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ABSTRACT
Many membrane proteins are modulated by external stimuli, such as small molecule binding or change in pH, transmembrane voltage, or
temperature. This modulation typically occurs at sites that are structurally distant from the functional site. Revealing the communication,
known as allostery, between these two sites is key to understanding the mechanistic details of these proteins. Residue interaction networks
of isolated proteins are commonly used to this end. Membrane proteins, however, are embedded in a lipid bilayer, which may contribute
to allosteric communication. The fast diffusion of lipids hinders direct use of standard residue interaction networks. Here, we present an
extension that includes cofactors such as lipids and small molecules in the network. The novel framework is applied to three membrane
proteins: a voltage-gated ion channel (KCNQ1), a G-protein coupled receptor (GPCR—β2 adrenergic receptor), and a pH-gated ion channel
(KcsA). Through systematic analysis of the obtained networks and their components, we demonstrate the importance of lipids for membrane
protein allostery. Finally, we reveal how small molecules may stabilize different protein states by allosterically coupling and decoupling the
protein from the membrane.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020974., s

I. INTRODUCTION

Proteins are molecular machines that function via complex net-
works of interacting residues. A perturbation at a specific site in
a protein may travel across the protein to modulate a distal site.
The specific chain of residues that propagate this information to the
distal site constitutes an allosteric pathway.1 Allostery is the major
functional contributor in membrane proteins such as receptors and
ion channels.2–5 G-protein coupled receptors (GPCRs), for example,
bind specific ligands at an extracellular binding site. These binding
events yield conformational changes at an intracellular binding site,
altering the receptor’s active/inactive equilibrium.6 Voltage-gated
ion channels, on the other hand, sense and respond to membrane
potentials in domains, which are located far away from the pore gate.
Activation of these domains is allosterically communicated to the
pore to trigger channel opening.7–11 Understanding protein allostery

and its governing components may therefore reveal the mechanistic
details of these proteins.

All-atom molecular dynamics (MD) simulations provide atom-
istic details of how protein residues interact with each other,
as well as with their surroundings. MD simulations thus con-
tain explicit information about protein allostery. However, the
large number of atoms in physiologically relevant systems pre-
vents direct visual identification of residues that are especially
important for communicating allostery. This requires computa-
tional methods able to synthesize and interpret the raw data.
Residue interaction networks of isolated proteins have previously
been used to reveal protein allostery.11–15 Membrane proteins, how-
ever, are surrounded by lipids and may be modulated by small
molecules, both of which play an integral role in communicat-
ing allostery between different protein domains.2,16,17 The origi-
nal framework therefore has to be extended to reveal the allosteric
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role of cofactors, such as lipids, ligands, or highly retained water
molecules.

The difficulty of including cofactors in these networks relates
to their redundancy and the network topology. A network consists
of two components: nodes and connection between nodes (edges),
which are static. Cofactors, however, constantly move and may
exchange positions. To understand the role of lipids, for example,
the main goal is to reveal whether a lipid bound in a specific loca-
tion relative to the protein is allosterically important, rather than
a specific lipid molecule, which may diffuse away. The redundancy
of cofactors therefore has to be translated to the nodes of the static
network.

Here, we extend the framework of standard residue interaction
networks to include cofactors such as lipids and ligands. In Sec. II,
we explain how to assign cofactor residues to network nodes by solv-
ing a combinatorial optimization problem in each trajectory frame,
i.e., minimizing the distances between cofactor residues and network
nodes. This framework is applied in Sec. IV to MD simulations of
three membrane proteins with different functions and topologies: a
voltage-gated ion channel, a GPCR, and a pH-gated ion channel. By
applying current flow analysis18,19 to these networks, we reveal their
allosteric fingerprints. Finally, we access the allosteric role of lipids
and show how this role may be modulated by ligands. The method

can easily be applied to other systems. A jupyter notebook tutorial is
publicly available on our lab github.20

II. THEORY
A. Constructing a residue interaction network

An ordinary residue interaction network is built by grouping
the atoms of each protein residue to a node and forming edges
between nodes of interacting residues. The weight of an edge rep-
resents the extent of residue interaction. Practically, the network is
here obtained from the elementwise product of a contact map, C,
and a matrix representing the correlation of node movement, M,

Aij = CijMij ∀i, j, (1)

where A is the network adjacency matrix. Figure 1 shows a flowchart
of how the network is built using MD simulation data. We use a con-
tinuous contact map and positional mutual information to model
spatial proximity and correlation of residue movements, respectively
(see details below).21 The analysis is performed on non-hydrogen
atoms of the protein residues, ligands, and lipids. MDtraj22 is used
as the backbone to perform analysis.

FIG. 1. Steps carried out to build a residue interaction network which includes lipids and ligands as well as the protein. Starting from a system with a protein embedded in
a lipid membrane and bound ligand, the protein is first isolated. Each protein residue is assigned a node in the isolated protein network, and the contact map and mutual
information for all protein residue pairs are calculated (blue arrows). The lipids and ligands are divided into “interactors.” These interactors are assigned network nodes
depending on their positions relative to the initial frame. The nodes are used to compute the interactor-protein contact map (gray arrows), and the fluctuations are used to
compute mutual information between node movements. The contact maps are merged. The full contact map and mutual information make up the final network (black arrows).
Once the network is built, we can extract allosteric pathways between source (orange) and sink (red) nodes employing network analysis.
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B. Assigning lipids and ligands to nodes
The network can be extended to represent cofactors as addi-

tional nodes. Similar to the protein, we define interactors by group-
ing cofactor atoms into domains. These interactors will correspond
to interactor-nodes in the network. Here, we describe a ligand with
one interactor, while lipids are divided into three interactors; one
corresponding to the head group and two corresponding to the
hydrophobic tails, Figs. 1 and S1.

A first solvation shell lipid may exchange position with a sec-
ond shell lipid. In such a case, the protein environment is essentially
unaltered, while the individual lipid environments change abruptly.
We therefore keep the network nodes static by permuting the lipid
interactors and reassigning interactors to nodes in each frame. To do
this, the trajectory is first aligned on the protein Cα atoms. Nodes are
assigned to interactors in the first frame of the trajectory. Next, we
permute the interactor-nodes in each trajectory frame such that the
network remains similar to the initial frame. In practice, for a specific
frame, we wish to assign each interactor node to a node in the ini-
tial frame network. This is done by minimizing all centroid distances
between pairs of the specific and initial frame nodes.23 We solve this
optimization problem with a linear assignment problem solver (the
python package LAPJV).24–26 The centroid distances are computed
with the minimum image convention using an orthorhombic box
periodic boundary condition.

C. Continuous contact map
Continuous contact maps yield more stable networks than

binary ones.14 A switching-function, K(d) introduced in Ref. 21 is
used. Given the minimum distance dij(n) between atoms of nodes i
and j in frame n,

K(dij(n)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if dij(n) ≤ c

exp [−dij(n)2

2σ2 ]/ exp [− c2

2σ2 ] otherwise.
(2)

Distances below c are given a weight of 1, while weights of larger
distances are continuously decreased. The cutoff c = 4.5 Å is suitable
to define contacts between heavy atoms27 and is commonly used in
binary contact maps. We therefore used c = 0.45 nm and K(dcut)

= 10−5, where dcut = 0.8 nm, leading to σ =
√

c2−d2
cut

2 ln K(dcut)
≈ 0.138. The

chosen dcut allows for small deviations from the hard cutoff, c, to be
included as weaker interactions. The final contact map is averaged
over frames,

Cij =
1

Npoints

Npoints

∑
n=1

K(dij(n)). (3)

The minimum image convention is used to compute distances
involving interactor nodes.22 This makes the network periodically
connected, allowing allosteric pathways to cross simulation box
boundaries.

D. Mutual information
Correlation of residue and interactor node movements are

modeled with positional mutual information (MI) of node
centroids.21,28 This measures correlation of fluctuation distances

around an equilibrium position by characterizing the amount of
information that can be inferred about a specific node position,
knowing the position of another node. Given the fluctuation den-
sity, ρi(x), where x is the distance to the equilibrium position, the
entropy of residue i is calculated as

Hi = −∫
X

ρi(x) ln ρi(x)dx ≈ 1
Npoints

Npoints

∑
n=1
[− ln ρi(xn)], (4)

and the MI between nodes i and j is obtained with

Mij = Hi + Hj −Hij.

To improve accuracy of entropy estimation, we sample Npoints new
data points from the density, ρij(x), 10 times, followed by repeating
entropy and MI calculations, and averaging over datasets.

Each density is represented by a Gaussian mixture model
(GMM):29 a linear combination of Gaussian basis functions. Because
Gaussians are continuous, the density estimation is more sta-
ble where the data are sparse and do not introduce unnecessary
approximations compared to discrete methods such as his-
togramming.30,31 Given the number of Gaussians, GMM param-
eters (amplitudes, means and covariances) are estimated with
expectation-maximization.29 Increasing the number of Gaussians
arbitrarily increases the likelihood. To choose a non-overfitting but
detailed model, we use the Bayesian information criterion (BIC),32

a criterion often used for mixture models.33 BIC adds a penalty to
the likelihood, which increases with model complexity. The GMM
with the smallest BIC is selected. Ultimately, BIC is prior-free with
respect to GMM parameters and assumes a flat prior over models
such that the most likely model is chosen.33 For each density, we
vary the number of Gaussians between 1 and 4.

Because non-protein interactors may cross the simulation box
boundaries, their node equilibrium positions are calculated by first
replicating the node frame coordinates to all periodic images. The
replication creates clusters of points. One cluster corresponds to the
fluctuations around one image equilibrium, which is given by the
centroid of this cluster. We then identify a full cluster using a cutoff
around the node’s first frame coordinate in the original box. The
cutoff to identify the full cluster is taken as half the smallest box
side. Although this cutoff may seem conservative for connecting all
points within the same cluster, it effectively avoids connecting points
that are part of different clusters. The equilibrium position is then
defined as the cluster centroid.

III. INFERRING ALLOSTERY WITH INFORMATION
FLOW ANALYSIS

Information flow, often called current flow after the origi-
nal analogy to electrical networks,18,19 measures the net flow of
information between a set of source (S0) and sink (S1) nodes.
Allostery within a protein is communicated via multiple path-
ways.1 As opposed to shortest path betweenness,34 current flow
betweenness takes all pathways between source and sink nodes into
account (details in the supplementary material).19 The net flow
across edges naturally removes uninteresting regions in which inef-
fective pathways might move back and forth before reaching the
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sink. Because of this, explicit pathways may sometimes be difficult
to infer directly. Nonetheless, the result highlights nodes that carry
effective pathways, making current flow betweenness well-suited to
extract allosterically important residues and interactors.

Current flow betweenness was first introduced to biomolecular
simulations in the context of a soluble enzyme.14 A homomeric-
averaged variant was recently presented and experimentally
validated on KCNQ1.21 The current flow betweenness from each
subunit was replicated and summed over the structure prior to
averaging. To understand the role of cofactors for communicat-
ing allostery, we extended this analysis with a measure of signaling

efficiency. Here, efficiency is characterized by current flow closeness
centrality18 (see the supplementary material). We thus used cur-
rent flow betweenness and closeness centrality to extract alloster-
ically important protein residues and to reveal the allosteric
role of lipids and ligands. To avoid confusion with ion chan-
nel currents, we will use information flow to denote current flow
betweenness and information flow closeness to denote current flow
closeness.

We studied three well-known systems: the voltage-gated ion
channel KCNQ1, the GPCR β2 adrenergic receptor, and the
pH-gated ion channel KcsA. Technical details about the simulation

FIG. 2. (a) Structure of CTD-straight KCNQ1 showing important structural features, and sources and sinks. The yellow arrows show cartoon pathways, highlighting the
direction between the source and sink residues. (b) State- and PIP2-dependent allosteric efficiency (information flow closeness) measured from the source residues listed
on the x axis to the sink residue S349. Blue: protein, yellow: protein + bound PIP2, and black: protein + full membrane. Left column: apo, and right: PIP2-bound. Upper row:
CTD-bent state, and bottom row: CTD-straight. (c) Average information flow through each protein residue and lipid interactor projected onto the first trajectory frame (top
view). Red signifies larger information flow values. Lipid interactors (information flow >0.008) are shown in surface representation. (d) Difference in allosteric efficiency of
networks including different components of the systems. Dark red: comparing protein/membrane networks to protein networks, and red: comparing protein/PIP2 networks to
protein networks. Averages and standard errors (SEM) are computed across subunits.
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setup and protocols are described in the supplementary material.
The structures were visualized with VMD.35

IV. RESULTS AND DISCUSSION
A. KCNQ1 exploits the membrane for communicating
voltage sensitivity to the pore

KCNQ1 is a voltage-gated potassium channel critical for action
potential repolarization in the heart. KCNQ1 contains the common

elements of a homotetrameric voltage-gated ion channel; each sub-
unit consists of six transmembrane helices.36 The first four helices
form the voltage-sensing domain (VSD), while the last two make
up the pore domain, Fig. 2(a). The Ca2+-sensor calmodulin (CaM)
is required for the KCNQ1 channel assembly37,38 and binds to the
KCNQ1 C-terminal domain (CTD).36,39 Specific to KCNQ1 is that
PIP2 is required to couple VSD activation to pore opening.40,41

The two cryo-EM structures of human KCNQ139 revealed “bent”
CTD helices in the absence of PIP2, and “straight” CTD helices in
the presence of PIP2 (Fig. S2). We call these states CTD-bent and

FIG. 3. (a) Structure of active/Nb-bound β2AR showing important structural features, and sources and sinks. The yellow arrows show cartoon pathways, highlighting the
direction between the source and sink residues. (b) State- and ligand-dependent allosteric efficiency (blue: protein, yellow: protein + agonist, black: protein + agonist + full
membrane). Left column: inactive state, and right: active/Nb-bound state. Upper row: apo β2AR, and bottom row: agonist-bound β2AR. (c) Average information flow through
each protein residue and lipid interactors (information flow >0.012) projected onto the first trajectory frame. Red signifies larger information flow values. (d) Difference in
allosteric efficiency of networks built by including different components of the β2AR systems. Dark red: comparing protein/agonist/membrane networks to protein networks,
and red: comparing protein/agonist networks to protein networks. Averages and SEM are obtained by splitting the simulations into three parts.
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CTD-straight, respectively. The CTD-bent state allows interactions
between CaM and the VSD, which are disrupted in the CTD-straight
channel. Recent studies showed that both states are present in the
channel activation pathway.21

A thorough investigation of the KCNQ1 protein informa-
tion flow from the voltage-sensor domain to the pore, validated
by electrophysiology, is presented elsewhere.21 Here, on the other
hand, we studied the allosteric roles of PIP2 and the membrane
to allow communication between the VSD and pore. Efficiency
of communication was measured in terms of information flow
closeness using the KCNQ1 gating charges (R1, R2, R3, R4) as
sources and the pore residue S349 as sink. The allosteric contri-
bution of each system component was inferred by performing the
efficiency analysis on the networks including: (1) the protein, (2)
the protein and PIP2, and (3) the protein and the full membrane.
Figure 2(b) shows the allosteric efficiency when including PIP2 and
the lipid membrane in the network. The upper row displays the
results obtained from the CTD-bent simulations, while the lower
row shows the corresponding results from the CTD-straight sim-
ulations. The left and right columns correspond to PIP2 being
absent or present in the simulations, respectively. Regardless of the
PIP2-bound state, the membrane increases the allosteric efficiency,
indicating that the membrane is involved in communicating volt-
age sensitivity to the pore, Fig. 2(b). Figure 2(c) depicts a top-view
of the information flow through each residue projected onto the
CTD-bent (upper) and CTD-straight (lower) structures. The lipid
interactors with the highest information flow are shown in surface
representation, indicating their location with respect to the pro-
tein. KCNQ1 exploits the membrane lipids tucked in the cavities
between VSDs and the pore to communicate allostery [Fig. 2(c)].
Figure 2(d) shows the difference in efficiency between networks,
which include the additional interactors compared to the isolated
protein. PIP2 appears to not significantly increase signaling effi-
ciency alone. The effect of tightly bound ligands may thus already
be encoded in the isolated protein network. Moreover, the CTD-
straight channel uses the membrane to a larger extent than the
CTD-bent, while PIP2 appears to not alter the involvement of the
membrane. Previous studies suggested that state-dependent PIP2-
binding is important for stabilizing different channel conforma-
tions.41 Accordingly, our results suggest that the role of the bound
PIP2 is not to explicitly couple the VSD to the pore via the mem-
brane but to induce the large rearrangements in the CTD related
to pore opening.

B. Agonist ligand-binding decreases the membrane
allosteric role in the inactive β2 adrenergic receptor

The β2 adrenergic receptor (β2AR) is a G-protein coupled
receptor (GPCR) and a common target for asthma medication. It
sustains communication through the cell membrane by recogniz-
ing and binding ligands. The binding of agonist ligands in the
receptor extracellular domain induces structural rearrangements
throughout the protein. The induced state, known as the active state,
allows for intracellular G-protein association, which triggers cellular
downstream responses.6,42,43 As such, understanding the molecular
mechanisms of agonist-imposed allosteric signaling between the two
binding sites may be an essential element to facilitate development
of novel drugs.

Figure 3(a) shows the structural elements of the β2AR with the
bound agonist ligand BI-167107 and G-protein mimetic nanobody
(Nb).44 We applied the information flow analysis to the agonist
bound as well as ligand-free (apo) β2AR in the active/Nb-bound
and inactive/Nb-free states, respectively. To investigate the allosteric
roles of the agonist and membrane, we performed the analysis on
networks including different system components: the protein, the
protein and agonist, as well as the protein, agonist, and membrane.
Source nodes were defined as residues in the orthosteric site, which
are known to interact with agonists, Figs. 3(a) and 3(b).45 The sink
nodes were taken as residues in contact with the G protein in the
active state structure 3SN646 [Fig. 3(a) and Table S1].

The apo inactive β2AR exploits the membrane to transfer
allostery between the ligand and G-protein binding sites, as shown
by an increased signaling efficiency after including the membrane
in the network Fig. 3(b). Specifically, it uses the closest layer of
the lipid membrane, Fig. 3(c). The agonist-bound inactive recep-
tor, on the other hand, demonstrates a significantly decreased

FIG. 4. (a) Average and standard deviation of protein information flow plotted
along the residue sequence of apo (black) and agonist-bound (blue) β2AR in
inactive (upper) and active/Nb (lower) states. (b) Information flow projected onto
apo (left) and agonist-bound (right) inactive structures. The black circle shows a
region (encompassing TM1, TM2, and TM7), which becomes more involved upon
agonist-binding. Averages and standard deviations are obtained by splitting the
simulations into three parts.
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allosteric involvement of the membrane relative to the apo receptor,
Figs. 3(b)–3(d). This is shown by the smaller increase of signaling
efficiency when including the membrane, Figs. 3(b) and 3(d), as well
as a lower amount of information flow through lipids, Fig. 3(c). This
suggests that the bound ligand decouples the allosteric pathways
from the membrane in the inactive state. Conversely, the membrane
increases the allosteric efficiency of the active/Nb-bound receptor,
in both apo and agonist-bound systems [Figs. 3(b)–3(d)]. Thus, an
intracellular binding partner may again allosterically couple β2AR to
the surrounding membrane in its active state.

To understand the allosteric details related to exploiting the
membrane, we plotted the information flow along protein residue
sequence and contrasted the profiles obtained from the apo (black)
and agonist-bound (blue) simulations, Fig. 4(a). The profiles show
a large allosteric involvement of TM3 and TM5-7. These helices
are important for activation and interact with both binding part-
ners.46–49 An interesting feature related to ligand binding emerged,
namely, an increased involvement of TM1, in particular of the
residues I43, V44, I47, and N51, Fig. 4(b). N51 is highly conserved
across all class A GPCRs50 and supports a stabilizing water network

FIG. 5. (a) Structure of open/DOPG-bound KcsA showing important structural features, and sources and sinks. The subunit in front of the channel pore is omitted for
clarity. The yellow arrow shows a cartoon pathway, highlighting the direction between the source and sink residues. (b) State- and DOPG-dependent allosteric efficiency
(blue: protein, yellow: protein + bound DOPG, black: protein + full membrane). Left column: open state, middle: inactivated state, and right: closed state. Upper row: DOPG-
unbound channels, and bottom row: DOPG-bound channels. (c) Average information flow through each protein residue and lipid interactor (information flow >0.012) projected
onto the first trajectory frame. Red signifies larger information flow values. Averages and SEMs are computed across subunits.
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in the receptor’s inactive state.51 Notably, the inactive agonist-bound
receptor also exhibited more information flow at TM3, compared
to the apo inactive receptor. The difference between agonist-bound
and apo information flow profiles is smaller in the active/Nb state
than in the inactive state. Together with the results of Fig. 3(d),
this indicates that an intracellular binding partner overshadows
the ligand-induced redirection of allosteric pathways within the
protein.

C. Binding of DOPG lipid changes the KcsA allosteric
signaling at the open state

KcsA is a bacterial pH-gated and homotetrameric potassium
channel.52 The simplicity and high conservation of structural fea-
tures make the channel a well-suited model for complex eukaryotic
potassium channels.53 Mechanisms related to its gating and lipid
regulation are therefore widely studied.53–56 Two structural com-
ponents are important for conduction of potassium ions in KcsA:
the selectivity filter (SF) and the inner gate, Fig. 5(a). The SF, which
selectively coordinates potassium ions, is located at the extracellular
side of the protein. The sequence of SF residues is highly conserved
across potassium channels.57 The inner gate, on the other hand, is
located on the intracellular side of the protein. It is formed by the
crossing of the second transmembrane helix (TM2) from each sub-
unit.53 A pH drop in the cell causes the inner gate to open, yielding
the KcsA open state channel. Within milliseconds after opening, the
selectivity filter collapses, which hinders ion permeation. This pro-
cess, known as inactivation, is crucial to control electrical signals and
membrane potentials in excitable cells.57 The constriction of the SF,
which is responsible for inactivation, is thus allosterically triggered
by a structural change at the inner gate.56

Lipids are important for KcsA modulation. The membrane
thickness, for example, affects the open state probability of the
E71A mutant.58 In addition to this, experiments indicate that
inactivation is facilitated by the binding of an anionic lipid to
each intersubunit cavity [Fig. 5(a)].55 These results are obtained
by mutating residues at the lipid binding sites. Such mutations
may, however, yield unknown structural effects. In contrast, the
approach suggested here allows for accessing the molecular details
in the wild-type channel, given the general limitations of molecular
modeling.

We investigated the allosteric role of a bound DOPG molecule
and of the lipid membrane in the open, inactivated, and closed states
using the inner gate residues A108, T112, G116, and E120 as sources
and SF residues T75 to G79 as sinks [Fig. 5(a)]. Figure 5(b) shows
the state-dependent allosteric efficiency of each system component:
the protein, the protein and the bound DOPG, and the protein and
the full membrane. The DOPG-unbound open channel appears to
allosterically rely on the membrane slightly less than the DOPG-
unbound inactivated and closed channels [Fig. 5(b)]. The DOPG-
unbound open channel uses lipids located at the intracellular side of
the protein to transmit allosteric signals [Fig. 5(c)]. The inactivated
and closed channels, on the other hand, exploit lipids from the inter-
subunit surface at the upper leaflet all the way down to the lower
leaflet and the inner gate [Fig. 5(c)]. Interestingly, DOPG binding
appears to specifically increase the allosteric role of the lipid mem-
brane in the open state channel such that the bound lipid connects
the upper and lower leaflet lipids [Figs. 5(b) and 5(c)].

FIG. 6. (a) Average and standard deviation of protein information flow plotted along
residue sequence of open (black), inactivated (purple), and closed (green) states
with (right) and without (left) bound DOPG. KcsA structural features are labeled
along sequence: TM1, pore helix (PH), selectivity filter (SF), TM2. (b) Information
flow projected onto the DOPG-unbound protein structures. The circle shows the
region on TM1 and TM2, which is more allosterically involved in the open/DOPG-
unbound channel. The subunit in front of the channel pore is omitted for clarity.
Averages and standard deviations are computed across subunits.

To further investigate KcsA allostery related to the open state,
we compared information flow profiles between different states of
DOPG-unbound and DOPG-bound channels, [Figs. 6(a) and S3].
This revealed differences at the central residues of TM2 helix, and
particularly at the TM1 helix [Figs. 6(a), 6(b), and S3]. The allosteric
importance of TM1 (W26-L40) is increased in the DOPG-unbound
open state channel. L40 is specifically important for the coupling
between inner gate and SF at the open state.59 The increased impor-
tance of this region in the DOPG-unbound state may be a conse-
quence of the decreased allosteric involvement of the membrane. We
hypothesize that the bound DOPG promotes inactivation by cou-
pling the protein to the membrane, thereby altering the allosteric
pathways within the protein.

V. CONCLUSIONS
We presented a framework that extends ordinary residue inter-

action networks to include cofactors such as lipids and ligands. By
solving a linear assignment problem, and thus optimally assign-
ing interactors to nodes in each frame, the problem of cofac-
tor redundancy is avoided. We applied this framework to obtain
networks of three different types of membrane proteins and their
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cofactors. The network analysis revealed interesting features of pro-
tein allostery modulation by lipids and ligands. Importantly, we
showed that the lipid membrane plays an integral role in the state-
dependent allosteric communication of these proteins. The strong
involvement of the membrane in KCNQ1 allostery may be attributed
to the nonconvex structural topology of KCNQ1. The β2AR and
KcsA datasets specifically demonstrated that subtle redirections of
allosteric pathways induced by a modulator may change the mem-
brane involvement. Network analysis including cofactors may thus
serve to reveal intricate allosteric mechanisms of membrane pro-
teins.

SUPPLEMENTARY MATERIAL

The supplementary material includes additional Methods sec-
tion, Figs. S1–S3, and Table S1. The Methods section describes
MD simulation parameters and information flow (current flow)
calculations.
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