
Engineering Applications of Artificial Intelligence 104 (2021) 104384

A
J

a

b

c

A

K
D
E
M
G
S
U

1

i
2
a
d
o

n
c
e
e
i
s
T
n
a
a

G
a
t
t

o

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

study on the use of Edge TPUs for eye fundus image segmentation
avier Civit-Masot a, Francisco Luna-Perejón a, José María Rodríguez Corral c,∗,

Manuel Domínguez-Morales a,b, Arturo Morgado-Estévez c, Antón Civit a,b

Architecture and Computer Technology Dept., E.T.S. Ingeniería Informática, Avda. Reina Mercedes, s/n, University of Seville, Seville, Spain
Computer Engineering Research Institute (I3US), University of Seville, Seville, Spain
School of Engineering, Avda. Universidad de Cádiz, 10, University of Cádiz, Puerto Real (Cádiz), Spain

R T I C L E I N F O

eywords:
eep Learning
dge TPU
edical image segmentation
laucoma
ingle-board computer
-Net

A B S T R A C T

Medical image segmentation can be implemented using Deep Learning methods with fast and efficient
segmentation networks. Single-board computers (SBCs) are difficult to use to train deep networks due to their
memory and processing limitations. Specific hardware such as Google’s Edge TPU makes them suitable for real
time predictions using complex pre-trained networks. In this work, we study the performance of two SBCs, with
and without hardware acceleration for fundus image segmentation, though the conclusions of this study can be
applied to the segmentation by deep neural networks of other types of medical images. To test the benefits of
hardware acceleration, we use networks and datasets from a previous published work and generalize them by
testing with a dataset with ultrasound thyroid images. We measure prediction times in both SBCs and compare
them with a cloud based TPU system. The results show the feasibility of Machine Learning accelerated SBCs
for optic disc and cup segmentation obtaining times below 25 ms per image using Edge TPUs.
. Introduction

In recent years, the use of Deep Learning technologies for medical
mage analysis has quickly increased (Litjens et al., 2017; Chen et al.,
020; Teikari et al., 2019; Akkara et al., 2019). One of the main
pplications has been image segmentation, which is the process of
etecting automatically or semi-automatically the limits within a two
r three-dimensional image.

In medical segmentation problems, many different segmentation
etworks have been used (Litjens et al., 2017); however, a type of fully
onvolutional neural network (CNN), known as U-Net (Ronneberger
t al., 2015), has become very widely used and shown to be very
ffective. U-Nets have been used with many types of medical images
ncluding X-ray, MRI, CT, Ultrasound and eye Fundus images. The
tructure of a small three-layer generalized U-Net can be seen in Fig. 1.
he network is made up of a set of descending layers, each with a larger
umber of filters but with the image resolution reduced to a quarter,
n intermediate connecting layer (the bottom of the ‘‘U’’) and a set of
scending layers on which the original resolution is recovered.

Eye fundus images are widely used to help in Glaucoma detection.
laucoma is a retinal decease that can cause blindness in about 2%
nd sight impairment in over 10% of the cases (Quigley, 1985). Even
hough vision loss may occur even with optimum treatments, adequate
herapy will stabilize the majority of cases.

The key to glaucoma detection is to understand how to examine the
ptic disc (OD) (Bourne, 2006). The OD is an oval area where the retina

∗ Corresponding author.
E-mail address: josemaria.rodriguez@uca.es (J.M.R. Corral).

connects to the optic nerve. The optic cup (OC) is a white cup-like area
in the center of the OD. The zone between the cup and the disc is known
as the neuroretinal rim. This region consists mostly of nerve fibers and
is usually pink. Most normal discs are mainly vertically oval with their
cup horizontally oval. A typical retina fundus image is shown in Fig. 2.

Different indicators are used to help in diagnosing glaucoma from
fundus images. The cup to disc ratio (CDR) (MacIver et al., 2017),
i.e. the relation between the diameters of the OD and the OC, is the
most accepted glaucoma predictor. CDRs for glaucomatous and healthy
eyes are about 0.65 ± 0.13 and 0.39 ± 0.15 respectively, thus estab-
lishing CDR as a valid diagnostic aid. An alternative detection method
is based on the ISTN rule which uses the shape of the neuroretinal
rim. On healthy eyes, the thickness of the rim along the vertical and
horizontal rim borders decreases in the order inferior (I)>superior
(S)>nasal (N)>temporal (T) (Das et al., 2016).

In our previous works (Civit-Masot et al., 2019, 2020), generalized
U-Nets were used for eye fundus image segmentation, specifically
for optic disc (OD) and optic cup (OC) detection. The U-Net mod-
els were implemented on cloud-based GPU and TPU (Google, 2020)
architectures.

An accurate OC and OD segmentation is important in order to
calculate the CDR that, as already mentioned, is a well-established
indicator for the diagnosis of glaucoma (Jonas and Bron, 2015; Patel
and Patel, 2018; Barros et al., 2020; Cheng et al., 2013). The ISTN
https://doi.org/10.1016/j.engappai.2021.104384
Received 29 September 2020; Received in revised form 3 June 2021; Accepted 6 J
Available online 27 July 2021
0952-1976/© 2021 Elsevier Ltd. All rights reserved.
uly 2021

https://doi.org/10.1016/j.engappai.2021.104384
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104384&domain=pdf
mailto:josemaria.rodriguez@uca.es
https://doi.org/10.1016/j.engappai.2021.104384


J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384
Fig. 1. Basic three layer U-Net.

Fig. 2. Optic Disc and Cup.

rule (Nath and Dandapat, 2012) also relies on adequate OC and OD
segmentation.

Currently, single-board computers (SBCs) have become popular as
small low-cost computers for development, IoT and educational appli-
cations (Hassan et al., 2017; Singh and Kapoor, 2017). The purpose
of this work is to evaluate SBCs, with and without specific Machine
Learning acceleration hardware, for implementing the generalized U-
Net models developed in Civit-Masot et al. (2020) for performing OD
and OC segmentation.

In this work, we use very similar generalized U-Net architectures
to segment OD and OC from fundus images and train them on Google
TPUs. In particular, we use for cup segmentation a 6 level network with
64 channels in the first stage and a layer to layer filter increment ratio
(IR) of 1.1. This is a lightweight model (2.5M trainable parameters), but
as shown in Civit-Masot et al. (2019) it produces good results for cup
segmentation. Although the model has an additional level compared
to the original U-Net, and both have 64 channels in the first layer
by decreasing the IR to 1.1 instead of the original 2.0, the number
of parameters is reduced more than 50 times. For disc segmentation,
as this is an easier problem, we use a similar network with only 40
channels in the first stage and less than 1M trainable parameters.

Even though we are using specific U-net examples, our aim is to
show that embedded systems with specific Deep Learning acceleration
hardware can perform many medical image segmentation problems in
very reasonable times. This problem is very interesting in real medical
practice as these hardware accelerated embedded processors can be
easily included in lightweight portable medical instruments that can
perform segmentation on their own without requiring an external PC.

In this sense, segmentation by deep neural networks can also be
performed in many other types of medical images (Litjens et al., 2017;
Chen et al., 2020), thus allowing this technology to be embedded in a
wide range of portable medical diagnosis instruments.

Hence, the conclusions of this work can be applied, for example,
to the segmentation performed by Machine Learning accelerated em-

bedded systems for organs and other substructures in cardiac or brain

2

analysis, or for multi-organ segmentation (widely used for abdominal
organ segmentation) (Hesamian et al., 2019).

In this work, more specifically, we implement the segmentation
subsystem in Civit-Masot et al. (2020) in two embedded devices. The
first is a Raspberry Pi with no specific Machine Learning hardware and
the second a Coral Dev Board with a Google’s Edge TPU. Due to the
limited resources of SBCs, even with specific accelerators, in terms of
processing power and main memory size, it is technically unfeasible
to train relatively large CNNs using them. However, they can be used
for prediction purposes, as prediction is computationally a much less
demanding process than training.

The Raspberry Pi has become very popular because of its affordable
price, its ease of use due to the availability of the Raspbian operating
system (a derivative of Debian Linux), and its large development com-
munity. Moreover, the new Raspberry Pi 4 includes a more powerful
processor and up to 4 GB of RAM. Thus we use this very well known
device as one of our reference systems to be able to compare its
results with devices that implement hardware acceleration for Machine
Learning.

The Coral Dev Board is a SBC specifically designed to perform
Machine Learning inferencing in a small-form factor. It includes a
simplified tensor processing unit (TPU), the Edge TPU, which is an ASIC
developed by Google for providing high performance Machine Learning
inferencing with a low power usage. A very similar SBC, also with Edge
TPU, is the Tinker Edge T board from Asus.

The purpose of this work consists not only of confirming the fea-
sibility of implementing the U-Nets used in Civit-Masot et al. (2020)
to perform OD and OC segmentation in the mentioned SBCs, but also
finding if they can make predictions in a reasonable time. We also
want to compare these prediction times with those obtained using
cloud-based GPU and TPU devices.

As already discussed, it would be interesting and convenient for an
ophthalmologist to be able to segment and obtain assistance for his or
her diagnostic, directly from the image acquisition medical instrument.
This would avoid the need of using a local GPU PC or having to upload
the images to the web.

Thus, the importance and usefulness of SBCs with Deep Learning
capabilities lies in the fact that these devices can operate autonomously.
They do not need to be connected to servers equipped with GPUs or
TPUs for performing predictions, since they have Machine Learning
hardware built-in.

Moreover, Cloud GPUs and TPUs are usually free for non-commercial
uses only. Therefore, the use of SBCs provided with Machine Learning
hardware, such as the Coral Dev Board (that includes a Google Edge
TPU in its design) or the NVIDIA Jetson boards1 (that are equipped
with GPUs), are interesting options to consider.

Also, the use of a Machine Learning accelerated SBC for performing
medical image segmentation ensures the privacy protection of patient’s
health data, since the information is used locally by the SBC and, thus,
it not sent to any cloud server for processing.

The rest of the paper is structured as follows: The background
and related works are presented in Section 2. The methodological
aspects are explained in Section 3, in order to describe the design
of the experimental tests and thus provide a better understanding of
the process followed to obtain the results. These results are described
in Section 4 and discussed in Section 5. Finally, Section 6 draws the
conclusions of this work and proposes future research lines.

2. Background and related works

A study of generalized U-Net architectures was performed in Civit-
Masot et al. (2019) as a technique for implementing eye fundus image
segmentation in the cloud.

1 https://developer.nvidia.com/embedded/jetson-developer-kits.

https://developer.nvidia.com/embedded/jetson-developer-kits


J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384
In Civit-Masot et al. (2019) U-Net implementations deeper than the
standard 5-layer network and with different layer increment ratios were
tested. The use of normalization and drop-out as well as the influence of
the initial layer width and the layer to layer width ratio (IR) were stud-
ied, since these attributes affect significantly both prediction quality
and learning speed, and vary widely among different implementations.

Moreover, in a cloud based scenario, the neural networks must be
trained as independently as possible from the acquisition source, since
in a cloud-based service images will come from very different sources.
Several segmentation researchers have used various datasets, but they
always train and test with each of them independently. In our imple-
mentation data from several datasets were preprocessed and mixed in
order to create independent datasets for training and validation.

Publicly available datasets were used. DRISHTI-GS (Sivaswamy
et al., 2014), from Aravind Eye Hospital, Madurai (India), is a set
of fundus images labeled by expert ophthalmologists for disc and
cup. RIM-ONE-v3 (Fumero et al., 2011), from the MIAG group at the
University of La Laguna (Spain), is a set of fundus images also labeled
for disc and cup. Finally, DRIONS-DB (Carmona et al., 2008), from
Miguel Servet Hospital, Saragossa (Spain), is a set of fundus images
where only the optic cup has been labeled.

As a result of that initial study, a set of functions that enable the
implementation of generalized U-Nets adapted to TPU execution was
developed. These U-Nets are also suitable for developing cloud-based
service implementations.

Regarding the use of embedded platforms and single-board comput-
ers for medical image segmentation, a low-cost Deep Learning ready
GPU embedded platform has been used in Niepceron et al. (2020)
for performing segmentation of brain tumors. An Nvidia Jetson AGX
Xavier was selected in this study due to its low weight and low power
consumption characteristics. Also, this developer kit embeds a modular
scalable architecture called Deep Learning Accelerator which includes
a support for many widely used CNNs.

An existing Deep learning architecture was selected and modified
to be usable for both training and inference on the Jetson AGX Xavier
platform. More specifically, a MobileNetV2 architecture has been com-
pressed to reduce the number of trainable parameters and increase the
training speed. Also, neural network 8-bit fixed-point quantization has
been used for performing inferences in addition to the compression of
the convolution layers.

Using the Jetson AGX Xavier maximum capacity, the compressed
and quantized model was successfully trained, and it was able to
segment high and low grade gliomas. The authors compared the model
performance with other state of the art approaches, and proved that
their method reached comparable results in relation to the reduction
of parameters.

More specifically, regarding the use of embedded systems, mo-
bile devices and single-board computers for performing eye fundus
segmentation, a HW/SW embedded system that implements a Verti-
cal Cup-to-Disc Ratio (VCDR) evaluation method for the diagnosis of
glaucoma was presented in Dantas et al. (2016). This method, which
is based mainly on morphological operations, has a reasonably low
computational cost, but maintains an accuracy comparable to other
related works using the RIM-ONE dataset.

It can be implemented on low power embedded processors with
FPGA-based hardware acceleration for the morphological operations, to
reduce execution time while maintaining accuracy. The proposed FPGA
assisted architecture reduces execution time by at least 30% compared
with software-only implementations running on platforms based on low
power processors such as Raspberry Pi Model B, BeagleBoard-xM and
a system using an Intel Atom processor with 2 GB DRAM.

In Martins et al. (2020), an interpretable computer-aided diagnosis
(CAD) pipeline, that runs offline in mobile devices, is used for diagnos-
ing glaucoma using fundus images. Several public datasets were merged
and used to train convolutional networks for performing classification
and segmentation tasks.
3

Fig. 3. Raspberry Pi 4 Model B.

These networks were used to build a pipeline that outputs a glau-
coma confidence level, and also provides several morphological fea-
tures and segmentations of relevant structures, resulting in an inter-
pretable diagnosis in a similar fashion to Civit-Masot et al. (2020). This
pipeline was integrated into a mobile app that run on a Samsung Galaxy
S8 smartphone. Execution times – for CPU and GPU – and memory
requirements were assessed.

In a similar way, in Pérez et al. (2020) a Deep Learning method for
assessing the eye fundus image quality small enough to be deployed
in a smartphone was presented. This method was validated with two
different datasets, achieving good accuracy results.

The authors also measured the classification average elapsed time
for the binary and three-class models on a smartphone running Android
9.0. The proposed method has a small number of parameters in com-
parison with other state-of-the-art models, and, thus, it is an attractive
alternative for a mobile-based eye fundus quality classification system.

3. Materials and methods

We will start this section with a brief description of the hardware
resources used. Then, the specification of the parameters of the gen-
eralized U-Nets selected for OC and OD segmentation as well as the
datasets used, will complete the design of the experimental tests.

3.1. Hardware

Raspberry Pi2 can be considered as a general-purpose comput-
ing device (Fig. 3), usually with a Linux operating system, that can
run multiple programs in a multitasking environment. The Broadcom
system-on-chip BCM2711 used by the latest version of the board (Rasp-
berry Pi 4 Model B) (Halfacree, 2018) includes in its design a 64-bit
quad-core Cortex-A72 ARM processor @ 1.5 GHz along with the new
VideoCore VI 3D unit, and also a natively attached Gigabit Ethernet
controller as well as a PCIe link that connects the USB ports.

Raspberry Pi 4 is also capable of addressing 1 GB, 2 GB or 4
GB LPDDR4 RAM depending on the variant of the model. The on-
board wireless LAN (dual-band 802.11 b/g/n/ac) and Bluetooth 5.0
low-energy (BLE) connection capabilities make this device useful for
the development of IoT applications. This single-board computer can
run a variety of operating systems, such as Raspbian, which is the
Foundation’s officially supported operating system, Ubuntu Mate and
Windows 10 IoT Core. We include this device in order to verify the
performance of a widely used non hardware accelerated SBC in medical
segmentation applications.

The Coral Dev Board (LLC, 2020a) is a single-board computer specif-
ically developed to perform Machine Learning inferencing (Fig. 4). The

2 https://www.raspberrypi.org/.

https://www.raspberrypi.org/


J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384

C
c
p

8
C
m
c
A
f

t
c
2
i
d

3

R
p
l
o
o

p
c
f
s
d

m
R
i

t
T

t
i
t
p

m
i

Fig. 4. Coral Dev Board.

oral System-on-module (SoM), which is part of this prototype board,
an be bought separately and used in a custom PCB hardware for
roduction purposes.

The SoM is an integrated system that includes the NXP’s IMX
M system-on-chip (Quad-core Arm Cortex-A53 @ 1.5 GHz and Arm
ortex-M4F processors plus a Vivante GC7000Lite GPU), 8 GB eMMC
emory, 1 GB LPDDR4 RAM, Wi-Fi 802.11 b/g/n/ac and Bluetooth 4.2

onnection capabilities, and a Google Edge TPU coprocessor (a small
SIC which provides high performance Machine Learning inferencing

or TensorFlow Lite models).
The baseboard for the SoM includes the usual connectors needed

o perform a prototype project, such as Gigabit Ethernet port, CSI-2
amera interface, DSI display interface, 40 I/O pin header and USB
.0/3.0 ports. Coral Dev Board uses Mendel operating system, which
s a lightweight derivative of Debian Linux that runs on several Coral
evelopment boards.

.2. Datasets

Regarding the datasets used in this work, both DRISHTI-GS and
IM-ONE-v3 have been used. Both are publicly available datasets and
rovide human expert OC and OD segmentation data and additional
abels indicating if the images correspond to a patient with glaucoma
r not. The labeling process includes the supervised evaluation of each
f the dataset samples by a professional in the field.

There are other datasets, such as DRIONS-DB, that was used in
revious studies, but it is not used in this work because only the optic
up has been labeled. However, this is not necessarily a drawback
or achieving the objective of our study, specified in the introduction
ection, since relevant results can be obtained using the other two
atasets.

DRISTI-GS dataset from Aravind Eye Hospital, Madurai (India), is
ade up of 101 color fundus images labeled for both disc and cup; and
IM-ONE dataset from the University of La Laguna is composed of 159

mages also labeled for disc and cup.
In this work, 75% of the images from each dataset is used for

raining and the remaining 25% of the images for validating the results.
his can be observed in Table 1.

The first column shows the number of images that are provided in
hose public datasets, the second column indicates the final amount of
mages used after data augmentation processes and, finally, the other
wo columns present the number of images used for training and testing
urposes respectively.

Finally, in order to have more available data and thus to obtain
ore experimental results, a new dataset of thyroid gland ultrasound

mages (Wunderling et al., 2017) has been included. Thus, our study is
4

Table 1
Dataset summary.

Dataset Images Images after
D.A.

Train (75%) Test (25%)

DRISHTI-GS 101 2380 1785 595
RIM-ONE-v3 159 6980 5235 1745
TOTAL 260 9360 7020 2340

extended to the segmentation of medical images different from those of
eye fundus, that are obtained by other acquisition methods. This new
dataset consists of 3665 images with their respective labels.

3.3. System architecture and testing method

After describing the hardware resources and datasets used, we will
address the other aspects concerning the system architecture and the
design of the experimental tests. In relation to the U-Nets, we have se-
lected from Civit-Masot et al. (2019) a network with 6 levels, 40 filters
in the initial layer and a layer-to-layer increment ratio of 1.1 (identified
as 6/40/Y/1.1) with 0.9 MTP (millions of trainable parameters) for
optic disc segmentation. We have selected a network with 6 levels, 64
filters in the initial layer and a layer-to-layer increment ratio of 1.1
(identified as 6/64/Y/1.1) with 2.4 MTP for optic cup segmentation.
The small IR value reduces the number of trainable parameters greatly
and is the key to efficient embedded implementation.

The first network is one of the U-Nets that provided better results
for the optic disc segmentation. As for the optic cup segmentation, we
have selected a U-Net used in Civit-Masot et al. (2020) that, without
providing the best results (though they can be considered very good
also), allows the generation of a suitable Tensor-Flow Lite model ade-
quate to be processed by the Edge TPU Compiler. Logically, this tool
does not admit models whose information does not fit in the memory
size of the Edge TPU coprocessor.

A global graphical abstract of the implemented and tested system is
shown in Fig. 5.

Additionally, these two U-Nets have been retrained using the thy-
roid ultrasound dataset in order to obtain two new models for our
study. The first model (Thyroid_simple) has been obtained by retrain-
ing the U-Net used for OD segmentation, and the second one (Thy-
roid_complex) has been obtained by retraining the more complex U-Net
used for performing OC segmentation (Fig. 6).

For all the experimental tests, prediction times have been obtained
calling the timeit.default_timer() Python method just before
and after making a prediction with the specific model.

Next, we show a general scheme of the developed test programs:

• Image dataset load.
• TensorFlow model definition and compilation, and load of the

model weights for performing the experimental tests using the
Raspberry Pi board and the iPython notebooks.

• Alternatively, TensorFlow Lite model conversion and load when
using the Coral Dev Board for performing the experimental tests.

• Prediction execution with time measurement.

4. Results

The segmentation performance of the proposed system has already
been studied in Civit-Masot et al. (2019, 2020). For completeness we
include in Table 2 the Dice coefficients (Sørensen, 1948) obtained by
our approach compared with other Deep Learning based alternatives
that use the same public datasets. As we can see, results are fully
comparable with other works even though our networks are trimmed
for embedded implementation and we train with a combined dataset
while the remaining authors train specifically for each dataset.

In Civit-Masot et al. (2020) we used the same network to segment

the disc and cup while in this work we decided to use an smaller



J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384
Fig. 5. Full system implementation.
Fig. 6. Images from thyroid, segmentation, and predictions obtained with Thy-
roid_simple and Thyroid_complex models.

network for cup segmentation. This reduces the number of trainable
parameters by a factor of almost 3, but clearly has some impact in the
segmentation performance. If we used the same network for both OC
and OD segmentation the Dice coefficient would be the same as those
in Civit-Masot et al. (2020).

Regarding the segmentation performance, another aspect that needs
to be mentioned is that on edge TPUs the models have to be quantized
to 8 bit fixed precision numbers. We can see that this has a small impact
on the segmentation performance. The obtained Dice coefficients when
running the quantized models on Edge TPUs are shown on the last row
of Table 2.

In the rest of the paper we will include results only related to
prediction times, as this is the main objective of this work and the
segmentation performance is almost identical in the different proposed
implementations.
5

First, we have obtained a set of prediction times with the two
selected U-Nets using Google Colaboratory notebooks.3 These times
have been obtained for GPU, CPU and TPU to be used as reference
values (Tables 3 and 4), so that we can compare them with those
prediction times obtained with Raspberry Pi and Coral Dev Board SBCs.

As in Civit-Masot et al. (2019), we have used the Google Colabo-
ratory iPython notebook development environment. This environment
supports TensorFlow and Keras (Chollet, 2018), and allows the im-
plementation and training of networks using GPUs and TPUs (Google,
2020) in Google Cloud. In order to obtain prediction times in Google
Colaboratory environment, we have used 2.4.1 and 2.4.0 versions of
TensorFlow and Keras respectively.

Predictions using Colab notebooks have been made on an Intel(R)
Xeon(R) CPU @2.20 GHz using a single core with two threads (Google,
2019). An Nvidia Tesla T4 has been used for making predictions using
GPUs. Also, for performing predictions using Google Cloud TPUs, v2
TPU Pods have been used. A TPU v2 has 8 GiB of high-bandwidth
memory and one matrix unit (MXU) for each TPU core. A v2 TPU Pod
is a cluster consisting of up to 512 TPU cores and 4 TB of total memory
(Google, 2020).

The first part of Tables 3 and 4 shows the results obtained using
Google Colaboratory environment for optic disc and cup, and thyroid
segmentation. These times have been calculated from the next ten
predictions on a dataset after performing the initial prediction. Since
TensorFlow performs a prediction over an entire dataset, the prediction
time for a single element can be calculated as the total prediction time
for a dataset divided by its number of elements. Thus, once the ten
image prediction times have been obtained, the mean prediction time
per image along with its standard deviation is shown.

The first prediction on a dataset using CPU and GPU takes more
time than the next ones due to the necessity of performing a set of
memory allocations and initializations. In the case of prediction times
using Cloud TPU, the first prediction also involves sending the model
information through the network and copying it into the TPU memory.

For implementing the U-Nets in Raspberry Pi 4 Model B and per-
forming the experimental tests, 2.1.0 and 2.2.4-tf versions of Tensor-
Flow and Keras (Q-engineering, 2020) have been used respectively. As

3 https://colab.research.google.com.

https://colab.research.google.com


J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384
Table 2
Dice coefficients for cup and disc segmentation.

Author Cup RIM-ONE Disc RIM-ONE Cup DRISHTI Disc DRISHTI

Zilly et al. (2017) - – 0.87 0.97
Sevastopolsky (2017) 0.82 0.94 – –
Shankaranarayana et al. (2017) 0.94 0.98 – –
Al-Bander et al. (2018) 0.69 0.90 0.83 0.95
Civit-Masot et al. (2020) 0.84 0.92 0.89 0.93
CPU/GPU/TPU 0.84 0.86 0.89 0.91
Edge TPUa 0.84 0.85 0.88 0.90

aResults obtained with quantized models.
Fig. 7. Images from optic disc, segmentation, and predictions obtained with Raspberry
Pi and Coral Dev Board.

with previous results and due to the same reason stated before, the
corresponding times for Raspberry Pi using CPU have also been calcu-
lated using the next ten predictions on a dataset after the first inference.
Again, once the ten image prediction times have been obtained dividing
each total prediction time for a dataset by its number of elements, the
mean prediction time per image along with their standard deviation are
also shown.

For performing the experimental tests with Coral Dev Board, we
have used TensorFlow Lite 2.5.0, which is the framework used to
perform Deep Learning inferences on the Edge TPU (LLC, 2020c). First,
predictions on DRISHTI-GS and RIM-ONE datasets with the TensorFlow
Lite models for OD and OC segmentation, and predictions on THYROID
dataset with the TensorFlow Lite models for segmenting the thyroid
(Thyroid_simple and Thyroid_complex), have been obtained using the
Coral Dev Board CPU.

In order to adapt the original TensorFlow models for the two U-Nets
to the format used by TensorFlow Lite, the post-training quantization
technique (Lite, 2020; LLC, 2019) has been used. The next step is to
obtain suitable versions of the TensorFlow Lite models to be executed
on the Edge TPU coprocessor (LLC, 2020e). The Edge TPU Compiler
(LLC, 2020b) processes the information of a TensorFlow Lite model and
generates an Edge TPU compatible model.

At the end of the process, this tool also generates a ‘‘.log’’ file
indicating which operations of the original TensorFlow Lite model have
been mapped to the Edge TPU coprocessor, and which operations will
continue running on the Coral Dev Board CPU.

Moreover, the inference program that includes the model compiled
for the Edge TPU must use a TensorFlow Lite delegate (LLC, 2020d),
so that whenever the interpreter finds a graph node compiled for the
Edge TPU, it sends that operation to the coprocessor executing the rest
of the program on the ARM CPU. Thus, the file name of the Edge TPU
6

Fig. 8. Images from optic cup, segmentation, and predictions obtained with Raspberry
Pi and Coral Dev Board.

runtime library must be passed to the load_delegate() method
when initializing the interpreter.

The last part of Tables 3 and 4 shows the results for Coral Dev Board.
Inference programs using TensorFlow Lite models do not perform pre-
dictions on an entire dataset as TensorFlow programs do (by calling
the predict() method). Instead, TensorFlow Lite programs perform
their predictions on the individual elements of a dataset. Thus, a loop
must be used for iterating over each element.

Moreover, the first prediction time is not considered, since the first
inference on the Edge TPU coprocessor is slow as it includes the load of
the TensorFlow Lite model into the memory of the device (LLC, 2020c).
Therefore, after performing the first inference, the prediction loop starts
iterating over the first image of the dataset so that the first inference is
performed again.

Finally, Figs. 7 and 8 show images from the optic disc and cup
respectively along with the corresponding segmentation made by oph-
thalmologists, as well as the predictions performed with Raspberry Pi
4 Model B and Coral Dev Board SBCs.

5. Discussion

Once we know that the two SBCs selected for our study – Raspberry
Pi and Coral Dev Board – are valid for performing segmentation of eye
fundus and thyroid ultrasound images, and that predictions performed
by these devices are basically equal to predictions made by Cloud
CPUs, GPUs and TPUs when using Google Colaboratory notebooks, it
is necessary to evaluate the performance of such devices – in particular
the Coral Dev Board as it is equipped with specific Machine Learning
hardware – and thus verify if they are capable of making predictions
in reasonable times.



J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384

b
B
m
2
A
w
t

p
t
t
b
n
t

f
p
r
m

b
a
u
h
1
1
h
m

t
c
R

t
i
n
o
r

P
t
t
s

a
b
p
t
f

Table 3
Image prediction times for optic disc and Thyroid_simple (in milliseconds).
Dataset (shape) Google Colaboratory Raspberry Pi 4B Coral Dev Board

CPU GPU TPU CPU CPU TPU

DRISHTI (595, 128, 128, 3) 73.11 ± 0.44 2.16 ± 0.05 17.24 ± 1.91 259.52 ± 0.52 576.45 ± 0.19 8.55 ± 0.90
RIM-ONE (1745, 128, 128, 3) 71.84 ± 0.12 1.59 ± 0.04 7.71 ± 1.19 256.15 ± 0.59 576.37 ± 0.89 8.73 ± 1.16
THYROID (3665, 128, 128, 3) 76.22 ± 0.09 1.42 ± 0.01 4.88 ± 0.37 255.35 ± 0.26 575.71 ± 0.73 8.31 ± 1.06
Table 4
Image prediction times for optic cup and Thyroid_complex (in milliseconds).

Dataset (shape) Google Colaboratory Raspberry Pi 4B Coral Dev Board

CPU GPU TPU CPU CPU TPU

DRISHTI (595, 128, 128, 3) 163.72 ± 1.41 4.20 ± 0.18 38.49 ± 1.43 591.11 ± 1.21 1148.76 ± 0.22 21.64 ± 0.95
RIM-ONE (1745, 128, 128, 3) 160.61 ± 0.72 2.92 ± 0.21 15.81 ± 2.05 581.56 ± 1.01 1149.64 ± 1.65 21.47 ± 1.14
THYROID (3665, 128, 128, 3) 155.07 ± 2.96 2.29 ± 0.01 4.81 ± 0.15 576.83 ± 0.97 1145.45 ± 0.54 21.87 ± 0.81
Prediction times for CPU, GPU and TPU using Google Colab note-
ooks are clearly smaller than those obtained for Raspberry Pi 4 Model
, as expected. This result can be easily explained, since the perfor-
ance of the CPU used in Colab notebooks (Intel(R) Xeon(R) CPU @
.20 GHz) is greater than that of Raspberry Pi 4 Model B CPU (Cortex-
72 ARM processor @ 1.5 GHz). Moreover, prediction times obtained
hen using Colab notebooks are obviously smaller for GPU and TPU

han the ones obtained for CPU.
However, prediction times for TPU are greater, to some extent, than

rediction times for GPU. This result can be explained by the delays due
o data transmission over a network (Díaz del Río et al., 2016), since
he CPU and the GPU are in the same node (and the communication
etween them is local) but the TPU pod (Google, 2020) is in another
ode. This makes cloud based TPUs much more useful for network
raining than for predictions on small data samples.

Regarding the results for Coral Dev Board, although our interest
ocuses on prediction times for the Edge TPU coprocessor, we also show
rediction times for CPU in Tables 3 and 4. Thus, we can use them as
eference values for highlighting the performance improvement when
aking predictions using Edge TPUs.

The corresponding results for optic disc and cup and thyroid (Ta-
les 3 and 4) show that prediction times for the TensorFlow Lite models
re appreciably greater than those for the TensorFlow models when
sing the Raspberry Pi 4 Model B board. This can be explained by the
igher performance of Raspberry Pi 4 Model B CPU (Cortex-A72 @
.5 GHz) in relation to that of Coral Dev Board CPU (Cortex-A53 @
.5 GHz). Cortex-A72 microprocessor supports out-of-order execution,
as a 15-stage pipeline (against the 8-stage pipeline of Cortex-A53), a
ore sophisticated branch predictor and greater L1 and L2 caches.

Regarding prediction times for Edge TPU, which are our main objec-
ive, we can see a significant performance improvement, as expected, in
omparison with prediction times for CPU in Google Colab notebooks,
aspberry Pi and Coral Dev Board itself.

Finally, when comparing TPU prediction times, it can be observed
hat with a sufficiently large dataset (as RIM-ONE-v3 and THYROID
n this case), prediction times in Tables 3 and 4 are smaller for Colab
otebooks compared with prediction times for Coral Dev Board. The
pposite is the case when the number of elements in the dataset is
elatively small (as with DRISHTI-GS).

Since the CPU for a Colab notebook and the cluster of TPUs (TPU
od) (Google, 2020) are in different nodes of a network, there is a data
ransmission time (Díaz del Río et al., 2016) which can be considered
o be bounded except for a technical incidence that may arise in the
ystem.

Thus, when the number of dataset images on which the predictions
re performed is relatively large, the data transmission time ceases to
e significant in relation to the total time for the set of predictions
erformed by Cloud TPUs, which have a much greater performance
han the Edge TPU coprocessor. This last device is primarily intended

or model inferencing, but not for training large and complex Machine

7

Learning models4 which is one of the main objectives of cloud based
TPUs.

Therefore, for a sufficiently large number of predictions (n) on a
dataset, the total time using Cloud TPUs along with the data transmis-
sion time over the network ends up being smaller than the total time
used for predictions on the dataset using the Edge TPU.

𝑆𝑈𝐶𝑇𝐸𝑇 = lim
𝑛→∞

𝑛 × 𝐸𝑇𝑃𝑇
𝑁𝐷𝑇𝑇 + 𝑛 × 𝐶𝑇𝑃𝑇

(1)

The speed up (SUCTET) in the performance of Cloud TPUs for Colab
notebooks versus Edge TPU for Coral Dev Board can be expressed
with Eq. (1). When the number of images (n) in the dataset on which
predictions are made is relatively large, the network data transmission
time (NDTT) ceases to be significant in relation to the total time for the
set of inferences performed by Cloud TPUs. The term CTPT indicates the
prediction time on a dataset element for the Cloud TPU pod, whereas
ETPT indicates the prediction time for the Edge TPU on an element of
the same dataset.

𝑛 × 𝐸𝑇𝑃𝑇 < 𝑁𝐷𝑇𝑇 + 𝑛 × 𝐶𝑇𝑃𝑇 (2)

𝑛 < 𝑁𝐷𝑇𝑇
𝐸𝑇𝑃𝑇 − 𝐶𝑇𝑃𝑇

(3)

In order to know the maximum value for the number of images
(n) of a dataset for which the performance of the Coral Dev Board
Edge TPU is better than the performance of the Cloud TPU, the total
prediction time on this dataset must be smaller when using the Edge
TPU (Eq. (2)). Thus, for values of n that are lower than a maximum
limit (Eq. (3)), the total prediction time using the Edge TPU will be
smaller than the total prediction time using the Cloud TPU.

6. Conclusions and future works

The feasibility of using single-board computers for segmenting eye
fundus images with a Deep Learning model in a reasonable time has
been demonstrated experimentally: Less than 1.2 s per image for the
worst case (using Coral Dev Board CPU) and less than 9 ms per image
for the best case (using Coral Dev Board Edge TPU). It is clear that
including specific Machine Learning hardware accelerators provides
an speedup of over 130 times and thus allows many sophisticated
segmentation problems to be performed in real time on embedded
devices, such as many medical image acquisition instruments.

As future work, we plan to extend our study by including not only
segmentation but also direct Glaucoma classification subsystems to
be able to build explainable glaucoma diagnosis aids directly on the
acquisition instrument. We also plan to use Coral accelerator devices5

for performing alternative experimental tests on the proposed imple-
mentations. These devices incorporate an Edge TPU for performing
Machine Learning inferencing in existing systems.

4 https://coral.ai/docs/edgetpu/faq/.
5 https://coral.ai/products/.

https://coral.ai/docs/edgetpu/faq/
https://coral.ai/products/


J. Civit-Masot, F. Luna-Perejón, J.M.R. Corral et al. Engineering Applications of Artificial Intelligence 104 (2021) 104384

t-
Coral USB Accelerator works with Debian Linux, macOS and Win-
dows 10. It supports TensorFlow Lite framework and is compatible with
Raspberry Pi boards.

Mini PCIe, M.2 A+E key and M.2 B+M key Accelerators are PCIe de-
vices that also enable the integration of the Edge TPU coprocessor into
existing systems. These three devices support Debian Linux operating
system and TensorFlow Lite framework.

The results obtained from experimental tests on systems equipped
with these TPU-based devices will allow us to extend this study and
quantify the performance improvement when using high speed serial
interfaces between Edge TPUs and CPUs. This case will most likely
provide an additional delay when loading data into the Edge TPU and
result in similar effects to those described in Eq. (1).

CRediT authorship contribution statement

Javier Civit-Masot: Conceptualization, Methodology, Software, Wri
ing - original draft. Francisco Luna-Perejón: Software, Data curation,
Writing - original draft. José María Rodríguez Corral: Conceptual-
ization, Investigation, Methodology, Software, Tests, Writing - original
draft. Manuel Domínguez-Morales: Conceptualization, Formal anal-
ysis, Methodology, Supervision, Validation, Writing - reviewing. Ar-
turo Morgado-Estévez: Conceptualization, Formal analysis, Methodol-
ogy, Supervision, Validation. Antón Civit: Conceptualization, Formal
analysis, Methodology, Supervision, Validation, Writing - reviewing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was developed in the framework of the AUROVI Project,
supported by the Ministry of Science, Innovation and Universities under
Grant EQC2018-005190-P.

Figure 3 is provided by courtesy of Raspberry Pi Foundation. Figure
4 is provided by courtesy of Coral.

References

Akkara, J.D., Kuriakose, A., et al., 2019. Role of artificial intelligence and machine
learning in ophthalmology. Kerala J. Ophthalmol. 31 (2), 150.

Al-Bander, B., et al., 2018. Dense fully convolutional segmentation of the optic disc
and cup in colour fundus for glaucoma diagnosis. Symmetry 10 (4), 87.

Barros, D.M., et al., 2020. Machine learning applied to retinal image processing for
glaucoma detection: review and perspective. Biomed. Eng. OnLine 19, 1–21.

Bourne, R.R., 2006. The optic nerve head in glaucoma. Community Eye Health 19 (59),
44.

Carmona, E.J., et al., 2008. Identification of the optic nerve head with genetic
algorithms. Artif. Intell. Med. 43 (3), 243–259.

Chen, C., et al., 2020. Deep learning for cardiac image segmentation: A review. Front.
Cardiovasc. Med. 7, 25.

Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.-M., Tao, D., Cheng, C.-Y., et
al., 2013. Superpixel classification based optic disc and optic cup segmentation for
glaucoma screening. IEEE Trans. Med. Imaging 32 (6), 1019–1032.

Chollet, F., 2018. Deep Learning Mit Python Und Keras: Das Praxis-Handbuch Vom
Entwickler Der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG.

Civit-Masot, J., et al., 2019. TPU cloud-based generalized U-Net for eye fundus image
segmentation. IEEE Access 7, 142379–142387.

Civit-Masot, J., et al., 2020. Dual machine-learning system to aid glaucoma diagnosis
using disc and cup feature extraction. IEEE Access 8, 127519–127529.

Dantas, P.C., Sarmento, A., Sarmento, A., 2016. A HW/SW embedded system for
accelerating diagnosis of glaucoma from eye fundus images. In: 2016 International
Symposium on Rapid System Prototyping. RSP. IEEE, pp. 1–7.

Das, P., Nirmala, S., Medhi, J.P., 2016. Diagnosis of glaucoma using CDR and NRR
area in retina images. Netw. Model. Anal. Health Inform. Bioinform. 5 (1), 3.
8

Díaz del Río, F., et al., 2016. Extending Amdahl’s Law for the cloud computing era.
Computer 49 (2), 14–22.

Fumero, F., et al., 2011. RIM-ONE: An open retinal image database for optic nerve
evaluation. In: 2011 24th International Symposium on Computer-Based Medical
Systems. CBMS. IEEE, pp. 1–6.

Google, 2019. Colab system specs. URL https://bit.ly/35G6LQZ.
Google, 2020. Cloud TPU system architecture. URL https://cloud.google.com/tpu/docs/

system-architecture.
Halfacree, G., 2018. The Official Raspberry Pi Beginner’s Guide: How To Use Your New

Computer. Raspberry Pi PRESS.
Hassan, Q.F., Madani, S.A., et al., 2017. Internet of Things: Challenges, Advances, and

Applications. CRC Press.
Hesamian, M.H., et al., 2019. Deep learning techniques for medical image segmentation:

Achievements and challenges. J. Digit. Imaging 32 (4), 582–596.
Jonas, J.B., Bron, A.M., 2015. Optic Disc Photography in the Diagnosis of Glaucoma.

Elsevier.
Lite, T.F., 2020. Post-training quantization. URL https://bit.ly/33C3rDI.
Litjens, G., et al., 2017. A survey on deep learning in medical image analysis. Med.

Image Anal. 42, 60–88.
LLC, G., 2019. Retrain a classification model for edge TPU (with TF 2.0) - google colab.

URL https://bit.ly/35Hgzuf.
LLC, G., 2020a. Coral dev board datasheet. URL https://bit.ly/2EbuwFq.
LLC, G., 2020b. Edge-TPU compiler. URL https://coral.ai/docs/edgetpu/compiler/.
LLC, G., 2020c. Get started with the dev board. URL https://coral.ai/docs/dev-board/

get-started/.
LLC, G., 2020d. Run inference with tensorflow lite in python. URL https://coral.ai/

docs/edgetpu/tflite-python/.
LLC, G., 2020e. Tensorflow models on the edge TPU. URL https://coral.ai/docs/

edgetpu/models-intro/.
MacIver, S., MacDonald, D., Prokopich, C.L., 2017. Screening, diagnosis, and

management of open angle glaucoma. Canad. J. Optom. 79 (1), 5–71.
Martins, J., Cardoso, J.S., Soares, F., 2020. Offline computer-aided diagnosis for

glaucoma detection using fundus images targeted at mobile devices. Comput.
Methods Programs Biomed. 192, 105341.

Nath, M.K., Dandapat, S., 2012. Techniques of glaucoma detection from color fundus
images: A review. Int. J. Image Graph. Signal Process. 4 (9).

Niepceron, B., Nait-Sidi-Moh, A., Grassia, F., 2020. Moving medical image analysis
to GPU embedded systems: Application to brain tumor segmentation. Appl. Artif.
Intell. 34 (12), 866–879.

Patel, S.C., Patel, M.I., 2018. Analysis of CDR of fundus images for glaucoma detection.
In: 2018 2nd International Conference on Trends in Electronics and Informatics.
ICOEI. IEEE, pp. 1071–1074.

Pérez, A.D., Perdomo, O., González, F.A., 2020. A lightweight deep learning model for
mobile eye fundus image quality assessment. In: 15th International Symposium on
Medical Information Processing and Analysis, vol. 11330. International Society for
Optics and Photonics, p. 113300K.

Q-engineering, 2020. Install tensorflow 2.1.0 on raspberry pi 4. URL https://bit.ly/
3mr1Idd.

Quigley, H.A., 1985. Better methods in glaucoma diagnosis. Arch. Ophthalmol. 103 (2),
186–189.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 234–241.

Sevastopolsky, A., 2017. Optic disc and cup segmentation methods for glaucoma de-
tection with modification of U-net convolutional neural network. Pattern Recognit.
Image Anal. 27 (3), 618–624.

Shankaranarayana, S.M., et al., 2017. Joint optic disc and cup segmentation using
fully convolutional and adversarial networks. In: OMIA 2017. In: Fetal, Infant
and Ophthalmic Medical Image Analysis, Springer International Publishing, pp.
168–176.

Singh, K.J., Kapoor, D.S., 2017. Create your own internet of things: A survey of IoT
platforms. IEEE Consum. Electron. Mag. 6 (2), 57–68.

Sivaswamy, J., et al., 2014. Drishti-gs: Retinal image dataset for optic nerve head (onh)
segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging.
ISBI. IEEE, pp. 53–56.

Sørensen, T.J., 1948. A Method of Establishing Groups of Equal Amplitude in Plant
Sociology Based on Similarity of Species Content and Its Application To Analyses
of the Vegetation on Danish Commons. I kommission hos E. Munksgaard.

Teikari, P., et al., 2019. Embedded deep learning in ophthalmology: making ophthalmic
imaging smarter. Therap. Adv. Ophthalmol. 11, 2515841419827172.

Wunderling, T., et al., 2017. Comparison of thyroid segmentation techniques for 3D
ultrasound. In: Medical Imaging 2017: Image Processing, vol. 10133. International
Society for Optics and Photonics, pp. 346–352.

Zilly, J., Buhmann, J.M., Mahapatra, D., 2017. Glaucoma detection using entropy
sampling and ensemble learning for automatic optic cup and disc segmentation.
Comput. Med. Imaging Graph. 55, 28–41.

http://refhub.elsevier.com/S0952-1976(21)00232-3/sb1
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb1
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb1
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb2
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb2
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb2
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb3
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb3
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb3
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb4
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb4
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb4
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb5
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb5
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb5
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb6
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb6
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb6
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb7
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb7
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb7
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb7
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb7
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb8
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb8
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb8
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb9
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb9
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb9
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb10
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb10
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb10
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb11
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb11
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb11
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb11
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb11
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb12
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb12
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb12
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb13
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb13
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb13
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb14
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb14
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb14
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb14
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb14
https://bit.ly/35G6LQZ
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb17
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb17
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb17
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb18
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb18
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb18
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb19
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb19
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb19
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb20
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb20
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb20
https://bit.ly/33C3rDI
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb22
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb22
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb22
https://bit.ly/35Hgzuf
https://bit.ly/2EbuwFq
https://coral.ai/docs/edgetpu/compiler/
https://coral.ai/docs/dev-board/get-started/
https://coral.ai/docs/dev-board/get-started/
https://coral.ai/docs/dev-board/get-started/
https://coral.ai/docs/edgetpu/tflite-python/
https://coral.ai/docs/edgetpu/tflite-python/
https://coral.ai/docs/edgetpu/tflite-python/
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb29
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb29
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb29
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb30
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb30
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb30
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb30
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb30
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb31
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb31
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb31
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb32
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb32
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb32
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb32
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb32
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb33
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb33
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb33
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb33
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb33
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb34
https://bit.ly/3mr1Idd
https://bit.ly/3mr1Idd
https://bit.ly/3mr1Idd
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb36
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb36
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb36
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb37
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb37
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb37
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb37
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb37
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb38
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb38
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb38
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb38
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb38
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb39
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb40
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb40
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb40
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb41
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb41
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb41
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb41
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb41
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb42
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb42
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb42
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb42
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb42
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb43
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb43
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb43
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb44
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb44
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb44
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb44
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb44
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb45
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb45
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb45
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb45
http://refhub.elsevier.com/S0952-1976(21)00232-3/sb45

	A study on the use of Edge TPUs for eye fundus image segmentation
	Introduction
	Background and related works
	Materials and methods
	Hardware
	Datasets
	System architecture and testing method

	Results
	Discussion
	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


