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Nonmonotonic quantum phase gathering in curved spintronic circuits
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Spin carriers propagating along quantum circuits gather quantum spin phases depending on the circuit’s
size, shape, and spin-orbit coupling (SOC) strength. These phases typically grow monotonically with the SOC
strength, as found in Rashba quantum wires and rings. In this work we show that the spin-phase gathering can
be engineered by geometric means, viz., by the geometric curvature of the circuits, to be nonmonotonic. We
demonstrate this peculiar property by using one-dimensional polygonal models where flat segments alternate
with highly curved vertices. The complex interplay between dynamic and geometric spin-phase components—
triggered by a series of emergent spin degeneracy points—leads to bounded, global spin phases. Moreover, we
show that the particulars of the spin-phase gathering have observable consequences in the Aharonov-Casher
conductance of Rashba loops, a connection that passed unnoticed in previous works.
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I. INTRODUCTION

Spin dynamics is a determinant for electronic transport
in mesoscopic conductors [1]. Carriers developing spin-
dependent phases experience quantum interference effects
molding properties such as the conductance. Coherent spin-
phase contributions can be sufficiently strong to reverse the
magnetoconductance response of low-dimensional systems,
as in the case of weak (anti)localization [2,3]. A promi-
nent source of spin phases in two-dimensional electron gases
is spin-orbit coupling (SOC), responsible for the working
principles of spin-field-effect transistors [4–7] and Aharonov-
Casher (AC) interferometers [8–15], among others [16,17].
Moreover, when SOC is combined with Zeeman fields and
superconducting proximity effects, spin carriers can develop
more exotic quantum states of topological nature such as the
celebrated (and elusive) Majorana modes [18].

The electrical modulation of the Rashba SOC [19] in
two-dimensional electron gases confined in semiconductor
heterostructures [20] has facilitated the realization of spin
interferometers [13–15] based on the AC effect [8]. This is
an electrical effect on a particle carrying a quantum magnetic
moment, which is nothing but the electromagnetic dual of
the Aharonov-Bohm (AB) effect [21] (a magnetic effect on
an electrically charged quantum particle). The role played by
dynamic and geometric spin phases in the conductance of
AC interferometers (especially in semiconductor-based meso-
scopic rings) has been studied intensively over the past decade
[22–27]. Moreover, further studies on polygonal AC inter-
ferometers [28–33] have demonstrated that the conductance
is quite sensitive to the geometric shape of the conducting
channels (specifically, to their curvature [34–37]) due to the
development of strongly nonadiabatic spin dynamics [38].
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This has significant consequences on the response to external
fields and the generation of topological spin phases [32]. Still,
some questions remain open in this regard as the interplay
between dynamic and geometric spin-phase gathering and
their distinct contributions.

Here we address these questions by studying the devel-
opment of dynamic and geometric phases in spin carriers
propagating through one-dimensional model loops of polyg-
onal shape subject to Rashba SOC. By these means, we find
that the spin-phase gathering in Rashba polygons is strongly
nonmonotonic, in manifest contrast to that observed in Rashba
rings. Our results show that this is a direct consequence of spin
degeneracies emerging from the nonadiabatic spin dynam-
ics triggered by field discontinuities at the polygon vertices.
These features lead to a series of remarkable effects such as,
e.g., the bounding of global AC spin phases, the possibility
of purely geometric spin-phase gathering (due to vanishing
dynamic spin phases), and the development of geometric spin-
phase plateaus that allow the independent control of dynamic
spin phases (complementary to previous findings regarding
the independent control of geometric spin phases in rings
[24]).

We point out that one-dimensional models for spin-carrier
transport in mesoscopic interferometers have been used in
the past with success [11,24,28,32,33,39–41]. In particular,
models similar to the one employed here have demonstrated
to be well suited to experiments with arrays of interferometric
loops where only one single (quasi-one-dimensional) orbital
mode appears to contribute to quantum interference due to
the decoherence experienced by relatively slow propagating
higher modes [24,32].

The paper is organized as follows. In Sec. II we introduce
a one-dimensional model for conducting Rashba polygons.
Our results on nonmonotonic spin-phase gathering are pre-
sented in Sec. III A. In Sec. III B we discuss the consequences
of the spin-phase gathering process in the conductance of
Rashba loops. Section IV is devoted to closing comments
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FIG. 1. One-dimensional Rashba polygon model. The effective
Rashba field BR corresponds to CCW propagating spin carriers.

and conclusions. We also include a series of Appendixes with
additional discussions on spin dynamics in Rashba loops and
a semiclassical approach to the quantum conductance.

II. MODEL

Consider a regular polygon of perimeter P lying on the xy
plane consisting of N conducting segments of length L = P/N
connecting vertices u and v and oriented along directions γ̂vu
(from u to v); see Fig. 1. The spin-carrier dynamics along each
wire segment is determined by the Hamiltonian [28]

Hvu = p2
�

2m
+ αR

h̄
p�(γ̂vu × ẑ) · σ, (1)

with p� = −ih̄∂� the linear momentum of the spin-carriers, �

the linear coordinate along the wire, m the carrier’s mass, σ

the vector of Pauli matrices, and αR the Rashba SOC strength
(which can be controlled in experiments by electrical means
[20]). The second term in Eq. (1) represents an effective in-
plane magnetic-field BR = (2αR/h̄gμB)p�(γ̂vu × ẑ) coupled
to the itinerant spins, with g the g factor and μB the Bohr
magneton. Notice that BR is momentum dependent and nor-
mal to γ̂vu, inverting its sign for counterpropagating carriers.
This means that Hvu preserves time-reversal symmetry.

By completing squares in Eq. (1) we find

Hvu = 1

2m
(p� + Avu)2 − h̄2

2m
k2

R, (2)

where Avu = h̄kR(γ̂vu × ẑ) · σ and kR = αRm/h̄2 = π/λR,
with λR the spin-precession length. We notice in Eq. (2) that
the SOC term of Eq. (1) has turned into a gauge-field Avu

(playing the role of a spin-dependent vector potential) and a
uniform spin-independent energy offset (which can be disre-
garded). This means that the solutions of the Schroedinger
equation Hvu|ψ〉 = E |ψ〉 are plane waves such that initial
spin-carrier states |ψ (0)〉 injected in vertex u propagate along
the segment toward vertex v as

|ψ (�)〉 = e−ikF�e−ikR�(γ̂vu×ẑ)·σ |ψ (0)〉, (3)

with kF the Fermi wavenumber. The first prefactor on the rhs
of Eq. (3) corresponds to the Abelian U (1) kinetic phase of the
carrier associated to the charge’s dynamics, while the second
prefactor represents the non-Abelian SU (2) spin phase due
to spin precession [33]. Equations (1)–(3) indicate that spin
carriers propagating in polygonal Rashba loops undergo a se-
ries of effective-field discontinuities at the vertices due to the

abrupt changes of γ̂vu, defining a textured BR with significant
consequences for the spin dynamics (eventually leading to
the development of complex paths in the Bloch sphere after
the spin carriers complete a round trip along the polygonal
circuit, as demonstrated in previous theoretical [28,29,33]
and experimental works [30–32]). Still, we notice that actual
semiconductor-based circuits of polygonal shape may present
rounded vertices that would soften the discontinuities and,
eventually, its effects on the carriers’ spin evolution. However,
one can show (see Appendix A) that this would require very
large SOC fields outside the actual range of interest and be-
yond current experimental reach in mesoscopic systems. More
precisely, it would entail the spin-precession length λR to be
much smaller than the effective size of the vertices for a spin
to notice their rounded shape [42]. As a consequence, for all
practical purposes we find that the modeling of the polygons’
vertices as pointlike discontinuities is fully justified.

Moreover, one finds that ring-shaped loops can be modeled
as polygons by taking the limit N � 1, provided that L � λR.
In this limit, an effective radial BR emerges and the polygonal
shape remains unnoticed [42] by the itinerant spins as shown
in previous works [28,33] (see also Appendix A).

From Eq. (3) we find that the propagation of a spin carrier
from u to v is fully determined by the phases kFL + kRL(γ̂vu ×
ẑ) · σ. In particular, the spin evolution along a full segment is
given by the momentum-independent spin rotation operator

Rvu = exp[−ikRL(γ̂vu × ẑ) · σ], (4)

with R†
vu = Ruv due to time-reversal symmetry. Equation (4)

is the building block to describe the spin evolution of a carrier
propagating in a polygonal loop. By labeling the vertices from
1 to N , we find that the spin evolution along counterclockwise
(CCW) and clockwise (CW) propagating paths is given by the
unitary operators

U+(N ) = R1N ...R32 R21, (5)

U−(N ) = R12...RN−1,N RN1, (6)

respectively, with U−(N ) = U †
+(N ). The eigenvalue equation

U±(N )|χs〉 = exp[±iφs]|χs〉 (7)

defines the global AC spin-phase ±φs gathered by a carrier
after a CCW/CW round trip propagating from the initial state
|χs〉 to a final state exp[±iφs]|χs〉 defined at the initial vertex 1,
with s =↑,↓ and 〈χ↑|χ↓〉 = 0. In regular polygons, symmetry
dictates that the spin quantization axis n̂s = 〈χs|σ|χs〉 is con-
tained within the plane normal to the polygon that bisects the
vertex’s angle. This hampers the full alignment of n̂s and BR,
compelling the state |χs〉 to propagate along the corresponding
segment by precessing around the local BR. This repeats iden-
tically for every vertex and segment. It is only in the limiting
case of ring-shaped loops (N � 1, L � λR) that the regime of
adiabatic spin dynamics [11] can be approached for λR � P
and the spin eigenmodes tend to align with the local BR (see
Appendix A). The different cases are illustrated by the insets
in Fig. 2 representing the corresponding spin textures, i.e., the
circulation path described by the local spin states in the Bloch
sphere as the carriers propagate completing a round trip.
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FIG. 2. Global (black solid lines), dynamic (blue dashed lines),
and geometric (red dotted lines) phases of propagating spin modes
in Rashba squares (a), hexagons (b), octagons (c), and rings (d) as a
function of the Rashba SOC strength kRP. The points of vanishing
dynamic phase correspond to spin degeneracies. The Bloch-sphere
insets depict the spin textures of propagating modes for different
values of kRP (the color scale shows the circulation direction—from
red to violet—starting a round trip from vertex 1; the solid dots
indicate the local spin states at the vertices). The complex response of
the spin phases and textures for polygons contrast with the monotonic
response for rings.

The global AC spin-phase φs = φs
d + φs

g splits into dy-
namic (φs

d) and geometric (φs
g) phase components [43]. The

dynamic spin phase represents the expectation value of the
spin Hamiltonian over the propagating spin modes in a CCW
round trip (i.e., the projection of the spin texture on the
effective-field texture). Since the contributions to the spin
phases along each segment are identical due to symmetry,
the dynamic phase reduces to φs

d = −kRP(γ̂21 × ẑ) · n̂s. The
geometric spin-phase φs

g = −
s/2, instead, is proportional to
the solid angle 
s subtended by the spin texture of CCW prop-
agating modes. This geometric spin phase, also referred to as
the Ahronov-Anandan phase [43], converges to a Berry phase
[44] only in the limit of adiabatic spin dynamics (disfavored
in Rashba polygons). The global and dynamical spin phases,
φs and φs

d, are obtained easily by solving Eq. (7). An explicit
calculation of the geometric spin-phase φs

g is sometimes dif-
ficult but unnecessary in our case: It can be readily obtained
from the other two as their difference, φs

g = φs − φs
d.

A similar analysis applies to CW propagating spin carriers
by replacing φs with −φs, as seen from Eq. (7).

III. RESULTS

We start by calculating the global (φs), dynamic (φs
d), and

geometric (φs
g) spin phases gathered by carriers in polygonal

loops with an even N . The results exhibit rich spin dynamics
as compared with ring-shaped loops, with several possibil-
ities for spin-phase manipulation. We then show how these
features reflect in the transport properties of polygonal loops.
For these aims, we introduce a dimensionless kRP to quan-
tify the Rashba SOC strength. This corresponds to the spin
phase gathered by a spin carrier propagating along a straight
quantum wire of length P, used here as a blank for evaluat-
ing spin phases in curved circuits. Transport experiments in
mesoscopic rings [13–15,23,24,26] and, especially, squares
[30–32] with perimeters of few micrometers show that kRP
can be electrically modulated in a wide range covering several
multiples of 2π relevant to our discussion.

A. Spin phases

For the sake of simplicity we focus our attention on CCW
propagating spin-up (s =↑) carriers. We define the spin-up
species as the branch for which |χ↑〉 → | ↑〉z as the Rashba
SOC vanishes (kRP → 0), where | ↑〉z is the eigenstate of σz

with positive eigenvalue. Henceforth, we drop the spin label
from the global (φ), dynamic (φd), and geometric (φg) spin
phases.

In Fig. 2 we plot the discriminated spin phases as a function
of the Rashba SOC strength kRP for (a) squares, (b) hexagons,
(c) octagons, and (d) rings (modeled by using N = 60, 10L �
λR) . The strongly nonmonotonic response of the spin phases
in polygons stands out from the monotonic behavior in the
ring’s case. We observe that the global spin-phase φ (black
solid lines) for polygons is bounded, 0 � φ � (N − 2)π , os-
cillating with periodicity 2Nπ as a function of kRP. This
unexpected bounding is the consequence of a singular inter-
play between dynamic and geometric phase components in
polygons, φd (blue dashed lines) and φg (red dotted lines),
which oscillate counterphase with an increasing amplitude.

In Figs. 2(a)–2(c), the oscillating dynamic spin-phase φd

(blue dashed lines) reveals aspects of an intricate spin evolu-
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FIG. 3. (a) Bloch sphere showing the spin texture of a propa-
gating mode with vanishing geometric phase in a Rashba square
corresponding to kRP = 3π , see Fig. 2(a). The arrows indicate the
circulation of the local spin states as the carrier propagate along the
perimeter and the color scale represents the position. The numbers
label the local spin states at the vertices. Positive and negative signs
indicate the contributions from each section of the spin texture to its
solid angle. (b) Azimuthal projection of the spin texture.

tion (see the corresponding spin textures in the Bloch-sphere
insets). Its sign is indicative of the spin-state projection along
the local Rashba field BR (negative projection for positive φd

and vice versa). Its growing amplitude is an expected conse-
quence of the increasing Rashba field strength, even for partial
spin-state/field alignment. The most interesting feature is the
vanishing of φd at kRP = nNπ (n integer), representing spin
degeneracy points. This condition is equivalent to L = nλR,
corresponding to an integer number of spin precession along
each side of the polygon. At the degeneracy points the spinors
|χs〉 at vertex 1 quantized along the z axis, such that spins
propagate along the polygons perimeter by precessing within
a plane perpendicular to the local Rashba field BR. These
states are illustrated in Figs. 2(a)–2(c) by the insets corre-
sponding to kRP = 4π, 6π , and 8π , respectively.

As for the geometric spin-phase φg (red dotted lines), its
sign indicates the dominating direction of circulation of the
spin states in the Bloch sphere while its magnitude grows
with the subtended solid angle. Notice that a vanishing φg,
except for the case of kRP = 0, is not a signal of pinned
spin states but instead an indicator of complex spin textures
where sections with different circulation directions in the
Bloch sphere contribute with partial solid angles of opposite
sign that cancel each other. An example in Rashba squares,
Fig. 2(a), takes place at kRP = 3π ; the corresponding spin
texture is shown with further detail in Fig. 3 where positive
and negative contributions to the solid angle are identified.
The periodic development of opposite contributions of this
kind leads to the oscillating response of φg in polygons shown
in Figs. 2(a)–2(c). Two particular features stand out here: (i)
φg tends to develop plateaus in the vicinity of its extremes.
This tendency is more pronounced as the number of sides N
increases. Interestingly, within a geometric-phase plateau the
global phase φ presents a linear evolution as a function of kRP
with origin in the dynamic component φd. This shows the pos-
sibility of an independent control of the dynamic spin-phase
component φd in Rashba polygons, complementary to the
purely geometric spin-phase manipulation achieved in Rashba
rings by introducing weak in-plane Zeeman fields [24]. (ii)
At the degeneracy points (φd = 0), the global phase reduces

to a purely geometric phase of magnitude φg = (N − 2)π .
For an even N , this multiple of 2π corresponds to the ge-
ometric phase associated to the solid angle of N/2 − 1 full
spheres. This means that between consecutive degeneracies
the geometric phase undergoes an integer number of windings
wg = φg/2π = N/2 − 1, contributing to characterize the spin
dynamics in topological terms.

The above description differs from that observed in
Fig. 2(d) for Rashba rings. There, both the global and the
dynamic spin phases, φ (black solid line) and φd (blue dashed
line), grow monotonically with kRP. This growing becomes
linear as the spin dynamics turn adiabatic for large kRP.
The adiabatic regime is particularly well illustrated by the
evolution of the geometric spin-phase φg (red dotted line),
approaching −π for large kRP as expected for spin states
aligned with the radial Rashba field. In this limit, the spin
states orbit the equator of the Bloch sphere by subtending a
solid angle corresponding to half sphere. Figure 2(d) repre-
sents an effective decoupling between dynamic and geometric
spin phases in rings, which is absent in polygons due to the
emergence of degeneracy points.

We stress that for producing Fig. 2(d) we modeled the
Rashba ring by using a polygon with relatively large N = 60
while keeping the spin precession length much larger than
the polygon’s sides (kRP � 6π , equivalent to 10L � λR in
this case). This model would fail as kRP approaches 60π and
λR → L, where the first spin degeneracy emerges. Moreover,
a closer look at Fig. 2 actually shows that in the regime of
weak Rashba SOC strengths kRP � Nπ (namely, far from
the first degeneracy point and equivalent to L � λR), the spin
phases in any polygon mimic the response observed in rings.
Deep in that weak-field limit, Rashba polygons and rings
look very similar from the point of view of the gathered spin
phases; see Appendix A for a discussion. All these aspects
are addressed analytically in Appendix B for the particular
case of Rashba squares. We further notice that recent mag-
netotransport experiments [32] in Rashba squares with P ≈
2.8 μm demonstrate that Rashba SOC strengths can be elec-
trically tuned in a window 4π � kRP � 6π , a vicinity of the
first degeneracy point where the polygonal shape manifests
optimally.

B. Conductance

Here we show that the spin-phase characteristics discussed
in Sec. III A have observable consequences in the conductance
of Rashba polygons. To this aim, we consider Rashba poly-
gons with N (even) sides symmetrically coupled to source and
drain contact leads as shown in Fig. 1. We adopt the Landauer-
Büttiker formulation [45] at zero temperature by identifying
the linear conductance G with the quantum transmission T
(in units of the quantum of conductance e2/h): G = (e2/h)T ,
with T = ∑

mn |tmn|2 and tmn the quantum transmission am-
plitude from the incoming mode n at the source contact
lead to the outgoing mode m at the drain contact lead. In
our one-dimensional model we have one single orbital mode
and two spin modes, such that 0 � T � 2. Moreover, the
unitarity of the scattering matrix imposes T + R = 2, where
R = ∑

mn |rmn|2 is the quantum reflection with rmn the corre-
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sponding amplitudes for incoming and outgoing modes n and
m at the source contact lead.

A realistic modeling of the experimental conditions, as
those corresponding to two-dimensional Rashba loop arranges
[23,24,32], requires one to take into account the effect of dis-
order and/or sample averaging. By following a semiclassical
approach for loops strongly coupled to the contact leads (see
Appendix C), we distinguish two different situations:

(i) Systems preserving a twofold reflection symmetry along
the axis connecting the contact leads. In this case, the ba-
sic traits of the quantum conductance are captured by the
expression

G1 = e2

h
(1 + cos φ), (8)

with φ the global spin phase defined in Sec. III A. The re-
sulting interference pattern, oscillating as a function of kRP
(through φ), is the AC effect in Rashba loops [8,10,11].

(ii) Systems with broken geometrical symmetries. In this
case, the quantum conductance is best described by the ex-
pression

G2 = e2

h
(1 − cos 2φ). (9)

Equation (9) captures the pairing of time-reversed orbital
paths emerging in disordered systems. In the absence of
Rashba SOC (φ = 0), this pairing leads to a minimum in the
quantum conductance due to the constructive interference of
backscattered carriers, an effect known as weak localization.
For sufficiently strong Rashba SOC (e.g., φ = π/2), this ef-
fect is reversed by destructive interference of backscattered
spin carriers maximizing the quantum conductance, leading
to the so-called weak antilocalization. This pattern oscillates
with a frequency two times larger than the one observed for
G1 in Eq. (8). This frequency doubling shares its origin with
the Al’tshuler-Aronov-Spivak oscillations [46] observed in
magnetoconductance experiments with disordered rings and
squares [23,24,32]. Hence, the relevance of either G1 or G2

for a given implementation can be decided independently in
the laboratories by performing complementary magnetocon-
duntance measurements and observing the periodicity of the
oscillations in units of the magnetic flux quantum φ0 = hc/e.

Figures 4 and 5 illustrate the results of Eqs. (8) and (9),
respectively, by plotting G1 and G2 as a function of kRP. Two
particular features stand out there: (i) The extremes of the
global phase φ—related to degeneracy points due to vanishing
dynamic phases, as shown in Fig. 2—manifest as conductance
plateaus (see Appendix B for relevant analytic expressions in
Rashba squares). (ii) Away from the degeneracy points, in the
regime where the global phase φ responds linearly to kRP, the
conductance displays rapid AC oscillations dominated by the
dynamic spin phase. These features explain the presence of
two different frequencies contributing to the AC conductance
oscillations in polygons: A lower frequency given by the peri-
odicity of the global phase and a higher frequency determined
by large phase-gathering rates between global phase extremes.
One consequence is that the lower frequency contribution
dominates in squares while it is absent in rings. Such con-
tributing frequencies have been previously identified [28] and
discussed [33] in terms of length scales, i.e., the perimeter P
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FIG. 4. Conductance G1 of Eq. (8) as a function of the
Rashba coupling strength kRP corresponding to twofold symmetric
(a) squares, (b) hexagons, (c) octagons, and (d) rings. Insets: Our
semiclassical model considers spin carriers propagating along paths
starting in one red spot (left) and ending in other one (right).

and the segments’ length L = P/N measured in units of the
spin-precession length λR. However, the nonmonotonicity of
the gathered spin phases and the presence of emergent spin
degeneracies passed unnoticed in those discussions.

IV. CONCLUSIONS

We have demonstrated that spin carriers propagating
in circuits of polygonal shape gather spin phases in a
nonmonotonic fashion as a function of the Rashba SOC
strength. This peculiar behavior is triggered by the inho-
mogeneities of the geometric curvature along the polygonal
perimeter—where flat segments alternate with highly curved
vertices—introducing effective Rashba field discontinuities
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FIG. 5. Conductance G2 of Eq. (9) as a function of the Rashba
coupling strength kRP corresponding to disordered (a) squares,
(b) hexagons, (c) octagons, and (d) rings. Insets: Our semiclassical
model considers spin carriers propagating along paths starting and
ending at the red spots (left). Notice the frequency doubling with
respect to the results of Fig. 4 due to time-reversed path interference
(dual of the magnetoconductance Al’tshuler-Aronov-Spivak oscilla-
tions). The minima for kRP = 0 is due to weak localization.
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acting as scattering centers for spin. As a consequence, a peri-
odic series of spin degeneracy points emerge. This contrasts
with the case of ring circuits of constant curvature, which
present a monotonous phase gathering and a complete absence
of spin degeneracies. We find that the global spin phases oscil-
late with a period determined by the emergent degeneracies.
Moreover, dynamic and geometric spin-phase components
present a rich pattern allowing the independent control of dy-
namic phases over geometric-phase plateaus (complementary
to previous findings on the independent control of geometric
spin phases in Rashba rings [24]).

We have also shown that the nonmonotonicity of the spin-
phase gathering has definite consequences in AC conductance
oscillations as the presence of plateaus in the vicinity of spin
degeneracies and the participation of two different frequen-
cies. These frequencies were identified in previous works
[28,33] but interpreted in terms of the different length scales
present in the system, overlooking the particulars of the spin-
phase gathering and the existence of spin degeneracies.

Our findings offer original ways to engineer electronic spin
phases at the mesoscopic scale by geometric means. The iden-
tification of emergent degeneracies suggest that non-Abelian
geometric spin phases may also apply. The role played by
commensurability effects in the development of emergent de-
generacies and phase gathering remains an open question,
motivating future investigations on irregular polygons. The
relevance shown by the geometric curvature in the reported
findings also suggests that prospective studies of spin dynam-
ics in non-Euclidean surfaces are in order.

Finally, nonmonotonic phase gathering and quantum phase
bounding arise as physical phenomena worthy of being sin-
gled out, as they could be identified and exploited in other
two-level quantum systems subject to complex dynamics.
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APPENDIX A: ADIABATIC CONDITION IN RASHBA
RINGS AND POLYGONS

The spin-carrier dynamics in a one-dimensional Rashba
ring of radius r0 lying on the xy-plane (see Fig. 6) is deter-
mined by the Hamiltonian [11,27,47]

H0 = − h̄ω0

2
∂2
ϕ + h̄ωR

2
σr (−i∂ϕ ) − i

h̄ωR

4
σϕ (A1)

= h̄ω0

2

(
−i∂ϕ + QR

2
σr

)2

− h̄ω0

8
Q2

R, (A2)

with ϕ the polar angle parametrizing the ring’s perime-
ter and Pauli matrices σr = cos ϕ σx + sin ϕ σy and σϕ =
− sin ϕ σx + cos ϕ σy. Moreover, we have defined the char-
acteristic kinetic and Rashba SOC frequencies ω0 = h̄/mr2

0
and ωR = 2αR/h̄r0, respectively, and their quotient QR =
ωR/ω0. The second term in Eq. (A1) represents an effective
(momentum-dependent) radial magnetic-field (BR in Fig. 6)
coupled to the itinerant spins, while the last term (negligible

BR

BR

up

down

z(a) (b)
θ

FIG. 6. One-dimensional Rashba ring. (a) Traveling spin carriers
experience an effective (momentum-dependent) radial magnetic-
field BR (pointing outward for CCW travellers and inwards for CW
ones). (b) Spin eigenstates quantize along an axis with tilt angle
θ such that tan θ = QR. This axis coincides with BR only in the
adiabatic limit QR � 1.

in the semiclassical limit of large momenta) is introduced to
guarantee the Hermiticity of the SOC [47].

From Eq. (A2) one finds spin eigenstates of the form
[11,27]

|ψl,↑〉 = exp(ilϕ)

(
cos θ/2

−eiϕ sin θ/2

)
, (A3)

|ψl,↓〉 = exp(ilϕ)

(
sin θ/2

eiϕ cos θ/2

)
, (A4)

where the integer l = ±kr0 is the angular momentum of the
carriers (with ± for CCW/CW motion and k the wavenum-
ber). The eigenstates (A3) and (A4) define spin textures
of conic shape in the Bloch sphere as a function of ϕ, as
those depicted by the insets in Fig. 2(d). These spin tex-
tures are fully determined by the parameter QR since sin θ =
QR/

√
1 + Q2

R , cos θ = 1/
√

1 + Q2
R , and tan θ = QR, with θ

the angle between the local spin quantization axis and the
z axis. The corresponding dynamical and geometric phases
read φs

d = sπQR sin θ and φs
g = −π (1 − s cos θ ) [27]. These

phases are nonvanishing (except for QR = 0) and experience
a monotonous growing with QR.

We identify the regime of adiabatic spin dynamics, where
the spin quantization axis is locally aligned with the radial
field BR, as the limiting case QR � 1 (i.e., θ → π/2). In this
adiabatic limit, the spin texture describes a path along the
equator of the Bloch sphere by subtending a solid angle 2π

and gathering a geometric (Berry) phase equal to −π . In the
opposite limit QR � 1 (i.e., θ → 0) one finds that the spin
eigenstates tend to stay pinned at the poles of the Bloch sphere
along the ring’s perimeter. This means that the spin carriers
are practically unperturbed by the radial field texture BR. The
crossover regime of finite QR is generally referred to as the
nonadiabatic regime.

It results useful to rewrite the parameter QR as the ratio
of two length scales, viz., QR = 2πr0/λR. This means that the
adiabatic regime (where the spin carriers capture all the details
of the radial field texture) requires the spin precession length,
λR, to be much smaller than the circumference of the ring,
2πr0. In the opposite limit, 2πr0 � λR, the radial field texture
passes unnoticed to the spin carriers [42].

Consider now a Rashba loop of polygonal shape of
perimeter P with N rounded vertices modeled as arcs of
circumference with radius rv � P/N (see Fig. 7). The ef-
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BR

rv

FIG. 7. Detail of a polygonal one-dimensional Rashba loop with
rounded vertices, modeled as arcs of circumference with radius rv.
The effective-field BR is uniform along each segment and radial
along the arcs. The spin carriers experience field discontinuities at
the vertices in the regime λR � 2πrv.

fective in-plane Rashba SOC field BR experienced by the
itinerant spin carriers is uniform along the segments and radial
along the arcs. The conditions for adiabatic spin dynamics are
determined by the regions with maximal field-texture inho-
mogeneity, corresponding to maximal geometric curvature in
this case [36]. This means that the adiabatic condition in a
polygon with rounded vertices coincides with that of a small
Rashba ring of radius rv, viz., λR � 2πrv. This would require
relatively large Rashba SOC strengths, far beyond the regime
λR ≈ P/N where the first spin degeneracy points emerge
(corresponding to kRP = Nπ in Fig. 2). This means that
the vertices can be safely treated as pointlike discontinuities
for moderate Rashba strengths covering the first degeneracy
points.

Finally, we identify a regime where adiabatic spin dy-
namics in Rashba rings can be modeled by using polygons.
The polygonal nature of Rashba circuits manifests in the
spin dynamics when the Rashba SOC strength is such that
λR ≈ P/N and the first degeneracy point arises. Hence, by
working in the regime of much weaker Rashba SOC strengths,
viz., λR � P/N , the effects of the polygonal shape can be
minimized. Moreover, as discussed above, the adiabatic con-
dition in a Rashba ring of radius r0 is set by λR � 2πr0. We
then find that the regime of adiabatic spin dynamics can be
approached by using polygons with P = 2πr0 provided that
P/N � λR � P, which is possible for large N thanks to a
length-scale separation. This is confirmed in our simulations
of Fig. 2(d) as well as in previous works [28,33].

1 2

BR
4 3

x

y

FIG. 8. One-dimensional Rashba square model. The effective-
field BR corresponds to CCW propagating carriers.

APPENDIX B: SPIN DYNAMICS IN RASHBA
SQUARE LOOPS

The spin dynamics of CCW propagating carrier in a
Rashba square of perimeter P = 4L is determined by the
unitary operator introduced in Eq. (5) with N = 4,

U+(4) = R14R43R32R21, (B1)

with

R21 = exp[ikRLσy], (B2)

R32 = exp[−ikRLσx], (B3)

R43 = exp[−ikRLσy], (B4)

R14 = exp[ikRLσx], (B5)

where we use the reference system depicted in Fig. 8. As any
SU (2) operator, Eq. (B1) can be written as

U+(4) = exp[iφ n̂ · σ] = cos φ I + i sin φ n̂ · σ, (B6)

satisfying the eigenvalue equation

U+(4)|χs〉 = exp[isφ]|χs〉, (B7)

with spinors

|χ↑〉 =
(

cos θ0/2
eiϕ0 sin θ0/2

)
, (B8)

|χ↓〉 =
(

sin θ0/2
−eiϕ0 cos θ0/2

)
, (B9)

defined at the initial vertex 1 with quantization axis n̂ =
sin θ0 cos ϕ0 x̂ + sin θ0 sin ϕ0 ŷ + cos θ0 ẑ. The φ in (B6) and
(B7) is nothing but the global AC spin phase gathered by the
up species in a round trip. From Eqs. (B1)–(B6) we find

cos φ = 1 − 2 sin4(kRL) (B10)

sin φ = 2 cos(kRL) sin2(kRL)
√

1 + sin2(kRL), (B11)

cos θ0 = cos(kRL)√
1 + sin2(kRL)

, (B12)

sin θ0 =
√

2 sin(kRL)√
1 + sin2(kRL)

, (B13)

ϕ0 = π/4. (B14)

This shows that the spinors (B8) and (B9) are quantized
within the plane normal to the square bisecting vertex 1, as
expected from symmetry. This repeats in all vertices, which
can be confirmed by propagating Eqs. (B8) and (B9) with
Eqs. (B2)–(B5). During propagation along the segments, the
spinors precess with constant projection around the local field
BR. Notice that the projection n̂ · BR ∝ sin ϕ0 sin θ0 is always
partial, meaning that the spinors never align with BR and the
regime of adiabatic spin dynamics does not exist here. The
dynamical spin-phase φd is proportional to that projection and
equal to

φd = kRP
sin(kRL)√

1 + sin2(kRL)
, (B15)
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where we exploited the fact that equal phases are gathered
along each segment. Equation (B15) shows that φd oscillates
with growing amplitude as a function of kRL, vanishing at
kRL = nπ with integer n (equivalent to kRP = n4π or L =
nλR). This vanishing points correspond to spin degeneracies.
Notice from (B12) and (B13) that the spinors (B8) and (B9)
quantize along the z axis at the degeneracy points, meaning
that they precess within a plane perpendicular to the local BR

during propagation by describing meridian lines in the Bloch
sphere. See blue dashed line and insets in Fig. 2(a) for an
illustration.

From (B10) and (B11) we can see that the global spin-
phase φ is nonmonotonic and bounded [see black solid line
in Fig. 2(a)]. Notice that the plateaus exhibited by the conduc-
tances (8) and (9) around the degeneracy points—illustrated
in Figs. 4(a) and 5(a)—can be understood directly from
Eq. (B10).

As for the geometric phase φg = φ − φd, its response is
more complex and better appreciated in Fig. 2(a) (dotted red
line). This geometric phase is a purely Aharonov-Anandan
one [43], since the adiabatic limit necessary for the devel-
opment of Berry phases [44] cannot be reached in Rashba
squares (unless rounded vertices and sufficiently large Rashba
SOC strengths are considered; see Appendix A).

Finally, we evaluate the response of the spin phases in the
limit of weak SOC strengths kRL � π (far from the first de-
generacy point) and compare it with the corresponding result
for rings of the same perimeter P. In this limit, Rashba squares
show

φ = 1
8 (kRP)2, (B16)

φd = 1
4 (kRP)2, (B17)

φg = − 1
8 (kRP)2. (B18)

From Appendix A we find that, in the same limit, Rashba rings
show

φ = 1

2π
(kRP)2, (B19)

φd = 1

π
(kRP)2, (B20)

φg = − 1

2π
(kRP)2. (B21)

We observe that the spin phases gathered by Rashba squares
and rings show a similar quadratic response in the weak-field
limit. They only differ in a geometrical prefactor of the same
order, which would make it difficult (though not impossible)
to distinguish one from the other in this regime; see Figs. 2(a)
and 2(d), 4(a) and 4(d), and 5(a) and 5(d) near the origin for a
comparison.

We finally notice that recent experiments [32] in meso-
scopic Rashba squares demonstrate that the SOC strength
can be tuned by electrical means in the vicinity of the first
degeneracy point (kRP ∼ 4π ) where the polygonal shape
manifests optimally.

APPENDIX C: SEMICLASSICAL CONDUCTANCE

The Landauer-Büttiker formulation [45] identifies the two-
contact linear conductance G with the quantum transmission
and reflection as

G = e2

h
tr[TT †] = e2

h
tr[I − RR†], (C1)

with T = [tmn] and R = [rmn], where tmn and rmn are the quan-
tum transmission and reflection amplitudes from incoming (n)
to outgoing (m) modes. The trace of I equals the number of
available incoming modes. A semiclassical model [48] of G
for one-dimensional Rashba loops can be developed when-
ever the carrier’s wavelength is much smaller than the system
size and the spin splitting is much smaller than the kinetic
energy (so that the spin dynamics do not alter the orbital one)
[49], in agreement with mesoscopic experimental conditions
[23,24,32]. In this way, by following a path-integral approach
and taking the semiclassical limit [50], the quantum transmis-
sion and reflection amplitudes can be expressed as

tmn =
∑

�

a�eikFL� 〈m|U�|n〉, (C2)

rmn =
∑

�

b�eikFL� 〈m|U�|n〉, (C3)

namely, as a sum of phase contributions over different classi-
cal paths � of length L� taking the spin carriers from entrance
to exit leads with different statistical weights a� and b� , even-
tually leading to quantum interference. Within this picture,
charge and spin contributions are clearly differentiated. The
charge contributes with the orbital-phase exp[ikFL�]. As for
the spin, carriers entering the system with spin n can leave
it with spin m according to the path-dependent spin evolu-
tion operator U� , which is determined by the particular fields
experienced by the spin carriers along the classical path. As
for the quantum transmission and reflection, they consist of
probability terms of the form

(C4)

|tmn|2 =
∑
�,�′

a�a∗
�′eikF(L�−L�′ )〈m|U�|n〉〈m|U�′ |n〉∗,

|rmn|2 =
∑
�,�′

b�b∗
�′eikF(L�−L�′ )〈m|U�|n〉〈m|U�′ |n〉∗. (C5)

For a realistic modeling of the experimental conditions, the
effects of disorder and/or sample averaging need to be taken
into account. This means that the sums in (C4) and (C5)
need to run over different configurations including classical
path fluctuations. Moreover, an average over a small energy
window around the Fermi energy can also be implemented
to take into account the effects of finite (though low) tem-
peratures. Due to the presence of the orbital-phase factors
exp[ikF(L� − L�′ )], the averaging procedure shows that the
only surviving terms in (C4) and (C5) are those corresponding
to pairs of paths {�,�′} with the same geometric length,
L� = L�′ . Other contributions simply average out due to rapid
oscillations of the orbital-phase factors. However, identifying
these pairs of paths contributing to the transmission in (C4) is
generally difficult unless twofold reflection symmetry along
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the axis connecting the contact leads is preserved. In the
absence of symmetries, one can conveniently resort to the
quantum reflection (C5) by taking advantage of unitarity and
time-reversed path pairing. Moreover, when the conducting
loops are well coupled to the leads, the carriers tend to escape
after a few windings. In this case, it has been shown that the
most relevant features of the conductance are fully captured
by considering only the shortest paths [11,24,32].

By assuming twofold symmetric configurations and well-
coupled leads, the conductance can be calculated from the
simplified transmission amplitudes

tmn = 1
2 〈m|U+(N/2 + 1) + U−(N/2 + 1)|n〉, (C6)

with

U+(N/2 + 1) = RN/2+1,N/2...R32 R21, (C7)

U−(N/2 + 1) = RN/2+1,N/2+2...RN−1,N RN1, (C8)

and Rvu defined in Eq. (4). Notice that we have dropped a
phase prefactor exp[ikFP/2] from Eq. (C6) corresponding to
CCW/CW orbital paths of length P/2, irrelevant to the trans-
mission (C4). By using time-reversal symmetry (R†

vu = Ruv)
and working in the eigenbasis of U±(N ), Eq. (7), we find from
Eq. (C1) that the conductance within this approximation takes
the form [51]

G1 = e2

h
(1 + cos φ), (C9)

with φ the global spin phase gathered by the carriers in a round
trip.

However, in most experimental situations the twofold sym-
metry cannot be assumed. This general case can be modeled
by resorting to the reflection probabilities (C5) after noticing
that, for any backscattering path �, there exists another path
�̃ with exactly the same length that follows the trajectory
defined by � but in the opposite direction. Namely, � and �̃

are time-reversed paths. By considering well-coupled leads,
we find that they correspond to CCW/CW single-winding
paths of length P. The corresponding reflection amplitudes
take the form

rmn = 1
2 〈m|U+(N ) + U−(N )|n〉, (C10)

where we have dropped a phase prefactor exp[ikFP], irrelevant
to the reflection (C5). By turning to time-reversal symmetry
and the eigenbasis of U±(N ), in this case we find a conduc-
tance [51]

G2 = e2

h
(1 − cos 2φ), (C11)

where the minus sign and the factor 2 in the argument are the
consequences of the time-reversed path pairing.

See Appendix B for relevant analytic expression concern-
ing φ in Rashba squares.
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