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Internally contracted state-specific multireference �MR� algorithms, either perturbative such as
CASPT2 or NEVPT2, or nonperturbative such as contracted MR configuration interaction or MR
coupled cluster, are computationally efficient but they may suffer from the internal contraction of
the wave function in the reference space. The use of a low dimensional multistate model space only
offers limited flexibility and is not always practicable. The present paper suggests a convenient
state-specific procedure to decontract the reference part of the wave function from a series of
state-specific calculations using slightly perturbed zero-order wave functions. The method provides
an orthogonal valence bond reading of the ground state and an effective valence Hamiltonian, the
excited roots of which are shown to be relevant. The orthogonal valence bond functions can be
considered quasidiabatic states and the effective valence Hamiltonian gives therefore the
quasidiabatic energies and the electronic coupling among the quasidiabatic states. The efficiency of
the method is illustrated in two case problems where the dynamical correlation plays a crucial role,
namely, the LiF neutral/ionic avoided crossing and the F2 ground state wave function. © 2006
American Institute of Physics. �DOI: 10.1063/1.2202738�

I. INTRODUCTION

The development of the theoretical tools for the study of
the excited states of molecules remains an active domain of
research. The theoretical methods must satisfy a set of crite-
ria: they must be size consistent �ensuring a correct separa-
bility of an �AB�* system into A*+B�, and they must incor-
porate the leading correlation effects and produce reliable
results at a reasonable computational cost. One series of
methods �equation-of-motion1 �EOM�, linear response
theory2,3 �LRT�, coupled cluster with approximations on the
fluctuation potential4 �CC3�� starts from a correlated descrip-
tion of the ground state �GS� based on a single-reference
coupled cluster expansion of the wave function and consid-
ers all possible single and double excitations on top of it. The
other category of approaches considers that it is possible to
build a zero-order description of the excitation process from
a limited set of single and double excitations involving a
limited number of orbitals. This is close to the traditional and
grounded picture of the lowest excited states as obtained
from the Hartree-Fock �closed shell� ground state by promot-
ing one �or two� electron�s� from upper lying occupied orbit-

als to low lying virtual orbitals. Usually it is possible to
define an appropriate set of active orbitals and active elec-
trons, defining a complete active space �CAS� to produce a
relevant zero-order picture of the excitations. The diagonal-
ization of the corresponding truncated configuration interac-
tion �CI� matrix is expected to produce a well balanced ap-
proximate description of the GS ��0� and of the desired
excited ��n� states. Of course an accurate evaluation of the
transition energies �and dipole moments� requires the inclu-
sion of dynamical correlation effects, which are brought by
the single and double excitations involving nonactive orbitals
acting on the CAS. These hierarchical approaches are called
multireference �MR� methods, since they start from a mul-
tideterminantal description of the concerned states. Actually
these methods also deal with the GS problems for which a
single determinantal description is insufficient, as occurs in
bond breaking chemical reactions, or magnetic systems in-
volving several open shells.

The post-CAS treatment may be either perturbative
�MRPT2 �Refs. 5–19��, variational �MRSDCI �Refs.
20–22��, with size-consistent treatment �MRCEPA �Ref. 23�
or, see Ref. 24, MR�SC� �Ref. 2�� or of coupled cluster type
�MRCC �Refs. 25–27��. Again one can subdivide this family
of treatments according to their flexibilities and their “con-
tracted character.” The aim of the present work is to illustrate

a�Author to whom correspondence should be addressed. Electronic mail:
anc@unife.it

THE JOURNAL OF CHEMICAL PHYSICS 124, 234109 �2006�

0021-9606/2006/124�23�/234109/15/$23.00 © 2006 American Institute of Physics124, 234109-1

http://dx.doi.org/10.1063/1.2202738
http://dx.doi.org/10.1063/1.2202738
http://dx.doi.org/10.1063/1.2202738


the possible defects of the internal contraction of MR treat-
ments, as discussed in Sec. II, and to propose a simple pro-
cedure, described in Sec. III, which enables one to revise the
composition of the desired eigenvector in the model space
from a set of state-specific calculations concerning the same
state but which slightly differ under small perturbations of
elements of the CASCI matrix. The efficiency of the method
will be illustrated in two examples where the decontraction is
crucial.

II. POSSIBLE DEFECTS OF THE INTERNAL
CONTRACTION OF MULTIREFERENCE TREATMENTS

Let us call S0 the reference subspace and P0 the corre-
sponding projector,

P0 = �
I�S0

�I��I� , �1�

where the functions �I��S0 make up an orthonormal basis
set. Usually these vectors are either single determinants or
configuration state functions �CSFs�. The diagonalization of
the CI matrix restricted to the reference space delivers a
zero-order wave function of the desired states

P0ĤP0��m
�0�� = Em

�0���m
�0�� , �2�

��m
�0�� = �

I�S0

cm,I
�0� �I� . �3�

The reference space may be complete or not, it may be ob-
tained from a state-specific or a state-average multiconfigu-
rational self consistent field �MCSCF� calculation or from
any set of orbitals. The post-CAS treatment can possibly
consider only the interaction of �m

�0� with the vectors which
do not belong to S0. If S0 is a CAS of valence character, one

frequently says that the diagonalization of P0ĤP0 accounts
for the nondynamical correlation, and that the effect of the
single and double excitations on top of �m

�0� �or on the model
space determinants, �I�� will account for the so-called dy-
namical correlation. One may consider as correction func-
tions �to be referred to as “perturbers” henceforth� either
multiconfigurational vectors obtained from �m

�0� by the action
of the excitation operators Eri, EriEsj or the �much more nu-
merous� single determinants of the outer space interacting
with �m

�0� �as done in CIPSI �Refs. 5–7��. The latter solution
is said to be externally decontracted, while the former is
termed externally contracted. The NEVPT method,12–14 for
instance, has introduced various degrees of external contrac-
tions. On the other hand, all the methods which do not revise
the content of �m in the model space may be called inter-
nally contracted. They assume that �m can be written as

��m� = ��m
�0�� + �

i�S0

cm,i�i� . �4�

This may turn out to be rather a crude approximation,
since from the second-order of perturbation theory the wave
function takes components on all the other eigenstates �n

�0�

�n�m� of the CASCI manifold. It is important at this stage
to remark that one may conceive internally decontracted
state-specific �SS� formalisms. This requires a state-specific

effective Hamiltonian to be built in the model space, which
is no longer an effective Hamiltonian in the sense of quaside-
generate perturbation theory28 �QDPT� or Bloch’s theory,29

but an intermediate effective Hamiltonian.30 In the field of
perturbative approaches the shifted Bk technique31 is of that
type. Some MRCEPA �Ref. 24� or MRCC �Refs. 26 and 27�
algorithms are also internally decontracted. An internally de-
contracted perturbation has been derived15,16 from the SS-
MRCC method of Mahapatra et al.27 However, the internal
decontraction results in computationally demanding codes
and many popular methods take benefit from the simplifica-
tions brought by internal contraction.

Among the perturbative methods the CIPSI code5–7 is
internally contracted and externally decontracted and so are
its numerous variants �see, for instance, Refs. 8 and 17�. The
popular and efficient CASPT2 method10 is both internally
and externally contracted, and so is the NEVPT second-order
expansion.12–14 As mentioned previously, internally con-
tracted MRCI and MRCC codes are numerous and fre-
quently used. The constraint imposed by internal contrac-
tions may become severe when the dynamical correlation
deeply modifies the content of the wave function in the ref-
erence space. Nakano11 and Spiegelmann and Malrieu32,33

had shown that it may result in spurious double crossings of
potential energy curves in the case of weakly avoided cross-
ings �as occurs at long internuclear distances in the GS po-
tential energy curve of LiF�. The phenomenon exhibited by
CIPSI also appears in the state-specific CASPT2 �Ref. 34� or
NEVPT2 calculations.35 A solution to that type of problem
consists in the construction of an effective Hamiltonian, built
on the nearly degenerate states �m

�0� and �n
�0� which are re-

combined under the interaction with the outer space. The
diagonalization of the effective Hamiltonian based on �m

�0�

and �n
�0�, and constructed in the form of the second-order

QDPT, produces new vectors and energies which avoid the
double curve crossings. This technique leads to the so-called
multistate �MS� or quasidegenerate �QD� variants of CIPSI,
CASPT2, or NEVPT2. The same improvement may be cru-
cial in some difficult spectroscopic problems, such as the
lowest singlet excitation of ethylene, whose Rydberg compo-
nent is exaggerated at the zero-order CASCI level, and
strongly reduced by the �-� and dynamical correlation cor-
rections, to the benefit of an essentially valence character.35

These MS variants present a rather severe restriction, in
that they only proceed to a limited revision of the wave
function given that the dimension of the reference space is
usually larger than the dimension of the model space. More-
over the technique may be impracticable in many problems.

• Consider, for instance, the calculation of the potential
energy surface �PES� of a GS �0 which presents a
weakly avoided crossing with �1 for some nuclear co-
ordinates. One can then consider a two-state treatment
concerning both �0 and �1, but if �as usually occurs�
�1 presents a weakly avoided crossing with �2 for
other domains of the nuclear coordinates, the two-state
treatment will be affected in this region. Including �2

in the model space can even worsen the situation since
the number of avoided crossing usually increases when
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one goes to higher and higher excited states. Using dif-
ferent model spaces in different domains of the nuclear
coordinates results in discontinuities of the PES. Hence
a state-specific technique which would be able to follow
a given state through weakly avoided crossings would
be a valuable tool.

• The change of the wave function in the reference space
from its zero-order approximation to its exact content
might not necessarily be seen as a rotation between two
spectroscopic states, �m and �n. A very simple and
well documented problem of this type concerns the
magnetic binuclear Cu�d9� complexes in the two lowest
states36 �singlet and triplet�. Each metallic center, A
�and B�, bears an unpaired electron in a magnetic singly
occupied orbital, a �and b�. The minimal CAS involves
two electrons in two orbitals and is composed, in a va-
lence bond language, of the neutral valence bond �VB�
determinants �core ab̄� and �core bā�, and the ionic VB

determinants �core aā� and �core bb̄�. These determi-
nants can be combined obtaining a neutral

singlet �S
N= ��core ab̄�+ �core bā�� /	2, a neutral

triplet �T
N= ��core ab̄�− �core bā�� /	2, and two ionic

singlets �S
I,1= ��core aā�+ �core bb̄�� /	2 and �S

I,2

= ��core aā�− �core bb̄�� /	2. The interaction between the
neutral and ionic singlets is responsible for the gener-
ally observed antiferromagnetic preference, i.e., the sin-
glet character of the ground state. However, a precise
evaluation of the energy difference between the low ly-
ing singlet and triplet states requires an accurate consid-
eration of the dynamical correlation effects. The dy-
namical polarization of the ionic VB structures A−B+

and A+B− stabilizes their effective energies, and in-
creases their weight in the wave function and their im-
pact on the singlet state energy. Uncontracted CI calcu-
lations show that the ratio of the coefficients of the ionic
VB determinants over the coefficients of the neutral
ones is multiplied by a factor 4 when going from the
CASCI to extensive CI. A contracted treatment, starting
from functions �0

S, which dramatically underestimate
the ionic VB component of the singlet wave function,
should result �except for fortuitous cancellations of er-
rors� in an underestimation of the singlet state energy
stabilization. This precise problem will be studied in
detail in a further work,37 but one should notice here
that it is impracticable to apply the MS variant of per-
turbative techniques to these problems. Actually the
ionic VB component of the reference space does not
generate an accessible and well defined spectroscopic
state as it is embedded in a multitude of ligand/metal
charge transfer states. Any perturbative approach of the
corresponding eigenenergy is liable to diverge.

• To a lower extent the same problem is present in some
covalent bonded systems such as F2, where the two
electrons of the � bond are surrounded by six polariz-
able electron pairs. The dynamic response of these pairs
to the fluctuation of the electric field induced by the
movement of the two electrons of the � bond is crucial

in obtaining a reasonable dissociation energy of that
simple bond.38–40

III. A SIMPLE STATE-SPECIFIC DECONTRACTION
PROCEDURE

Let us expand the zero-order MR function �m
�0� on a set

of functions which define a basis of the reference
N-dimensional S0 space,

��m
�0�� = �

I�S0

cm,I
�0� �I� . �5�

The functions 
�I�� can be determinants, CSFs, or general
multireference functions. The second-order energy correction
from the contracted wave function is

Em
�2� = �

I,J

N

�
�

cm,I
�0� �I�Ĥ������Ĥ�J�

Em
�0� − E�

�0� cm,J
�0� , �6�

where � runs on the outer space �which is made of single
determinants in CIPSI, linear combinations of determinants
in externally contracted methods�. The expression defines a

dressing operator �̂m,

�̂m = �
�

Ĥ������Ĥ
Em

�0� − E�
�0� , �7�

whose matrix elements in the 
�I�� basis are

�I��̂m�J� = �
�

�I�Ĥ������Ĥ�J�

Em
�0� − E�

�0� . �8�

Then

Em
�2� = ��m

�0���̂m��m
�0�� , �9�

with the m dependence being due to the energy denomina-
tors. The dressing operator, introduced in the Bk technique,31

is state specific and then it would be significantly different
for another state �n

�0�.
The decontracted energy and wave function will be

given by the diagonalization of the operator P0�Ĥ+ �̂m�P0 in
the 
�I�� basis,

P0�Ĥ + �̂m�P0��̃m
�0�� = Ẽm

�0���̃m
�0�� . �10�

The direct calculation of the matrix elements of the op-
erator defined in Eq. �7� can be straightforward, as, for in-
stance, in the diagrammatic implementation of CIPSI �Refs.
6 and 41� �using as basis 
�I�� the reference determinants�, or
may present substantial difficulties, as happens for NEVPT2
�again when the �I�’s are the reference determinants�. In this
approach one can apply suitable operators to the zero-order
wave function as a whole, strongly reducing the computa-
tional effort13,14 for the calculation of the second-order cor-
rection to the energy. However, such an advantage disappears
if in the perturbation formula the zero-order wave function is
replaced by the determinants 
�I�� �Eq. �8�� and this makes
almost impracticable the direct use of this formula with de-
terminants �or CSFs� as basis. The use of the eigenstates of
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Ĥ as the 
�I�� basis in the reference space solves these diffi-
culties. However, the adoption of this strategy would imply
exploiting the full dimensionality of the reference space
leading, in most cases, to a very expensive calculation. Such
an effort is expected to be excessive when large reference
spaces are used, given that the internal revision of the wave
function usually depends on the rotation of �m

�0� with few
wave functions of the reference space. When the direct use
of Eq. �8� is difficult or too expensive, one can resort to a
numerical approach, which in some aspects resembles the
finite-field strategy for the calculations of molecular proper-
ties �for instance, the electric dipole�. This approach is pre-
sented in the following.

Suppose that one perturbs the system and computes
the eigenenergy of the state under study from a slightly
different vector ��m,k

�0� �=�I
Ncm,I

�0�,k�I�. This would produce

a slightly different value of Em
�2�, namely, Em

�2�,k,

Em
�2�,k = �

I,J

N

cm,I
�0�,k�I��̂k

m�J�cm,J
�0�,k. �11�

If one maintains the same value for the energy denominators,
Em

�0�−E�
�0�=Em

�0�,k−E�
�0�,k, and supposes that the perturbers ���

do not depend on �m
�0�, then �̂k

m= �̂m. In these conditions, if
the reference space involves N determinants and N2 matrix
elements, N2 state-specific calculations from slightly distinct
vectors �m,k

�0� will produce sufficient information to solve the
linear equations �11� for the N2 matrix elements of the dress-

ing operator �̂m from the N2 values Em
�2�,k. Since from a state-

specific procedure one expects the dressing matrix to be
symmetrical, N�N+1� /2 calculations are sufficient. One may
also assume that a diagonal form of the dressing matrix is
sufficient and only perform N state-specific calculations to

determine the quantities �I��̂m�I�.
In all cases the decontracted energy will be given by the

diagonalization of the matrix P0�Ĥ+ �̂m�P0 according to Eq.
�10�.

A control of the relevance of the selected procedure �di-
agonal, Hermitian� will be given by testing the stability of

the matrix elements of �̂m and of the eigenenergy Ẽm
�0� under

additional changes of �m,k
�0� .

So far the procedure is general and it can be applied as
well to contracted MRCI or MRCC procedures which in-

clude higher order perturbative corrections. In practice many
codes require, in order to have computational benefits, that
�m

�0� is an eigenvector of the CASCI matrix. In that case one
may introduce slight modification of the elements of the
CASCI matrix which should not modify the numerators in
Eq. �6� and should lead to only minor changes in the energy
denominators. The procedure is then approximate and its sta-
bility with respect to these changes of the matrix elements
between active orbitals has to be checked carefully.

One may, for instance, introduce a small energy change
of the monoelectronic energy of an active orbital. This de-
fines a perturbation operator V. If �m

�0� was the eigenvector of
the CASCI matrix before perturbation, the perturbation V
introduces a small modification of the eigenvector,

�m
�0��V� = ��m

�0� + ��m
��V� , �12�

where ��m
��V� ��m

�0��=0. In the limit of vanishing perturba-
tion �m

��V� does not depend on the amplitude of V: for a
finite perturbation this becomes an approximation and one
can suppose that it is better grounded if only two states/
CSFs/VB forms are supposed to play a role in the decontrac-
tion procedure. Changing the magnitude of the perturbation
�V→kV� and supposing the invariance of �m

�, one has an-
other expression for �m

�0�,

�m
�0��kV� = �k�m

�0� + �k�m
�. �13�

The hypothesis of the invariance of �m
� with the magnitude

of the perturbation can be easily verified computing the over-
lap ��m

��V� ��m
��kV�� and verifying whether it is close to 1.

The calculation of Em
�2�, Em

�2��V� and Em
�2��kV� will allow us to

define an effective Hamiltonian in terms of �m
�0� and �m

�,
with the equations,

Em
�2� = ��m

�0���̂m��m
�0�� , �14�

Em
�2��V� = �2��m

�0���̂m��m
�0�� + 2����m

�0���̂m��m
��

+ �2��m
���̂m��m

�� , �15�

Em
�2��kV� = �k

2��m
�0���̂m��m

�0�� + 2�k�k��m
�0���̂m��m

��

+ �k
2��m

���̂m��m
�� . �16�

Hence

��m
�0���̂m��m

�0�� = Em
�2�, �17�

��m
�0���̂m��m

�� =��k
2Em

�2��V� − �2Em
�2��kV� + ��2�k

2 − �2�k
2�Em

�2�

2��k���k − ��k�
�

limV→0

, �18�

��m
���̂m��m

�� =��k�kEm
�2��V� − ��Em

�2��kV� + ��k���k − ��k�Em
�2�

��k���k − ��k�
�

limV→0

. �19�
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The limit V→0 in Eqs. �18� and �19� has been introduced in
order to stress that these equations are exact in the limit of
small perturbations. On the other hand, in order to avoid
numerical instability problems in these equations, V must be
sufficiently large to assure a nonvanishing value for � and
�k.

As a further approximation, one can suppose that for a
small perturbation �k=k�, and therefore �k=	1−k2+k2�2

for the normalization constraint. With this approximation,
Eqs. �18� and �19� become particularly compact if k=−1. In
this case �k=−� and �k=� so that

��m
�0���̂m��m

�� =�Em
�2��V� − Em

�2��− V�
4��

�
limV→0

, �20�

��m
���̂m��m

�� =�Em
�2��V� + Em

�2��− V� − 2�2Em
�2�

2�2 �
limV→0

.

�21�

As seen from Eqs. �12�, �20�, and �21� the procedure
may face numerical instability problems when the amplitude
of the perturbation tends to zero, since the denominators �and
the numerators� tend to zero in the last two equations. One
must therefore check the behavior of the effective Hamil-
tonian matrix, in order to avoid entering in the instability
regime. This instability may occur for different values of the
perturbation for different approaches. In the next section we
report an example where the strongly contracted and the par-
tially contracted versions of the NEVPT treatment show a
different behavior with respect to this aspect. Giving a few
values to the perturbation amplitude and checking the stabil-
ity of the dressing operator provides consistent results. No-
tice that a similar procedure is used regarding the amplitudes
of the level shifts introduced in CASPT2 calculations to
avoid the intruder state artifacts. One has to explore the do-
main of level shifts giving a consistent linear dependence of
the energies with respect to the amplitude of the level shift
and eventually extrapolate to zero from this domain.

In this approach the internal decontraction is originated
by the mixing of �m

�0� with only one vector belonging to the
reference space, thus strongly reducing the number of ele-
ments of the dressing matrix which have to be computed. Of
course this may be not enough if more than two states/
CSFs/VB structures are supposed to play a role in the revi-
sion of �m

�0�. In this case one may conceive several perturba-
tion operators V. Another perturbation V� may introduce an
additional vector �m

*�, which can be orthogonalized to �m
�0�

and �m
�, in order to build an effective Hamiltonian of dimen-

sion three.
If the procedure is externally contracted, the perturbing

vectors ��� depend on �m
�0� and the energy numerators in Eq.

�7� are not invariant with the changes of �m
�0�. The proposed

procedure becomes somewhat more approximate, but again
performing more calculations than strictly required enables
one to check the numerical stability of the results.

The procedure described in this section will be referred
to with the acronym FDD-MR, from finite difference-based
decontraction of contracted multireference methods.

IV. NUMERICAL TEST STUDIES

A. The LiF molecule

The avoided crossing of the neutral and ionic states of
the LiF molecule is a case where internally contracted mul-
tireference methods are known to fail. The origin of this
difficulty can be understood noting that, for nuclear geom-
etries near the avoided crossing, the relative weights of the
ionic �Li+F−� and neutral �Li··F� forms in the first two elec-
tronic singlet wave functions strongly depend upon the level
at which the electronic correlation is taken into account. This
is due to the fact that the correlation energy is larger for the
ionic form than for the neutral one, therefore an unbalanced
description of the electronic correlation modifies the relative
energy of a form with respect to the other and consequently
changes their coefficients in the wave functions. The prob-
lem is particularly evident at the nuclear geometries where
the two forms are quasidegenerate.

The difficulty to describe this molecule appears, for in-
stance, in the valence CASSCF �two electrons in two orbit-
als� method, where the lack of the dynamical electronic cor-
relation makes the ionic form too high in energy with respect
to the neutral form �note, however, that at short internuclear
distances the ionic form is lower than the neutral one�. As a
consequence, the weight of the ionic form is too small in the
GS and too large in the excited state, the crossing is found at
too short an internuclear distance and with too large an en-
ergy separation between the two states �see, for instance,
Ref. 35�. If the CASSCF wave functions are used as starting
point in internally contracted state-specific multireference al-
gorithms �either variational or perturbational�, this bias can-
not be corrected. In the case of a second-order perturbation
approach a double crossing is found instead of the avoided
crossing.11,35,42

The avoided crossing is also found in other alkali
halides,43 but the LiF molecule is particularly interesting
given its small size and that full configuration interaction
�FCI� studies have been published.44,45 For these reasons this
system has often been used to test new methods developed
with the aim to face, in the case of quasidegenerate states,
the contraction/decontraction problem.11,35,42,44–47

In the present study, the Li�9s5p� / �4s2p� and
F�9s6p1d� / �4s3p1d� basis sets, employed by Bauschlicher
and Langhoff44 and by Legeza et al.45 for FCI studies on the
first two 1�+ states, have been used. The zero-order wave
functions have been obtained by a state-averaged CASSCF
procedure, involving the GS and the first 1�+ excited state,
using the MOLCAS package.48 Two active spaces have been
used: the first contains the Li 2s and F 2pz valence orbitals
and electrons �CASSCF 2/2�, while the second space is built
from the previous one adding the F 2px and 2py orbitals and
electrons plus two F 2px� and 2py� correlating orbitals
�CASSCF 6/6�. Figure 1 shows the FCI, CASSCF 2/2, and
CASSCF 6/6 energies of the two noncrossing states: as al-
ready discussed, one notes that at the CASSCF level the
crossing is at too short an internuclear distance and with too
large an energy splitting with respect to FCI, with CASSCF
6/6 being slightly closer to FCI than CASSCF 2/2.

If the CASSCF zero-order description is perturbatively
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corrected at second-order, the curves show a double crossing
instead of an avoided crossing,11,35,42 as shown in Fig. 2, for
the case of the state-specific strongly contracted �SC� and
partially contracted �PC� variants of NEVPT2 applied to the
CASSCF 2/2 wave functions �a similar behavior is found
with CASSCF 6/6�. In these calculations and in the follow-
ing ones, the 1�, 2�, and 3� orbitals are kept frozen �at the
ground state CASSCF 2/2 level� in the correlation treatment
in order to compare with the FCI results.

In order to apply the FDD-MR decontraction procedure
described in Sec. III let us note, first of all, that the CASCI
2/2 space is spanned by three CSFs, one neutral �Li· + ·F�
and the other two ionic �Li++F− and Li−+F+�. Among these
CSFs the last one has a vanishing weight in the two states
under study. Indeed, in the range of internuclear distances
here considered �from 6.5 to 13.70 bohrs�, the square of its
coefficient is always lower than 10−6. For this small active
space one can therefore focus the attention on the two rel-
evant CSFs, hereafter called �I� �ionic� and �N� �neutral�.

The three elements of the dressing matrix �Eq. �7�� in the
basis 
�I� , �N�� are obtained by inverting the expression re-

ported in Eq. �11� evaluated for three different zero-order
wave functions �m,k

�0� of the ground state. These wave func-
tions are obtained using the state-averaged CASSCF 2/2 or-
bitals in a CASCI calculation of the GS where the one-
electron energy of the Li 2s orbital is shifted by an amount 	.
In order to test the stability of the decontraction algorithm
with respect to the computational parameters, the dressing
matrix has been obtained with two approaches �indicated
hereafter with the letters A and B�:

�a� 	=0.0, ±0.10→ “A;”
�b� 	=0.0, ±0.20→ “B.”
The results of such an approach are reported, for both

choices of 	 values, in Figs. 3 and 4 for the SC and PC-
NEVPT2 calculations, respectively. All the energies are re-
ported in eV using as zero the energy of the GS at
13.70 bohrs. One promptly notes that the unphysical behav-
ior of the uncontracted NEVPT2 curves has disappeared and
that a correct description of the avoided crossing is restored.
Indeed, even if the avoided crossing appears at a slightly too

FIG. 1. Potential energy curves �eV� computed at the CASSCF 2/2,
CASSCF 6/6, and FCI level for the first two 1�+ states of LiF in the
avoided crossing region.

FIG. 2. Potential energy curves �eV� computed at the CASSCF
2/2+SC-NEVPT2, and CASSCF 2/2+PC-NEVPT2 level for the first two
1�+ states of LiF in the avoided crossing region.

FIG. 3. Adiabatic potential energy curves �eV� for the first two 1�+ states of
LiF computed with the FDD-MR procedure at the CASSCF
2/2+SC-NEVPT2 level. A and B indicate a decontraction based on different
choices of 	 �see text�. The FCI curves are also reported for comparison.

FIG. 4. Adiabatic potential energy curves �eV� for the first two 1�+ states of
LiF computed with the FDD-MR procedure at the CASSCF
2/2+PC-NEVPT2 level. A and B indicate a decontraction based on different
choices of 	 �see text�. The FCI curves are also reported for comparison.

234109-6 Angeli et al. J. Chem. Phys. 124, 234109 �2006�



long internuclear distance and with a slightly too small en-
ergy separation, the improvement with respect to the
CASSCF and uncontracted NEVPT2 description is evident.
For the sake of clarity, the internuclear distance at which the
neutral and ionic structures are degenerate are reported in
Table I at the CASSCF, NEVPT2, and FDD-MR/NEVPT2
level. For both variants of NEVPT2 the A and B curves are
almost superimposed on each other: tests have been per-
formed with larger and smaller values for 	, always obtain-
ing the same behavior. In this case the stability of the results
with respect to the values of 	 used in the FDD-MR ap-
proach is related to the small dimensionality of the CAS
space which imposes that the GS wave function has essen-
tially only two components for all values of 	. Moreover one
notes that for both choices of 	 values SC-NEVPT2 and
PC-NEVPT2 give very similar results.

In Table II the elements of the Hamiltonian operator �at
the CASSCF 2/2 level� and of the dressing operator �at the
SC-NEVPT2 and PC-NEVPT2 level with the A choice of 	
values� on the �N� and �I� basis are reported. From this table
some considerations can be drawn: �a� the diagonal elements
of the dressing matrix are almost constant in the range of
internuclear coordinates here considered; �b� the off-diagonal

element of the dressing matrix shows a sizable variation, but
it is small in the crossing region; and �c� the lowering of the
ionic form effected by the perturbation approach is much
larger than the one of the neutral form.

The results reported in Table II allow one to obtain, apart
from the adiabatic curves reported in Figs. 3 and 4 the ionic
and neutral diabatic potential energy curves �adding the ap-

propriate diagonal elements of Ĥ to those of �̂� and the
electronic coupling among the diabatic states �adding the two

off-diagonal elements of Ĥ and �̂�. From these data one can
easily compute the nonadiabatic coupling �retaining only the
“coefficient mixing” contribution, see Refs. 49 and 50�. All
such information is of great relevance, for instance, in dy-
namical studies. It is relevant to note that they are obtained
within a state-specific procedure: this makes a difference
with respect to other “diabatization methods” which need the
simultaneous description of more than one state. In order to
better emphasize the large effect of the perturbation on the
diabatic states, the CASSCF 2/2 and FDD-MR/SC-NEVPT2
diabatic energy curves are reported in Fig. 5 �a similar be-
havior is found for FDD-MR/PC-NEVPT2�.

The disagreement of the FDD-MR/SC-NEVPT2 and
FDD-MR/PC-NEVPT2 results with the FCI ones is due to an
overshooting of the perturbation approach in estimating the
dynamical correlation energy of the ionic form thus leading
to a crossing between the two diabatic curves at too long an
internuclear distance. This behavior originates from the low
quality of the zero-order wave function, and cannot be attrib-
uted to the choice of 	 values here proposed.

In order to improve the zero-order description of the
wave functions, CASSCF 6/6 calculations have been per-
formed. This active space �or a larger one� has been used in
the previously published works34,35,47,51,52 and contains 55
CSFs �112 determinants�. The use of all these functions as
basis for the decontraction procedure is certainly excessive.
Therefore Eqs. �17�–�19� have been used for the construction
of a 2
2 dressing matrix on the basis of the zero-order

TABLE I. Internuclear geometry �bohr� at which the neutral and ionic struc-
tures of the LiF molecule are degenerate at the CASSCF 2/2, NEVPT2,
FDD-MR/NEVPT2, and FCI level. For the NEVPT2 approach two crossing
points are found �see text�.

Method Crossing distance

CASSCF 7.25
FCI 11.42a

SC-NEVPT2 PC-NEVPT2

NEVPT2 8.00, 12.20 7.97, 12.20
FDD-MR/NEVPT2 �A� 12.80 12.80
FDD-MR/NEVPT2 �B� 12.80 12.80

aDistance at which the two states have the same electric dipole, Ref. 35.

TABLE II. Matrix elements of the Hamiltonian operator �at the CASSCF level� and of the dressing operator �at the SC-NEVPT2 and PC-NEVPT2 level� on
the ionic and neutral VB structures for the LiF molecule as a function of the internuclear distance. The matrix elements of the dressing operator are obtained
by shifting the one-electron energy of the Li 2s orbital by 0, 0.1, and −0.1 hartree �see text�. Energies in hartree, and distance in bohr.

R

CASSCF SC-NEVPT2 PC-NEVPT2

�N�Ĥ�N� �I�Ĥ�I� �N�Ĥ�I� �N��̂�N� �I��̂�I� �N��̂�I� �N��̂�N� �I��̂�I� �N��̂�I�

4.50 −106.772 474 −106.874 937 0.026 578 −0.134 039 −0.190 990 −0.008 437 −0.133 025 −0.191 532 −0.006 586
5.50 −106.779 821 −106.833 029 0.026 256 −0.133 904 −0.192 565 −0.008 955 −0.132 363 −0.193 102 −0.006 381
6.50 −106.784 985 −106.803 485 0.021 278 −0.131 827 −0.192 613 −0.007 268 −0.130 875 −0.192 998 −0.004 820
7.50 −106.787 623 −106.782 522 0.015 090 −0.130 469 −0.192 460 −0.004 923 −0.129 997 −0.192 718 −0.002 935
8.50 −106.788 774 −106.766 674 0.009 954 −0.129 864 −0.192 348 −0.002 773 −0.129 691 −0.192 566 −0.001 504
9.50 −106.789 250 −106.754 132 0.006 306 −0.129 684 −0.192 400 −0.001 534 −0.129 633 −0.192 569 −0.000 856
10.00 −106.789 369 −106.748 788 0.004 969 −0.129 646 −0.192 452 −0.001 156 −0.129 618 −0.192 588 −0.000 666
10.50 −106.789 447 −106.743 947 0.003 894 −0.129 619 −0.192 501 −0.000 877 −0.129 604 −0.192 607 −0.000 520
11.00 −106.789 496 −106.739 548 0.003 037 −0.129 601 −0.192 537 −0.000 666 −0.129 592 −0.192 616 −0.000 405
11.25 −106.789 514 −106.737 498 0.002 680 −0.129 594 −0.192 548 −0.000 581 −0.129 588 −0.192 615 −0.000 358
11.50 −106.789 530 −106.735 537 0.002 360 −0.129 588 −0.192 554 −0.000 507 −0.129 584 −0.192 611 −0.000 316
12.00 −106.789 552 −106.731 867 0.001 827 −0.129 582 −0.192 549 −0.000 385 −0.129 580 −0.192 589 −0.000 243
12.50 −106.789 568 −106.728 494 0.001 410 −0.129 581 −0.192 526 −0.000 292 −0.129 580 −0.192 552 −0.000 187
13.70 −106.789 588 −106.721 426 0.000 745 −0.129 591 −0.192 426 −0.000 149 −0.129 591 −0.192 436 −0.000 096
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�unperturbed� wave function of the GS and of the orthogonal
component �m

� �see Eq. �12��. We note here that this proce-
dure cannot assure that this space is even qualitatively suffi-
cient to describe both the GS and the first excited state:
therefore the central aim is only to obtain a correct �decon-
tracted� description of the GS. With this active space the two
variants of NEVPT2 do not have the same behavior and
therefore different choices of 	 values have been used: for
PC-NEVPT2 the A and B choices used for the CASSCF 2/2
case have been applied, while for SC-NEVPT2 we have con-
sidered the following choices:

�a� 	=0.0, ±0.01→ “C”;
�b� 	=0.0, ±0.02→ “D”;
�c� 	=0.0, ±0.03→ “E.”

The origin of such a difference is described in the following.
The SC-NEVPT2 and PC-NEVPT2 results are reported

in Figs. 6 and 7, respectively. One first notes that in this case

the results are closer to the FCI description when compared
with the CASSCF 2/2 calculations. The three FDD-MR/SC-
NEVPT2 curves compare well with the FCI ones and are
almost indistinguishable in the scale of Fig. 6. The use of
smaller values for 	 leads to numerically unstable results
with oscillating energy curves, while the use of larger values
produces energy curves which depend on 	, thus indicating
that with such values for 	 the hypothesis underlying the
FDD-MR approach are not completely fulfilled. For the
FDD-MR/PC-NEVPT2 approach the C, D and E choices of
	 values cannot be used because numerically unstable results
are obtained. This is probably due to the greater numerical
complexity of the PC-NEVPT2 variant with respect to the
SC-NEVPT2 one. Indeed in a PC-NEVPT2 calculation the
perturber functions are obtained by the diagonalization of a
model Hamiltonian in a given set of spaces spanned by func-
tions originated from the zero-order wave function and
which can show linear dependencies. One has therefore to
get rid of these linear dependencies before the diagonaliza-
tion procedure and this is done by eliminating the eigenvec-
tors of the overlap matrix associated to eigenvalues lower
than a given �close to zero� threshold. This procedure, which
is evidently prone to numerical instabilities for small pertur-
bations of the zero-order wave functions and thus of the lin-
ear dependent functions defining the perturbers, is not
needed in the SC-NEVPT2 variants, given that the perturber
functions are in this case orthogonal by construction.

For these reasons the FDD-MR/PC-NEVPT2 approach
has been applied with larger shifts 	, i.e., the A and B
choices of 	 values used in the CASSCF 2/2 case �see Fig.
7�: the curves are in this case smoothly varying, but they
show a dependence on the choice of the three values of 	
used in the FDD-MR approach. This is undeniably a nui-
sance but it can be essentially attributed to the numerical
complexity of the PC-NEVPT2 approach more than to the
FDD-MR technique. One has, however, to note that also in
this case the agreement with the FCI curves is satisfactory
for both choices of 	 values �even if the agreement is lower

FIG. 5. Diabatic potential energy curves �eV� for the neutral and ionic
structures of LiF computed with the FDD-MR procedure at the CASSCF
2/2 and SC-NEVPT2 level. A and B indicate different choices of 	 used for

the construction of the matrix elements of the Ĥ+ �̂ operator �see text�. The
zero of the energy is the energy of the neutral VB structure at R
=100 bohrs.

FIG. 6. Adiabatic potential energy curves �eV� for the first two 1�+ states of
LiF computed with the FDD-MR procedure at the CASSCF
6/6+SC-NEVPT2 level. C, D, and E indicate a decontraction based on
different choices of 	 �see text�. The three C, D, and E curves are almost
indistinguishable in figure. The FCI curves are also reported for comparison.

FIG. 7. Adiabatic potential energy curves �eV� for the first two 1�+ states of
LiF computed with the FDD-MR procedure at the CASSCF
6/6+PC-NEVPT2 level. A and B indicate a decontraction based on different
choices of 	 �see text�. The FCI curves are also reported for comparison.
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than in the FDD-MR/SC-NEVPT2 case� especially when
compared with the bare SC or PC-NEVPT2 curves �Fig. 2�.

We want to stress that the curves in Figs. 3–7 are ob-
tained using only the wave function and energy of the GS
�with three slightly different modifications of the composi-
tion of the wave function�. Around the FCI avoided crossing
these wave functions have essentially a neutral nature �as
shown by Fig. 1� and it is worth noting that both the ground
and the first excited states are in general correctly described
by the diagonalization of the dressed Hamiltonian matrix.

B. The F2 molecule

As a second case study, we have considered the GS of
the F2 molecule. The accurate calculation of the GS potential
energy curve of this molecule has been the subject of various
studies.22,38–40,53,54 It has been shown that the dynamical po-
larization, i.e., the relaxation of the orbitals in each VB struc-
ture, plays a central role in the calculation of the dissociation
energy.39 This effect is not included in a valence CASSCF
wave function, given that the ionic and neutral forms are
described using a unique set of orbitals.39,40 This leads to a
destabilization of the ionic form, which at this level has too
high an energy. Given the lowering of the ionic energy
brought by the dynamical correlation one expects that the use
of internally contracted multireference methods can be sub-
jected to the bias introduced in the CASSCF wave function.
It is, however, worth noting that in this case the problem
manifests itself in a less dramatic way than in the case of
LiF: in F2 the ionic and neutral forms are rather far away in
energy �the ionic form being higher in energy than the neu-
tral one� for all internuclear distances R and the two curves
do not cross. Therefore the weight of the ionic form is ex-
pected to be always smaller than the one of the neutral form
and to vary smoothly with R �going to zero as R increases�.

In this case use has been made of the cc-pVQZ
basis set,55 with the contraction scheme �12s6p3d2f1g� /
�5s4p3d2f1g�, keeping the spherical components. The calcu-
lations have been performed in the D2h symmetry point
group.

The CASSCF energies and wave functions are computed
using the MOLCAS program package48 over quite a wide
range of internuclear distances, from 2.10 to 10.0 bohrs �the
energy for the two separated atoms is computed for R
=100 bohrs�. Various active spaces have been considered: �a�
the minimum valence active space, containing the two 2pz

electrons and orbitals: CAS 2/2; �b� the CAS 2/2 space
augmented with the two 2px and the two 2py electrons and
orbitals: ten electrons in six orbitals, CAS 10/6; �c� the CAS
10/6 space augmented with two correlating 2px� and two 2py�
orbitals: CAS 10/10.

The zero-order CASSCF description is improved by cor-
recting the energy to the second-order in perturbation using
the SC and PC variants of the NEVPT approach and to the
third-order with SC-NEVPT3.56 The FDD-MR decontraction
algorithm is applied to SC-NEVPT2, PC-NEVPT2, and SC-
NEVPT3 using three zero-order CASCI wave functions
computed applying three different one-electron energy shifts,
	, to the b1u�* valence orbital. This allows us to build up a

2
2 dressing Hamiltonian. As in LiF, different choices for
the three values 	 have been considered in order to test the
stability of the decontraction algorithm:

�a� 	=0.0, ±0.01→ “A”;
�b� 	=0.0, ±0.05→ “B”;
�c� 	=0.0, ±0.10→ “C.”

The basis on which the dressing Hamiltonian is built up
is defined by the neutral �F··F� and ionic �F−F++F+F−� forms
�hereafter indicated with �N� and �I�, respectively� in the case
of the CAS 2/2 space and the �m

�0� and �m
��	� wave func-

tions �Eq. �12� and Eqs. �18� and �19�� for the other active
spaces. The neutral and ionic VB structures are written using
orthogonal “atomic” orbitals �orbitals essentially centered on
one atom, but with a tail on the other atom in order to guar-
antee the orthogonality constraint� obtained as the sum and
the difference of the valence �g and �u molecular orbitals
�MOs�. They will be indicated in the following with a and b.
The VB structures here considered differ therefore from
those of the standard VB approach �where strictly atomic,
nonorthogonal, orbitals are used� and belong to the “orthogo-
nalized VB” �OVB� family.

The CAS 2/2 results will first be examined. The use of
such a small active space allows one to analyze the effect of
the electronic correlation on the two relevant VB structures.
In Fig. 8 the matrix elements of the Hamiltonian operator
and of the FDD-MR dressed Hamiltonian operator �at the
SC-NEVPT2, PC-NEVPT2, and SC-NEVPT3 level� on the
�N� and �I� basis are reported for the C choice of 	 values �all
energies are relative to the GS energy at dissociation�. Let us
first comment on some general characteristics of the curves.
One notes that the energy curve for the neutral form is not
strongly affected by the introduction of the dynamical corre-
lation and that it is dissociative at all the levels of calculation

FIG. 8. Matrix elements of the Hamiltonian operator �at the CASSCF level�
and of the Ĥ+ �̂ operator �at the SC-NEVPT2, PC-NEVPT2, and SC-
NEVPT3 level� for the F2 molecule as a function of the internuclear dis-
tance. The diagonal elements are the energies of the neutral and of the ionic
VB structures, indicated in the figure with Neutral and Ionic, respectively.
The zero of the energy is the energy of the neutral VB structure at R
=100.00 bohrs. The off-diagonal element is the electronic coupling between
the two structures and is reported without shift. The matrix elements of the
dressing operator are obtained by shifting the one-electron energy of the
b1u�* valence orbital by 0, 0.1, and −0.1 hartree �“C” choice of 	 values, see
text�. The GS experimental equilibrium distance �R=2.668 bohrs� is indi-
cated with a vertical full line.
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here considered. The latter characteristic is also found in the
H2 molecule using the OVB method57 and indicates that in
the formation of the bond in F2 the ionic form plays a central
role. The electronic coupling between the two VB structures
is also very modestly affected by the introduction of the dy-
namical correlation at all values of R, apart from at very
short internuclear distances. As expected, the ionic VB struc-
ture is higher in energy than the neutral one and correctly
dissociates to two ionic atoms �the GS energy of F+F− de-
pends on which of the two singlet states, 1D or 1S, of the F+

atom is considered but a value between 16 and 20 eV is
reasonable�. For R larger than 3 bohrs, the effect of the dy-
namical correlation on this state is large and a remarkable
lowering of the energy is found, with the SC/PC-NEVPT2
curves much lower than the SC-NEVPT3 one.

Concentrating our attention on the experimental equilib-
rium internuclear distance �for the sake of clarity Fig. 8 re-
ports a vertical full line at this value of R�, one promptly
notes that the lowering of the ionic energy is negligible �with
respect to the CAS value� at the third order and very small at
the second order. This means that the matrix elements of the
Hamiltonian in the �N� and �I� basis show modest variations
�apart from a diagonal shift� passing from the CASSCF to
the perturbative approaches, and the same happens therefore
for the wave functions. One can therefore expect modest
effects of the decontraction procedure on the dissociation
energy and on the ionic to neutral ratio in the GS wave
function at the equilibrium geometry. These considerations
are confirmed by the data presented in Table III which re-
ports the ionic �CI� and neutral �CN� coefficients for different
wave functions computed at the experimental equilibrium
geometry �R=2.668 bohrs� for all the active spaces here con-
sidered. At the CASSCF 2/2 level CI=0.499, smaller than
�but close to� the value obtained at higher levels of theory
�also reported in Table III�, such as, for instance, the

CASSCF plus single excitations CI �CASSCF+S�, the
CASSCF+difference dedicated CI �Ref. 21� �CASSCF
+DDC2 and CASSCF+DDCI, and the CASSCF plus single
and double excitations CI �CASSCF+SD�, for which CI

ranges from 0.535 �CASSCF+SD� to 0.560 �CASSCF
+DDC2� with 0.549 being the best estimate. All these CI
calculations have been performed using the CASDI �Ref. 22�
program. The application of the FDD-MR decontraction
method to SC/PC-NEVPT2 and SC-NEVPT3 gives for CI a
value of 0.529 �SC/PC-NEVPT2� and 0.510 �SC-NEVPT3�
in agreement with the CASSCF+SD value. For all active
spaces only the results for the “C” choice of 	 values are
reported given the low variability found for the CI and CN

values with the 	 values used, thus showing a high stability
of the results with respect to the numerical parameters.

The spectroscopic parameters �De, Re, and �G1/2�, re-
ported in Table IV �again only the C choice of 	 values is
reported for simplicity�, also confirm what is said for the
wave function. They are computed from the minimum of the
spline fitting of the computed points �De and Re� and by
numerically solving the vibrational rotationless Schrödinger
equation ��G1/2�. At the CASSCF 2/2 level the value for De

�0.720 eV� is largely underestimated �experimental63

1.66 eV�, while the second and third-order corrections are
closer to the experimental value �with a modest overestimate
and sizable underestimate, respectively�. The CASSCF value
for �G1/2 �663.5 cm−1, experimental64 892 cm−1� is im-
proved by the introduction of the dynamical correlation, with
the SC-NEVPT3 value differing from the experimental one
by 
30 cm−1. A similar trend is observed for Re.

The application of the FDD-MR approach leads to mod-
est variations for De �as expected from the previous consid-
erations� and Re at the NEVPT2 level and very small varia-
tions for both quantities at the SC-NEVPT3 level. The

TABLE III. F2 molecule: coefficient of the ionic �CI� and neutral �CN� structures in the GS wave function
computed at different level of theory at the experimental equilibrium geometry �R=2.668 bohrs�. For the
FDD-MR/NEVPT2 and FDD-MR/NEVPT3 approaches, the values are reported for the SC variant �the PC-
NEVPT2 ones are in parentheses�.

Method ����	� ����−	�� CI CN

CASSCF 2/2 0.499 0.866
CASSCF 2/2+S 0.546 0.838
CASSCF 2/2+DDC2 0.560 0.829
CASSCF 2/2+DDCI 0.549 0.836
CASSCF 2/2+SD 0.535 0.845
FDD-MR�C�/NEVPT2 0.529 �0.529� 0.849 �0.849�
FDD-MR�C�/NEVPT3 0.510 0.861

CASSCF 10/6 0.501 0.865
CASSCF 10/6+S 0.550 0.835
CASSCF 10/6+DDC2 0.543 0.840
CASSCF 10/6+DDCI 0.539 0.843
CASSCF 10/6+SD 0.538 0.843
FDD-MR�C�/SC-NEVPT2 0.980 0.529 �0.529� 0.847 �0.847�
FDD-MR�C�/NEVPT3 0.980 0.511 0.858

CASSCF 10/10 0.537 0.824
FDD-MR�C�/SC-NEVPT2 0.992 0.525 �0.522� 0.831 �0.833�
FDD-MR�C�/NEVPT3 0.992 0.524 0.831

234109-10 Angeli et al. J. Chem. Phys. 124, 234109 �2006�



variations found for �G1/2 are more sizable for NEVPT2
�
30 cm−1� and also for SC-NEVPT3 are not negligible
�
12 cm−1�.

With respect to the CAS 2/2 results, the use of a slightly
modified active space �CAS 10/6� only slightly modifies the
description, the main difference being in the improved agree-
ment of the SC-NEVPT3 values for De and �G1/2 with the
experimental ones. The agreement is further improved with
the largest active space �CASSCF 10/10� where the differ-
ences with the experimental values are always small and par-
ticularly small at the highest level, FDD-MR/SC-NEVPT3,
where they are 0.05 eV for De, 0.002 bohr for Re, and
4 cm−1 for �G1/2.

For the sake of completeness the potential energy curve
of the ground state for some relevant approaches �CASSCF,
NEVPT2, FDD-MR/NEVPT2, NEVPT3, and FDD-MR/
NEVPT3 with the 2/2 active space and NEVPT3 with the
10/10 active space� is reported in Fig. 9, from which one can
note that the effect of the decontraction procedure is more
pronounced in an interval of R larger than the equilibrium
internuclear distance, both for the NEVPT2 2/2 and
NEVPT3 2/2 approaches. The best curve obtained in this

work �NEVPT3 10/10, almost indistinguishable from the
FDD-MR/NEVPT3 10/10 one� is reported for comparison.

From Table III one notes that when Eqs. �12�, �18�, and
�19� are used �CAS 10/6 and 10/10� the overlap
����	� ����−	�� is always close to one �for the A and B
choices of 	 values the overlap is higher than with the C
one�, thus confirming the hypothesis of the invariance of the
�� wave function with respect to small variations of 	.

From these results one can conclude that the ionic/
neutral mixing at the equilibrium geometry is not the source
for the large deviations sometimes found in the calculation of
the dissociation energy of the F2 molecule. Modest variations
on this value have been found by internally decontracting the
zero-order wave function. On the other hand for values of R
slightly larger than the equilibrium one, the modification due
to the internal decontraction should be more pronounced
�due to the lowering of the ionic energy�. The fact that �G1/2

is more affected by the internal decontraction than De and Re

agrees with this consideration. Finally, for large values of R
the effect of the internal decontraction becomes vanishing
given that the electronic coupling rapidly goes to zero.

Other properties of the F2 molecule can be more
strongly affected by the internal decontraction of the GS
wave function, an example being the calculation of the emis-
sion intensity from the C 1�u excited states. Close to its equi-
librium geometry �experimental65 Re=3.619 bohr� this state
is known to arise essentially from the 2p�g

1→2p�u
1 excita-

tion and to have ionic character.66 Using the simplest de-
scription of this state �CAS 2/2�, one can easily demonstrate
that the emission intensity is roughly proportional to the
square of the coefficient of the ionic VB structure in the GS
wave function. Indeed the C 1�u state is qualitatively de-
scribed, for the two valence electrons, by the spatial wave
function �aa−bb� /	2 �a and b being the orthogonal 2pz

atomic orbitals centered on the two F atoms� and for this
wave function the matrix element of the electric dipole op-
erator is nonvanishing only with the ionic 1�g VB structure

TABLE IV. Spectroscopic constants of the F2 molecule. For the NEVPT2
and FDD-MR/NEVPT2 approach, the values are reported for the SC-
NEVPT2 variant �the PC-NEVPT2 ones are in parentheses�. A selection of
the previously published theoretical values is also reported.

Method De �eV� Re �bohr� �G1/2 �cm−1�

CASSCF 2/2
CASSCF 0.720 2.776 663.5
NEVPT2 1.717 �1.720� 2.638 �2.638� 947.2 �947.0�
NEVPT3 1.390 2.678 861.6
FDD-MR�C�/NEVPT2 1.751 �1.754� 2.655 �2.655� 918.3 �917.5�
FDD-MR�C�/NEVPT3 1.395 2.683 849.0

CASSCF 10/6
CASSCF 0.768 2.767 679.8
NEVPT2 1.830 �1.878� 2.629 �2.629� 972.6 �978.9�
NEVPT3 1.476 2.674 877.1
FDD-MR�C�/NEVPT2 1.860 �1.908� 2.644 �2.646� 928.9 �929.3�
FDD-MR�C�/NEVPT3 1.481 2.678 860.5

CASSCF 10/10
CASSCF 1.515 2.678 884.3
NEVPT2 1.589 �1.612� 2.682 �2.685� 886.6 �883.1�
NEVPT3 1.604 2.674 893.0
FDD-MR�C�/NEVPT2 1.595 �1.621� 2.678 �2.682� 889.1 �886.9�
FDD-MR�C�/NEVPT3 1.612 2.670 895.6

MP-ENa 1.77 2.666 924.4b

�SC�2SDCIc 1.59 2.670 915.2b

MRCId 1.62 2.668 921.2b

CCSD�T�e 1.56 2.663 955.5b

Experimental 1.66f 2.668f 892g

aSecond-order perturbation theory, Ref. 58.
bThe value reported is for �e and not for �G1/2.
cSize-consistent multireference CI, Ref. 59.
dReferences 60 and 61.
eReference 62.
fReference 63.
gRaman Spectroscopy, Ref. 64.

FIG. 9. Potential energy curves for the 1�g
+ ground state of the F2 molecule

computed at the CASSCF, NEVPT2, FDD-MR/NEVPT2, NEVPT3, and
FDD-MR/NEVPT3 level with the 2/2 active space and at the NEVPT3 level
with the 10/10 active space. All NEVPT values are for the strongly con-
tracted variant. The FDD-MR results are obtained by shifting the one-
electron energy of the b1u�* orbital by 0, 0.1, and −0.1 hartree �“C” choice
of 	 values, see text�.
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�being proportional to �a�z�a�− �b�z�b��. The application of
the FDD-MR approach to the GS wave function at R
=3.619 bohrs results in an increase of the ionic coefficient
from 0.240 in the CASSCF wave function to 0.304 at the
SC- and PC-NEVPT2 level and to 0.272 at the SC-NEVPT3
level. The transition electric dipole is therefore increased by
26.7% and 13.3% at the second and third orders, respec-
tively, implying an increase for the emission intensity of
60.4% and 28.4%, respectively. In this case the internal de-
contraction of the GS wave function has a sizable effect on
the studied property. For the sake of clarity the matrix ele-

ments of Ĥ and �̂ �for the C choice of 	 values� are reported
in Table V for the two relevant geometries here discussed
�experimental equilibrium geometry of the GS and of the
C 1�u state�.

It may be interesting to see whether the neutral and ionic
VB configurations defined from our diabatization have a
physical significance. To this aim, one can compare the ionic
curve reported in Fig. 8 with the C 1�u excited state of F2.
Clearly the ionic configuration reported in Fig. 8 is of 1�g
type and therefore it cannot be directly compared with the
C 1�u state, but one can note that in a simplified model
where only the two valence electrons are considered, the
ionic 1�g configuration can be described �disregarding the
spin� by the wave function �aa+bb� /	2. In this model, the
ionic 1�g configuration and the C 1�u state are separated in
energy by 2Kab, where Kab is the exchange integral for the
two orbitals a and b. This separation can be supposed to be
small with respect to the energy difference between the GS
and the C 1�u excited state. This hypothesis is confirmed by
the calculation of 2Kab using the CASSCF 2/2 orbitals of the
ground state. Noting that

2Kab =
��g�g��g�g� + ��u�u��u�u�

2
− ��g�u��g�u� , �22�

one has that 2Kab is less than 0.5 eV at the GS equilibrium
geometry and rapidly goes to zero if R increases.

By shifting the 1�g NEVPT curves by 2Kab �computed
with Eq. �22�� one has Re=3.90,3.87,3.69 bohrs, E�Re�
=11.92,11.96,15.05 eV, vertical excitation energy
=21.22,21.23,22.47 eV, and energy difference with the GS
at its equilibrium geometry=11.62,11.62,14.49 eV for SC-
NEVPT2, PC-NEVPT2, and SC-NEVPT3, respectively.

These curves compare quite well with the one reported in
Ref. 66 for the C 1�u state �T0=11.57 eV, Re=3.62 bohrs�,
showing a similar shape and being in the same energy
region.

We stress again that in the present calculation the ionic
VB energy is obtained by performing calculations only on
the GS and a qualitative agreement for an excited state has to
be considered satisfactory.

A similar comparison can be done between the neutral
curve of Fig. 8 and the first 3�u

+ state, which is purely neutral
and qualitatively described by the spatial wave function
�ab−ba� /	2. Again the two wave functions have different
spatial symmetry and in this case also different spin multi-
plicity, but in the simplest model they are again separated by
2Kab, so they are expected to be close and to have quite a
similar shape. The 3�u

+ state is found67 to be dissociative and
placed 7.5 eV higher than the GS at the GS equilibrium ge-
ometry. The neutral curves reported in Fig. 8 agree with
these results, the vertical excitation energy being 7.34 eV
�SC/PC-NEVPT2� and 7.04 eV �SC-NEVPT3�, while for the
3�u

+ state �computed by shifting the neutral 1�g
+ curves by

2Kab� the vertical excitation energy is 6.91 eV �SC/PC-
NEVPT2� and 6.62 eV �SC-NEVPT3�.

It is quite gratifying to see that our analysis of the
ground state wave function and state-specific diabatization
furnishes physically relevant information about the position
of excited states �of other symmetries�.

V. DISCUSSION

The comparison between the LiF and the F2 problems
permits a discussion about the importance of the decontrac-
tion. The decontraction produces a component in the refer-
ence space, which can be assimilated to the second-order
contribution to the wave function expansion

P0��m
�2�� = �

n�m
�

��S0

��n
�0��

��n
�0��Ĥ������Ĥ��m

�0��

�Em
�0� − En

�0���Em
�0� − E�

�0��

= �
n�m

��n
�0��

��n
�0��Ĥ��m

�1��

Em
�0� − En

�0� . �23�

Analogously, the decontraction contribution to the energy
can be supposed to be similar to a component of the fourth-

TABLE V. Matrix elements of the Hamiltonian operator �at the CASSCF level� and of the dressing operator �at the SC-NEVPT2, PC-NEVPT2, and
SC-NEVPT3 level� on the ionic and neutral structures for the F2 molecule for two relevant internuclear distances. The matrix elements of the dressing operator
are obtained by shifting the one-electron energy of the b1u�* orbital by 0, 0.1, and −0.1 hartree �C choice of 	 values, see text�. Energies in hartree, and
distance in bohr.

Method �N�Ĥ�N� �I�Ĥ�I� �N�Ĥ�I� CI CN

GS experimental equilibrium geometry �R=2.668 bohrs�
CASSCF −198.553 770 −197.972 084 −0.502 061 0.499 0.866
FDD-MR�C�/SC-NEVPT2 −199.063 555 −198.535 873 −0.540 252 0.530 0.848
FDD-MR�C�/SC-NEVPT3 −199.088 745 −198.501 902 −0.534 149 0.509 0.861

C 1�u experimental equilibrium geometry �R=3.619 bohrs�
CASSCF −198.783 362 −198.126 693 −0.173 306 0.240 0.971
FDD-MR�C�/SC-NEVPT2 −199.306 423 −198.885 615 −0.151 038 0.306 0.952
FDD-MR�C�/SC-NEVPT3 −199.324 060 −198.797 698 −0.161 444 0.272 0.962
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order energy correction

Em
�4� = �

��S0

�
n�m

�
��S0

��m
�0��Ĥ������Ĥ��n

�0����n
�0��Ĥ������Ĥ��m

�0��

�Em
�0� − E�

�0���Em
�0� − En

�0���Em
�0� − E�

�0��
. �24�

These corrections are of course expected to be crucial when
there exists at least a state �n

�0� close in energy to �m
�0� and

strongly interacting with �m
�1�. The existence of a near degen-

eracy in the reference space is a case where decontraction is
highly recommended.

It may be interesting as well to consider the problem
from a VB point of view, starting with the LiF and F2 sys-
tems. Both problems can be understood in terms of an inter-
action between two VB configurations, a neutral singlet and
an ionic configuration, Li+F− or �F−F++F+F−� /	2. In both
molecules the dynamical correlation is stronger in the ionic
configuration than in the neutral one, by 
2 eV in LiF and
up to 5 eV in F2 beyond 3.5 bohrs. This differential dynami-
cal correlation effect is crucial in both cases, it is responsible
for the shift of the avoided crossing to large interatomic dis-
tance in LiF and for half of the binding energy in F2, but the
decontraction is necessary in LiF while it plays a minor role
in F2 near its equilibrium geometry. The difference may of
course be related to the near degeneracy in LiF, while the
energy separation between the ionic and neutral VB compo-
nents is large in F2. It is nevertheless interesting to compare
the contracted and decontracted treatments in such problems.

In terms of the elements of the dressing operator �̂, for the
GS,

��m
�0�� = ��N� + ��I� , �25�

the contracted second-order correction is

Em
�2� = �2�NN + �2�II + 2���NI. �26�

Expressing �̂ in the basis of �m
�0� and ��

�� = − ��N� + ��I� , �27�

one gets

��m
�0���̂���� = ����II − �NN� + ��2 − �2��NI, �28�

�����̂���� = �2�NN + �2�II − 2���NI. �29�

The effect of the decontraction can be estimated from a
second-order expansion


Em
�2� =

��m
�0���̂����2

Em
�0� + ��m

�0���̂��m
�0�� − E� − �����̂����

=
�����II − �NN� + ��2 − �2��NI�2

Em
�0� − E� + ��2 − �2���NN − �II� + 4���NI

. �30�

In the simplifying hypothesis where the dressing matrix re-
duces to the �II element one has

Em
�2� = �2�II, �31�


Em
�2� =

�2�2�II
2

Em
�0� − E� − ��2 − �2��II

. �32�

The ratio between the decontraction effect and the contracted
second-order energy,


Em
�2�

Em
�2� =

�2�II

Em
�0� − E� − ��2 − �2��II

, �33�

can be very important when the dressing strongly reduces the
amplitude of the energy denominator. This will be the case in
magnetic diradical systems, which are not degenerate ��� �
� �� � �. The dynamical correlation strongly reduces the effec-
tive energy of the ionic VB component �for instance, from 25
to 7 eV, see Ref. 68� and the effect of the decontraction may
be of the same order of magnitude as the second-order con-
tracted correction. A forthcoming work will be devoted to
this problem.

VI. CONCLUSION

The present paper has recalled the difficulties met by the
internally contracted multireference procedures, despite the
computational benefit of the internal contraction. Some of
the spurious effects induced by the internal contraction �in
the case of interaction between close lying states, or of
weakly avoided crossings� can be solved by the construction
of low dimensional effective Hamiltonians11,32,33 through
multistate extensions of these algorithms. However, these so-
lutions do not allow one to obtain continuous potential en-
ergy surfaces when one cannot identify a closed set of states
which do not exhibit curve crossings with external states.
Moreover they cannot be applied in many problems where it
is not possible to improve the quality of the component of
the desired wave function in the reference space by a rotation
with a spectroscopically identifiable and computationally ac-
cessible excited state. The case of the binuclear magnetic
complexes, where the ionic VB component of the singlet
state is grossly underestimated at the valence CAS level, is a
well documented example.36,68

The paper has proposed a state-specific decontraction
procedure for state-specific MR algorithms. It is based on the
use of slightly perturbed zero-order wave functions. In a cer-
tain sense it may be compared to finite-field computations of
dipole moments or other observables, but it goes through the
construction of an effective Hamiltonian in the reference
space. The dressing matrix, reflecting the effect of the inter-
action with the outer space, is state-specific and the final
effective Hamiltonian is an intermediate Hamiltonian. With a
suitable choice of the components on which the wave func-
tion is expanded, the method provides an orthogonal valence
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bond reading of the state of interest. The effective valence
Hamiltonian built on such basis gives excited roots which
have been shown to be relevant.

The method would be rigorous if the outer space vectors
were not affected by the changes of �m

�0�. Although this is not
strictly true for externally contracted procedures, one may
apply the method to such algorithms and one may test the
numerical stability of the method by performing more calcu-
lations than the strict minimal number.

The method has been tested in the frame of the state-
specific version of the NEVPT algorithm, which is both in-
ternally and externally contracted and the results have shown
the potentialities of the FDD-MR method. On the LiF mol-
ecule it has been possible to remove the totally unphysical
behavior of the internally contracted approach and to obtain
a good quality potential energy curve for the ground state.
For F2 the FDD-MR approach has led to a better understand-
ing of the physics of bond formation, clarifying that the
neutral/ionic ratio is well represented at the valence
CASSCF level. It has been shown that the FDD-MR ap-
proach is not crucial for this molecule for the calculation of
the spectroscopic constants. The use of a large active space
in the CASSCF calculation, of a high level treatment of the
electronic correlation �SC-NEVPT3� and of the FDD-MR
procedure has allowed one to obtain a very close agreement
of the computed value of some spectroscopic constants with
the experimental findings. On the contrary the emission in-
tensity for the radiative transition from the excited C 1�u
state to the GS has been shown to depend on the internal
contraction/decontraction of the GS wave function. Finally,
for both molecules the use of the FDD-MR approach has
made it possible to describe, at a qualitative �F2� or more
than qualitative �LiF� level, one or two excited states also.
This result is noteworthy because the procedure here pre-
sented is based on a small number of calculations on the
ground state.

Further work37 will present applications of the NEVPT2
method, as modified by the decontraction, to magnetic sys-
tems with comparison of the Effective Hamiltonians ob-
tained with the present method with those which are rigor-
ously established from variational CI calculations through
Bloch’s theory.
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