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a b s t r a c t 

We show, through the use of the Landauer-Büttiker (LB) formalism and a tight-binding (TB) model, that 

the transport gap of twinned graphene can be tuned through the application of a uniaxial strain in the 

direction normal to the twin band. Remarkably, we find that the transport gap E gap bears a square-root 

dependence on the control parameter εx − εc , where εx is the applied uniaxial strain and εc ∼ 19% is 

a critical strain. We interpret this dependence as evidence of criticality underlying a continuous phase 

transition, with εx − εc playing the role of control parameter and the transport gap E gap playing the 

role of order parameter. For εx < εc , the transport gap is non-zero and the material is semiconductor, 

whereas for εx > εc the transport gap closes to zero and the material becomes conductor, which evinces 

a semiconductor-to-conductor phase transition. The computed critical exponent of 1 / 2 places the transi- 

tion in the meanfield universality class, which enables far-reaching analogies with other systems in the 

same class. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Graphene has been widely investigated as a basis for post- 

ilicon generation nanoelectronics, owing to its outstanding me- 

hanical [1] and electronic properties [2] . Material engineering 

echniques such as coupling graphene layers to a hexagonal boron 

itride substrate [3,4] , introducing doping elements [5] , or cut- 

ing graphene layers into narrow nanoribbons [6] , can induce from 

mall to medium transport gaps (0.1–0.6 eV) required for nano- 

lectronic applications. In addition, techniques that combine differ- 

nt graphene domains with varying electronic structures can open 

igher transport gaps [7] . For instance, asymmetric grain bound- 

ries and twin structures can induce transport gaps as large as 

.54 eV [8] and 1.15 eV [9] , respectively. 

Electronic component manufacturing may require other mate- 

ial properties, depending on the application. Piezoelectricity, the 

est-known form of electromechanical coupling, is commonly ob- 

erved in non-centrosymmetric crystals, and graphene does not 

aturally exhibit this property. However, breaking the symmetry at 

urfaces and interfaces within the graphene lattice can cause other 
∗ Corresponding author. 
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orms of electromechanical coupling to appear, i.e., surface piezo- 

lectricity and flexoelectricity [10] . This idea has theoretically al- 

owed enabling electromechanical properties in graphene through 

arious techniques, such as functionalization and doping [11,12] , 

nduced curvature [13,14] , and by introducing triangular pores in 

raphene layers [10] and nanoribbons [15] . Specifically, a triangular 

ore causes a non-uniform strain gradient across a graphene layer 

nder uniaxial strain, which modifies the ionic positions and leads 

o an asymmetric redistribution of the electron density, which in- 

uces a variation in flexoelectric polarization [16] . 

Symmetry-breaking configurations under strain can also re- 

ult in transport gaps that are tunable in graphene sheets [17,18] , 

anoribbons [19] , and grain boundaries [20,21] , since the applica- 

ion of strain modifies the local band structure of the graphene 

attice [22] . Controlling electronic properties by strain would en- 

ble the use of graphene to fabricate flexible and sensitive pres- 

ure sensors [23] , transformers, transducers and energy harvesters 

24–26] , and other applications. In these applications, the ability of 

raphene to sustain large strains up to 25% is of the essence [1] . 

Twins are known low-energy structures in graphene 

27,28] that combine lattice variants, or phases, in contiguous 

egions separated by interfaces, or twin boundaries. The variants 

re generated by lattice-preserving shears and rotations that are 
nc. This is an open access article under the CC BY-NC-ND license 
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Fig. 1. Fully-relaxed atomic configuration of the (15,8) twin. Also shown are the twin band and outer matrix regions abutting on the twin boundary and the computational 

sub-cells (blue and red) used for the band structure analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 2. Variation of the misorientation angle with applied uniaxial strain in (15,8), 

(19,8), (19,12) and (19,16) twins. 
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oherent across the interfaces and satisfy several specific twin- 

ing relations [29] . Graphene twins have been computationally 

tudied by introducing twinning boundaries in the crystal ab initio 

30,31] . Alternatively, twinned configurations can be generated 

y introducing, and subsequently relaxing, arrays of dislocations 

n the graphene lattice [32] , proving that twinning works as 

n accommodation mechanism in graphene and that it results 

n stable low-energy configurations. These studies have shown 

hat graphene twins can induce transport gaps of comparable 

agnitude to those induced by grain boundaries. 

In this work, we investigate the effects of uniaxial strain on the 

lectronic properties of twin structures in graphene. We start by 

omputing the equilibrium configurations employing the molecu- 

ar dynamics software LAMMPS [33] and using the AIREBO inter- 

tomic potential [34] , and subsequently we evaluate their charge- 

arrier transmission properties by means of the Landauer-Büttiker 

LB) formalism [35–37] in combination with a tight-binding (TB) 

odel [38] . By way of verification, we additionally calculate se- 

ected band structures of the strained twins using the DFT code 
2 
ASP [39,40] . Finally, we calculate the evolution of the polarization 

nder strain using the DFT code SIESTA [41] . These computational 

ethods have been extensively tested and used in previous publi- 

ations [9,32,42,43] . 

. Methods 

.1. Generation of twinning configurations 

Following the methodology described in [32] , we compute the 

winning configurations in two steps. In the first step, we use a 

armonic lattice model [43] , with force constants derived from the 

econd version of the Long-Range Carbon-Order Potential (LCBOPII) 

44] , in order to insert periodic discrete dislocations dipoles in 

 pristine graphene lattice. Specifically, the dislocation dipoles 

re inserted through lattice-invariant slips [45,46] . In the second 

tep, the initial harmonic configurations obtained in the first step 

re fully relaxed using the LAMMPS code [33] together with the 

IREBO potential [34] . The simulations combine canonical ensem- 

le molecular dynamics (NVT MD) at low temperature ( T = 1 . 0 K)

ith a subsequent conjugate-gradient (CG) energy minimization 

imed at obtaining fully-relaxed configurations. 

We also use the LAMMPS software and the AIREBO interatomic 

otential to apply a uniform uniaxial strain. The twinning config- 

rations are progressively deformed up to a final total strain of 

x max = 0 . 25 , by the application of successive strain increments of 

x step = 0 . 01 . Each step entails three different calculations: a) uni- 

orm stretching of the length of the computational cell along the 

 -axis to length L x = L 0 (1 + εx ) , where L 0 is the length of the un-

eformed computational cell; b) CG relaxation in the y -dimension 

f the cell, so as to account for the Poisson effect; c) NVT MD 

t low temperature. Steps (b) and (c) are repeated as needed to 

nsure that the deformed twinning structures are in equilibrium. 

ut-of-plane displacements are constrained and periodic boundary 

onditions are applied throughout all calculations. 

.2. Transport gap calculations 

To evaluate the transport gap across the twinning configura- 

ions we follow the methodology set forth in [9,42] , which is based 

n the Landauer-Büttiker (LB) formalism [35–37] in combination 

ith a transferable tight-binding (TB) model for carbon [38] . The 
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Fig. 3. Local areal strain ∼ εx + εy distribution for the (15,8) twin at a) εx = 0 . 17 ; b) εx = 0 . 19 ; and c) εx = 0 . 23 . 
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o  
B formalism provides a framework for the calculation of coherent 

lectronic transport across a device, which is comprised of three 

arts. The central part consists of the twinned structures whose 

ransmission properties are to be evaluated. At both ends of this 

entral part, two regions of pristine graphene are attached that are 

emi-infinite in the x -direction. Further details of this framework 

an be found in Supplementary Material 2. 

For each configuration, we calculate the transmission coefficient 

ith respect to electronic energy. From this curve, we obtain the 

ransport gap of that configuration as the energy range in which 

he transmission is ostensibly zero. All calculations are carried out 

ver a grid of 144 k -points (with η = 0 . 01 ), which affords con-

erged results. We have used the tight-binding parameters for car- 

on reported in [38] . 

.3. Band structure calculations 

The VASP [39,40] code, which employs a plane wave basis set, 

s used for the DFT calculations of the band structures. Specifically, 

 projector augmented wave potential with the PBE exchange- 

orrelation functional is used. The partial occupancies are set by 

ecourse to a Gaussian smearing of 0.05eV. The charge density is 

omputed over a 30 × 30 Gamma centered grid. In calculations, 

e use a range of methods of varying fidelities, with the lower- 

delity models applied to the larger computational cells and the 

igh-fidelity models used mainly for validation over small subsys- 

ems. 

.4. Polarization calculations 

The polarization calculations are carried out using the DFT soft- 

are SIESTA [41] , which computes the total polarization as the 

um of the ionic contribution, defined as the sum of the atomic 

ositions within the unit cell multiplied by their ionic charges, and 

he electronic contribution, which is calculated as a Berry phase of 

he electronic Bloch wavefunctions [47] . The Berry phase approach 

an only be applied at zero temperature and electric field. 

These calculations employed the PBE exchangecorrelation func- 

ional within the generalized gradient approximation (GGA) [48] , 

he double- ξ plus polarization basis set [49] , smooth norm- 

onserving pseudopotentials [50] , a grid of 80 k -points in the re- 

iprocal space, and a mesh cutoff of 400 Ry. 

Due to the multi-valuedness of the polarization, we chose the 

alues in the interval {−P q,i , P q,i } , where P q,i = 

1 
A 

eR i is the polariza-

ion quantum along the i -direction, with A the area of the compu- 
3 
ational cell, e the elementary charge and R i the length of the i th

attice vector. 

. Results and discussion 

We consider twinned microstructures such as described in [32] , 

hich are the result of inserting periodic arrays of parallel dislo- 

ation dipoles into single graphene layers (see Section 2.1 ). As an 

xample, in Fig. 1 we show the dislocation structures attendant to 

 (15,8) twin, in the nomenclature of [32] . The twinned microstruc- 

ure consists of three nearly-perfect lattices, separated by linear ar- 

ays of 7-5 ring defects. The region between the dislocation-dipole 

rray, or twin band, is rotated by an angle of 16.5 ◦ with respect 

o the outer regions, or matrix. This rotation takes place sponta- 

eously as a result of energy minimization following the introduc- 

ion of the dislocation dipoles. The misorientation angle and the 

attice-preserving shear strain of the twin band satisfy the classical 

winning relations that identify the microstructure as a true twin 

29,32] . 

Twinning structures in graphene can be defined by means of 

 pair (n, m ) , where n is the number of zig-zag bonds undergo-

ng slip in a dipole, a measure of the twinned region width, and 

 is the number of armchair bonds between dipoles, a measure of 

ipole separation, cf. Fig. 1 . In the present work, we focus on twin-

ing structures with n = 15 , since they have asymptotically stable 

isorientation angles and energies [32] , and, in particular, on the 

15,8) configuration, which has the highest transport gap among 

his type of twins [9] . The attendant atomic configurations are vi- 

ualized in Supplementary Material 1. In addition, we apply a uni- 

orm uniaxial strain εx to these configurations along the x -axis nor- 

al to the twin band using molecular dynamics and the AIREBO 

34] potential implemented in LAMMPS [33] and the methodology 

ummarized in Section 2.1 . The strain is applied progressively up 

o a maximum of 0.25, or ∼ 25% , the experimental failure strain of 

raphene [1] . 

Figure 2 shows the variation of misorientation angle with ap- 

lied uniaxial strain. As may be observed, the misorientation angle 

ecreases smoothly down to a minimum value at approximately 

x = 0 . 19 , beyond which strain the angle increases slightly. The 

volution of the areal strain ∼ εx + εy is shown in Fig. 3 using the 

VITO software [51] . For applied strains εx < 0 . 19 , the twin band

xhibits the lowest areal strain and the outside matrix is compara- 

ively more deformed, cf. Fig. 3 a. In addition, the cores of the inter- 

acial dislocations appear as points of strain singularity. This strain 

rdering flips at an applied strain εx = 0 . 19 , Fig. 3 b, and again for
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Fig. 4. a) Dependence of the transport gap on the uniaxial strain for the dislocation 

structures (15,8), (19,8), (19,12), (19,16). b) Log-log plot showing the critical expo- 

nent of 1 / 2 . 

a  

o

s

t

r

L

t

[

D

t

b

c

i  

A

i

t

a  

Fig. 5. Electronic band structure of a representative sub-lattice of the (15,8) twin 

band at zero applied strain subject to periodic boundary conditions. Valence (be- 

low) and conduction (above) bands are plotted on the first Brillouin zone. 
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pplied strains εx > 0 . 2 , Fig. 3 c, which is indicative of exchange

f stability and conformational transitions occurring in the twin 

tructure at critical applied strains along the deformation path. 

Next, we turn attention to the electronic transport gap of the 

winned structure and its dependence on the applied strain. As al- 

eady mentioned, we calculate transport gaps by recourse to the 

andauer-Büttiker (LB) formalism [35–37] in combination with a 

ight-binding (TB) model [38] , as also employed in previous work 

9,32,42,43] . This approach is computationally more efficient than 

FT at comparable accuracy [9,42] . Specifically, we evaluate elec- 

ronic transmission in the direction perpendicular to the twin 

oundaries, which is also the straining direction. Details of the 

omputational methodology were collected in Section 2.2 . 

The variation of the transport gap with applied uniaxial strain 

s shown in Fig. 4 (a) for the (15,8), (19,8), (19,12) and (19,16) twins.

s previously noted [9] , the transport gap decreases with increas- 

ng dislocation spacing m . In addition, we find that the applica- 

ion of strain causes the transport gap to decrease to nearly zero 

t a critical applied strain of εc = 0 . 19 , with the gap remaining
4 
stensibly constant at larger strains. Remarkably, the dependence 

f the transport gap with the control parameter εx − εc is well- 

pproximated by a power-law of exponent 1 / 2 ( Fig. 4 (b)), in a

anner strongly reminiscent of critical phenomena. We return to 

his possible connection in Section 4 . 

We additionally evaluate the band structure using VASP code, 

s described in Section 2.3 . For the (15,8) configuration, we sepa- 

ately calculate the momentum-energy relation of charge carriers 

or the twin band and for the exterior matrix, since, by the na- 

ure of twinning, the lattice is nearly perfect in those regions and 

eriodic boundary conditions can be applied to sub-lattices repre- 

entative of those regions, cf. Fig. 1 . The valence and conduction 

ands of the representative twinned region at zero applied strain 

re shown in Fig. 5 by way of example. As expected, similarly to 

ristine graphene the Dirac cones are connected and no transport 

ap opens up. 

Across the twin boundaries and for elastic transmission, both 

nergy E and momentum k y parallel to the interface must be con- 

inuous across the interface [8] . For the (15,8) twin at zero ap- 

lied strain, Fig. 6 a shows a k y -sections through the minima of the 

winned and matrix regions band structures. As can be seen from 

he figure, the Dirac cones are significantly shifted from each other, 

esulting in a computed transport gap of value E gap = 1 . 11 eV for

he entire system. We recall that, near the Fermi level, the charge 

arriers in graphene satisfy the relation E(k ) = h̄ νF | k | , where νF =
0 6 m/s is the Fermi velocity. Therefore, the transport gap can be 

pproximated as E gap = h̄ νF | k t − k o | [20] , where k t and k o are the

 -momenta of the Dirac points of the twinned and outer matrix 

egions, respectively. For the unstrained (15,8) twin, this relation 

ives E gap = 1 . 31 eV, which is slightly higher than, but a good ap-

roximation to, the exact value E gap = 1 . 11 eV computed directly 

or the entire system. 

As already noted, under straining the twin band and outer ma- 

rix undergo divergent deformation paths punctuated by confor- 

ational transitions at well-defined applied strains. This complex 

eformation redistribution in turn results in changes in the band 

tructure. Figure 6 b shows k y -sections through the minima of the 

win band and outer matrix band structures for the (15,8)-twin 

t applied strain 0.18. This strain causes the Dirac point k t to ap- 
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Fig. 6. k y -sections through the minimum values of the electronic band structures of 

the twin band (blue) and outer matrix (red) regions of the (15,8) twin at a) εx = 0 , 

with k x = −0 . 24 for the twin band and k x = 0 for the outer matrix, and b) εx = 

0 . 18 , with k x = −0 . 32 for the twin band and k x = −0 . 15 for the outer matrix. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 7. Dependence of the electric polarization on the applied strain for the (15,8)- 

twin. 
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roach k o , which remains practically invariant, in turn causing the 

ransport gap to decrease to the value E gap = 0 . 29 eV, in keeping

ith the LT/TB calculations reported above. 

Finally, we investigate whether strained twinned graphene ex- 

ibits piezoelectricity, a fundamental property pertaining to how 

ystems respond to an applied electric field. Following [52] , we 

erform polarization calculations using the DFT software SIESTA, 

ith the setup described in Section 2.4 . We note that the dipole 

oments in the y - and z-axis are perfectly balanced and, there- 

ore, the polarization vector has only a x -component. 

Figure 7 displays the dependence of the polarization on the ap- 

lied uniaxial strain for the (15,8)-twin. Firstly, we observe that 

he twinned lattice exhibits a spontaneous polarization/cell area of 

 . 1895 × 10 −10 C/m at zero applied strain. This spontaneous polar- 

zation results from the breaking of centrosymmetry induced by 
5

winning and the attendant charge redistribution over the lattice. 

he polarization/cell area slightly increases with increasing applied 

train, ostensibly saturating at 0 . 1950 × 10 −10 C/m at the critical 

pplied strain εc = 0 . 19 . We recall that εc is the strain at which

he misorientation angle and transport gap attain their minimum 

alues. 

. Conclusions 

In conclusion, we remark that the transport gap of twinned 

raphene can be tuned through the application of a uniaxial strain 

n the direction normal to the twin band. MD calculations show 

hat the variation of transport gap is caused by conformational 

hanges and transitions induced by the applied strain. Such con- 

ormational changes are evinced by the variation of the misori- 

ntation of the twin band and the strain field in the twin band 

nd the outer matrix. These conformational changes also induce a 

odest variation in polarization with applied strain. A relationship 

etween transport gap and polarization has been observed in 2D 

aterials [53] . However, it would appear that this relationship is 

ot cause-and-effect but results from correlated variations in po- 

arization and transport gap jointly induced by the atomic recon- 

gurations. 

Perhaps the most remarkable feature of the tunability of 

winned graphene is the evidence of critical behavior at the 

ritical applied strain εc = 0 . 19 . This critical behavior is evident 

n the square-root dependence of the transport gap on εx − εc , 

ig. 4 . This dependence is strongly reminiscent of a continuous 

hase transition, with εx − εc playing the role of control param- 

ter and the transport gap E gap playing the role of order param- 

ter. Specifically, for εx < εc , the transport gap is non-zero and 

he material is semiconductor, whereas for εx > εc the transport 

ap closes and the material becomes conductor. The square-root 

ependence of the transport gap on εx − εc may thus be inter- 

reted as evidence of criticality underlying a semiconductor-to- 

onductor phase transition. The dependence of the polarization on 

he control parameter εx − εc also shows signs of critical behav- 

or that is well-approximated by an exponent δ = 3 , Fig. 7 . We

ecall that the critical exponents β = 1 / 2 and δ = 3 are predicted

y Landau, or meanfield, theory, assuming a critical dimension of 

. This interpretation in turn places strained twinned graphene in 

he meanfield universality class and enables far-reaching analogies 

ith other systems in the same class, especially systems where 

lastic distortion mediates the interaction between local states 

54] . 
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