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ABSTRACT
If catalytically active Janus particles are dispersed in certain liquid solutions, they can create a gradient in the chemical composition of this
solution along their surfaces, as well as along any nearby confining surfaces. This gradient drives self-propulsion via a self-phoretic mechanism,
while the compositional gradient along a wall gives rise to chemiosmosis, which additionally contributes to self-motility. In this study, we
analyze theoretically the dynamics of an active colloid near chemically patterned walls. We use a point-particle approximation combined with
a multipole expansion in order to discuss the effects of pattern geometry and chemical contrast on the particle trajectories. In particular, we
consider planar walls patterned with chemical steps and stripes. We investigate in detail the changes in the topology of the corresponding
phase portraits upon varying the chemical contrast and the stripe width.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091760., s

I. INTRODUCTION

Active colloidal particles can perform autonomous directional
motion within a liquid medium.1–7 This offers the possibility to
use such particles as autonomous micromotors, which perform use-
ful tasks such as delivering drugs, sensing a specific substance,
or assembling structures via the autonomous local deposition of
materials.8–11 Catalytic colloids form a large class of active par-
ticles which employ self-phoretic effects6,7,12–16 for their motion.
For example, a colloidal particle partially covered by a catalyst
will activate a chemical reaction in the surrounding solution.1,2,13,17

This, in turn, will generate gradients of solute concentration or of
an electric potential, leading to a directed motion of the particle
by self-diffusiophoretic13,14,18 or self-electrophoretic7,16,19–21 mech-
anisms, respectively. Another distinct class of active particles is
formed by gold-capped Janus colloidal spheres which are sus-
pended in near-critical fluids such as water-lutidine mixtures.22

These particles can perform active Brownian motion when illu-
minated by light. The particle motion has been attributed to self-
thermophoresis,15 self-diffusiophoresis,23 or self-phoresis due to
a local solvent demixing, and associated self-generated chemical
potential gradients.24

Most of the experiments carried out so far have used Pt
catalyzed2,3,13,17 decomposition of hydrogen peroxide into water
and oxygen. Self-propelled particles frequently employed in exper-
iments are, e.g., gold-platinum nanorods1,3 or silica particles par-
tially coated by a catalyst.8,13,25,26 Theoretically, aside from using
molecular dynamics (MD) simulations,27–31 mesoscopic continuum
approaches have been employed,12,14,18 based on the classical the-
ory of diffusiophoresis.32,33 Using this method, the dependence
of the self-propulsion velocity on the shape and surface chem-
istry of microswimmers,18,34–36 their chemotactic behavior,37,38 and
how active colloids can be used as cargo carriers26,39 have been
studied.

J. Chem. Phys. 150, 204904 (2019); doi: 10.1063/1.5091760 150, 204904-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5091760
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5091760
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5091760&domain=pdf&date_stamp=2019-May-30
https://doi.org/10.1063/1.5091760
https://orcid.org/0000-0003-3335-5900
https://orcid.org/0000-0002-1102-7538
https://orcid.org/0000-0001-6689-1844
mailto:mtasinkevych@fc.ul.pt
https://doi.org/10.1063/1.5091760


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A few recent studies have begun to address self-phoresis in
bounded systems. In Ref. 29, MD simulations have been used to
study self-diffusiophoresis within a square channel. For a highly ide-
alized confining geometry, an increase in the self-diffusiophoretic
velocity was predicted theoretically in Ref. 40. The role of the bound-
aries was also highlighted in Ref. 26, where the motion of carrier-
cargo composites has been studied near a single wall. Transloca-
tion of a Janus active particle through cylindrical pores has been
addressed in Ref. 41, which reported a decrease in the particle veloc-
ity induced by the confinement and emphasized the importance
of the “chemical effects” in addition to the “standard” hydrody-
namic interaction. Experimentally, wall-bounded motion of active
Janus particles was observed in Refs. 20 and 42. Theoretical mod-
els based on a far-field multipole description of the microswim-
mers43 or models, in which the surface slip is specified a priori,44

showed that the hydrodynamic interaction may generate particle-
wall attraction and sliding steady states along the wall.44 However,
as shown recently,45–47 a more realistic description, explicitly taking
into account the propulsive mechanism, is required to fully under-
stand the particle dynamics near boundaries. Indeed, novel sliding
and hovering steady states were predicted in Refs. 45 and 48–50
for a Janus microswimmer near a wall by numerically solving the
coupled hydrodynamic transport equations for chemical fluxes and
momentum.

The sliding states may be exploited further in order to achieve
desired particle behaviors in two-dimensional (2D) space by, e.g.,
endowing the confining surface either with topographical or chem-
ical contrasts. For example, the occurrence of wall-bounded slid-
ing states explains experimentally reported directional guidance of
chemically active microswimmers by shallow steplike topographical
features.46 In the case of chemically patterned walls, it was shown
recently51,52 that under certain conditions a stable motion along a
one-dimensional (1D), macroscopically long chemical stripe may be
obtained.

More specifically, Ref. 51 demonstrates that (i) a catalyst-
forward spherical particle can robustly follow certain chemical
stripes; (ii) an inert-forward spherical particle can achieve a motion-
less docking steady state at a chemical step with sufficiently strong
chemical contrast. This proof of concept study employed, for illus-
tration only, a single realization of the chemical step (i.e., only
one value of the chemical contrast between the right and the left
side of the surface), a single realization of the chemical stripe (i.e.,
one value of the chemical contrast between the two chemical enti-
ties of the surface), and a single value of the distance between
the particle and the surface. Additionally, since Ref. 51 is focused
on the bare possibility of guided motion, it does not systemati-
cally explore the very rich landscape of other dynamical behaviors,
e.g., reflection from a chemical step, or focusing off the particle
orientation as a particle crosses a step. Reference 52 discusses in
detail the effect of the particle shape on the dynamics of active,
half-covered spherocylinders at chemical steps and stripes. The
guiding of catalytic sphere-dimer nanoparticles by highly ideal-
ized chemical stripes has been reported in Ref. 53 based on using
the hybrid molecular dynamics multiparticle collision dynamics
method.

In this study, we further explore this idea of controlling the
motion of Janus microswimmers via chemically structured, planar
surfaces. By using the analytical method developed in Ref. 51, here
we address the following questions: (i) How does the dynamics of
an active Janus colloid depend on the chemical contrast between the
right and the left side of the chemical step and on the particle-surface
separation? In particular, we want to understand how the topology
of the phase portrait [in the (xp, ϕ) plane, see Fig. 1(b)] depends
on the aforementioned parameters. (ii) Concerning a self-propelled
particle at a chemical stripe, how does this phase portrait depend on
the chemical contrast of the stripe and on the particle-surface separa-
tion? (iii) In general, what dynamical behaviors can be found beyond
stripe-guided or step-guided motion?

FIG. 1. (a) A catalytic Janus sphere above a planar wall at height h. The black region on the particle indicates the catalytic cap which emits solute molecules (green discs, O2)
at a constant rate per area κ. The solute molecules interact with the colloidal particle, and due to the inhomogeneous solute distribution, a gradient of osmotic pressure
emerges in the direction parallel to the surface (for the orientation d̂ shown) which drives a surface flow as indicated by two blue arrows. The direction of the surface flow
corresponds to the repulsive nature of the solute-particle interaction, resulting in an inert-forward self-diffusiophoretic motion in direction d̂. If the solute-particle interaction
is attractive, the flow is away from the cap, leading to catalyst-forward motion in direction −d̂. The solute gradient also drives chemiosmotic flow at the wall, schematically
indicated by purple lines, assuming a repulsive nature of the solute-wall interaction. (b) Schematic top-down view of a Janus particle above a chemically patterned substrate.
The gray region, which is characterized by the surface phoretic mobility br

w , is more repulsive for the solute than the orange one with the surface phoretic mobility bl
w . The

orientation vector d̂ and the x-axis form the angle ϕ; xp is the distance between the chemical step and the particle center. (c) A top-down view of the wall patterned with a
rectangular chemical stripe (orange) of width W. The stripe extends in the y-direction and carries the surface phoretic mobility bc

w . The rest of the wall (gray) exhibits the
surface phoretic mobility bw .
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The paper is organized as follows: In Sec. II, we present our
theoretical approach which is based on the so-called point-particle
approximation and a multipole expansion for the concentration of
the reaction product in the solution. Concerning some of the mate-
rial of this section, we also refer to the supplementary material of
Ref. 51, parts of which are also presented in Appendixes A–C. In
Secs. III–V, we describe and discuss our results. For the case of
a chemical step, we show how changing the chemical contrast of
the substrate affects the topology of the corresponding phase por-
traits for both inert-forward and catalyst-forward Janus colloids. It
is demonstrated that inert-forward particles can dock at the bound-
ary between the two regions of the substrate forming a chemical
step and the conditions for docking to occur are identified. In the
case of a chemical stripe, only catalyst-forward microswimmers are
considered because only such particles can stably follow a chem-
ical stripe (see Ref. 51). Finally, in Sec. VI, we summarize our
findings.

II. MODEL AND THEORETICAL APPROACH
Assuming a stationary reference frame in which the instanta-

neous position of the Janus particle is x0 = (xp, yp, h), we consider
an impermeable spherical colloid of radius R with a caplike region
covered by a catalyst, which promotes the chemical reaction in the
surrounding solution, as schematically depicted in Fig. 1. The orien-
tation d̂ of the particle is directed along the axis of symmetry from
the catalytic region to the particle center (Fig. 1). In this study, we
focus on the particular case in which the net result of the chemical
reaction can be approximated as the generation of a solute, i.e., the
catalytic cap acts effectively as an emitter of the solute, and in which
the reaction does not lead to solvent depletion near the catalytic cap.
This scenario corresponds approximately to Pt-catalyzed decompo-
sition of hydrogen peroxide (in aqueous solution) into water and
oxygen,13,54 where oxygen plays the role of the product (solute) and
the solvent is a binary liquid mixture of H2O and H2O2, altogether
forming a solution.

Nonsymmetric coverage of the particle by the catalyst, acting
as a source of solute, gives rise to a nonuniform and time depen-
dent composition of the solution, which is, in general, character-
ized by the solute (O2) number density c(x, t). We assume that the
Péclet number Pe ≡ U0R/D, where U0 is a characteristic velocity
of the particle with radius R and D is the diffusion coefficient of
the solute molecule (O2), is small such that the convection of the
solute molecules can be disregarded compared to its diffusive trans-
port. Consequently, at each instantaneous position of the particle,
the solute number density can attain its steady-state, which is gov-
erned by the Laplace equation ∇2c = 0. We assume that c(|x| →∞)
= 0 and employ the following boundary conditions at the particle
surface with outward normal n̂:

−D n̂ ⋅ ∇c = {κ, xs ∈ catalytic cap,
0, xs ∈ inert face,

where κ is a constant rate per area of the emission of the solute and
xs is the location on the surface. At the planar wall placed at z = 0,
we impose the no-flux boundary condition ẑ ⋅ ∇c = 0, where ẑ is the
surface normal pointing into the solution.

According to the classical theory of neutral diffusiophoresis,33

the nonuniform solute number density c(x) gives rise to lateral gra-
dients of the osmotic pressure along the surface of the particle as
well as along the surface of the confining wall. The lateral gradient,
which is concentrated only within a thin interfacial layer of molec-
ular thickness, drives interfacial flow around the particles and along
the surface of the wall, which are accounted for as an effective slip
boundary condition vs(xs) = −b(xs)∇||c for the outer hydrodynamic
flow (i.e., outside of the diffuse interfacial region). ∇|| denotes the
projection of the gradient operator onto the corresponding local tan-
gential plane of the surface of the particle or the wall, and b(xs) is a
material dependent parameter which encapsulates the details of the
effective solute-surface interactions.

Furthermore, we assume that for typical velocities U0 in self-
phoresis the Reynolds number obeys Re ≡ ρU0R/η≪ 1, where ρ and
η are the mass density and the viscosity, respectively, of the solution.
With this the flow field u(x) and the pressure field P(x) in the outer
region satisfy the incompressible, force free Stokes equations

−∇P + η∇2u = 0 (1)

and
∇ ⋅ u = 0, (2)

subject to the boundary conditions

u(xs) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

U + Ω × (xs − x0) + vs(xs), xs ∈ on the particle,
vs(xs), xs ∈ on the wall,
0, ∣xs∣ → ∞.

(3)

In the above equations, U and Ω are unknown translational and
angular velocities of the particle, respectively, which are determined
by imposing that the particle is force- and torque-free. Exploiting the
linearity of Eqs. (1)–(3), we make the ansatz U = Uws + Usd and Ω
= Ωws + Ωsd, where the superscripts indicate the respective veloc-
ity contributions stemming from wall slip and self-diffusiophoresis
(particle slip). Physically, Uws and Ωws originate in the chemios-
motic flows induced at the surface of the confining wall by the gra-
dient of the solute concentration. These interfacial flows drive flow
in the bulk solution, coupling back to the particle and affecting its
motion.

The quantities Usd and Ωsd in the presence of an inert uniform
wall have been studied in detail in Ref. 45, where it was shown that
Usd depends only on h and d̂ ⋅ ẑ. Therefore, in order to simplify the
analysis, we restrict d̂ to the x–y plane (d̂ ⋅ ẑ = 0) and take h to be
constant. In principle, such wall-bounded 2D motion may also be
achieved by using magnetic fields and particles containing a mag-
netic core.8 In the following, we set Usd = Usdd̂, with Usd treated as
an input parameter. We recall that for Usd > 0 (Usd < 0), the particle
moves away from (toward) its cap when it is in the bulk fluid due
to the repulsive (attractive) interaction between the particle and the
solute.33 Additionally, by symmetry, one has Ωsd

z = 0. The trajectory
of the particle is obtained by numerical integration of the coupled
equations

ẋp = Usd cos(ϕ) + Uws
x (xp,ϕ),

ẏp = Usd sin(ϕ) + Uws
y (xp,ϕ),

(4)
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and

ϕ̇ = Ωws
z (xp,ϕ). (5)

We calculate Uws and Ωws by employing the Lorentz recipro-
cal theorem, expressed in Eq. (A1).55 The details of these calculations
are provided in Appendix A. As the “unprimed” problem, we chose
the one for the six unknowns V ≡ (Uws, Ωws), requiring six “primed”
subproblems. For the primed subproblems (u′(j), σ′(j)), indexed by
j, we consider a passive colloid subject to an external normalized
force in the x̂, ŷ, or ẑ direction for j = 1, 2, 3, or an external nor-
malized torque in the x̂, ŷ, or ẑ direction for j = 4, 5, 6. For each
of the cases j = 1, . . ., 6, we impose no-slip boundary conditions
at the planar wall and u′(j) = 0 at infinity. At the particle surface,
there is a no-slip condition u′(j) = U′(j) + Ω′(j) × (x − x0), where
U′(j) and Ω′(j) are the translational and angular velocities, respec-
tively, of the particle driven by the external force or the external
torque in subproblem j. The expressions for the fluid stresses σ′(j)

and for the velocity field u′(j) (j = 1, . . ., 6) of the auxiliary solu-
tion of the Stokes equation (required by the Lorentz theorem) are
provided in Appendix B. Finally, the approximation used for deter-
mining c(xs), which, in turn, is needed to calculate the phoretic
slip boundary conditions vs(xs) = −bw(xs)∇||c(xs), is presented in
Appendix C.

Taking into account only the contributions of the monopole
(mp) and dipole (dp) terms of the number density [see Eqs. (C3)
and (C5)] to the particle velocity, we write Uws ≈ Ump + Udp and
Ωws ≈Ωmp +Ωdp. Because of the assumption that the self-propulsion
proceeds in the x–y plane, only the components Ux, Uy, and Ωz are
of interest here, corresponding to the components V1, V2, and V6 of
the generalized velocity V. Below, the monopole and dipole contri-
butions to these velocity components are calculated for a homoge-
neous substrate, a chemical step, and a chemical stripe. In each case,
the components of the stress tensor σ′(j)|z=0 required for the calcula-
tion of Ux (j = 1), Uy (j = 2), and Ωz (j = 6) are provided by Eqs. (B5),
(B6), and (B12), respectively.

III. SURFING ABOVE A UNIFORM SUBSTRATE
For a uniform substrate with surface mobility bw , Eq. (A4)

yields

Vj = bw ∫
−∞

−∞
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ)∣z=0. (6)

The monopole contributions are obtained by replacing ∇||c in
Eq. (6) with the corresponding expression in Eq. (C3). The result
is

Ump
x = Ump

y = 0, Ωmp
z = 0. (7)

This result is expected because in the plane of the wall the number
density distribution due to a monopole above the wall is radially
symmetric around (xp, yp). Therefore, the flow it induces cannot
drive translations parallel to the plane or in-plane rotations of d̂.
Similarly, the dipole contributions are obtained by replacing ∇||c in
Eq. (6) by the corresponding expression in Eq. (C5). After carrying
out the ensuing integrals, we obtain

Udp
x = −

bwR3∣α1∣
16Dh3 cos(ϕ), (8)

Udp
y = −

bwR3∣α1∣
16Dh3 sin(ϕ), (9)

and
Ωdp

z = 0, (10)
with α1 = −3κ/4 [see Eq. (C1)], where ϕ is the angle between d̂ and x̂.
Accordingly, these results show that, above a uniform substrate, the
dipole contribution drives chemiosmotic “surfing,” i.e., translation
in the −sgn(bw)d̂ direction: Udp = − bwR3

∣α1 ∣

16Dh3 d̂.
We note that “surfing” can change the inert-forward or catalyst-

forward character of the motion in direction d̂ near a surface as
compared with that observed in the bulk; here, the bulk motion is
represented by the parameter Usd. For such a change to occur, one
must have |bw| ≫ |bp|, where b(xs) = bp at the particle surface; we
recall that Usd ∝ bp. The occurrence of this special case requires that
the particle and substrate materials have very distinct strengths of
interaction with the solute.

IV. CHEMICAL STEPS
We first consider a wall with a chemical step between two mate-

rials such that b(xs) = bl
w for x < 0 and b(xs) = br

w for x > 0. We
introduce ζ ≡ br

w/bl
w in order to quantify the strength of the chem-

ical contrast between two regions of the wall. Accordingly, Eq. (A4)
is evaluated piecewise

Vj = bl
w ∫

0

−∞
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ)

+ br
w ∫

∞

0
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ). (11)

Following the line of the derivations in Subsection III, after straight-
forward but cumbersome algebra, we obtain the contributions from
the monopole term,

Ump
x =

3hR2α0

16D
(br

w − bl
w)(h2 + 2x2

p)
(h2 + x2

p)5/2
(12)

{with α0 = κ/2 [see Eq. (C1)]} and

Ump
y = 0, Ωmp

z = 0, (13)

and from the dipole term,

Udp
x =

∣α1∣R3

256Dh3

⎡⎢⎢⎢⎢⎣
− 8(br

w + bl
w) + (bl

w − br
w)

×
(−25 h4 + 28h2x2

p + 8x4
p)x3

p

(h2 + x2
p)7/2

⎤⎥⎥⎥⎥⎦
cos(ϕ), (14)

Udp
y =

∣α1∣R3

256Dh3

⎡⎢⎢⎢⎢⎣
− 8(br

w + bl
w) + (bl

w − br
w)

×
(8x4

p + 20h2x2
p + 3h4)xp

(h2 + x2
p)5/2

⎤⎥⎥⎥⎥⎦
sin(ϕ), (15)
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and

Ωdp
z = −

3hR3∣α1∣
64D

(bl
w − br

w)
(h2 + x2

p)5/2
sin(ϕ). (16)

As expected, the results do not depend on yp because the system
exhibits translational symmetry along the y-direction. We empha-
size that Ωdp

z is mirror symmetric with respect to xp = 0, which
is a general property of Ωws

z , valid for any contribution from
higher multipole moments.51 It turns out that precisely the same
arguments can be applied to Ump

x in order to infer that it is an
even function of xp. Further details are provided in Appendix D.
The x-component of the monopole term Ump

x vanishes for |xp|
→ ∞, while limxp→+∞Udp

x = −∣α1∣R3br
w cos(ϕ)/(16Dh3) ≠ 0 and

limxp→−∞Udp
x = −∣α1∣R3bl

w cos(ϕ)/(16Dh3) ≠ 0, i.e., the parti-
cle “senses” an approximately uniform surface beneath itself. This
asymptotic expression coincides with the one in Eq. (8) giving the
dipole contribution at a uniform surface.

Figure 2 reports on Uws
x ≃ Ump

x + Udp
x at fixed orientations

ϕ = 0○ [Fig. 2(a)] and ϕ = 180○ [Fig. 2(b)], as well as on Uws
y

≃ Udp
y [Fig. 2(c)] and on Ωdp

z [Fig. 2(d)], both at fixed orientation ϕ
= 90○, as functions of xp. The velocities are presented in units of
U0 ≡ 2∣bl

w ∣α0/D. The leading order monopole contribution always
drives translation of the particle toward that side of the wall which
exhibits the larger value of bw , which in the present case is the left
(less repulsive) side. The motion away from the step {i.e., Uws

x > 0
as observed for xp > 0 and at ϕ = 0○ [Fig. 2(a)]} is due to the dipole
term in Eq. (14), which is independent of xp. Furthermore, the dipole
contribution to the angular velocity in Eq. (16) drives rotation of the
catalytic cap of the particle toward the side of the wall with the larger
value of bw (i.e., the left, less repulsive side).

A. Phase portraits in the (ϕ, xp ) plane
for inert-forward colloids

Figure 3 reports the effects of the chemical contrast ζ at fixed
Usd = (Usd ⋅ d̂) > 0 (inert-forward) on the topology of the phase por-
traits in the (ϕ, xp) plane. We assume that br

w < bl
w < 0. For strong

enough chemical contrast, we find that inert-forward particles can
dock at the chemical step. The corresponding stable fixed points are
depicted in Figs. 3(a), 3(b), and 3(d) as white triangles. The docking
occurs at xp = xd

p < 0 and ϕ = 0○, i.e., the particle is stationary above
the left (i.e., less repulsive) side of the surface, with d̂ perpendicular
to the chemical step. The dependence of xd

p on ζ > 0 is shown in Fig. 4
by red lines representing various values of the separation h between
the colloid center and the wall. The black curves in Fig. 4 show the
dependence on ζ of the location of the saddle fixed points, indicated
as white circles in Figs. 3(a), 3(b), and 3(d). At a certain value of
ζ > 0, the two fixed points collide and “annihilate” each other [see
Fig. 3(c)]. The location of this bifurcation point, as a function of ζ,
may be tuned by varying h.

The docking state results from the interplay between the dipolar
rotation term Ωdp

z [Eq. (16)] and the sum of the monopole term Ump
x

[Eq. (12)] and the self-diffusiophoresis contribution Usd. The rota-
tion induced by the chemical step orients the particle at ϕ = 0○ such
that the black cap completely faces the region of weaker repulsion
(orange region in Fig. 1). With this orientation, Ump

x drives the par-
ticle away from the step into the orange region, while Usd is directed
toward the step. At a certain condition, the three contributions bal-
ance each other, leading to the motionless docking state. As a condi-
tion for docking, we identify the relation U tot

x ≡ Usd
x + Ump

x0 + Udp
x0 ≲ 0,

which implies that the particle cannot cross the step; Ump
x0 and Udp

x0
are the monopole [Eq. (12)] and dipole [Eq. (14)] contributions,
respectively, to Uws

x at xp = 0, and Usd
x = Usd cos(ϕ), with Usd

FIG. 2. [(a) and (b)] Chemiosmotic contri-
bution Uws

x ≃ Ump
x + Udp

x [see Eqs. (12)
and (14)] to the particle translational
velocity in the x-direction as a function of
xp for particle orientation ϕ = 0○ and ϕ
= 180○, respectively. (c) Chemiosmotic
contribution Uws

y ≃ Udp
y [see Eq. (15)]

to the particle translational velocity in the
y-direction as a function of xp for a
particle oriented parallel (ϕ = 90○) to
the chemical step. (d) Angular veloc-
ity, calculated from Eq. (16) of a par-
ticle oriented parallel (ϕ = 90○) to the
chemical step as a function of xp. The
results are obtained for br

w/bl
w = 4,

bl
w < 0, and are presented in units of

U0 ≡ 2∣bl
w ∣α0/D. The two regions of the

chemical step are color-coded.
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FIG. 3. Inert-forward Janus colloid with Usd ⋅ d̂ = 0.1 × U0 at a chemical step, where Usd is the self-diffusiophoretic component of the particle velocity and d̂ is the direction
of the self-diffusiophoretic motion. Effects of the wall chemical contrast on the topology of the phase portrait in the (ϕ, xp) plane. The wall contrast is varied by varying
ζ = br

w/bl
w > 0 at constant negative bl

w . Here, br
w and bl

w are the surface mobility coefficients for the right and the left part of the wall, respectively. The top row
corresponds to h = 1.1 × R with (a) ζ = 4, (b) ζ = 3.5, and (c) ζ = 3. The bottom row has h = 1.25 × R with (d) ζ = 4, (e) ζ = 3.5, and (f ) ζ = 3. The white triangles in (a), (b),
and (d) at ϕ = 0○ and for xp slightly below zero depict the stable fixed points which we call “docking” states. The white circles in (a), (b), and (d) at ϕ = 0○ and for xp slightly
above zero depict the saddle fixed points. The five diamond symbols in (c) give the initial conditions corresponding to the trajectories shown in Fig. 6. The background color
encodes Ux /U0, where U0 ≡ 2∣bl

w ∣α0/D.

being an input parameter. The docking condition U tot
x = 0 yields

the following estimate for the threshold value Usd
c :

−Usd
c cos(ϕ) = 3α0R2(br

w − bl
w)

16Dh2 − ∣α1∣R3(br
w + bl

w)
32Dh3 cos(ϕ). (17)

If bl
w > br

w , one has ϕ = 0○ for the docking configuration (see Fig. 3),
whereas for bl

w < br
w , one has ϕ = 180○ at the docking configuration.

Accordingly, we obtain

Usd
c =

3α0R2∣bl
w − br

w ∣
16Dh2 +

∣α1∣R3(br
w + bl

w)
32Dh3 , (18)

which renders a line in the (Usd, h) plane, separating docking and
crossing particle states (see Fig. 5).

It is instructive to take a closer look at the structure of the phase
portraits and at the shape of some representative particle trajectories

in the (ϕ, xp) plane. For sufficiently strong chemical contrast ζ, as in
Figs. 3(a), 3(b), and 3(d), all trajectories can be classified into three
groups. The first group contains the trajectories leading to the dock-
ing fixed point, marked by white triangles in Figs. 3(a), 3(b), and
3(d). All particles approaching the step from the left and with ori-
entation ϕ < π/2 will dock. The first group also contains a bundle
of trajectories with π/2 < ϕ ≲ 2 and which approach the step from
the right. In the second group, which includes all trajectories with
ϕ ≳ 2, trajectories cross over the step from the right. Finally, the third
group consists of trajectories according to which the particle is ini-
tially located on the right side of the step and is oriented away from
the step, as in the upper left corner of Figs. 3(a), 3(b), and 3(d). In
this case, the particle simply moves directly away from the step and
escapes.

Decreasing the chemical contrast ζ, the docking state and the
saddle point approach each other in the (xp, ϕ) plane, and eventu-
ally collide and annihilate. For ζ below the annihilation value, as in
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FIG. 4. The dependence of the x-location of fixed points on the chemical contrast
ζ ≡ br

w/bl
w for an inert-forward Janus colloid with Usd = Usd ⋅d̂ = 0.1×U0 and for

several values of the distance h from the wall. Here, Usd is the self-diffusiophoretic
component of the particle velocity and d̂ is the direction of the self-diffusiophoretic
motion. The surface mobility coefficient of the left side of the substrate bl

w is kept
constant and negative: U0 ≡ 2∣bl

w ∣α0/D. The open triangles and open circles on
the curve h = 1.1 × R correspond to the systems shown in Figs. 3(a) and 3(b),
while the black solid circle corresponds to the system in Fig. 3(c).

Figs. 3(c), 3(e), and 3(f ), the phase portraits reveal four groups of
trajectories: reflected trajectories, trajectories which cross from the
right, direct escape trajectories, and trajectories which cross from
the left. Reflection occurs for particles approaching the step from
the right and with orientations in a narrow band π/2 ≤ ϕ ≲ 2. One

FIG. 5. Upper critical self-diffusiophoretic velocity Usd
c , for which a particle can

dock at the step, as a function of h/R. The curves are obtained from Eq. (18):
U0 ≡ 2∣bl

w ∣α0/D and ζ = br
w/bl

w .

example of a reflecting trajectory is shown in Fig. 6(a); the corre-
sponding initial position and orientation are marked by the white
diamond in Fig. 3(c). For this particular initial condition, the particle
penetrates slightly into the orange (less repulsive) region of the sub-
strate before turning around and moving back into the gray region.
By increasing the initial orientation ϕ as compared to that of the
white diamond, we may increase the extent of the penetration into
the orange side, up to a maximum of two particle diameters. With a

FIG. 6. Representative trajectories of an inert-forward (Usd ⋅ d̂ = 0.1 × U0, U0 ≡ 2∣bl
w ∣α0/D) particle near a chemical step with contrast br

w/bl
w = 3, bl

w < 0. The diamond
symbols match with the initial position xp = x0

p and orientation ϕ = ϕ0 of the trajectories in Fig. 3(c): (a) x0
p = 10 × R, ϕ0 ≃ 1.7; (b) x0

p = 10 × R, ϕ0 ≃ 2.2; (c) x0
p = 10 × R,

ϕ0 ≃ 3.1; (d) x0
p = −10 × R, ϕ0 ≃ 1.1; and (e) x0

p = −10 × R, ϕ0 ≃ 0.5. The trajectories are shown to scale with the colloid size, i.e., the penetration depth in (a) is indeed
given in units of the particle radius.
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further increase in the orientation, we find the group of trajectories
which cross from the right to the left. This group includes the initial
conditions indicated by the brown and yellow diamonds in Fig. 3(c),
which correspond to the trajectories shown in Figs. 6(b) and 6(c),
respectively. The exit orientations ϕ of these trajectories are slightly
smaller than the initial orientations. If, starting from the white dia-
mond, we decrease the initial orientation, we encounter the group
of directly escaping trajectories [upper left corner of Figs. 3(c), 3(e),
and 3(f )]. Finally, for trajectories which start in the lower left corner
of Figs. 3(c), 3(e), and 3(f ), the particle crosses over the step with
exit orientation ϕ ≪ 1. In other words, the step operates as a tra-
jectory focusing device for particles which cross from the left. This
group includes the initial conditions indicated by the blue and red
diamonds in Fig. 3(c), corresponding to the trajectories shown in
Figs. 6(d) and 6(e).

B. Phase portraits in the (ϕ, xp ) plane
for catalyst-forward colloids

Figure 7 shows how the topology of the phase portraits for
catalyst-forward (Usd = Usd ⋅ d̂ < 0) particles varies with the

chemical contrast ζ = br
w/bl

w . This system has no stable fixed point.
The physical reason for this is that now both the monopole and the
self-diffusiophoretic components drive the particle away from the
step into the orange, less repulsive region of the surface. The dipole
contribution to the angular velocity still rotates the particle into the
configuration ϕ = 0. We find only saddle points, marked by white cir-
cles in Figs. 7(a), 7(b), and 7(d), and unstable fixed points, marked
by black circles in Figs. 7(c) and 7(d). The dependence of the spa-
tial locations of the saddle points x○p and of the unstable fixed points
x●p on the chemical contrast ζ is presented in Fig. 8.

The location of the saddle point within the orange area (x○p < 0)
with ϕ = π (the catalytic cap facing the gray, more repulsive side of
the substrate) depends only weakly on ζ within the studied range
(see the blue curve in Fig. 8). The location x○p is determined by
the balance between the chemiosmotic contribution, which drives
the particle away from the step, and the self-diffusiophoretic veloc-
ity, which is directed toward the step. The orientation ϕ = π is not
stable with respect to Ωdp

z which favors ϕ = 0. At small enough
ζ = ζbif (from bif urcation), this point collides with the upper (x●p
> 0) unstable fixed point, and both disappear upon further decrease
in ζ.

FIG. 7. Catalyst-forward Janus colloid with Usd ⋅ d̂ = −0.1 × U0 at a chemical step, where Usd is the self-diffusiophoretic component of the particle velocity and d̂ is the
direction of the self-diffusiophoretic motion. Influence of the wall chemical contrast ζ = br

w/bl
w > 0, with bl

w < 0, on the topology of the phase portrait in the (ϕ, xp) plane at
h = 1.1 × R and at (a) ζ = 3, (b) ζ = 2.86, (c) ζ = 2.8, (d) ζ = 2, and (e) ζ = 1.5. Here, br

w and bl
w are the surface mobility coefficients for the right and the left part of the wall,

respectively, and h is the particle-wall distance. The white circles in (a)–(d) depict the saddle fixed points; the black circles in (c) and (d) denote the unstable fixed points. The
brown and blue diamonds in (a) and the pink diamond in (e) indicate the initial conditions corresponding to the trajectories in Fig. 9. The background color encodes Ux /U0
with U0 ≡ 2∣bl

w ∣α0/D.
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FIG. 8. The dependence of the x-location of various fixed points on the chemical
contrast ζ ≡ br

w/bl
w , bl

w < 0, for a catalyst-forward Janus colloid with Usd ⋅ d̂
= −0.1 × U0, and h = 1.1 × R; U0 ≡ 2∣bl

w ∣α0/D; here, Usd is the self-
diffusiophoretic component of the particle velocity, d̂ is the direction of the self-
diffusiophoretic motion, and h is the particle-wall distance. Bifurcation occurs at
ζbif ≃ 1.675. The black curve diverges at ζ∗ ≃ 2.839.

The location of the second saddle point located within the
gray area (x○p > 0) with ϕ = 0 diverges if ζ approaches a certain
critical value ζ∗ from above (see the black curve in Fig. 8). This
again may be understood by balancing the chemiosmotic and self-
diffusiophoretic components to the velocity in the x-direction. For
xp ≫ 1, the chemiosmotic contribution Uws

x ≃ Ump
x + Udp

x behaves
as

Uws
x (xp ≫ 1) ∼ ∣bl

w ∣[
∣α1∣R3ζ cos(ϕ)

16Dh3 − (ζ − 1)3α0R2h
8Dx3

p
] > 0, (19)

i.e., at large xp, it “pushes” the particle away from the step. The self-
diffusiophoretic component points in the opposite direction. Both
terms on the rhs of Eq. (19) are positive, and the second term is a
correction O(1/x3

p) to the first one. Since for ζ near the critical value
ζ∗ the magnitude of Uws

x in Eq. (19) decreases with decreasing ζ and
increases with increasing xp, the balance of the two velocity com-
ponents occurs at increasingly larger distances from the step as ζ
↘ ζ∗. At ζ = ζ∗, the chemical contrast is too weak, and the induced
chemiosmotic component cannot balance the self-diffusiophoretic
speed. Similar arguments explain the divergence of the location of
the unstable fixed point x●p > 0 at ϕ = π as ζ approaches ζ∗ from
below. In this case, Uws

x < 0 at large xp [Fig. 2(b)], i.e., the chemios-
motic contribution pushes the particle toward the step, while the
self-diffusiophoretic velocity is directed away from the step. The
divergences are described by the following asymptotic forms (valid
for xp →∞):

x○p(ζ ↘ ζ∗,ϕ = 0) = R[6α0(ζ − 1)(h/R)4

∣α1∣
]

1
3

(ζ − ζ∗)−
1
3 , saddle,

x●p(ζ ↗ ζ∗,ϕ = π) = R[6α0(ζ − 1)(h/R)4

∣α1∣
]

1
3

(ζ∗ − ζ)−
1
3 , unstable,

(20)

where ζ∗ ≡ −32(α0/∣α1∣)(h/R)3Usd/U0. These formulae have been
obtained as follows: First, we carry out the Taylor expansion of the
rhs of Eq. (4) in terms of powers of 1/xp, retaining only the leading
[O(1)] and next-to-leading [O(1/x3

p)] terms. Next, we equate the
truncated series to zero and solve the resulting equation with respect
to xp. This provides the desired asymptotic behavior.

FIG. 9. Representative trajectories of a catalyst-forward (Usd ⋅ d̂ = −0.1 × U0, where U0 ≡ 2∣bl
w ∣α0/D) particle near a chemical step. The diamond symbols match with the

initial position xp = x0
p and orientation ϕ = ϕ0 of the trajectories in Figs. 7(a) and 7(e): (a) x0

p = 10 × R, ϕ0 ≃ 1.9; (b) x0
p = −10 × R, ϕ0 ≃ 2.7; and (c) x0

p = −10 × R, ϕ0

≃ 3.05.
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For ζ > ζ∗, the phase plane is split into three regions: the escap-
ing region, located in the upper left corner in Figs. 7(a) and 7(b); the
crossing region, extending across all ϕ at xp = 0; and the reflecting
region, located in the bottom right corner of Figs. 7(a) and 7(b). A
typical crossing trajectory is shown in Fig. 9(a). The initial position
and orientation of the particle is indicated by the brown diamond in
Fig. 7(a). The particle approaches the step from the right, having its
inert part at the front. This is due to the chemiosmotic contribution
Uws

x , which is strong enough to overcome the intrinsic (i.e., self-
diffusiophoretic) tendency of the particle to move catalyst-forward.
At the step, the direction of motion reverses and the particle moves
away from the step with the cap in the front. In Fig. 9(b), we present
a typical reflecting trajectory, with the initial conditions indicated by
the blue diamond in Fig. 7(a). The particle approaches the step from
the left; this initial part of the trajectory is fast. Next, the particle
slowly reorients its direction and leaves the step with an asymptotic
exit angle ϕ = π/2.

For ζbif < ζ < ζ∗, the escaping region changes its location; it
is now in the upper right hand corner in Figs. 7(c) and 7(d). The
crossing and reflecting regions are present as well. Finally, for ζ
< ζbi,f , there are no fixed points; the phase plane has only cross-
ing and reflecting regions. However, now the crossing may proceed

either from the right or from the left; see Fig. 9(c) for which the ini-
tial condition corresponds to the pink diamond in Fig. 7(e). For the
trajectories which cross from the left (xp < 0), a small bundle of ini-
tial angles ϕ is spread over a much broader range of exit angles, i.e.,
the chemical step operates as an “angular dispersion” device.

V. CHEMICAL STRIPES
We now consider a substrate with a chemical stripe of width

2W. We take b(xs) = bl
w for x < −W, b(xs) = bc

w for −W < x <W,
and b(xs) = br

w for x > W. We discuss the special case br
w = bl

w

≡ bw . However, for reasons of generality, in the following equations,
we allow the sides to the left and to the right of the stripe to differ.
Accordingly, the integral in Eq. (A4) consists of three pieces,

Vj = bl
w ∫

−W

−∞
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ)

+ bc
w ∫

W

−W
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ)

+ br
w ∫

∞

W
dx∫

∞

−∞
dy (∇∣∣c ⋅ σ′( j) ⋅ ẑ). (21)

FIG. 10. A Janus particle at a chemical stripe with 2W /R = 3, bl
w = br

w , bl
w/bc

w = 3, and bc
w < 0. [(a) and (b)] Chemiosmotic contribution Uws

x ≃ Ump
x + Udp

x [see Eqs. (22)
and (23)] to the particle translational velocity as a function of xp for a particle with orientation ϕ = 0○ and ϕ = 180○, respectively. (c) Chemiosmotic contribution Uws

y ≃ Udp
y

[see Eq. (24)] to the particle translational velocity as a function of xp for a particle oriented parallel (ϕ = 90○) to the stripe. (d) Angular velocity, calculated from Eq. (25), of a
particle oriented parallel (ϕ = 90○) to the stripe as a function of xp: U0 ≡ 2∣bc

w ∣α0/D.
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Along the lines of Subsection IV, we obtain

Ump
x =

3hR2α0

16D
[(b

c
w − bl

w)(h2 + 2(xp + W)2)
(h2 + (xp + W)2)5/2

+
(br

w − bc
w)(h2 + 2(xp −W)2)

(h2 + (xp −W)2)5/2
], (22)

Udp
x = −

∣α1∣R3

256Dh3

⎡⎢⎢⎢⎢⎣
− 8(br

w + bl
w) + (bc

w − br
w)

× (−25 h4 + 28h2(xp −W)2 + 8(xp−W)4)(xp−W)3

(h2 +(xp−W)2)7/2

+ (bl
w−bc

w)
(−25 h4 +28h2(xp +W)2 +8(xp +W)4)(xp +W)3

(h2 +(xp +W)2)7/2

⎤⎥⎥⎥⎥⎦
× cos(ϕ), (23)

Udp
y =

∣α1∣R3

256Dh3

⎡⎢⎢⎢⎢⎣
− 8(br

w + bl
w) + (bc

w − br
w)

× (8(xp −W)4 + 20h2(xp −W)2 + 3h4)(xp −W)
(h2 + (xp −W)2)5/2

+ (bl
w − bc

w)
(8(xp + W)4 + 20h2(xp + W)2 + 3h4)(xp + W)

(h2 +(xp + W)2)5/2

⎤⎥⎥⎥⎥⎦
× sin(ϕ), (24)

and

Ωdp
z = −

3hR3∣α1∣
64D

[ (bc
w − br

w)
(h2 + (xp −W)2)5/2

+
(bl

w − bc
w)

(h2 + (xp + W)2)5/2
] sin(ϕ). (25)

FIG. 11. Catalyst-forward Janus particle near a chemical stripe of width W = 1.5 × R. The figure shows the effect of the wall chemical contrast on the topology of the phase
portrait in the (ϕ, xp) plane with Usd ⋅ d̂ = −0.15 × U0, where U0 ≡ 2∣bc

w ∣α0/D. The wall contrast is varied by varying bl
w = br

w ≡ bw with bc
w < 0. The results obtained

for two different values of the particle-wall separation h are presented. The first row corresponds to h = 1.1 × R at (a) bw/bc
w = 3, (b) bw/bc

w = 2, and (c) bw/bc
w = 1.5.

The second row corresponds to h = 1.25 × R at (d) bw/bc
w = 3 and (e) bw/bc

w = 1.5. There is an attractor marked by the white triangle at xp = 0 and ϕ = ±π/2 (we recall
the mirror symmetry with respect to ϕ = π). Additionally, in (a) and (d), there are saddle points (white circles) and unstable fixed points (black circles). The background color
encodes Ux /U0. The star symbols in (b) indicate the initial conditions for the trajectories shown in Fig. 12.
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We note that, as in the case of a chemical step, there is no depen-
dence on yp due to the translational invariance of the system along
the y-direction.

In Fig. 10, we show the chemiosmotic contributions Uws
x

≃ Ump
x + Udp

x [Eqs. (22) and (23)], Uws
y ≃ Udp

y [Eq. (24)], and Ωdp
z

[Eq. (25)] as a function of xp and for various orientations ϕ. The
velocities are presented in units of U0 ≡ 2∣bc

w ∣α0/D. (In this sec-
tion, for reasons of simplicity, we use the same notation U0 for the
velocity scale as in Secs. IV A and IV B.) When a particle is oriented
perpendicular to the stripe [ϕ = 0 in Fig. 10(a)], Uws

x drives the par-
ticle from the regions xp < 0 and 0 < xp ≲ 2.5 × R to the center of
the stripe, where the angular velocity Ωdp

z reorients the axis of the
particle to ϕ = π/2, i.e., parallel to the edges of the stripe. In this
configuration [(ϕ, xp) = (π/2, 0)], only Udp

y ≠ 0. We find that for a
catalyst-forward particle (Usd ⋅ d̂ < 0), this mechanism leads to a sta-
ble motion along the stripe. In order to understand the stability of
the configurations with ϕ = ±π/2, we consider a small perturbation
δϕ. The particle starts moving toward one of the stripe edges because
for ϕ ≠ π/2 one has Usd

x ≠ 0. At the same time, the edge causes
rotation of the cap toward the center of the stripe,51 dampening
δϕ for a catalyst-forward particle. In contrast, for an inert-forward
(Usd ⋅ d̂ > 0) particle, the edge driven rotation of the cap enhances
δϕ and may lead to the docking of the particle at the edge, provided
its self-diffusiophoretic velocity component is not too large. More
details concerning the stability of the stripe-following trajectories
may be found in Ref. 51. Intriguingly, the dynamical mechanism

by which a catalyst-forward particle can follow a chemical stripe
resembles the mechanism by which a magnetic bacterium can fol-
low a magnetic stripe domain on a garnet substrate.56 However, the
physical origin of stripe-following dynamics is different in the two
cases.

Next, we explore how the chemical contrast between the stripe
and the rest of the surface influences the topology of the phase
plane. Figure 11 summarizes the results for a catalyst-forward parti-
cle, which reveals a stable attractor at xp = 0 and ϕ = ±π/2 (white
triangles), corresponding to the particle moving along the stripe
in the upward or downward direction. Additionally, we find sad-
dle points (white circles) and unstable fixed points (solid black cir-
cles) at ϕ = 0 and ϕ = π for sufficiently strong chemical contrast
bw/bc

w [see Figs. 11(a) and 11(d)]. In this case, the phase plane
is dominated by the stable attractor as it features the largest basin
of attraction. The two unstable fixed points control the escaping
regions of the phase plane in the lower left and upper right cor-
ners of Figs. 11(a) and 11(d). Similar to the case of the chemical
step, the locations of the saddle points (white circles) at ϕ = 0 and
ϕ = π are determined by the balance between the chemiosmotic
(driving the particles toward the stripe) and the self-diffusiophoretic
(driving the particle away from the stripe) contributions to the
particle velocity. Both orientations ϕ = 0 and ϕ = π are unsta-
ble with respect to the stripe-driven rotation Ωdp

z which favors ϕ
= π/2. For sufficiently small bw/bc

w , the chemiosmotic contribu-
tion is unable to balance the self-diffusiophoretic velocity and the
saddle and unstable fixed points are not present [Figs. 11(b), 11(c),

FIG. 12. Representative trajectories of an catalyst-forward (Usd ⋅ d̂ = −0.15 × U0, where U0 ≡ 2∣bc
w ∣α0/D) particle near a chemical stripe. The star symbols match with

the trajectories stemming from the initial positions and orientations in Fig. 11(b). (a) For certain values of the model parameters, a catalyst-forward particle attains the stripe-
following steady state, which corresponds to the stable fixed point in the (ϕ, xp) plane, depicted by white triangles in Fig. 11. For a moderate to a strong chemical contrast
bw/bc

w ≳ 2, this attractor dominates the particle dynamics because it features the largest basin of attraction in the (ϕ, xp) plane [see Figs. 11(a), 11(b), and 11(d)]. (b)
Passing across the stripe occurs only for moderate values of bw/bc

w [see Figs. 11(b), 11(c), and 11(e)].
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FIG. 13. (a) Phase plane for a very fast catalyst-forward particle (Usd ⋅ d̂ = −10 × U0, h/R = 1.1) near a stripe, with the same parameters as in Fig. 11(a): 2W /R = 3,
bl
w = br

w ≡ bw = 3bc
w , and bc

w < 0, with U0 ≡ 2∣bc
w ∣α0/D. Remarkably, there is still an attractor (white triangle) at xp = 0 and ϕ = π/2, but the size of the basin of attraction

is considerably reduced. (b) Trajectory for the same fast particle and the same stripe as in (a), with initial conditions xp/R = −2, yp = 0, and ϕ = π/2, corresponding to the
yellow star in (a). The particle position exhibits decaying oscillations about the center of the stripe.

and 11(e)]. In this case, in addition to the stripe-following trajecto-
ries [Fig. 12(a)], we find trajectories crossing the stripe from the right
and from the left [see Fig. 12(b) for a trajectory crossing from the
left].

Remarkably, the stripe-following state is stable even for very
fast catalyst-forward particles, as shown in Fig. 13. Figure 13(a)
shows a section of the phase plane for a particle with Usd/U0 = −10
and h/R = 1.1 near the stripe discussed in Fig. 11(a). There is still
an attractor, although its basin is significantly reduced along the
ϕ-axis. Interestingly, the particle configuration (xp, ϕ) approaches
the attractor via decaying oscillations. Figure 13(b) shows a
real-space trajectory in the xy plane with the initial conditions
xp/R = −2, yp = 0, and ϕ = π/2. The trajectory exhibits decaying
oscillations around the stripe center xp = 0. The decay length of
these oscillations is large in terms of the distance traveled by the
particle in the y-direction; within a rough estimate, the particle is
captured by the center when yp/R = −500. The survival of the stripe-
following attractor for very large |Usd|/U0 suggests that substrate
materials with small phoretic mobility parameters, i.e., they either
interact only very weakly or have a very short range of interaction
with the solute, can still, if arranged into a stripe pattern, guide the
motion of catalyst-forward particles.

VI. SUMMARY
We have studied the motion of catalytically active Janus spheres

near a chemically patterned planar surface using the theoretical
approach developed in Refs. 51 and 52. In particular, we have
explored in detail the topology of the phase portraits as a func-
tion of the parameters characterizing the chemical contrast of the
wall patterning. We have focused on the specific case of a parti-
cle with half of its surface covered by the catalyst. The particle-
surface separation was taken to be constant, and the polar axis
d̂ of the particle has been restricted to be parallel to the surface.
The chemical activity of the particle drives chemiosmotic flows at
the wall surface, which, in turn, induces flows in the volume of

the solution. Consequently, the particle is advected by the surface-
induced bulk flows. This chemiosmotic contribution to particle
motion is sensitive to the chemical properties of the surface, and it
may compete or cooperate with the intrinsic self-propulsion of the
particle.

For the case of a single chemical step, we have considered both
inert-forward and catalyst forward particles and we have investi-
gated the effects of the surface chemical contrast and particle-surface
separation on the particle dynamics. An inert-forward particle can
cross the step, can be reflected from the step, or can stably dock
at the contact line between the two surface regions, depending on
the ratio ζ = br

w/bl
w > 0 of the surface phoretic mobilities, on

the particle-wall distance h, and on the initial position and orien-
tation of the particle. A docked particle has its polar axis aligned
perpendicular to the interface. We have derived an approximate
expression for the maximal self-phoretic velocity separating dock-
ing and crossing (Fig. 5). A particle which crosses the step can
exhibit significant deviations of its orientation from the initial angle
of approach [Figs. 3(c), 3(e), and 3(f )]. For example, all trajectories
crossing the step from the left (xp < 0), where the solute-wall repul-
sion is weaker than on the right side, have exit angles ϕ ≪ 1 [see
the blue and red diamonds in Fig. 3(c)]. In other words, the chem-
ical step operates as a trajectory focusing device. For steps with low
chemical contrast, a particle can be reflected from the step when it
approaches from the right (xp > 0, where the solute-wall repulsion is
stronger) and with an initial angle in a narrow band ϕ ≳ 90○. The
exit angle of the particle is again focused to ϕ ≪ 1 [see, e.g., the
white diamond in Fig. 3(c), which corresponds to the trajectory in
Fig. 6(a)].

Within the broad range of the parameters we have explored,
the docking state has not been found for a catalyst-forward parti-
cle. Instead, however, depending on the initial conditions and the
parameters of the system, the particle can cross the step, can be
reflected by the step from the left, or can directly escape from the
step. Crossing the step from the right to left is possible for any value
of the chemical contrast ζ [see Fig. 7 and the particle real space
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trajectory in Fig. 9(a)]. In this case, the difference between the initial
and the exit angles of the particle is moderate. For sufficiently small
ζ, a particle can cross the step from the left to right [see Fig. 7(e)
and the particle real space trajectory in Fig. 9(c)], with the initial
angle ϕ ≲ 180○ and the exit angle in the range 90○ < ϕ < 180○. For
intermediate to high chemical contrasts ζ, as well as for a broad
range of initial angles at low chemical contrast, a particle approach-
ing from the left is reflected for all initial angles of approach ϕ > 90○

[see the lower right corners in Fig. 7, as well as the reflecting trajec-
tory in Fig. 9(b)]. For intermediate values of the chemical contrast, a
catalyst-forward particle can directly escape from the step if it starts
from the right and slightly above the separatrix [see the upper right
hand corners in Figs. 7(c) and 7(d)]. At high contrast, the region
of escape is in the upper left corner of the phase portrait [Figs. 7(a)
and 7(b)].

We have also considered a catalyst-forward particle at a surface
which exhibits a narrow chemical stripe. We have found a stable
stripe-following state in which the particle moves along the stripe
center and is perfectly aligned with the stripe [Fig. 12(a)]. Surpris-
ingly, the stripe-following state is present at all values of the chemical
contrast larger than unity, although its basin of attraction may be
small [Fig. 11(c)]. For sufficiently strong chemical contrast, a particle
never crosses the stripe [Figs. 11(a) and 11(d)]; instead, the parti-
cle either stably follows the stripe or directly moves away from it,
depending on the initial position and orientation. For smaller values
of the chemical contrast, a particle can cross the stripe from either
the left or the right [Figs. 11(b), 11(c), and 11(e)]. We have not found
the stripe-following state for inert-forward particles.

Finally, our approach considers the particle to be restricted to
a constant height h above the wall and its orientation d̂ to stay
within the plane of the substrate. This assumption is supported
by the observation that for two given surfaces with distinct chem-
istry, the parameters of a Janus particle may be adjusted such that
it will have similar stable values h∗ and d̂∗ at both surfaces. In
other words, such a “designed” Janus particle will self-adjust to in-
plane motion employing only internal phoretic mechanisms (such as
self-diffusiophoresis or self-electrophoresis), combined with hydro-
dynamic and chemical interactions with the wall. Additionally, such
wall-bounded two-dimensional motion may be achieved by using
magnetic fields for particles containing a magnetic core.8,57

Intriguingly, the behavior of the self-phoretic particle bears cer-
tain similarities to the motion of a motile magnetic bacterium guided
by static magnetic fields emanating from stripe domains in a garnet
substrate.56
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APPENDIX A: CALCULATION OF Uws AND Ωws

In order to obtain Uws and Ωws, we set vs(xs) = 0 at the parti-
cle surface [see Eq. (3) and below it] and use the Lorentz reciprocal

theorem.55 This theorem relates the fluid stresses (σ, σ′) and the
velocity fields (u, u′) of two solutions to the Stokes equation within
the same domain

∫ u ⋅ σ′ ⋅ n̂ dS = ∫ u′ ⋅ σ ⋅ n̂ dS, (A1)

where the surface integrals are taken over the fluid domain bound-
aries, and n̂ is the surface unit normal vector pointing into the fluid
domain. We take the “unprimed” problem to be the one specified
above for the six unknowns V ≡ (Uws, Ωws), requiring six “primed”
subproblems. We recall that for the unprimed problem, the bound-
ary conditions are u = vs at the planar wall, u = Uws + Ωws × (x − x0)
at the particle surface, and u = 0 at infinity. Note that here vs has
already been determined from the solution of the Laplace equation;
thus, it is a known quantity.

For the primed subproblems (u′(j), σ′(j)), indexed by j, we con-
sider an inactive particle subject to an external force of unit mag-
nitude in the x̂, ŷ, or ẑ direction for j = 1, 2, 3, or an external,
also unit magnitude torque in x̂, ŷ, or ẑ (j = 4, 5, 6). For each of
the cases j = 1, . . ., 6, we impose that the motion is subject to no-
slip boundary conditions, i.e., u′(j) = 0 at the planar wall, and that
the fluid is quiescent far away from the particle, i.e., u′(j) = 0 at
infinity. At the particle surface, there is a no-slip condition which
implies u′(j) = U′(j) + Ω′(j) × (x − x0). Here, U′(j) and Ω′(j) are the
unknown translational and angular velocities of the particle driven
by the external force or the external torque in subproblem j. We note
that in the subproblems j = 1, 2, 4, and 5, the imposed force or torque
[e.g., F′(1)x , below Eq. (A3)] will give rise to additional, off-diagonal
forces or torques [e.g., τ′(1)y , below Eq. (A3)] due to friction from the
boundary.

We apply the Lorentz theorem in Eq. (A1) to each of the six
pairs obtained by combining the unprimed problem with subprob-
lem j. At the planar wall, u′(j) vanishes, and far away from the parti-
cle, it decays at least as fast as 1/r. Therefore, concerning the integral
over the whole boundary of the fluid domain, only the part over the
surface of the particle contributes. The velocity field u decays at least
as fast as 1/r, and therefore, only the surface of the particle and the
wall contribute to the integral involving u. This leads to the following
set of equations:

∫
z=0

u ⋅ σ′( j) ⋅ ẑ dS + ∫
∣r∣=R

u ⋅ σ′( j) ⋅ n̂ dS

= ∫
∣r∣=R

u′( j) ⋅ σ ⋅ n̂ dS, j = 1, . . . , 6, (A2)

where we have split the lhs into two integrals, r ≡ x − x0, where x0
= (xp, yp, h) is the center of the particle. Inserting the boundary con-
ditions for u′(j) and u(j) into Eq. (A2) and exploiting the fact that
the self-propelled particle is force- and torque-free, we obtain six
coupled equations

Uws ⋅ F′( j) + Ωws ⋅ τ′( j) = −∫
z=0

vs ⋅ σ′( j) ⋅ ẑ dS, j = 1, . . . , 6, (A3)

where F′(j) and τ′(j) are the force and torque, respectively, from the
fluid on the particle in subproblem j.

In addition to the generalized velocity vector V introduced
above, we also define a generalized force F′( j) ≡ (F′( j), τ′( j)). In
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each subproblem j, the component F′( j)
j , such as F′(1)x or τ′(4)x , must

exactly cancel the imposed force or torque because the motion of the
particle is overdamped (Re≪ 1). It is therefore known a priori that,
e.g., F′(1)x = −F′ext and τ′(4)x = −τ′ext . The other, off-diagonal com-
ponents, such as τ′(1)y , are unknown prior to finding the solution of
subproblem j. However, the off-diagonal terms are significant only
if the particle is very close to the wall, i.e., if h/R ≈ 1.58 We therefore
neglect the off-diagonal terms and obtain

F
′( j)
j Vj ≈ −∫ vs ⋅ σ′( j) ⋅ ẑ dS, j = 1, . . . , 6, (A4)

where V j are the components of the generalized velocity V. [We note
that the left-hand side of Eq. (A4) is not a sum over j.] Due to the
linearity of the Stokes equation, σ′(j) contains as a prefactor either
F′ext or τ′ext , i.e., −F′( j)

j Therefore, the arbitrary amplitudes F′ext or
τ′ext drop out of the problem. In order to avoid a clumsy notation,
in the following, we shall denote σ′( j)/F′( j)

j as σ′(j).
In order to perform the integral in Eq. (A4) analytically, two

expressions are needed: one for vs and the other for σ′(j). For both
quantities, we use the “point-particle” approximation in order to
obtain analytically tractable expressions. In Appendices B and C, we
derive approximate expressions for the surface concentration gra-
dient c(xs) and for the primed fluid stresses σ′(j). The knowledge
of c(xs) permits the determination of the phoretic slip boundary
conditions vs(xs) = −bw(xs)∇||c(xs).

APPENDIX B: AN APPROXIMATION
FOR σ′(j ) AT THE WALL

We obtain an approximate analytical expression for the shear
stress σ′(j) by using image solutions for a point force or point torque
above a planar wall.59 This approximation neglects the finite size of
the particle, i.e., the no slip condition at the particle surface.

For the “primed” problems j = 1, 2, 3, we replace the parti-
cle by a point force (Stokeslet) pointing into the directions x̂, ŷ,
and ẑ, respectively, located at x0 = (xp, yp, h) (i.e., the center of
the particle) above a planar wall located at z = 0. The fluid satisfies
incompressibility and the Stokes equations. As shown by Blake,59

the governing equations and the no-slip condition at the wall can
be satisfied by locating a system of images, which consists of a
Stokeslet, a force-dipole, and a source-doublet (see Ref. 59), at the
point xI = (xp, yp, −h). For the sake of clarity, we introduce the
mapping (1, 2, 3, 4, 5, 6) s→ (x, y, z, x, y, z) connecting the indices
of the “primed” problem and the corresponding directions of the
unit force or torque (see also below), as well as the shorthand nota-
tion sj ∶= s(j) [i.e., s1 ∶= s(1) = x, s5 ∶= s(5) = y, etc.]. The corre-
sponding fluid velocity at an observation point x = (x, y, z) is given
by

8πη u′( j)
i = (1

r
− 1

X
)δisj +

rirsj

r3 −
XiXsj

X3 + 2h(δsjαδαl − δsjzδzl)

× ∂

∂Xl
[hXi

X3 − (
δiz

X
+

XiXz

X3 )], (B1)

where i ∈ {x, y, z}, α ∈ {x, y}, r ≡ x − x0, X ≡ x − xI , r ≡ |r|,
X ≡ |X|, and the Einstein convention of summation over repeated

indices is used (here and in the following). We note that the first
product of Kronecker delta symbols vanishes if either sj or l takes
the value z, while the second such product contributes only if both
sj and l take the value z. Therefore, the index l in the partial deriva-
tive with respect to Xl is taken to be x, y, or z. The pressure is given
by

4π P′( j) =
rsj

r3 −
Xsj

X3 − 2h(δsjαδαl − δsjzδzl)
∂

∂Xl
(Xz

X3 ). (B2)

(Although pressure is a scalar quantity, sj appears in the expression
for the pressure because its functional form depends on the direction
of the point force.) From the velocity and pressure, it follows that the
stress tensor

σ′ = −P′𝟙 + η(∇u′ +∇u′T) (B3)

in the fluid is given by the following expression:

4πη
3

σ′( j)
ik =

rirsj rk

r5 −
XiXsj Xk

X5 − 2h(δsjαδαl − δsjzδzl)

× ( − h
X5 δikXl +

z
X5 (Xiδlk + Xkδil)

+
XiXk

X5 δzl −
5zXiXlXk

X7 ). (B4)

This expression approximately recovers the stress from a sphere
dragged by an external point force in the presence of a wall at z
= 0, although it neglects the finite size of the sphere (represented,
concerning hydrodynamics, by a no-slip condition at the surface of
the sphere.)

Concerning the substitution into the reciprocal theorem, we are
interested in the quantities σ′( j)

iz ∣z=0, where i ∈ {x, y}. These quan-
tities are components of the shear stress evaluated at the wall. We
obtain

σ′(1)iz ∣z=0 = −
3h
2π

rirx

r5 , (B5)

σ′(2)iz ∣z=0 = −
3h
2π

riry

r5 , (B6)

and

σ′(3)iz ∣z=0 =
3h2

2π
ri

r5 . (B7)

Now we turn to the “primed problems” j = 4, 5, 6. For these
three problems, we consider a point torque oriented into the direc-
tions x̂, ŷ, and ẑ, respectively, located at x0. For a point torque above
a planar wall at z = 0, Blake found,59 via the method of images, that
the velocity field is

8πη u′( j)
i = 𝜖isjk(

rk

r3 −
Xk

X3 ) + 2h𝜖ksjz(
δik

X3 −
3XiXk

X5 ) + 6𝜖ksjz
XiXkXz

X5 ,

(B8)

where 𝜖αβγ denotes the Levi-Civita symbol (with the convention that
its indices are interpreted as x → 1, y → 2, and z → 3), and as men-
tioned above, summation over repeated indices is employed here
and the following. The pressure is59
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P′( j) = −4η
∂

∂Xk
(
𝜖ksjzXz

X3 ). (B9)

By using the definition [Eq. (B3)] for the stress tensor σ′( j), we
obtain the corresponding matrix elements iz (i ∈ {x, y}) evaluated
at the wall, which are needed for substitution into the reciprocal
theorem

σ′(4)iz ∣z=0 = −
3

4π
δiyh2 − riry

r5 , (B10)

σ′(5)iz ∣z=0 = −
3

4π
δixh2 − rirx

r5 , (B11)

and

σ′(6)iz ∣z=0 =
3h
4π

𝜖izkrk

r5 . (B12)

APPENDIX C: MULTIPOLE EXPANSION FOR c (xs )
For a spherical particle with axisymmetric catalyst coverage

in f ree space (i.e., far from bounding surfaces), the solute number
density can be expanded in terms of Legendre polynomials14

c fs(r, θ′) = c∞ +
R
D

∞

∑
l=0

αl

l + 1
(R

r
)

l+1
Pl(cos(θ′)), (C1)

where αl are the multipole coefficients of the surface activity (i.e.,
areal density per time): α(θ′) = ∑∞l=0 αlPl(cos(θ′)), r is the vector
from the center of the particle to an observation point, r = |r|, and
θ′ is the angle between r and the vector d̂ oriented along the axis of
symmetry of the particle. As defined in the main text, d̂ points from
the catalytic cap of the particle to the inert region. For any spec-
ification α(θ′) of the particle activity, the coefficients αl are easily
calculated. For instance, for the constant-flux model of the activ-
ity presented in the main text, one has the monopole coefficient α0
= κ/2 and the dipole coefficient α1 =−3κ/4. (The sign of α1 is negative
due to our choice of the direction of d̂.)

Now we consider an active particle near a planar wall in a con-
figuration in which d̂ is parallel to the wall (which occupies the xy
plane); thus, one has d̂ = (cos(ϕ), sin(ϕ), 0). (The conditions, under
which such configurations can be realized, are discussed in Refs. 51
and 52.) In order to obtain approximate analytical expressions for
the surface gradient ∇||c(xs), we make two approximations: (i) We
truncate the multipole expansion for the activity of the particle, and
we consider only the monopole and dipole terms. (ii) In order to
model the effect of confinement of the solute field by the wall, we
place the mirror images of the monopole and the dipole below the
wall. We neglect additional reflections of these two images across
the particle surface. In Refs. 51 and 52, these assumptions have been
validated via comparisons of the theoretically predicted dynamical
behavior of the particle with that obtained from numerical solutions
of the full problem.

We therefore write c(xs) ≈ cmp(xs) + cdp(xs). Here, c(xs) is the
sum of two terms: the field due to a point source (monopole) of the
number density located at the center x0 = (xp, yp, h) of the particle,
plus the field due to an image point source of the number density

located at xI = (xp, yp, −h). The second term, cdp(xs), is a contribution
from a dipole and its image. The real and image dipoles are likewise
located at x0 and at the image point xI , respectively, and both have
the strength p = −∣α1∣d̂.

For the monopole term, we obtain

cmp(xs) =
2α0R2

Dr
(C2)

and

∇∣∣cmp(xs) = −
2α0R2rs

Dr3 . (C3)

Here, xs = (x, y, 0) denotes a point at the wall, rs = (x − xp, y − yp, 0)
and r =

√
(x − xp)2 + (y − yp)2 + h2. For the dipole term, we obtain

cdp(xs) = −
∣α1∣R3

D
d̂ ⋅ rs

r3 (C4)

and

∇∣∣cdp(xs) = −
∣α1∣R3

Dr3 (𝟙 −
3rs ⊗ rs

r2 ) ⋅ d̂. (C5)

More details concerning the calculation of the chemiosmotic
contribution to the linear and angular velocities of the particle, as
well as a discussion of the effect of the nonvanishing size of the
particle, can be found in the supplementary material of Ref. 51.

APPENDIX D: EVENNESS OF Ump
x (xp)

FOR CHEMICAL STEPS
We provide here a general symmetry argument according to

which Ump
x (xp) for a chemical step is mirror symmetric with respect

to xp = 0 [see Eq. (12)]. By linearity, we can express the monopolar
contribution to the velocity as

Ump
x (xp) = br

wgr(xp) + bl
wg l(xp) + C. (D1)

Without osmotic response (br
w = 0 and bl

w = 0), one has Ump
x = 0,

and therefore, C = 0. Furthermore, we know that Ump
x (xp) = 0 for a

uniform wall, i.e., if br
w = bl

w ,

g l(xp) = −gr(xp) (D2)

and
Ump

x (xp) = (br
w − bl

w)gr(xp). (D3)

Additionally, the mirror symmetry about x = 0 requires that g l(xp)
= −gr(−xp) (see Fig. 14). When this result is combined with Eq. (D2),
it yields that gr(xp) is even

gr(xp) = gr(−xp). (D4)

Applying the mirror symmetry (i.e., the parity) operator with
respect to the y-axis one obtains bl

w → br
w , br

w → bl
w , xp → −xp, and

Ump
x (xp) → −Ump

x (−xp) so that

−Ump
x (−xp) = −(br

w − bl
w)gr(−xp). (D5)

Consequently,

J. Chem. Phys. 150, 204904 (2019); doi: 10.1063/1.5091760 150, 204904-16

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 14. (a) Schematic illustration of the contribution Ul
mp = bwg l(xp) of the

left-hand side of the substrate surface z = 0 (shaded area) to the translational
velocity of a particle at x = xp for bl

w ≡ bw . This contribution can be calculated
by taking br

w = 0 on the right-hand side of the substrate surface (white area).
Ul

mp can be either positive or negative; here, Ul
mp > 0 is chosen for illustration. (b)

Upon applying a mirror transformation about x = 0 to (a), we find that the resulting
contribution has changed sign. However, panel (b) also illustrates the contribution
Ur

mp = bwgr(−xp) to the translational velocity of a particle at x = −xp from the
right-hand side of the substrate surface (shaded area) for br

w = bw . Accordingly,
the relation gl (xp) = −gr (−xp) holds.

Ump
x (−xp) = (br

w − bl
w)gr(−xp) (D6)

or

Ump
x (−xp) = Ump

x (xp), (D7)

where we have used Eq. (D4). We conclude that Ump
x (xp) is an even

function of xp, and, for a given distance from the step, does not
depend on whether the particle is to the left or to the right of the
step.
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