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Producing contextual correlations in sequences of measurements on single quantum systems faces two
major problems. One is the experimental difficulty of performing sequences of ideal measurements on high-
dimensional quantum systems, a problem that also affects other forms of quantum temporal correlations. The
other is the simulability with classical light of existing contextuality experiments with photons. Here, we
introduce a scheme that solves both problems. We show that, by encoding quantum information in n � 2
indistinguishable bosons in m � 2 modes, targeting observables exploiting the bunching-antibunching of bosons,
and performing ideal measurements by dispersively coupling these systems with auxiliary qubits, it is possible
to realize sequential quantum measurements on high-dimensional quantum systems and produce contextuality
which cannot be simulated by classical light, as it relies on indistinguishability and higher-order interference.
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I. INTRODUCTION

Kochen-Specker (KS) contextuality [1–3] or contextual-
ity between ideal measurements is a fundamental property
of quantum mechanics. An ideal (or sharp) measurement
[4–6] of an observable is one that does not disturb any
compatible observable and, in particular, yields the same re-
sult when it is repeated. Because of this property, classical
intuition suggests that ideal measurements are revealing pre-
determined results which are independent of which other ideal
measurements of compatible observables are performed in
the same trial. However, in quantum mechanics, sequences
of ideal measurements of compatible observables [7–9] can
produce correlations which cannot be explained assuming
predefined noncontextual results [10–14], as they violate in-
equalities, called noncontextuality (NC) inequalities [10–14],
which must be satisfied by any noncontextual model. Viola-
tions of NC inequalities can be observed by locally measuring
spatially separated subsystems, as in Bell tests [15], and
in experiments with sequential measurements on noncom-
posite systems [7–9,16–20]. KS contextuality has multiple
applications [21] and plays a fundamental role in quantum
computation [22–24] and quantum foundations [5,25].

While sequential measurements on single quantum sys-
tems allow, in principle, for quantum correlations with a large
degree of contextuality [26,27], interesting temporal quan-
tum correlations [28,29], and practical applications such as
KS contextuality-based dimension witnessing [30,31], self-
testing [32,33], and sequential measurements-based machine
learning [34], these correlations require high-dimensional
quantum systems. The problem is that we are far from being
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able to experimentally test these predictions, as the largest
quantum system on which sequential ideal measurements
have been carried out has dimension d = 4 [7]. Moreover,
current platforms do offer a way to circumvent this limitation.

On the other hand, so far, all KS contextual correlations
in photonic experiments (e.g., [16,19]) can be simulated
with classical light [35,36], as they use first-order coher-
ence measurements and thus probability distributions can
be associated to single-mode intensities [35]. This classi-
cal simulability contrasts with the fact that both achieving
quantum advantage via boson sampling [37,38] and uni-
versal quantum computing with linear optics [39] crucially
rely on bosonic indistinguishability and higher-order inter-
ference. Hence, a fundamental question is whether there is a
method to produce KS contextuality with photons relying on
indistinguishability and higher-order interference. Although
there are previous works on contextuality for bosonic sys-
tems [40–43], in the present work we are addressing this
question.

In this article, we introduce a method to produce quan-
tum correlations between sequences of ideal measurements
on systems of n � 2 identical bosons propagating through
m � 2 spatially distinct bosonic modes. The method has two
distinguishing features. First, correlations cannot be simulated
with classical light, as they require boson indistinguishability
and higher-order interference. Due to this property, we will
refer to the contextuality produced by this method as bosonic
indistinguishability-dependent contextuality (BIC).

Second, the method allows performing sequential measure-
ments (including ideal ones) on high-dimensional quantum
systems and can be implemented in actual experiments, as it is
based on two recent experimental developments, namely, the
ability to encode and manipulate high-dimensional quantum
systems in bosonic systems (see, e.g., [38]), and the ability to
couple bosonic systems to external qubits [44,45].
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II. THE SIMPLEST EXAMPLE OF BOSONIC
INDISTINGUISHABILITY-DEPENDENT

CONTEXTUALITY

KS contextuality requires quantum systems of dimen-
sion d � 3 [1–3]. The simplest bosonic system producing
KS contextuality consists of n = 2 indistinguishable photons
propagating through m = 2 distinguishable modes (called up-
per and lower), as this defines a three-dimensional Hilbert
space spanned by the states |2, 0〉, |0, 2〉, and |1, 1〉, where
|na, nb〉 is the state with na photons in the upper mode and nb

photons in the lower mode. In terms of the creation operators
for the upper and lower modes, a† and b†, respectively, these
states can be written as

|na, nb〉 = (a†)na (b†)nb

√
na!

√
nb!

|0, 0〉. (1)

The simplest contextuality witness for d = 3 is the
Klyachko-Can-Binicioğlu-Shumovsky (KCBS) inequality
[10], which can be written as

κ = −1

3

5∑
j=1

〈AjAj+1〉 � 1, (2)

where Aj are observables with possible results −1 and +1,
〈AjAj+1〉 is the mean value of the product of the results of
Aj and Aj+1, and the sum in the subindex is taken modulo
5. Testing the KCBS inequality in d = 3 requires preparing a
particular initial state |v〉 = (vx, vy, vz )T and then performing
two sequential compatible ideal measurements of the type
Aj = 2|v j〉〈v j | − 1.

For preparing arbitrary pure states, we allow the two modes
to interact in a beam splitter (BS). This produces the following
transformation (see Appendix A):

UBS(θ, φ)aU †
BS(θ, φ) = cos(θ/2)a − eiφ sin(θ/2)b, (3a)

UBS(θ, φ)bU †
BS(θ, φ) = e−iφ sin(θ/2)a + cos(θ/2)b, (3b)

where a and b are the annihilation operators for the upper
and lower modes, respectively, and θ and ϕ are the angles
accounting for the transmissivity and phase shift introduced
by the BS, respectively.

If one begins with state |1, 1〉, which is easy to prepare in
various quantum optics devices [46–48], then the BS produces
(see Appendix A)

UBS(θ, φ)|1, 1〉 = sin θeiφ√
2

|2, 0〉 − sin θe−iφ√
2

|0, 2〉 + cos θ |1, 1〉.
(4)

By choosing θ and φ, one can produce the bosonic analog
of |v〉 = (vx, vy, vz )T , with vi ∈ R. This follows from the fact
that |v〉 can be written as (v+, v−, v0)T in a spherical basis,
where v± = (∓vx + ivy)/

√
2 and v0 = vz. Using that vx =

sin θ cos φ, vy = sin θ sin φ, and vz = cos θ , (v+, v−, v0) cor-
respond to the components in the basis {|2, 0〉, |0, 2〉, |1, 1〉},
respectively, as shown in Eq. (4). Therefore, for preparing the
bosonic analog |ψin〉 of a qutrit state |v〉, one can start with
|1, 1〉and then apply a suitably chosen BS. This is what is
meant to happen in the block “state preparation” in Fig. 1(a).

The fundamental elements for connecting contextuality to
bosonic indistinguishability are the choice of observables and

FIG. 1. (a) Schematic setup of two sequential ideal measure-
ments on an initial state of an n = 2-photon m = 2-mode system.
(b) Circuit representation of the operations used for the two sequen-
tial ideal measurements. Each of the measurements is finished only
when the corresponding party reads out its qubit

the method for performing ideal measurements of them. An
ideal measurement is typically implemented by applying first
a suitable unitary transformation, then performing an ideal
measurement of a suitable observable, and then applying the
adjoint unitary transformation. For the unitary transforma-
tions, we use BSs: one before the measurement, implementing
U †

BS(θ j, φ j ), and one after the measurement, implementing
UBS(θ j, φ j ); see Fig. 1, where Uj ≡ UBS(θ j, φ j ).

For the observable, we use that, for state (4), the proba-
bility for detecting one photon in each of the output ports
of the BS is p+ = cos2 θ and the probability of observing
two-photon bunching is p− = 1 − p+, as it was was demon-
strated by Hong, Ou, and Mandel (HOM) [49] for the case
θ = π/2. The bunching of the two photons is originated
by their indistinguishability. Hence, the suitable observable
is the one in which outcome +1 corresponds to the two
photons being detected in coincidence at the two modes,
and outcome −1 to the bunching of the two photons. The
ideal measurement of this observable is represented by the
projector �+ = |1, 1〉〈1, 1|, associated to outcome +1, and
�− = 1 − |1, 1〉〈1, 1|, associated to outcome −1. Therefore,
the measurement corresponding to |v j〉〈v j | is represented in
our setup by UBS(θ j, φ j )|1, 1〉〈1, 1|U †

BS(θ j, φ j ).
The maximum quantum violation with ideal measurements

[50] of the KCBS inequality (2) is achieved for 〈v j |ψin〉 =
〈v j+1|ψin〉 = cos γ , where γ = cos−1(1/51/4). In this case,
one obtains 〈ψin|AjAj+1|ψin〉 = −4 cos2 γ + 1, which gives

κ = 4
√

5 − 5

3
≈ 1.315. (5)

This value can be achieved by a simple choice of parameter
values, θ = 0 in the BS of the state preparation (thus |ψin〉 =
|1, 1〉), and choosing the angles of the BSs for the observables
Aj as follows: θ j = cos−1(1/51/4) and φ j = 4π j/5.
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III. SEQUENTIAL IDEAL MEASUREMENTS
OF OBSERVABLES

KS contextuality requires ideal measurements (i.e., not
disturbing any compatible observable). A measurement on the
n � 2-photon m � 2-mode system that ends by detecting the
photons impedes further measurements and, therefore, can-
not be ideal. An ideal measurement must be nondestructive.
Moreover, it requires an interaction between the n � 2-photon
m � 2-mode system and an ancillary system, capable of en-
coding the result of the measurement in the ancilla while
leaving the bosonic system in the postmeasurement state given
by Lüders’ rule [6].

The dispersive regime [44,48,51,52] provides an efficient
method to do it without destroying the photon number state.
Let us consider an interaction Hamiltonian of the form

Hdisp = λ(t )

2
Sz ⊗ σz, (6)

with Sz = (a†a − b†b)/2 and σz = | ↑〉〈↑ | − | ↓〉〈↓ |, where
{| ↑〉, | ↓〉} is an orthogonal basis of states of the ancillary
qubit (h̄ set to 1). The interaction is engineered in such a way
that

∫ τ

0 dtλ(t ) = π . Therefore, Udisp(π ) = eiπSz⊗σz/2. This has
the following effect:

Udisp(π )|2, 0〉|+〉 = |2, 0〉|−〉, (7a)

Udisp(π )|0, 2〉|+〉 = |0, 2〉|−〉, (7b)

Udisp(π )|1, 1〉|+〉 = |1, 1〉|+〉, (7c)

where |±〉 = (| ↓〉 ± | ↑〉)/
√

2 are states of the ancillary
qubit. Thus, by using this dispersive coupling, we can encode
the outcomes of the measurement in the state of the ancillary
qubit. The measurement result can be later read out by per-
forming projective measurement on the ancillary qubit. It is
worth adding that by virtue of the invariance of the total num-
ber of photons, coupling the qubit to a single mode is sufficient
to measure the relevant observables (see Appendix B). There-
fore, without losing generality ei π

2 a†a⊗σz generates similar
phase shift to the qubit state conditioned on the antibunched
photon number state, i.e., ei π

2 a†a⊗σz |1, 1〉|±〉 = |1, 1〉|∓〉.
Similarly, the measurement of any of the required observ-

ables involves UAj = UBS(θ j, φ j )ei π
2 a†a⊗σzU †

BS(θ j, φ j ) acting
on the initial state,

UAj |ψin〉|−〉 = cos γ |v j〉|+〉 + sin γ |v⊥
j 〉|−〉

= �+
j |ψin〉|+〉 + �−

j |ψin〉|−〉, (8)

where �±
j = (1 ± P j )/2 and P j = UBS(θ j, φ j )( − eiπa†a ⊗

1b)U †
BS(θ j, φ j ) is the photon-number parity operator acting on

the bosonic modes subspace, and measured by measuring the
qubit coupled to the upper mode giving outcome probabilities
p± = 〈ψin|�±

j |ψin〉 on the {|+〉, |−〉} basis. Therefore,

〈σx〉 = p+ − p− = 〈ψin|P j |ψin〉, (9)

where p+ = cos2 γ and p− = 1 − p+. For the two-photon
case the observable reduces to P j ≡ 2|v j〉〈v j | − 1, defined in
a d = 3 space.

The crucial requirement is that the interaction between the
photons and the qubit should preserve the indistinguishability
of the input photons. The dispersive interaction induces σz

eigenstate-dependent frequency shift to the both modes, i.e.,
ωa(b) = ω ± λ. However, the qubit initialized |±〉 does not
induce a frequency shift. The second measurement is similar.

This technique enables sequential ideal measurements on
the n = 2-photon m = 2-mode system. The initial state of the
two ancilla qubits |−〉A|−〉B after the action of UAj+1UAj turns
into ρAB (see Appendix E). The joint probabilities are

paj a j+1 = 〈ψin|�a j

j �
a j+1

j+1�
a j

j |ψin〉, (10)

where a j, a j+1 ∈ {−,+}. Once paj a j+1 are inserted into the
mean values, we obtain〈

σ A
x ⊗ σ B

x

〉
ρAB

≡ 〈ψin|P jP j+1|ψin〉, (11)

for compatible measurements. Note that p++ = 0. This is due
to the bosonic bunching or HOM-like effect yielding p+|+ =
|〈1, 1|U †

j Uj+1|1, 1〉|2 = 0, as a direct consequence of bosonic
indistinguishability. The propagating bosonic system acts as a
quantum bus [53], giving rise to correlations which cannot be
produced by coupling to (semi)classical fields. This contrasts
with the fact that a HOM-like effect can be mimicked by
proper phase control of classical fields interfering at the BS
[54]. However, we can show that any correlation produced by
coupling to such classical fields or coherent states never leads
to the violation of the NC inequalities (see Appendix F). In
the case of stationary rather than propagating bosonic mode,
an alternative scheme involves sequential measurements on
a single ancilla qubit (see Appendix B1). This very scheme
is already implemented efficiently in Ref. [51] for two-mode
two-photon and even for higher photon numbers.

IV. HIGHER-DIMENSIONAL BOSONIC
INDISTINGUISHABILITY-DEPENDENT

CONTEXTUALITY

So far, we have shown how to use BIC for producing
KS contextual correlations between sequential measurements
on qutrits. Here, we discuss how to use it for producing
correlations between sequential measurements on qudits of
arbitrary d � 3. We will focus on the case of sequences of two
dichotomic measurements, as this is sufficient for generating
any matrix of quantum KS contextual correlations [55]. For
other forms of high-dimensional KS contextuality, see Ap-
pendix B.

There are several possible ways to achieve high-
dimensional BIC combining the Fock space encoding and
readout techniques [56,57]. The most compact one consists
of using n � 2 photons in m = 2 modes [58]. In this case, the
most convenient choice for dichotomic observables is that rep-
resented by �+ = |na, nb〉〈na, nb|, with na = nb, and 1 − �+.
This allows for producing KS contextual correlations between
sequential measurements on quantum systems of any odd
dimension [59] (see Appendix B2). In this case, the coupling
is engineered such that Hdisp = λ(t )|na〉〈na| ⊗ σz [60,61].

For experimentally testing BIC, multiple dispersively cou-
pled ancillary qubits (as in Fig. 1) are not necessary. A single
one suffices. This follows, on the one hand, from the obser-
vation that sequences of two dichotomic measurements are
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sufficient for producing any matrix of quantum KS contextual
correlations [55], and, on the other hand, from the observation
that the second measurement does not need to be ideal, since
no further measurements will be performed afterward. This
holds for any d � 3. For this reason, in this section we will
focus on sequences of two dichotomic measurements in which
only the first measurement is ideal.

There are several ways to achieve high-dimensional BIC.
The most compact way to achieve any odd dimension d con-
sists of using n = d − 1 photons in m = 2 modes [58]. This is
just a particular case of the more general case of using n � 2
indistinguishable bosons in m � 2 modes. If there are no extra
constraints (e.g., of the number of allowed bosons per mode),
this defines a quantum system of dimension

d = (n + m − 1)!

n!(m − 1)!
, (12)

assuming that there are no limitations in the number of
bosons per mode. In this case, the most convenient choice
for dichotomic observables is that represented by �+ =∑

n1,...,nm
|n1, . . . , nm〉〈n1, . . . , nm| and 1 − �+. The unitaries

needed for observables of the form �+
j = Uj�

+U †
j can be

implemented using configurations made of BSs, m-port BSs
[62–65], or fiber loops [66]. In principle, any given unitary
can be approximated with high fidelity by applying global op-
timization methods (see, e.g., [67]) to the variables available
in these configurations.

For implementing ideal measurements, we engineer the
coupling of the bosonic system with an external qubit such
that

Udisp(π ) = (1 − �+) ⊗ 1 + �+ ⊗ σz. (13)

This enables ideal measurement of dichotomic observables
such as P (n,m) = 2�+ − 1.

Current technology allows both to encode high-
dimensional quantum systems using n bosons in m modes,
and to make ideal measurements on them using dispersive
coupling with external qubits. For example, systems with up
to n = 76 and m = 100 yielding a state space dimension of
d ≈ 1030 have been experimentally demonstrated [38], and
sequential measurements via coupling with an external qubit
have been demonstrated in bosonic superconducting devices
with up to n = 30 and m = 2 [44] and m = 11 [45].

Regarding the measurements necessary for BIC, recall that,
in practice, to implement any given unitary on a single photon
in m modes, the usual approach is approximating it with a
given infidelity by a global optimization method applied to the
reconfigurable elements available in the setup. These elements
range from multiports made of beam splitters and phase sifters
to multicore fiber integrated multiport interferometers and
fiber loops. Results for single photons (see, e.g., Ref. [67])
suggest that scalability is not an issue, as relatively compact
configurations manage to achieve very high fidelities for rela-
tively high dimension.

All these results point out that BIC may be a reliable way
to overcome current limitations and produce KS contextual
correlations using higher-dimensional quantum systems.

V. STATE-INDEPENDENT BOSONIC
INDISTINGUISHABILITY-DEPENDENT

CONTEXTUALITY

One of the interesting possibilities of quantum KS contex-
tuality is that it can be state independent, which means that,
for any quantum system of dimension three or larger, there
are sets of measurements and contextuality witnesses that
have the same value (beyond the corresponding noncontextual
bound) for any quantum state [11–14]. The same happens for
BIC.

To show this effect, one can consider the bosonic equiv-
alents of the witness of Yu and Oh, YO [13], or its optimal
version, opt3 [14], and apply the method described before. As
can be easily checked, while the noncontextual bound for both
witnesses is 1, any state in the basis {|2, 0〉, |0, 2〉, |1, 1〉} gives
the value 25/24 ≈ 1.042 for YO and the value 83/75 ≈ 1.107
for opt3 (see Appendix C).

VI. MAXIMUM CONTEXTUALITY REQUIRES PERFECT
INDISTINGUISHABILITY

Here, we discuss the connection between maximal BIC and
bosonic indistinguishability. For that, we study what happens
when bosons are not perfectly indistinguishable. This may
occur due to, e.g., that they have a different polarization or
that there is a time delay between them.

To model the effect of distinguishability, one can replace
the initial state |1, 1〉, with which the state preparation was fed,
with the state |1, 1η〉 = a†b†

η|vac〉 with b†
η =

√
1 − η2b† +

ηb†
⊥, where a† and b† are creation operators of indistinguish-

able photons in the upper and lower modes, respectively,
while b†

⊥ is a creation operator of photons in the lower mode
which are perfectly distinguishable from the former (e.g., a†

and b† create horizontally polarized photons and b†
⊥ creates

vertically polarized ones). η ∈ [0, 1] quantifies the degree
of distinguishability between the two photons, with η = 0
representing perfect indistinguishability and η = 1 perfect
distinguishability.

The BS mixes the upper and lower modes regardless of
how distinguishable the photons are. Therefore, we are deal-
ing with four distinct modes then, i.e., those corresponding to
a, a⊥, b, and b⊥.

Assuming that the dispersive coupling merely depends on
the number of photons in each transmission line and not on
the degree of freedom with respect to which the photons are
distinguishable,

Hdisp = λ(t )
(Na − Nb)

2
⊗ σz = λ(t )(Sz + S⊥

z ) ⊗ σz, (14)

where Na = a†a + a†
⊥a⊥ denoting the number of photons

in the upper transmission line and Nb = b†b + b†
⊥b⊥ denot-

ing the number of photons in the lower transmission line.
Figure 2(a) shows how the value of κ depends on η: The
maximum value is only obtained when the photons are per-
fectly indistinguishable. Otherwise, contextuality decreases
as distinguishability increases. This implies that contextuality
can be used to certify boson indistinguishability in a way that
cannot be simulated with classical light. This contrasts with
the fact that the HOM effect can be simulated with classical
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FIG. 2. Value of the contextuality witness [with noncontextual
(NC) bound 1] as a function of the degree of bosonic indistinguisha-
bility η, defined in the text. (a) For the witness defined in (2), with
initial states UBS(θ, φ)|1, 1η〉, defined in the text, and the observables
Aj used to obtain the quantum maximum of κ . (b) For the Yu-Oh
and the optimal state-independent inequality opt3 witnesses (see
Appendix C), for any initial state UBS(θ, φ)|1, 1η〉 (i.e., no matter
the values of θ and φ).

light [54]. Moreover, since the maximum quantum violation
of the KCBS inequality allows for self-testing [32] (i.e., certi-
fication using only the observed correlations), Fig. 2(a) shows
that BIC can be used to self-test boson indistinguishability.
Therefore, BIC provides an alternative quantitative test of
quantum indistinguishability [68,69].

Interestingly, Fig. 2(b) shows exactly the same behavior,
but now the degree of contextuality does not depend on θ and
φ of the initial state, but only on the degree of distinguishabil-
ity η (see Appendix D for details).

However, just as the maximal violation of a bipartite Bell
inequality does not always require maximal entanglement, so
the maximal violation of a noncontextuality inequality can-
not be expected to always require perfect indistinguishability.
Each case has to be studied separately.

VII. DELAYED MEASUREMENTS

The method for performing sequential measurements de-
scribed before also opens an interesting possibility, namely,
deciding at will the order in which the sequential measure-
ments are “finished.” This possibility comes from the fact
that, in the case of sequences of two measurements, the
quantum state after the interaction with the second ancillary
qubit is a coherent superposition of the four quantum states
corresponding to the four combinations of results for the two
measurements (see Appendix E). This superposition can be
“collapsed” in three different ways: (i) by first reading out
the second qubit and only then reading out the first qubit,
(ii) by first reading out the first and then the second, or (iii)
by spacelike separating the readouts. This offers a possibility
beyond what can be done in standard sequential measurement
experiments (e.g., [9]), where the readout of the result of the
second measurement cannot be spacelike separated from the
readout of the result of the result of the first measurement.
This possibility can stimulate a new generation of sequential
measurement experiments and tests of collapse models [70]
and causality in quantum mechanics.

VIII. CONCLUSIONS

Current contextuality experiments with sequential mea-
surements on quantum systems have a limitation: they are
only possible for low-dimensional systems and there is no
prospect of overcoming this problem. This prevents testing ex-
perimentally some interesting forms of quantum contextuality
and other temporal quantum correlations, and progressing
toward practical applications. Moreover, existing photonic
contextuality experiments can be simulated with classical
light, which makes them useless for obtaining quantum ad-
vantage. In this article, we have introduced a form of photonic
contextuality, dubbed bosonic indistinguishability-dependent
contextuality (BIC), which produces contextual correlations
which cannot be simulated with classical light, connects
maximum contextuality with perfect indistinguishability, and
allows sequential measurements on high-dimensional quan-
tum systems. We have also shown that current technology
permits preparing the states and performing the measurements
necessary to observe BIC on high-dimensional quantum
systems. Therefore, we believe that BIC and the methods pre-
sented provide a realistic path to unlock experimental progress
in sequential measurements on high-dimensional quantum
systems and pave the way toward practical applications.
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APPENDIX A: ACTION OF A BEAM SPLITTER ON AN
n = 2-PHOTON m = 2-MODE STATE AND GENERATION

OF THE BOSONIC EQUIVALENT OF ANY QUTRIT STATE
WITH REAL COMPONENTS

The Hamiltonian of a beam splitter (BS) coupling the two
input modes (upper and lower) is

HBS = iθ

2
(e−iφa†b − eiφb†a), (A1)

where a† and a are the creation and annihilation operators for
the upper mode, b† and b are the creation and annihilation
operators for the lower mode, and θ and ϕ are the angles
accounting for the transmissivity and phase shift introduced
by the BS, respectively. Therefore, the BS transformation is

UBS(φ, θ ) = exp

[
θ

2
(e−iφa†b − eiφb†a)

]
. (A2)

In the qutrit subspace spanned by the basis
{|2, 0〉, |0, 2〉, |1, 1〉}, where |na, nb〉 is the state in which
there are na photons in the upper mode and nb photons in the
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lower mode, the action of UBS(φ, θ ) is

UBS(φ, θ ) =

⎛
⎜⎜⎜⎜⎜⎝

cos2 θ

2

1√
2

eiφ sin θ ei2φ sin2 θ

2

− 1√
2

e−iφ sin θ cos θ
1√
2

eiφ sin θ

e−i2φ sin2 θ

2
− 1√

2
e−iφ sin θ cos2 θ

2

⎞
⎟⎟⎟⎟⎟⎠

, (A3)

which, applied to |1, 1〉, produces the state given by Eq. (3) in
the main text.

By suitably chosen θ and φ of the BS, one can produce the
bosonic analog of any |v〉 with real components. This can be
seen as follows. Consider

|v〉 = vx|ex〉 + vy|ey〉 + vz|ez〉, (A4)

where (vx, vy, vz ) ∈ R3 and {|ex〉, |ey〉, |ez〉} is a Cartesian ba-
sis. Consider the spherical basis, defined as

|e±〉 = ∓ 1√
2
(|ex〉 ± i|ey〉), (A5a)

|e0〉 = |ez〉, (A5b)

where i denotes the imaginary unit. Then,

|v〉 = v−|e−〉 + v+|e+〉 + v0|e0〉. (A6)

The components in the spherical basis are related to the com-
ponents in the Cartesian basis by

v± = 1√
2
(∓vx + ivy), (A7a)

v0 = vz. (A7b)

Now notice that |v〉 can be written as

|v〉 = sin θ cos φ|ex〉 + sin θ sin φ|ey〉 + cos θ |ez〉, (A8)

with 0 � θ < π and 0 � φ < π . Therefore, the components
of |v〉 in the spherical basis are

v+ = 1√
2
(− sin θ cos φ + i sin θ sin φ) = − sin θ√

2
e−iφ, (A9a)

v− = 1√
2
(sin θ cos φ + i sin θ sin φ) = sin θ√

2
eiφ, (A9b)

v0 = cos θ, (A9c)

which, as shown in Eq. (3) in the main text, are in one-to-one
correspondence with the components of UBS(θ, φ)|1, 1〉 in the
basis {|2, 0〉, |0, 2〉, |1, 1〉}, respectively. The correspondence
is |0, 2〉 ⇔ |e+〉, |2, 0〉 ⇔ |e−〉, and |1, 1〉 ⇔ |e0〉.

APPENDIX B: HIGH-DIMENSIONAL BIC

In this section we present two different examples of going
to higher-dimensional BIC.

1. BIC with Pauli-like observables

In the discussion on high-dimensional BIC in the main
text, we have focused on BIC produced by bosonic observ-

ables equivalent to Hilbert space observables represented by
rank-one projectors. Here, we apply the same ideas to show
how to produce BIC equivalent to that generated by Pauli
observables on q � 2-qubit systems. For every q ∈ N, the set
of Pauli observables for q qubits is the set of 4q − 1 nontrivial
quantum observables represented by q-term tensor products
of the 2 × 2 identity matrix and the Pauli matrices σx, σy, and
σz. Pauli observables allow for simple proofs of contextuality
[71,72], compact contextuality experiments with sequential
measurements [7,11], and for showing that the degree of
(state-independent) contextuality can grow with the number
N of qubits [26]. The interest of BIC is that it provides a way
to experimentally observe this last prediction.

Consider n photons and m = 2 modes. Using Schwinger’s
representation of the angular momentum operators [73],

S0 =(a†a + b†b)/2, (B1a)

Sx =(a†b + b†a)/2, (B1b)

Sy = − i(a†b − b†a)/2, (B1c)

Sz =(a†a − b†b)/2, (B1d)

where a† (a) and b† (b) are the creation (annihilation) op-
erators for the upper and lower modes, respectively, we can
identify three bosonic observables analogous to the ones rep-
resented by the three Pauli matrices. The first one is

Pz = (−1)a†a ⊗ 1b = eiπa†a ⊗ 1b (B2)

=
n∑

na=0

(−1)na |na, n − na〉〈na, n − na|, (B3)

which is a parity operator acting on a d = n + 1-dimensional
Hilbert space. Pz divides the Fock space into even and odd
subspace. Notice that Pz = eiπ (S0+Sz ) = eiπa†a ⊗ 1b. In the ba-
sis with fixed total number of photons,

Pz = eiπn/2
∑

na,nb,n′
a,n

′
b

〈na, nb|eiπSz |n′
a, n′

b〉|na, nb〉〈n′
a, n′

b|.

(B4)
Therefore, for example, in the case of n = na + nb ∈ even we
have

〈eiπa†a〉 = −〈eiπSz 〉. (B5)

The other two operators are achieved by the following
unitary transformation of Pz:

Px =UBS (π/2, 0)PzU
†
BS (π/2, 0), (B6)
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FIG. 3. Scheme for sequential measurements of bosonic parity
operators suitable for stationary bosons.

Py =UBS (π/2, π/2)PzU
†
BS (π/2, π/2). (B7)

Assuming that n = na + nb, we obtain

Px =
n∑

na=0

|na〉|n − na〉〈n − na|〈na|, (B8)

Py =in
n∑

na=0

(−1)na |na〉|n − na〉〈n − na|〈na|. (B9)

Px, Py, and Pz are the bosonic equivalent to σx, σy, and σz,
respectively. They satisfy

PiP j = 1n+1δi j + inεi jkPk, (B10)

which is defined in the basis spanned by |na, nb〉, with n =
na + nb.

For the Pauli matrices we have that
m⊗

l=1

σ
(l )
i

m⊗
l=1

σ
(l )
j = 12mδi j + imεi jk ⊗m

l=1 σ
(l )
k , (B11)

where
⊗m

l=1 σ
(l )
i = σ

(1)
i ⊗ · · · ⊗ σ

(m)
i . The dispersive cou-

pling for realizing ideal measurements of the above bosonic
operators is Hdisp = λa†a ⊗ σz.

For the q-qubit case, we use m distinguishable m modes
with n = n1 + · · · + nm photons. In this case, for example,

PZm =Pz1 ⊗ · · · ⊗ Pzm = ( − 1)a†
1a1+···+a†

mam (B12)

=
n∑

n1,...,nm=0

(−1)n1+···+nm |n1, . . . , nm〉〈n1, . . . , nm|,

which can be ideally measured by the coupling Hdisp =∑m
i=1 λia

†
i ai ⊗ σz.

For example, to perform an ideal measurement of Pz1 ⊗
1, 1 ⊗ Pz2 , and PZ2 = Pz1 ⊗ Pz2 , we engineer the disper-
sive couplings to be Hdisp = λ1a†

1a1 ⊗ σz, Hdisp = λ2a†
2a2 ⊗

σz, and Hdisp = (λ1a†
1a1 + λ2a†

2a2) ⊗ σz, respectively. The se-
quences of three measurements required for showing BIC
growing with the dimension [26] are a direct generalization
of the method described in the main text. See Fig. 3. For
example, measuring the context in the kth column is given
by

〈σx(t1)σx(t2)σx(t3)〉seq = tr(ρ0P1kP2kP3k ). (B13)

The efficient implementation of such sequence is reported
in several setups. See, e.g., Refs. [56,74]. Interesting gen-
eralized photon parity operators and their measurements are
introduced in Ref. [74]. This construction allows two dis-
tinct possibilities to go to high-dimensional contextuality: one
keeps the number of loaded photons fixed and increases the
number of modes. The other possibility is to increase the

number of photons rather than the number of modes, which
is closely related to a technique called bosonic encoding of
multiple qubits [75]. The latter is also closer to the spirit of
BIC for reaching a compact way of high-dimensional contex-
tuality.

For example,

⊗m
l=1σ

(l )
x ≡ PXm , (B14)

where, PXm = Px1 ⊗ · · · ⊗ Pxm and Pxi = ∑N=1
nai =0 |nai〉|N −

nai〉〈N − nai |〈nai |. The alternative realization which takes ad-
vantage of the large bosonic Hilbert space of high photon
number modes is

⊗m
k=1σ

(k)
x ≡ Px =

N=2m−1∑
na=0

|na〉|N − na〉〈N − na|〈na|, (B15)

which are supposed to be the bosonic equivalence of the
measurement of the multiqubit Pauli operators, and multiqubit
collective rotations Ui = U (1)

i ⊗ · · · ⊗ U (m)
i , where U (k)

i =
e−iθσ

(k)
i /2. From the identity

Si = 1

2

m∑
k=1

σ
(k)
i , i = x, y, z, (B16)

one can see how the beam splitter realizes Ui = e−iθSi trans-
forming two-mode bosonic systems, identical to collective
spin rotation.

From (B10) we can construct the negative and positive
contexts introduced in Ref. [26].

2. Odd-dimensional case

Here, we discuss how to produce forms of contextuality
requiring rank-one projectors and quantum systems of odd
dimension d � 3 as, e.g., those in Ref. [59]. The bosonic
encoding and the implementation of the measurements is
straightforward. In the following we present an explicit exam-
ple. The only challenges are engineering the coupling between
the ancilla qubit and the bosonic modes and applying the
required unitaries for measuring the observables.

The coupling Hdisp = λ(t )|na〉〈na| ⊗ σz can generate the
following unitary evolution:

Udisp(π ) = ei π
2 |na〉〈na|⊗σz , (B17)

causing π -phase shift to the ancillary qubit if and only if
the Fock state is |na〉. This number-dependent phase shift
technique enables measuring,

P0 = 2
∣∣∣n

2
,

n

2

〉〈n

2
,

n

2

∣∣∣ − 1, (B18)

where in this special case we have |na〉 = |n/2〉. The observ-
ables act on d = n + 1-dimensional subspace with n ∈ even.
Let us consider d = 5 explicitly as the simplest case beyond
the qutrit example.

Using proper unitary operation Uk acting on the two
modes we can implement the corresponding observable Ak =
2|vk〉〈vk| − 1. Thus,

|vk〉 = |θ, φ, ϕk〉 =Uk|2, 2〉 = cos θ |2, 2〉 + sin θ |φ, ϕk〉,
(B19)
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where |φ, ϕk〉 = cos φ|2ϕk〉 + sin φ|ϕk〉 and ϕk = 2π
7 k,

|2ϕk〉 = 1√
2

(ei2ϕk |4, 0〉 + e−i2ϕk |0, 4〉), (B20)

|ϕk〉 = 1√
2

(eiϕk |3, 1〉 + e−iϕk |1, 3〉). (B21)

The maximum violation, in this example, occurs for the ini-
tial state |n/2, n/2〉, known as the twin Fock state which is
shown to be a resource for quantum metrology. As is appar-
ent, the specification of the optimal projectors relies on the
generalized HOM quantum interference between four indis-
tinguishable photons.

APPENDIX C: WITNESSES FOR STATE-INDEPENDENT
CONTEXTUALITY

The Yu-Oh inequality [13] can be written as

YO = −1

8

⎛
⎝∑

j∈V

〈Aj〉 + 1

2

∑
( j,k)∈E

〈AjAk〉
⎞
⎠ � 1, (C1)

where Aj are 13 observables with possible results
−1 and +1, V = V1 ∪ V2, with V1 = {1, 2, . . . , 9}
and V2 = {A, B,C, D}, and E = E1 ∪ E2, with E1 =
{(1, 4), (1, 7), (2, 5), (2, 8), (3, 6), (3, 9), (4, 7),(5, 8), (6, 9)}
and E2 = {(1, 2), (1, 3), (2, 3), (4, A), (4, D), (5, B), (5, D),
(6,C), (6, D), (7, B), (7,C), (8, A), (8,C), (9, A), (9, B)}.

The optimal version of the Yu-Oh inequality [14] can be
written as

opt3 = − 1

25

⎛
⎝∑

j∈V1

〈Aj〉 + 2
∑
j∈V2

〈Aj〉 +
∑

( j,k)∈E1

〈AjAk〉 + 2
∑

( j,k)∈E2

〈AjAk〉 − 3
∑

( j,k,l )∈T

〈AjAkAl〉
⎞
⎠ � 1, (C2)

where T = {(1, 4, 7), (2, 5, 8), (3, 6, 9)}.
By choosing observables of the form Ak = 2|vk〉〈vk| − 1,

with

|v1〉 = (1, 0, 0)T , |v8〉 = ( 1√
2
, 0, 1√

2
)T ,

|v2〉 = (0, 1, 0)T , |v9〉 = ( 1√
2
, 1√

2
, 0)T ,

|v3〉 = (0, 0, 1)T , |vA〉 = (− 1√
3
, 1√

3
, 1√

3
)T ,

|v4〉 = (0, 1√
2
,− 1√

2
)T , |vB〉 = ( 1√

3
,− 1√

3
, 1√

3
)T ,

|v5〉 = ( 1√
2
, 0,− 1√

2
)T , |vC〉 = ( 1√

3
, 1√

3
,− 1√

3
)T ,

|v6〉 = ( 1√
2
,− 1√

2
, 0)T , |vD〉 = ( 1√

3
, 1√

3
, 1√

3
)T ,

|v7〉 = (0, 1√
2
, 1√

2
)T , (C3)

and applying the method described in the main text, we obtain
the value 25/24 ≈ 1.042 for YO and the value 83/75 ≈ 1.107
for opt3.

APPENDIX D: EFFECT OF PARTIAL
DISTINGUISHABILITY

The BS mixes the two spatial modes regardless of the
degree of freedom that makes the photons distinguishable.
That is,

UBS (φ, θ )=exp

{
θ

2
[e−iφ (a†b + a†

⊥b⊥) − eiφ (b†a + b†
⊥a⊥)]

}
.

(D1)
For example, suppose that a = aH annihilates horizontally
polarized photons and a⊥ = aV annihilates vertically polar-
ized photons. Then, we effectively have four different modes,
i.e., a†|vac〉 ≡ |1, 0, 0, 0〉, a†

⊥|vac〉 ≡ |0, 1, 0, 0〉, b†|vac〉 ≡
|0, 0, 1, 0〉, and b†

⊥|vac〉 ≡ |0, 0, 0, 1〉. Consider the following
input state:

|1H , 1η〉 = a†
H

(√
1 − η2b†

H + ηb†
V

)|vac〉 (D2)

=
√

1 − η2|1, 1, 0, 0〉 + η|1, 0, 0, 1〉, (D3)

where |naH , naV , nbH , nbV 〉 is the state with naH horizontally
polarized photons and naV vertically polarized photons in the
upper mode and nbH horizontally polarized photons and nbV

vertically polarized photons in the lower mode. The action of
the BS on this state involves U (θ, φ j )|1H , 1H 〉 = |v j〉, which
is the same as Eq. (3) in the main text, and U (θ, φ j )|1H , 1V 〉 =
|ṽ j〉 which is

|ṽ j〉 = cos2 θ

2
|1, 0, 0, 1〉 − sin2 θ

2
|0, 1, 1, 0〉

+ sin θ

2
(e−iφ j |1, 1, 0, 0〉 − eiφ j |0, 0, 1, 1〉). (D4)

Therefore,

U (θ, φ j )|1, 1η〉 =
√

1 − η2|v j〉 + η|ṽ j〉. (D5)

The joint detection probability is then

p+ = (1 − η2) cos2 θ + η2 1 + cos2 θ

2
(D6)

and the bunching probability is p− = 1 − p+.

APPENDIX E: QUANTUM STATE AFTER THE
INTERACTION WITH TWO SUCCESSIVE ANCILLARY

QUBITS

The state of the bosonic system, the ancillary qubit for
the first measurement, and the ancillary qubit for the second
measurement, before the readout of the two qubits, is

|ψout〉 = UAj+1UAj |ψin〉|−〉A|−〉B

= √
p++|v j+1〉|+〉A|+〉B + √

p+−|v⊥
j+1〉|+〉A|−〉B

+ √
p−+|v j+1〉|−〉A|+〉B + √

p−−|v⊥
j+1〉|−〉A|−〉B,

(E1)
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where

p++ = |〈v j |v j+1〉|2 cos2 γ , (E2a)

p+− = (1 − |〈v j |v j+1〉|2) cos2 γ , (E2b)

p−+ = |〈v j |v⊥
j+1〉|2 sin2 γ , (E2c)

p−− = (1 − |〈v j |v⊥
j+1〉|2) sin2 γ , (E2d)

with

|v⊥
j 〉 = sin θ |1, 1〉 − cos θ

eiφ j |2, 0〉 − e−iφ j |0, 2〉√
2

. (E3)

State (E1) is a coherent superposition of the four distinct
combinations of the measurement results for Ai and Aj+1. The
order in which the two sequential measurements are finished
is determined by the order in which the ancillary qubits are
readout. The reduced state of the two qubits after tracing out
the bosonic degree of freedom is

ρAB = p−−| − −〉〈− − | + (1 − p−−)

× (| + −〉〈+ − | + | − +〉〈− + |). (E4)

APPENDIX F: CORRELATIONS FROM CLASSICAL
FIELDS

In this section, we sketch an argument that although clas-
sical fields can mimic a HOM-like result, it cannot lead to the
violation of NC inequalities.

The phase difference π between the classical fields or
coherent states of the BS input ports leads to a total destructive
interference at one of the output ports of the 50 : 50 beam

splitter. Therefore, for example,

〈α|〈−α|U †
BSa†ab†bUBS|α〉| − α〉 = 0, (F1)

very much like the result we get for two identical photons
described by |1, 1〉 interfering at the same time at a balanced
beam splitter. In the former case the suppression of the coinci-
dence is merely due to classical destructive interference while
in the latter the destructive interference is between the states’
amplitudes of indistinguishable photons.

Let us reevaluate the correlation measurement for the case
when the analogous coupling between ancillary qubit and
classical fields, described by the classical c-number function
Ec, reads

H = λEc(t )σz. (F2)

The interaction causes a phase shift, ϕ j = 2λ
∫ t j

t j−τ j
dt ′Ec(t ′),

with respect to the |±〉 basis and therefore the measurement
result at time t j only depends on the accumulated phase during
the interaction period τ j . Thus,〈

σ A
x

〉 = cos ϕ j . (F3)

The key point is that the measurement result of each qubit
is independent of the other one. This is because measuring
a qubit has no back action to the classical field affecting
the measurement result of the other. Therefore, correlation
between the qubit measurements coupled to classical fields,
Ec, casts to 〈

σ A
x ⊗ σ B

x

〉 = cos ϕ j cos ϕ j+1. (F4)

In the case of classical random fields the general correla-
tion is a probabilistic (convex) combination of (F4). That is,

〈σ A
x ⊗ σ B

x 〉 =
∫

dϕ jdϕ j+1 p(ϕ j, ϕ j+1) cos ϕ j cos ϕ j+1, (F5)

where p(ϕ j, ϕ j+1) are the marginals of a single joint proba-
bility p(ϕ1, . . . , ϕ5). It can be seen that the correlations of the
type (F5) cannot lead to the violation of NC inequalities.
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