surely
one of the most studied ions because of its prominent bio-
logical role.42,43 In addition to water, ammonia is chosen as
second potential ligand for two main reasons. On one hand,
because of its simplicity, it supposes a natural choice for
extending the methodology in a stepwise fashion. On the
other hand, its behavior, from the point of view of the metal–
ligand interaction, is rather similar to that of water.

In this work a preliminary test of the newly developed
potentials is done on the basis of cluster computations. Their
application in MD simulations of aqueous ammonia solu-
tions containing the Ca21 is presented elsewhere.44

II. POTENTIAL DEVELOPMENT

A. Effective pair potentials in the context of the
polarizable continuum model

Details about the use of the PCM to develop effectiveab
initio pair potentials is described elsewhere.28,35,37 A short
overview is presented here to facilitate the understanding of
the extension done in this work.

The procedure is based on the use of the polarizable
continuum model for the evaluation of the solvent influence
on specific interactions. The solvent is modeled by an isotro-
pic dielectric medium which surrounds the solute, for which
an appropriate cavity is defined. The electrostatic potential
generated by the solute charge distribution induces a polar-
ization charges on the cavity surface because of the solvent
polarization. This polarization of the solvent also induces a
solute charge redistribution which is taken into account by
means of a modified Hamiltonian:

Ĥ5Ĥ ~0!1V̂s , ~1!

whereĤ (0) is the Hamiltonian for the isolated solute,V̂s the
monoelectronic operator associated with the electrostatic po-
tential Vs generated by the charge distributions present in
the surface of a cavity that contains the solute. Considering
two generic fragments,A andB, the nonadditive effects are
then considered through the modification of the interaction
potential of theA¯B pair. According to this idea, the effec-
tive interaction potentialUAB is defined as

UAB5^CuĤ ~0!uC&AB2^CuĤ ~0!uC&A2^CuĤ ~0!uC&B ,
~2!

where theC’s are eigenfunctions of theĤ operator, i.e.,
perturbed by the solvent, and correspond to the complexAB
and to the isolated species embedded in the solvent. Equation
~2! gives a definition forUAB in which the interaction ener-
gies ofA, B, andAB with the dielectric continuum has been
removed, yielding only the direct interaction betweenA and
B, modified in the dielectric medium through the changes of
their wave functions. This is necessary because during the
statistical simulations, the continuum is replaced by explicit
solvent molecules which interact with the solute fragments
according to their respective interaction potentials.

The difference betweenC and the wave function of the
isolated molecule,C0, depends on the dielectric constant of
the solvent and the shape of the cavity. We notice that when
necessary, as in many geometrical configurations considered
in this work, PCM introduces separated cavities. The cavity
is built on the base of a set of interlocking spheres centered
on atomic nuclei. The variation of the radii (r i) of the
spheres will then affect the computed effective potential.
This dependence is precisely the one exploited to tune the
additivity of the effective pair potential. In the case of metal
aqueous solutions, for O and H atoms, the standard radii45

have been assumed,r O51.68 Å and r H51.44 Å. Instead,
the radius of the sphere centered on the cation (r M) has been
fixed in a way that the three-body potential for the complex
WMW8 embedded in the dielectric can be decomposed into
the sum of two-body effective potentials,
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UWMW8~r M !5^CuĤ0uC&WMW82^CuĤ0uC&M

2^CuĤ0uC&W2^CuĤ0uC&W8

5UMW~r M !1UMW8~r M !1UWW8 ~3!

for a relevant geometry of the trimer. Water–water interac-
tions are treated by means of a pair potential, that to be used
in the simulations. In this sense, the modifications on the
solvent–solvent interactions originated by the presence of
the ion will be included in the ion–water potential as well.
Once the value ofr M obeying Eq.~3! is found, a scanning of
the M¯W potential energy surface in the continuum is per-
formed, using that value to define the sphere around the
metal ion. Effective interaction energies are then extracted
according to Eq.~2!.

The extension of this methodology to the case in which a
second potential ligand is considered, ammonia~A! in our
case, implies, in the more general case, the consideration of
three equations similar to Eq.~3!, which come from the pos-
sibilities one can find in the first coordination shell of the
ion:

UWMW8~r M !5UMW8~r M !1UMW8~r M !1UWW8 , ~4a!

UWMA~r M !5UMW~r M !1UMA~r M !1UWA , ~4b!

UAMA8~r M !5UMA~r M !1UMA8~r M !1UAA8 . ~4c!

If we maintain the same level of simplicity as that pre-
viously applied, we find three independent equations and one
variable, r M , to fulfill them. For each equation a solution
comes out, so, in principle, three different solutions, each
one fulfilling one equation, are possible. However, this raises
the difficulty of the ion radius that should be used when
performing the scanning ofM¯W andM¯A potential en-
ergy surfaces, because two solutions come out for each
ligand @4~a! and 4~b! for water, and 4~b! and 4~c! for ammo-
nia#. In order to solve this problem maintaining an internal
consistency~just one radius for each atom! a compromise
between the solutions obtained from the three previous
equalities is applied. To achieve that, a combination among
the three radii is performed in order to minimize the total
error coming from the difference between the three body
energies@left-hand side of Eq.~4!# and the value obtained
assuming pairwise additivity~right-hand side! for the three
equations simultaneously. Obviously this way of working in-
troduces some inaccuracies in the method, compared to the

former case (MWW8) in which Eq.~3! was strictly verified.
However, as will be shown in Sec. II B, solutions to the three
equations are close enough to guarantee a final result in
which the percentage of error introduced by this fact is below
the approximations inherent to the way nonadditive effects
are taken into account. An alternative procedure in which
equalities of Eq.~4! are strictly verified implies the use of
two other parameters, i.e., radii, to fulfill the equations. How-
ever, a well tested set of radii, in the context of the PCM
methodology, are available nowadays for atoms like C, N, O,
or H, and their accuracy in reproducing structural and ener-
getic aspects of the solvation process of a large set of com-
pounds have been proven,~see e.g., Ref. 45!. In this sense,
the approach followed here maintains that level of accuracy
achieved for the ligands used.

B. Ca2¿– H2O and Ca2¿– NH3 effective interaction
potentials

Based on the existence of a Ca21 – H2O interaction po-
tential previously developed with the described methodol-
ogy, the first idea was to obtain a new one for the
Ca21 – NH3 interaction using the same level of computation
as that used in Ref. 36 for the Ca21 – H2O one, i.e., restricted
Hartree–Fock~RHF! computations using an effective core
potential for calcium ion and basis sets of double zeta quality
on water plus ad function on the oxygen. However, using the
optimized geometry of ML21 clusters as test systems, the
difference in the interaction energy, computed in vacuum, for
the @Ca– H2O#21 and @Ca– NH3#21 systems was only 4.3
kcal/mol ~Table I!. A very recent study,46 performed with a
high level ab initio method (QCSID/6-311G** ), estimates
this difference in 7.6 kcal/mol. Because this interaction en-
ergy difference will be, presumably, one of the factors domi-
nating the differences in ion complexation showed by the
two ligands, we think is worth to develop both ion–ligand
potentials using a level of computation that doesnot underes-
timate this energy differences as much.

More than 400@ML #21 computations will be needed for
each ligand, so such a high~and time demanding! level of
computations cannot be afforded. In this sense, Kerdcharoen
and Hannonguba47 have shown the marginal effect that elec-
tron correlation, at the MP2/6-31G** level, has on the in-
teraction energies for a set of calcium–ammonia clusters.
Moreover, the metal–ligand interaction energy for the high-

TABLE I. Interaction energies and optimized geometries of the@CaL#21 complexes.

Basis sets
ref. Level

@CaNH3#21 @CaH2O#21

RCa–N ~Å! Eint ~kcal/mol! RCa–O ~Å! Eint ~kcal/mol!

36a RHF 2.52 257.5 2.36 253.2
46b QCISD 2.42 261.0 2.27 253.4

This workc RHF 2.43 260.8 2.29 254.3

aECP calculation for Ca21 with 1s and 2sp electrons in core~Ref. 60! and six Cartesiand functions from
Ortega-Blakeet al. ~Ref. 61!. For O and H atoms, Huzinaga–Dunning@3s2p/2s# basis sets increased with a
d function (z50.85) for ~Refs. 36 and 37!.

b6-31G** .
c6-3111G** .
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est cluster considered,@Ca(NH3)6#21, differs only in 1%
when RHF and second-order Møller-Plesset~MP2! levels of
calculation are compared. In the case of water clusters,
@Ca(H2O)n#21 with n58, 9 and basis sets of triple-zeta
quality, the effect of the electronic correlation computed36 at
the MP2 level is small as well~4%–5%!.

Those results are not surprising. In fact, in this type of
system, dispersion interactions, derived from the mutual in-
stantaneous polarization, are less important than polarization
effects, because of the low polarizability of the cation. Tak-
ing into account these results and those found in Ref. 48
regarding the use of diffuse functions on solvent molecules
to afford energetic aspects, all theab initio metal–ligand
computations done in this work have been performed at the
RHF/6-3111G** level using theGAUSSIAN99 package.49

PCM computations were performed following the IEF: Inte-
gral Equation Formalism implementation.50,51

Table I shows the cation–ligand interaction energies and
the metal–oxygen and metal–nitrogen distances for the gas
phase fully optimized structures, obtained with that level of
calculation. For the sake of clearness, results from previous
works are shown as well. We notice that for the calcium–
water system, the RHF interaction energy computed using
ECP for Ca21 36 is in very good agreement with the high
levelab initio calculation of Ref. 46. The disagreement in the
energy difference between@Ca(H2O)#21 and @Ca(NH3)#21

comes in fact from the underestimation in the interaction
energy of the@Ca(NH3)#21 system. However, for cation–
water interactions, it has been found that the effect of full
electron calculations and the improving of basis sets~up to
TZP! is generally well compensated with the correlation
effects.37 It can be seen that the full electron calculations at
RHF/6-3111G** yield energies and structures closer to the
ones obtained with the reference computations,46 differences
being acceptable considering the scanning to be performed in
the potential energy surfaces.

As described in Sec. II A, the value of the Ca21 radius is
based on the pairwise additivity constraints of Eq.~4!. In
order to evaluate such equalities, relevant geometries should
be used. Metal–ligand distances were fixed to values slightly
longer ~2.4 and 2.5 Å forRCa– O and RCa– N, respectively!
than those of the potential minima for each dimer, due to the
enlargement observed when the number of molecules in the
first coordination shell increases.

A second important parameter is the ligand–metal–
ligand angle (/L1ML2). Nonadditive effects are strongly
dependent on this parameter as can be observed in Fig. 1
whereU3

0, defined as the difference between the total inter-
action energy for a given trimer and the sum of all pair

interaction energies, is plotted. The superscript 0 indicates
that all theab initio interaction energies are computed in
vacuum. Experimental water52 and ammonia53 geometries
were used while the relative ligand–ligand orientation was
optimized in each case to minimize repulsions. Obviously, if
nonaddictive effects were not present,U3

0 would be equal to
zero.

Previously,35–37 a weighted average ofU3
0 had been

computed on the basis of the recurrence of the angles defin-
ing tetrahedral, octahedral, and cubic complexes. The value
of U3

0 in this way computed, was then interpolated in the
corresponding representation, analogous to those of Fig. 1, to
extract the value of/L1ML2 that corresponds to this aver-
age nonadditivity. That angle was the one used in the evalu-
ation of expression~3! in order to obtain the value ofr M .

In this work, a slightly different approach has been fol-
lowed. First, the geometrical structures used to compute the
weighted average value ofU3

0 are based on the MD results of
Ref. 36 where the most representative structures were first
coordination shells with eight and nine water molecules. In
this sense, the regular geometrical figures used are the square
antiprism and the tricapped trigonal prism. Second, a new
factor comes out, that is the possibility of three different
pairs of ligands. It is clear from Fig. 1 that, for a given value
of /L1ML2 , each pair of ligands yields a different value of
U3

0. To take into account this new degree of freedom, all the
stoichiometries were considered, i.e., from CaWnA0 to
CaW0An ~with n58,9!, and for each of these complexes, all
the different distributions of the ligands were taken into ac-
count. In this way, for the three different pairs, weighted
average values ofU3

0 were obtained. Table II collects these
results and the corresponding/L1ML2 values for each case.
The proximity of the three angles allows us to average them,
resulting in a final/L1ML2 of 80.4°. With this result, the
search ofr Ca21 is then performed using equalities present in
Eq. ~4!.

Figure 2 shows the left- and right-hand sides of those
equalities as functions of the sphere radius of the cation. The

FIG. 1. Evolution of the three-body term as a function of the ligand–metal–
ligand angle. Insets show relative ligand–ligand orientations.

TABLE II. Weighted average values ofU3
0 and the corresponding ligand–

metal—ligand angles.a

Ligand pair U3
0 ~kcal/mol! /L1ML2 ~deg!

Water–water 5.1 80.8
Water–ammonia 5.9 80.1

Ammonia–ammonia 7.4 80.3

aRelative ligand–ligand orientations are shown in Fig. 1.
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crossing points, i.e., those where equalities are strictly veri-
fied in each case, are 1.000, 1.017, and 1.018 Å. The final
value to be used in the development of the calcium–water
and calcium–ammonia interaction potentials is chosen as a
linear combination of these three values in such a way that
the final error summed over the three equations is mini-
mized. After attempting several combinations, the simple
arithmetic average, 1.012 Å, reports a value of 0.0 kcal/mol,
coming from a compensation of errors among the three equa-
tions; the largest discrepancy being just 0.3 kcal/mol for the
water–Ca21 –ammonia trimer.

Once the cation radius is defined, a sampling of the
Ca21 – H2O and Ca21 – NH3 potential energy surfaces in so-
lution is performed, maintaining rigid the water and ammo-
nia geometries. Because the final aim is the simulation of

aqueous solutions containing small amounts of ammonia, the
dielectric constant used in these computations was that of
water solvent. Calcium–water surface sampling was com-
posed of 428 points while that of the calcium–ammonia con-
tained 486. In both cases, all points were generated by means
of Ca–O and Ca–N distance series in which different metal–
ligand orientations were considered. Minima were located
for C2v andC3v geometries with Ca–O and Ca–N distances
of 2.38 and 2.44 Å, respectively. These equilibrium distances
are about 0.1 Å longer than the corresponding obtained in
vacuum. In addition, interaction energies were reduced by
22% ~from 254.6 to 242.8 kcal/mol! in the case of water
and by 28%~from 260.7 to243.6 kcal/mol! in the case of
ammonia. In this way, the difference in the effective interac-
tion energies of both ligands with Ca21 in aqueous solution,
computed at the minimum of each potential energy surface,
is only by about 1 kcal/mol. Using Eq.~2!, effective interac-
tion energies were extracted and fitted to an analytical func-
tion of site–site type:

Eint~ML !5 (
i

L sites
qMqi

RMi
1

C4
Mi

RMi
4 1

C6
Mi

RMi
6 1

C8
Mi

RMi
8 1

C12
Mi

RMi
12

1AMie
2BMiRMi, ~5!

whereRMi is the distance between the calcium atom and the
site i of the ligandL, andA, B, andC the fitted parameters.
Fitting was performed using the geometries and charges of
the solvent models to be used in the simulations, SPC/E for
water54 and OPLS for ammonia.55 In addition to the atomic
positions, an additional uncharged and massless site was de-
fined in both ligands when computing ion–L interactions.
This new site (X), whose final position was optimized as
well, was located on theC2v andC3v axes of water (RO– X

50.3 Å) and ammonia (RN– X50.4 Å) molecules, respec-
tively, on the same side of hydrogen atoms. Parameters for
both potentials are reported in Table III. The quality of both
fits can be observed in Fig. 3 where the fitted energies are
plotted against the correspondingab initio ones. Standard
deviations of 0.33 and 0.59 kcal/mol were obtained for
Ca21 –water and Ca21 –ammonia potentials, respectively.
These figures are roughly divided by two when just attractive
energy points are considered.

III. A FIRST APPLICATION: CLUSTER COMPUTATIONS

Although the final aim is the use of the new potentials in
statistical simulations of aqueous ammonia solutions, a pre-
liminary test of them has been performed by means of cluster

FIG. 2. Effective interaction energies as a function of the sphere radius of
the cation. Full lines correspond to PCM computations with two solvent
molecules and dashed lines to the sum of two-body contributions.

TABLE III. Parameters of the Ca21 –water and Ca21 –ammonia effective potentials. Units consistent with interaction energies in kcal/mol and distances in Å.

Site C4 C6 C8 C12 A B q

Ca– H2O O 26.1392 2624.77 4 879.63 216 949.8 29.3765 0.4 20.8476
H 1267.66 27082.91 13 044.8 213 073.5 20.2808 0.4 0.4238

21398.41 4653.32 2947.297 227 150.0 2123.148 0.5 0.0

Ca–NH3 N 22929.79 18 610.1 215 043.4 212 244.3 242.1194 0.32 21.02
H 1845.95 212 714.8 28 965.5 242 683.0 69.7683 0.4 0.34

262.2891 12 599.6 269 473.0 210 265.0 2277.758 0.5 0.0
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computations. First, by comparison with the analog quantum
calculations, the performance of the potentials can be tested,
at least for small systems. Second, because of the low com-
putational price, many different cluster compositions can be
studied, allowing one to follow the environmental changes
happening in the neighborhood of the ion when solvent com-
position changes.

In addition to calcium–water and calcium–ammonia
clusters, clusters containing both ligands have also been
studied. Due to the large number of possible mixed clusters,
@Ca(H2O)n(NH3)m#21, we restrict our interest to those ful-
filling n1m58 with n5m54. This choice allows us to
evaluate the performances of Ca21 – H2O and Ca21 – NH3

potentials in those situations where nonadditive water–
calcium–ammonia terms are very important. The coordina-
tion number 8 for calcium is one of the favorites in aqueous
solutions,8 while an equal composition of both ligands maxi-
mizes the number of three-body water–calcium–ammonia
interactions.

Clusters were minimized usingDLPOLY56 code and the
aforementioned potentials. For the analogous ones obtained
at a quantum chemical level, geometry optimizations were
performed at the same level used for potential development
(RHF/6-3111G** ), keeping frozen internal water and am-
monia geometries and equal to those used in the calculations
with the effective pair potentials~EPP!.

A. Calcium–water clusters

Clusters containing up to eight water molecules were
studied at both levels. In both types of computations, minima
with all the waters in the first coordination shell of Ca21

were observed, as previously found in other works concern-
ing quantum chemical studies.48,57A closer inspection of the
cluster geometries reveals that in all cases the coordination
polyhedra found in the RHF and EPP optimized structures
are the same.

Figure 4~a! shows the evolution of the total interaction
energy~normalized by the number of water molecules! and
the Ca–O average distance as a function of the number of
water molecules for both types of calculations. The expected
behavior is observed in both cases: many-body effects in-
crease the Ca–O distance and decrease the interaction en-
ergy.

Interestingly, the results obtained by means of the effec-
tive potentials are closer to the quantum chemical ones for
the largest clusters, i.e., those in which a complete first co-
ordination shell can be identified. Differences between RHF
and EPP curves are continuously decreased as long asn in-
creases. Forn58, they are only 6% and 2% for the interac-
tion energy and the calcium–oxygen distance, respectively.
This behavior reflects how the methodology we have fol-
lowed, works properly in cases where the neighborhood of
the ion resembles as much as possible that of the condensed
medium, i.e., a metal ion completely solvated, as is the case
of the clusters with largest values ofn. This is due to the way
many-body effects have been included.

It is worth pointing out that this behavior is just the
opposite to that found usingab initio ~strictly! two-body po-
tentials: the larger the number of molecules coordinating the
metal ion, the larger the differences between theab initio and
pair potential results are found~see, for instance, Ref. 47!.

FIG. 3. Correlation between the effective two-body andab initio interaction
energies for the calcium–water and calcium–ammonia dimers.

FIG. 4. Evolution of the interaction energy and mean Ca–O and Ca–N
distances as a function of the number of water~left! and ammonia molecules
~right!. Solid lines correspond to RHF/6-3111G** computations, and
dashed ones to effective pair potentials calculations.
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Calculations at the MP2 level57 on clusters withn58
have shown that a change in the number of water molecules
directly bonded to the calcium ion is allowed with a mini-
mum amount of net energy gain or loss. EPP optimizations
of @Ca(H2O)6(H2O)2#21, @Ca(H2O)7(H2O)#21, and
@Ca(H2O)8#21 clusters~structures II, I, and III in Fig. 5!
yield interaction energies whose differences define a narrow
range, 1.1 kcal/mol, in agreement with the results obtained

by Katz et al.,57 1.5 kcal/mol. In our EPP calculations the
octa-coordinate structure~III ! is less stable than the hexa-
and hepta-coordinate ones, the latter being almost degener-
ate. With the narrow energy ranges and the dependence of
quantum chemical calculations on basis sets, the difference
found in the stability sequence between the EPP results and
those of Katzet al.57 seems not very significant.

Optimization of clusters with nine water molecules
at EPP showed no minima in which all molecules were
accommodated in the first coordination sphere. However,
two different minima were identified for geometries of the
type @Ca(H2O)7(H2O)2#21 ~IV and V in Fig. 5! and
@Ca(H2O)8(H2O)#21 ~VI and VII!, the former ones being
preferred by;2 kcal/mol.

Octa-hydrated complexes in a square antiprism geometry
had also been found in MD simulations of infinitely dilute
solutions of Ca21.37,58 We notice that structures VI and VII
resemble a square antiprism with the ninth water making
hydrogen bonds with two waters belonging to the same~VI !
or different ~VII ! square faces of the polyhedrum.

Finally, EPP optimized structures have been used to
compare the interaction energies at effective pair potential
and ab initio RHF levels~see Table IV!. This comparison
allows us to make a more precise evaluation of the differ-
ences between the EPP and RHF results. Differences be-
tween the two kinds of calculations range from a minimum
of ;4% ~structure II! up to 10.5%~structure VII!. EPP in-
teraction energies are always overestimated, i.e., the nonad-
ditivity is slightly underestimated, as already found in Ref.
37 for effective pair potentials based on PCM and SPC/E
water. However, in that study, geometries were optimized at
each level. In particular, for calcium complexes withn58, 9
nonadditive effects were slightly overestimated, in agree-
ment with what we have observed in structure III. Nonethe-

FIG. 5. Minima obtained for water clusters containing eight and nine sol-
vent molecules. The corresponding interaction energies are shown in Table
IV. Atom coordinates are available as electronic data files~Ref. 62!.

TABLE IV. Effective pair potentials interaction energies,DEEPP, ab initio RHF interaction energies,
DEab initio, computed on EPP optimized clusters and average first coordination shell Ca–O and Ca–N dis-

tances,R̄Ca–X. Units in kcal/mol and Å.

Cluster DEEPP DEab initio a
R̄Ca–X

@Ca(H2O)6(H2O)2#21(II) 2265.5 2255.0 2.4560.02
@Ca(H2O)7(H2O)#21(I) 2265.8 2251.2 2.5260.02
@Ca(H2O)8#21(III) 2264.7 2247.7 ~2282.4! 2.57360.0
@Ca(H2O)7(H2O)2#21(IV) 2286.1 2263.9 2.5160.02
@Ca(H2O)7(H2O)2#21(V) 2285.4 2264.9 2.5160.03
@Ca(H2O)8(H2O)#21(VI) 2284.4 2259.5 2.5760.02
@Ca(H2O)8(H2O)#21(VII) 2284.0 2256.2 2.5760.02

@Ca(NH3)8#21 2277.6 2271.0 ~2272.8! 2.74360.0
@Ca(NH3)8(NH3)#21(I) 2294.4 2282.9 2.7460.03
@Ca(NH3)8(NH3)#21(II) 2294.1 2277.5 2.7460.04
@Ca(NH3)8(NH3)2#21(III) 2310.6 2290.8 2.7360.02
@Ca(NH3)8(NH3)2#21(IV) 2310.4 2290.5 2.7360.04
@Ca(NH3)8(NH3)2#21(V) 2310.2 2286.1 2.7360.05
@Ca(NH3)8(NH3)2#21(VI) 2309.7 2285.0 2.7360.02

@Ca(H2O)4(NH3)4#21(I) 2271.6 2259.6 ~2278.7!
@Ca(H2O)4(NH3)4#21(II) 2270.8 2257.5 ~2276.1!
@Ca(H2O)4(NH3)4#21(III) 2271.3 2259.1 ~2278.3!
@Ca(H2O)4(NH3)4#21(IV) 2271.1 2257.8 ~2276.5!

aValues in parentheses refer to RHF optimized structures.
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less, differences between RHF and EPP interaction energies
depend on the structures used. When theab initio optimized
geometry of@Ca(H2O)8#21 is used, the geometrical relax-
ation decreasesDE leading to a lower value than that com-
puted at EPP level.

Comparing clusters with the same number of waters, dif-
ferences between EPP and RHF results are inversely propor-
tional to the average Ca–O distance for waters in the first
coordination shell~see Table IV!. The minimum error is ob-
served in structure II, which interestingly presents a value for
the Ca–O distance very close to 2.4 Å, the fixed value in the
selected geometries used to fulfill Eq. 4~a!. The other impor-
tant parameter fixed in the application of Eq. 4~a!, the
O–Ca–O angle, seems less important, since there are no sig-
nificant differences among them in the different EPP opti-
mized structures. Moreover its average and range are ap-
proximately the same as in the ideal structures, i.e., the
square and tricapped trigonal prisms, used in the evaluation
of the O–Ca–O angle when computing the average nonad-
ditivity ~see Sec. II A!.

It is worth pointing out that specific nonadditive terms
are neglected and might be one of the sources of the ob-
served discrepancies. For instance, an interesting comparison
can be made among structures III, VI, and VII. All of them
have substantially the same first coordination shell~square
antiprism!. The presence of the ninth farthest water in struc-
tures VI and VII increases the differences between the RHF
and EPP interaction energies with respect to the case of
structure III.

We also notice howDEab initio for clusters with the
same number of waters span a larger range than the corre-
sponding DEEPP. Instead, the energy separation between
clusters with eight and nine waters are overestimated on av-
erage by EPP calculations, as a direct consequence of the
larger discrepancies found for clusters with nine waters. Both
facts should be connected just to the nature of the effective
pair potentials that include implicitly many-body effects.

B. Calcium–ammonia clusters

In the case of ammonia clusters, the agreement between
the ab initio and EPP results is even better, as can be ob-
served from results shown in Fig. 4~b!. As in the previous
water case, minima with all molecules directly coordinating
the ion were found for all the clusters at both levels. In
particular, forn58, different arrangements of ammonia mol-
ecules have also been investigated at EPP level. Only one
minimum, corresponding to a@Ca(NH3)8#21 type of struc-
ture with a square antiprism arrangement, was found. There-
fore, in this case, an octa-coordinated complex is clearly pre-
ferred.

However, when an additional ammonia molecule is con-
sidered, two different minima are obtained~structures I and
II in Fig. 6!. In structure I, the farthest molecule (RCa– N

54.44 Å) is located in between the two square bases of the
antiprism and interacts, via hydrogen bonds, with three am-
monia molecules defining one of the triangular faces of the
antiprism. In the case of structure II, the base structure of the
square antiprism is maintained and the ninth one (RCa– N

53.76 Å) is found along theS8 axis of the antiprism.

Helped by the increase of the N–Ca–N angles defined by the
ammonia molecules belonging to the closest face, the ninth
ammonia is in an intermediate situation between the first and
the second coordination shells, while in structure I it is
clearly in the second shell. The energies of both structures
differ only by 0.3 kcal/mol, the situation with the most ex-
ternal molecule in the second shell being more stable. This
can be considered as an analogous situation to that found for
the water clusters withn58, but now with nine ammonia
molecules instead.

Finally, clusters with ten ammonia molecules have been
explored. As in the previous case (n59), all minima found
contain eight molecules in the first shell. Four representative
structures were identified corresponding to the possible com-
binations of the two minima found in the case ofn59 for
the farthest molecule~structures III–VI in Fig. 6!. In all
cases, slightly distorted square antiprisms serve as base
structures. Table IV shows the small range~,1 kcal/mol! of
energies defined by the four structures.

From these results it can be inferred that a number of
eight ammonia molecules in the closest neighborhood of the
ion seems to be the most probable situation. However, outer
ammonia molecules can be located in intermediate situations
between the first two coordination shells, making feasible, at
room temperature, easy distortions of the base structure
~square antiprism! and, therefore, the possibility of transient
situations in which two ammonia molecules interchange their

FIG. 6. Minima obtained for ammonia clusters containing nine and ten
solvent molecules. The corresponding interaction energies are shown in
Table IV. Atom coordinates are available as electronic data files~Ref. 62!.
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relative positions. This fact has been confirmed by short
@Ca(NH3)9#21 cluster simulations at room temperature.

In any case, compared to the water case, results show
how calcium ion is able to accommodate a larger number of
ammonia molecules directly interacting with it. Because, as
previously indicated, ion–water and ion–ammonia effective
potentials are very similar in magnitude,L –L interactions
must play an important role with regard to the different ob-
served behavior for the two ligands. First, the larger ion–N
equilibrium distances in ammonia clusters reduces the repul-
sive ammonia–ammonia interactions present in the first co-
ordination sphere. This fact can be observed in Fig. 7 where
the water–water and ammonia–ammonia interaction ener-
gies as a function of the cluster size (n51 – 8) are shown.
Differences between both types of ligands continuously in-
crease with the cluster size, water–water interactions always
being more repulsive.

Second, while water is a good donor and acceptor of
hydrogen bonds, ammonia is a much poorer donor, as has
been shown by means of quantum chemical computations.59

Interaction energies for the (H2O)2 and (NH3)2 optimized
dimers, employing the SPC/E and OPLS potentials, follow
this pattern as well. Therefore, theL –L interaction between
molecules in the first and second coordination shells acts in
the same direction as the repulsive interaction between mol-
ecules in the first shell, both favoring a larger coordination
number in calcium–ammonia clusters.

As for calcium–water clusters, the comparison between
ab initio and EPP interaction energies on EPP optimized
calcium–ammonia clusters shows that the use of EPPs
slightly underestimates nonadditivity effects. Errors~2.4%–
9%! are smaller than those found in calcium–water clusters
and increase with the number of molecules.

Average Ca–N distance for ammonia in the first coordi-
nation shell is almost constant in all clusters shown in Fig. 6:
2.73–2.74 Å. This constancy must be attributed to the fact
that in all cases the same basic polyhedrum defining the first
coordination shell is found. Surprisingly, despite the differ-

ence between this value and that fixed in the representative
geometry used to fulfill Eq. 4~c! (Ca– N52.5 Å), perfor-
mance of the Ca– NH3 EPP is remarkable. To this end, the
behavior of the calcium–ammonia clusters is rather different
from that observed in the water case, where a correlation
between (DEab initio2DEEPP) and Ca–O average distances
was found. Because of that constancy in the geometrical
definition of the first coordination shell, the different errors
obtained when comparing EPP and RHF interaction energies
must be correlated with the specificn-body effects intro-
duced by the ninth and tenth ammonia molecules.

C. †Ca„H2O…4„NH3…4‡
2¿ clusters

Symmetry properties, when present, reduce the number
of initial structures resulting from the distribution ofnL and
mL8 ligands in then1m positions of a selected polyhedron.
For a square antiprism withn5m54, this number is eight.
The results presented here refer to a subset of four structures.
Whatever of these selected structures clearly show the main
effects of many-body interactions involving both ligands. In
this case, structures were optimized at RHF and EPP levels.
Figure 8 shows the final structures together with the metal–
ligand distances for both types of calculations.

For clarity reasons, hereafter we will refer to a square
antiprism as an ideal structure to discuss the geometrical and
energetic results of these octa-coordinated mixed clusters.
Using Scheme 1, N and/or O atoms of Fig. 8 can be identi-
fied with the A–H positions. In this framework, ‘‘A’’ and
‘‘B’’ define positions for closest neighbors, and ‘‘A’’ and ‘‘E’’
second closest neighbors. Overall, there are eight pairs of
each kind.

FIG. 7. Solvent–solvent interaction energy normalized ton as a function of
the cluster size using the effective pair potentials. Structures used are those
employed in Fig. 4.

FIG. 8. Final EPP@Ca~H2O)4(NH3)4] 21 geometries showing metal–ligand
distances (REPP). Values in brackets correspond to the difference between
the optimizedab initio distances (Rab initio) in the cluster and the EPP ones
(Rab initio2REPP).
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A slight elongation of the Ca–O distances together with
a slight shortening of the Ca–N distances are generally ob-
served whenab initio structures are compared with the cor-
responding EPP ones. Differences are on average;2%. In-
terestingly, these trends are opposite to those previously
observed in the analysis performed for the@Ca(H2O)8#21

and@Ca(NH3)8#21 clusters~Fig. 4!. We also notice that av-
erage Ca–O and Ca–N distances of EPP optimized
@Ca(H2O)4(NH3)4#21 clusters are substantially the same as
those found in@Ca(H2O)8#21 and @Ca(NH3)8#21 clusters,
respectively. The slight differences, between both types of
calculations, on the average distances in clusters of mixed
composition is then a specific many-body effect of water–
calcium–ammonia interactions.

In structures I and II, because of the symmetry present in
the systems, the same metal–ligand distance is found for the
four ligands of the same type. Comparing the final RHF and
EPP metal–ligand distances, structure II presents a slightly
larger effect on the Ca–O elongation and Ca–N shortening.
This can be ascribed to the higher number~8! of three-body
water–calcium–ammonia interactions involving the closest
neighbors ~N and O on the same ‘‘square’’ with
/O– Ca– N.74°!. In structure I, where there are only three-
body water–Ca–water and ammonia–Ca–ammonia interac-
tions among the closest neighbors, three-body water–Ca–
ammonia interactions involve all eight second closest
neighbors ~N and O on different ‘‘squares faces’’ with
/O– Ca– N.77°!. This explains how the effect is signifi-
cant also in structure I.

The symmetry breaking in structures III and IV is re-
flected in the Ca–O and Ca–N distances that now depend on
the relative position occupied by the water/ammonia mol-
ecule. In both structures oxygens are involved in the same
kind of interactions regarding the closest neighbors, while
differences appear with regard to interactions with the sec-
ond closest ones.

Precisely, in structure IV, the two farthest oxygens from
calcium ~positions ‘‘B’’ and ‘‘F’’ following Scheme 1! are
involved in water–Ca–ammonia and water–Ca–water three-
body interactions with the second closest neighbors. Instead,
only the latter concern the oxygens with the shortest Ca–O
distances~positions ‘‘A’’ and ‘‘G’’ !. The same kind of three-
body interactions involving second neighbors are present in

structure III, but with an opposite distribution with respect to
the oxygens with farthest and shortest Ca–O distances.
Therefore three-body interactions involving second neigh-
bors cannot explain the differences observed in Ca–O dis-
tances. Therefore, this effect, likely a steric effect, has its
origin in n-body interactions withn.3.

As subsequent analysis level, one can examine four-
body subsystems containing the cation and three ligands.
One finds that structures III and IV share four-body interac-
tions involving calcium, one ammonia, and two waters. In
this four-body subsystem there are the three-body interac-
tions between closest and second neighbors ligands, in agree-
ment with that noted previously. Therefore this four-body
subsystem summarizes the analysis of three-body interac-
tions made before.

A distinction between oxygens with shortest and longest
Ca–O distances in both structures is finally found if five-
body subsystems are identified. That referring to the two
oxygens with the longest Ca–O distance also contains the
calcium ion and two nitrogen atoms, those whose projections
on the squares are connected to oxygens by diagonals. For
clarity, in scheme 1, if the two O are located on positions
‘‘B’’ and ‘‘F,’’ the two N are on positions ‘‘D’’ and ‘‘H’’. The
rest of the ligands plus the ion define the other five-body
subsystem containing the two O with the shortest Ca–O dis-
tance and the other two N atoms. Projections on squares of O
and N are again along square diagonals, but now there are
also N–O pairs as second closest neighbors. Looking at
Scheme 1, a N–O pair refers to positions ‘‘A’’ and ‘‘C’’ and
the other to positions ‘‘E’’ and ‘‘G.’’ Likely, the interaction
between the two five-body subsystems yields the final cluster
geometries.

The effect of these small geometrical differences be-
tween the clusters optimized at EPP and RHF levels on the
ab initio interaction energies~second column of Table IV! is,
although small, non-negligible. For the mixed clusters, the
situation is in between those found for the@Ca(H2O)8#21

and@Ca(NH3)8#21 clusters. In fact, EPP interaction energies
are in very good agreement~2%–2.5%! with the ab initio
calculation~see Table IV!.

As for calcium–water and calcium–ammonia clusters,
differences inDE are originated partially from differences in
the optimized structures. Also in these clusters there is a
compensation of errors, since the latter increase up to 5%
when the comparison is made on the same structure~see
Table IV!. Finally, we notice that cluster interaction energy
in octacoordinated complexes favors the substitution of wa-
ter by ammonia in both kinds of calculation made on EPP
optimized structures. Instead the substitution of ammonia by
water is favored in RHF calculations ifab initio optimized
structures are considered. These results do not invalidate the
performance of the EPP potentials here presented. On the
one hand, these have been built to describe effective interac-
tions in liquid state, while RHFab initio optimized structures
refer to clustersin vacuo. On the other hand, favored geom-
etries in the condensed phase might not be the same as those
found in cluster optimizations. Moreover, it is the free energy
and not the interaction energy that is the magnitude defining
the final cluster stabilization.

Scheme 1. Ligand distribution, and labeling, around calcium ion in an ideal
square antiprism polyhedrum. Positionsa–b–c–d define the upper square
base, ande– f –g–h the bottom one.
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IV. CONCLUSIONS

PCM methodology, as a strategy to develop effectiveab
initio pair potentials, has been extended to deal with multi-
component solutions. Particularly, calcium–water and
calcium–ammonia effective pair potentials have been devel-
oped to study systems in which one or both types of ligands
are present in the closest ion environment. As the dielectric
constant used in the PCM computations is that of water at
298.5 K, the obtained potentials are more appropriate for
water/ammonia systems, water being the main component.

Optimized geometries of @Ca(H2O)n#21 and
@Ca(NH3)n#21 (n51 – 8) clusters, with frozen water and
ammonia internal degrees of freedom, have been obtained by
RHF ab initio calculations and using the developed effective
ab initio pair potentials. Interaction energies and average dis-
tances versusn show that differences between the two kinds
of calculations continuously decrease as long asn increases.
These results show thatab initio effective pair potentials
based on PCM properly describe the situation of an ion com-
pletely surrounded by~ligand/solvent! molecules, as is the
case of the condensed phase.

Tests have also been made on different EPP
optimized structures with a high number of ligands:
@Ca(H2O)n#21 (n58,9), @Ca(NH3)n#21 (n58,9,10), and
@Ca(H2O)4(NH3)4#21. In these cases, the agreement be-
tween both methodologies is not as good as in the case of
using the resulting optimized structures at each level. Never-
theless, errors made by EPPs are always acceptable: 4%–
10.5% in @Ca(H2O)n#21 clusters, 2.4%–9% in
@Ca(NH3)n#21 clusters and 5% in@Ca(H2O)4(NH3)4#21

clusters. Comparing clusters with the same number of
ligands (n58), errors are larger in calcium–water than in
calcium–ammonia clusters,@Ca(H2O)4(NH3)4#21 clusters
falling in between.

Cluster computations provide structural interesting ten-
dencies as well. In particular, although just based on ener-
getic contributions, the performed cluster analysis suggests
that a reasonable upper limit for the hydration number of
Ca21 is eight. However, the information supplied by this
analysis cannot discern between a hexa-, hepta- or octa-
coordinated as the more probable situation. Even more,
based on the small differences observed, all structures could
be sampled in the condensed phase at room temperature. The
substitution of waters by ammonia molecules in the first hy-
dration shell favors the tendency to accommodate a larger
number of molecules in the nearest neighborhood of the ion.
Water–water and ammonia–ammonia interactions, at first
and first–second coordination shell levels, are pointed out as
a key point to understanding the observed differences.

Tendencies observed in small clusters must be checked
by subsequent statistical simulations. Preferred coordinations
in small clusters can differ from those of the condensed
phase where structures with a larger number of molecules
directly bonded to the ion can also be favored. Facts like
pressure, thermal effects, and the competition among the dif-
ferent kinds of interactions~e.g., first–second versus
second–third coordination shell interactions! can certainly
alter the conditions for preferential hydrogen bonding be-
tween molecules in the first and second coordination shells.

In any case, small cluster computations become a useful ref-
erence in the interpretation of results obtained in the con-
densed phase.

The strategy presented in this work allows the inclusion
of a realistic environment around the metal ion in mixed
solvent situations at a very low computational cost during the
potential development. In this sense, the potential application
to more complex systems, like biomolecules, is clear. The
approach could be used in the development of metal ion
interaction potentials for standard force fields where solvent
effects can be of primary importance if the ion interacts
maintaining its first hydration shell to a large extent, as for
instance in phosphate–metal ion interactions in nucleic acid
simulations.
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