
Programa de doctorado “Matemáticas”

PhD Dissertation

NEW ADVANCES IN DATA SCIENCE PROBLEMS

THROUGH HYPERPLANES LOCATION

Author

Alberto Japón Sáez

Supervisors

Prof. Dr. Justo Puerto Albandoz

Prof. Dr. Vı́ctor Blanco Izquierdo

March 1, 2022

Resumen

El trabajo de esta tesis se centra en desarrollar nuevas metodoloǵıas para abordar

problemas clásicos de Ciencia de Datos desde el punto de vista de la Teoŕıa de la

Localización. En particular, nos centramos en problemas de localización de hiper-

planos que obtenemos modelando y resolviendo problemas de programación lineal,

y no lineal, entera mixta.

El Caṕıtulo 1 presenta las técnicas desarrolladas en la literatura desde las que

iniciamos este trabajo, que comprenden Máquinas de Vector Soporte, Árboles de

Clasificación y Teoŕıa de Ajuste de Hiperplanos.

El Caṕıtulo 2, basado en el art́ıculo Blanco et al. (2020b), se centra en el estudio

de localizar un conjunto de hiperplanos para resolver un problema de clasificación

multiclase, extendiendo las Máquinas de Vector Soporte al escenario multiclase.

Presentamos cuatro formulaciones resultado de combinar dos formas de medir los

errores de clasificación y las normas utilizadas para medir las distancias. Reportamos

los resultados de experimentos en conjuntos de datos reales y sintéticos donde se

muestra la alta capacidad predictiva de nuestros modelos frente a otros existentes

en la literatura. Además, demostramos también que el truco del kernel es aplicable

en nuestro método.

En el Caṕıtulo 3, inspirado en el art́ıculo Blanco et al. (2021a), también tratamos

el problema de localizar un conjunto de hiperplanos, sin embargo, en este caso lo

hacemos bajo la premisa de minimizar una función objetivo basada en el ajuste de

distancias del conjunto de puntos a los hiperplanos. El problema lo tratamos en un

contexto general donde las distancias de los puntos a los hiperplanos se contabilizan

mediante funciones de tipo mediana ordenada (Ordered Weighted Averaging-OWA).

Para la resolución del problema reportamos una formulación compacta y otra basada

en conjuntos de las observaciones, para la cual desarrollamos un método de gen-

eración de columnas. Reportamos numerosos experimentos que permiten evaluar

las dos metodoloǵıas presentadas. Discutimos resultados teóricos sobre la escala-

bilidad de los problemas y reportamos también algunos análisis geométricos de las

soluciones.

II

III

El Caṕıtulo 4, que sigue el trabajo planteado en Blanco et al. (2020a), trata el

problema de encontrar un hiperplano separador de margen máximo con la partic-

ularidad de que consideramos que puede haber cierto ruido en las etiquetas de la

muestra de entrenamiento. Desarrollamos tres metodoloǵıas, dos de ellas basadas en

técnicas de cluster, que incorporan en el entrenamiento la capacidad de reetiquetar

observaciones, es decir, de considerar observaciones como pertenecientes a su clase

contraria. En los resultados computacionales mostramos como nuestros modelos

obtienen mayores tasas de acierto en la clasificación cuando hay ruido aleatorio en

las etiquetas de las muestras de entrenamiento.

Los caṕıtulos 5 y 6, basados en los trabajos presentados en Blanco et al. (2021c)

y Blanco et al. (2021b) respectivamente, se centran en el estudio de Árboles de Clasi-

ficación en la que las ramas se definen mediante hiperplanos basados en Máquinas de

Véctor Soporte. Las metodolóıas desarrolladas en estos caṕıtulos heredan propiedades

de los métodos presentados en el Caṕıtulo 4, que forman un pilar esencial en los

mismos. Por un lado, en el Caṕıtulo 5 se centra en el estudio de problemas de

clasificación binaria donde además se contempla la posibilidad de existencia de ruido

aleatorio en las etiquetas de las observaciones en las muestras de entrenamiento. Por

otro lado, el Caṕıtulo 6 se centra en el estudio de problemas de clasificación multi-

clase. En ambos caṕıtulos se presentan experimentos computacionales que muestran

mejoras en las predicciones sobre bases de datos reales frente a otros métodos de la

literatura.

Finalmente, en el Caṕıtulo 7 se muestran las conclusiones de la tesis.

Abstract

This thesis dissertation focus on developing new approaches for different Data Sci-

ence problems from a Location Theory perspective. In particular, we concentrate

on locating hyperplanes by means of solving Mixed Integer Linear and Non Linear

Problems.

Chapter 1 introduces the baseline techniques involved in this work, which en-

compass Support Vector Machines, Decision Trees and Fitting Hyperplanes Theory.

In Chapter 2, which is based in Blanco et al. (2020b), we study the problem of

locating a set of hyperplanes for multiclass classification problems, extending the

binary Support Vector Machines paradigm. We present four Mathematical Pro-

gramming formulations which allow us to vary the error measures involved in the

problems as well as the norms used to measure distances. We report an extensive

battery of computational experiment over real and synthetic datasets which reveal

the powerfulness of our approach. Moreover, we prove that the kernel trick can be

applicable in our method.

Chapter 3, which is inspired in Blanco et al. (2021a), also focus on locating

a set of hyperplanes, in this case, aiming to minimize an objective function of the

closest distances from a set of points. The problem is treated in a general framework

in which norm-based distances between points and hyperplanes are aggregated by

means of ordered median functions. We present a compact formulation and also a

set partitioning one. A column generation procedure is developed in order to solve

the set partitioning problem. We report the results of an extensive computational

experience, as well as theoretical results over the scalability issues and geometrical

analysis of the optimal solutions.

Chapter 4, which follows the work presented in Blanco et al. (2020a), addresses

the problem of finding a separating hyperplane for binary classification problems

in which label noise is considered to occur over the training sample. We derive

three methodologies, two of them based on clustering techniques, which incorporate

the ability of relabeling observations, i.e., treating them as if they belong to their

contrary class, during the training process. We report computational experiments

that show how our methodologies obtain higher accuracies when training samples

VI

VII

contain label noise.

Chapters 5 and 6, which are based in the works Blanco et al. (2021c) and Blanco

et al. (2021b), respectively, consider the problem of locating a set of hyperplanes,

following the Support Vector Machines classification principles, in the context of

Classification Trees. The methodologies developed in both chapters inherit proper-

ties from Chapter 4, which play an important role in the problems formulations. On

the one hand, Chapter 5 focuses on binary classification problems where label noise

can occur in training samples. On the other hand, Chapter 6 focus on solving the

multiclass classification problem. Both chapters present the results of our compu-

tational experiments which show how the methodologies derived outperform other

Classification Trees methodologies.

Finally Chapter 7 presents the conclusions of this thesis.

Contents

Resumen II

Abstract VI

1 Introduction 2

1.1 Support Vector Machines . 6

1.1.1 Original problem . 6

1.1.2 Multiclass approaches . 11

1.2 Classification Trees . 16

1.2.1 CART . 17

1.2.2 Optimal Classification Trees 18

1.3 Fitting Hyperplanes Theory . 22

1.4 Contributions of this thesis . 26

2 Multiclass Support Vector Machines 30

2.1 Introduction . 32

2.2 Preliminaries . 35

2.2.1 Separation between classes 37

2.2.2 Misclassification errors . 39

2.3 Mathematical Programming formulations 40

2.3.1 Building the classification rule 47

2.3.2 Non-Linear classifiers . 48

2.4 Math-heuristic approach . 59

2.4.1 Reducing the h-variables . 60

2.4.2 Reducing the z-variables . 62

2.5 Experiments . 62

2.5.1 Real datasets . 63

2.5.2 Synthetic experiments . 64

2.6 Conclusions . 66

X

Contents XI

3 Multisource hyperplanes location problem to fitting set of points 68

3.1 Introduction . 70

3.2 Multisource location of hyperplanes 73

3.3 A compact formulation for (MOMFHP0) 76

3.3.1 Vertical Distance Residuals 79

3.3.2 Norm-based Residuals . 81

3.4 Set partitioning formulation . 82

3.4.1 Preprocessing . 85

3.4.2 Median and center optimal hyperplanes 85

3.4.3 Pricing problem . 87

3.4.4 Branching . 89

3.5 Computational results . 92

3.5.1 Eilon et al. (1971) dataset . 92

3.5.2 Synthetic Instances . 93

3.6 Scalability: bounding the error in aggregation procedures 96

3.7 Conclusions . 100

4 SVM-based classification with label noise 102

4.1 Introduction . 104

4.2 Mathematical Programming formulations 107

4.2.1 Preliminaries . 107

4.2.2 Model 1: Re-label SVM . 109

4.2.3 Cluster-SVM models . 111

4.3 Experiments . 114

4.4 Conclusions . 119

5 Robust Optimal Classification Trees under Noisy Labels 122

5.1 Introduction . 124

5.2 Preliminaries . 127

5.3 Optimal Classification Trees with SVM splits and Relabeling (OCTSVM)130

5.4 Experiments . 137

5.5 Conclusions . 138

6 Multiclass Optimal Classification Trees with SVM-splits 144

6.1 Introduction . 146

6.2 Multiclass OCT with SVM splits . 148

6.3 Mathematical Programming formulation for MOCTSVM 149

6.3.1 Strengthening the model . 158

6.4 Experiments . 159

6.5 Conclusions . 162

XII Contents

7 Conclusions and future research lines 164

References 170

Chapter 1

Introduction

2

4 Chapter 1. Introduction

Historically, Mathematics has been considered an abstract field which has no,

or at best little, relation to the sensitive world for a majority of society. This is

no longer true. The collective conscience about the generation and use of data

has implied a change in the perception of mathematical knowledge amongst people.

Nowadays, words like algorithms, Machine Learning, Artificial Inteligence or Big

Data are not unlikely to appear in a casual conversation. At the same time, proper

data management has proven to be an essential requirement for decision making, and

according to this, institutions spend a large amount of resources on such a purpose.

Statistics and Operations Research provide an extensive pool of techniques so as

to deal with data. When facing a data problem in real life, two scenarios are mainly

presented: On the one hand there are cases where, guaranteeing to provide a good

solution, computational time is desired to be as small as possible. On the other

hand, there are problems in which the quality of the solution is the most important

part, therefore the optimal solution must be found despite the fact that it can be

computationally expensive. This optimal solution is usually obtained by means of

solving an optimization problem. In this thesis we focus on deriving and solving

optimization problems in which a set of hyperplanes are located in order to solve

some Data Science problems.

Although Data Science does not have a concrete definition, authors usually rely

on the same ideas. Before Data Science was even named, Tukey stated (Tukey,

1962):

By and large, the great innovations in statistics have not had correspond-

ingly great effects upon data analysis. The extensive calculation of ”sum

of squares” is the outstanding exception. [...] Is it not time to seek out

novelty in data analysis?

Tukey pointed out the need of a new way of analysing data without taking into

account as much statistical constraints as usually done, encouraging scientists to

draw hypotheses directly from data and not necessarily to reduce the problem to

finding a statistical model fitting the data. Data Science is later on introduced, in

the late 1990s, as a discipline encompassing the path from data colection to decision

making passing through data modeling, combining Statistics and Computer Science

with the main objective of helping in the decision making process.

Data science is currently experiencing an outstanding time. Technology is allow-

ing computers to go further every day. Decision making is becoming a data driven

procces throughout industries and organizations around the whole world. Data itself

is often a valuable asset ahead of other tangible assets. Accordingly, Data Science

has attracted the interest of people and a lot of new techniques are constantly being

developed.

5

Classification and regression problems represent some of the most challenging

problems within Data Science. In classification problems we consider given a train-

ing sample in the form X = {(x1, y1), . . . , (xn, yn)} ⊆ Rp × {1, . . . , k}, where a set

of p features has been measured for a set of n individuals (x1, . . . , xn), as well as a

label (y1, . . . , yn) identified with an element of a finite set of k classes. The goal of

supervised classification is to derive a decision rule DX : Rp → {1, . . . , k} in order

to accurately predict the labels of the forthcoming unobserved data. We call it a

multiclass classification problem when the number of classes is greater than two,

and we call it a binary classification problem when only two classes are involved.

When facing a binary classification problem, the notation on the labels set {1, 2} is

often replace by {−1,+1}, and hence the classes are refered to as the negative and

the positive ones. On its continuous counterpart, in regression problems the label is

replaced by a continuous target variable. Therefore, training samples are given in

the form X = {(x1, y1), . . . , (xn, yn)} ⊆ Rp×R, where the decision rule DX : Rp → R
returns a real number as a prediction. Many different classification and regression

techniques can be found in the literature, as for instance, Logistic Regression and

Linear Discriminant Analysis (Friedman (2017)), Classification and Regression Trees

(Breiman et al. (2017)), Support Vector Machines (Cortes and Vapnik (1995)) and

Support Vector Regression (Drucker et al. (1997)), k-nearest neighbor (Cover and

Hart (1967)), Random Forest (Breiman (2001)) or Deep Learning methods (Good-

fellow et al. (2016)). In addition to supervised problems, there are Data Science

problems which lie in the perspective of an unsupervised paradigm, i.e., problems

where no target variables are presented. Cluster problems are the most famous ones.

The goal on these problems is to create a finite number of groups which present,

in a certain sense, homogeonity within the elements of the groups and at the same

time heterogenity when elements from different groups are compared. In such a con-

text, the k-means algorithm or hierarchical clusters are the most popular baseline

techniques, nevertheless, more complex methods have been studied in the literature

as for instance the ordered p-median problem (Boland et al. (2006); Kalcsics et al.

(2002); Labbé et al. (2017)).

Throughout the chapters of this thesis the focus is set on developing new strate-

gies for classification and regression problems. However, cluster methodologies are

not left out and they are present in most of the chapters. The main elements from

where we start this work involve Support Vector Machines, Decision Trees and Fit-

ting Hyperplanes Theory. The following sections of this introduction are devoted to

introduce these elements as well as to detail the contributions of this dissertation.

6 Chapter 1. Introduction

1.1 Support Vector Machines

1.1.1 Original problem

Support Vector Machines (SVM), introduced by Cortes and Vapnik (1995), is a

technique originally proposed to approach binary classification problems by means of

solving an optimization problem. Given a training sample {(x1, y1), . . . , (xn, yn)} ⊆
Rp × {−1,+1}, the goal of SVM is to obtain a hyperplane separating the data (x ∈
Rp) into their two different classes (y ∈ {−1,+1}). Among all possible hyperplanes

that can obtain such a separation between the classes, SVM looks for the one with

maximum margin (maximum distance from classes to the separating hyperplane)

while minimizing the misclassification errors. Let us denote by H a hyperplane in

Rp in the form H = {z ∈ Rp : ω′z + ω0 = 0} for some ω ∈ Rp and ω0 ∈ R (the

vector v′ is the result of the transpose operator applied to the vector v ∈ Rp).
This hyperplane will induce a subdivision of the data space Rp into three regions:

the +1 (positive) half-space H+ = {z : ω′z + ω0 > 1}, the −1 (negative) half-

space H− = {z : ω′z + ω0 < −1} and the strip S = {z : −1 ≤ ω′z + ω0 ≤ 1}. In

the SVM model, positive-class observations (y = +1) will be forced to lie on the

positive half-space, and the same constraint will be imposed for the negative-class

(y = −1) observations on the negative half-space. Moreover, observations will also

be penalized if they lie inside the strip. When these constraints are violated for an

observation, a classification error is accounted for in the optimization problem. The

separation (margin) between classes is computed as the width of the strip S. The

points defining the width of the strip, which are known as the support vectors, verify

|ω′xi+ω0| = 1. Therefore, recalling that given a point z ∈ Rp, its Euclidean distance

to the hyperplane H is
|ω′z + ω0|
‖ω‖2

, we obtain that the width of the strip is given by

2

‖ω‖2
. As mentioned before, the SVM separating hyperplane will be obtained from

an equilibrium of maximizing the separation between classes and minimizing these

classification errors. Denoting by di ∈ R+ the classification error of observation i,

and by c the penalty for these errors, the SVM can be formulated as the following

Non Linear Problem (NLP):

min
1

2
‖ω‖22 + c

n∑
i=1

di (SVM)

s.t. yi(ω
′xi + ω0) ≥ 1− di, ∀i = 1, . . . , n,

di ≥ 0, ∀i = 1, . . . , n,

ω ∈ Rp, ω0 ∈ R.

1.1. Support Vector Machines 7

In agreement with this, the decision rule for out-of-sample observations, DX , arises

naturally according to the region in which an observation is located:

DX (z) =

{
−1 if ω′z + ω0 < 0,

1 if ω′z + ω0 > 0.

We see in Figure 4.1 a graphical example of the elements involved in a SVM

problem. Classes are being represented by the blue and green colors. The black line

is the separating hyperplane, and the dashed parallels are the boundary of the strip.

The two blue points and the two green points which lie on these lines are the support

vectors of this solution. Moreover, the red lines are being used to remark the two

kind of errors that can be accounted for in the problem. On the one hand, the small

red line is representing a penalization of a blue observation because, despite the fact

that it is being well classified, it lies inside the margin, which is desired to be an

isolated area. On the other hand, the big red line is representing a penalization of a

blue observation which is being wrong classified, since it lies in the side of the green

observations.

Figure 1.1: SVM example

SVM is one of the most famous classification tools. Nevertheless, this is not

only due to its original (linear) formulation, but also because of the so called kernel

trick. When facing a problem which is not linearly separable, i.e., it is imposible

to obtain a hyperplane separating the classes with no classification errors, or if the

amount of classification errors obtained when using a separating hyperplane is too

big, SVM provides a very useful (kernel) trick in order to deal with these situations.

This trick relies on the idea of proyecting data onto a higher dimensional space

in which data can be linearly separable, or where at least misclassification errors

are not as big as in the original space. This higher dimensional space is called

the feature space. In Figure 1.2 we see an example of some points that can not

8 Chapter 1. Introduction

be linearly separated in their original data space (left), meanwhile a hyperplane is

separating them in the feature space (right). The advantages of this kernel trick

Figure 1.2: Original space (left) and feature space with a hyperplane (right)

are that, for a transformation ϕ : X → F from the original space X to the feature

space F , there is no need of knowing the exact transformation ϕ, it is enough with

the knowledge of the form of the inner products on the feature space. Moreover,

the computational cost of solving the problem in F is similar to the cost of solving

the original problem. These statements can be justified by formulating the dual

(Lagrangean) of the problem. In order to obtain this dual problem, we must start

from its primal, which can be written as follows,

min
ω′ω

2
+ c

n∑
i=1

di (F − SVM)

s.t. yi(ω
′ϕ(xi) + ω0) ≥ 1− di, ∀i = 1, . . . , n,

di ≥ 0, ∀i = 1, . . . , n,

ω ∈ F , ω0 ∈ R,

and then to apply the Karush-Kuhn-Tucker (KKT) conditions. Therefore, if we

consider the following set of dual variables α = (α1, . . . , αn) ≥ 0, λ = (λ1, . . . , λn) ≥
0, and the Lagrangean function L(ω, ω0, α, λ, d) defined as

L(ω, ω0, α, λ, d) =
ω′ω

2
+ c

n∑
i=1

di −
n∑
i=1

αi
[
yi(ω

′ϕ(xi) + ω0)− (1− di)
]
−

n∑
i=1

λidi,

where d = (d1, . . . , dn) is the vector of the error variables, we obtain by differenti-

ating with respect to ω, ω0 and di, and equalazing to zero, the following optimality

1.1. Support Vector Machines 9

conditions:

∂L(ω, ω0, α, λ, d)

∂ω
= 0 =⇒ ω =

n∑
i=1

αiyiϕ(xi),

∂L(ω, ω0, α, λ, d)

∂ω0
= 0 =⇒

n∑
i=1

αiyi = 0,

∂L(ω, ω0, α, λ, d)

∂di
= 0 =⇒ αi = c− λi.

According to this, substituting these conditions on L(ω, ω0, α, λ, d), the dual problem

is derived as follows:

max

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjϕ(xi)
′ϕ(xj)

s.t.
n∑
i=1

αiyi = 0,

αi = c− λi, ∀i = 1, . . . , n,

0 ≤ λi, ∀i = 1, . . . , n,

0 ≤ αi, ∀i = 1, . . . , n,

which can be rewritten as

max
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjϕ(xi)
′ϕ(xj) (Dual−F − SVM)

s.t.
n∑
i=1

αiyi = 0,

0 ≤ αi ≤ c, ∀i = 1, . . . , n.

Hence, as we can see, data dependency is shown only through the inner products in

F . Therefore, the kernel trick is based on using a known non linear function,

K : Rp × Rp → R

(xi, xj)→ ϕ(xi)
′ϕ(xj),

instead of computing the inner products of the transformed data, mantaining this

way the computational cost of solving the original problem and avoiding us to know

10 Chapter 1. Introduction

the explicit form of ϕ.

Finally, we conclude this SVM presentation with a brief discussion about differ-

ent error measures that can be used when solving the problem. The formulations

presented before attend to an unbounded continuous meassure of the errors through

the di variables, which are referred to as Hinge Loss (HL) measures. SVM can strug-

gle dealing with outlier observations when minimizing HL error measures. This is

due to the fact that, in extreme cases, the sum of loads of little classification errors

can be smaller than the sum of a few big errors. With the aim of obtaining robust

SVM models against outlier observations, Brooks introduced in (Brooks (2011)) two

approaches which provide an upper bounded error meassure by means of solving a

Mixed Integer Non Linear Programming Problem (MINLP). The first approach is

the Ramp Loss SVM (RL-SVM), which maintains the same value as standard SVM

on the di variables for observations within the margin, but considers these errors to

be constant for wrong classified observations outside the margin. In order to model

the problem, we need to introduce the following set of binary variables ξi ∈ {0, 1}
for each of the observations defined as:

ξi =


1 if xi is wrong classified outside the margin,

0 otherwise.

According to this, the RL-SVM is formulated as follows:

min
1

2
‖ω‖22 + c

(
n∑
i=1

di + 2
n∑
i=1

ξi

)
(RL− SVM)

s.t. yi(ω
′xi + ω0) ≥ 1− di −Mξi, ∀i = 1, . . . , n,

0 ≤ di ≤ 2, ∀i = 1, . . . , n,

ξi ∈ {0, 1}, ∀i = 1, . . . , n,

ω ∈ Rp, ω0 ∈ R,

where M is a big enough constant (see Baldomero-Naranjo et al. (2020) for further

details on estimating this constant), and c is the penalization cost. The second

approach is the Hard-Loss SVM, which is rather similar to the RL-SVM with the

difference that in this method, all classification errors are considered to be con-

stant regardless of the distance from the observations to the separating hyperplane.

1.1. Support Vector Machines 11

Therefore, in this problem ξi variables are slightly modified and defined as:

ξi =


1 if xi is wrong classified or is located inside the margin,

0 otherwise,

and accordingly, being M a big enough constant and c the penalization cost, the

problem is formulated as follows:

min
1

2
‖ω‖22 + c

n∑
i=1

ξi (HardLoss− SVM)

s.t. yi(ω
′xi + ω0) ≥ 1−Mξi, ∀i = 1, . . . , n,

ξi ∈ {0, 1}, ∀i = 1, . . . , n,

ω ∈ Rp, ω0 ∈ R.

1.1.2 Multiclass approaches

The good perfomance of SVM in binary classification problems has motivated the

study of its extension to the multiclass scenario from different points of view. There

is no a unique extension to this problem because when dealing with more than two

classes, some elements which were unequivocally defined for the biclass problem are

left open to interpretation. When facing a multiclass problem, as for instance the

one shown in Figure 1.3 of a three class problem in R2, some questions come up

naturally: How many hyperplanes do we need to solve the problem? What is the

margin in this context? How do we define classification errors? How do we define a

decision rule?

Figure 1.3: Multiclass example

12 Chapter 1. Introduction

There are two main lines to approach the problem. On the one hand, there are

sequential methods in which the multiclass problem is divided into a set of binary

ones, which are afterwards combined in order to create a solution for the original

problem. On the other hand, there are global methods which provide a solution by

solving a single optimization problem. In the following paragraphs we describe some

of the most known multiclass SVM methods.

• Sequential methods

The first method we introduce in this section is the One Versus All (OVA) SVM.

In such a method, considering k possible classes, the problem is divided into k

binary classification subproblems. Each of these subproblems consists on separating

one class from all the other classes. Therefore, positive class is defined as the class

to be separated, and the negative one is a fictitious class which is formed gathering

the remaining classes. For the multiclass example presented in Figure 1.3, we show

in Figure 1.4 the first hyperplane of the OVA method, resulting from separating the

yellow class from the other two classes (represented together by the black color).

Figure 1.4: OVA - yellow class versus rest

This process is repeated until all the hyperplanesHt = {z ∈ Rp : ω′tz + ωt0 = 0},
ωt ∈ Rp, ωt0 ∈ R, t = 1, . . . , k, are located, and the decision rule is derived as follows:

DX → {1, . . . , k}
x→ arg max

t=1,...,k

(
ω′tx+ ωt0

)
The remaining subproblems are shown in Figure 1.5, and the three hyperplanes

combined together in Figure 1.6.

The main advantage of OVA is that it is a fast method to calculate due to the

fact that only k binary problems are involved. Nevertheless, this method can strug-

gle when the number of classes is large. For a large number of classes, the resulting

1.1. Support Vector Machines 13

Figure 1.5: OVA - red class versus rest (left) and blue class versus rest (right)

Figure 1.6: OVA - final solution

binary subproblems can be very unbalanced, and the combined result of solving

these unbalanced problems can lead to bad global results. The second method we

introduce in this section avoids these unbalanced problems by separating classes one

to one. This method is known as One Versus One (OVO) SVM. Therefore, in a

k classification problem, the number of binary subproblems to solve increases to(
k

2

)
. Returning to the example presented in Figure 1.3, we see in Figure 1.7 the

subproblem derived from separating the yellow and the red classes. Furthermore,

we see in Figure 1.8 all the hyperplanes involved in the OVO solution. Regarding to

the decision rule, we find a big difference with respect to the OVA method. In OVO,

for a given observation to be predicted, we calculate all the predictions obtained by

each of the binary subproblems. The final prediction of the method is computed

afterwards as the most represented prediction amongst the binary ones.

14 Chapter 1. Introduction

Figure 1.7: OVO - yellow class versus red class

Figure 1.8: OVO - final solution

• Global methods

There are methods which obtain the multiclass SVM solution by solving a single

optimization problem. In this section we present two of the most famous ones. Both

of these methods rely on the same idea of OVA SVM, i.e., separating one class

from the rest. Nevertheless, these methods do not have the problems OVA had

with unbalanced subproblems since all the classes and all the classification errors

are involved at the same time in the global optimization. The first of the methods

was proposed by Weston and Watkins (1998). In this method there are k − 1 error

variables per observation, dit, i = 1, . . . , n, t = 1, . . . , k − 1, and k hyperplanes

1.1. Support Vector Machines 15

involved. Weston and Watkins (WW) formulation is derived as follows:

min
1

2

k∑
t=1

‖ωt‖22 + c
n∑
i=1

∑
t6=yi

dit (WW)

s.t. ω′yixi + ωyi0 ≥ ω′txi + ωt0 + 2− dit, ∀i = 1, . . . , n, t ∈ {1, . . . , k}�yi,
dij ≥ 0, ∀i = 1, . . . , n, t ∈ {1, . . . , k}�yi,
ωt ∈ Rp, ωt0 ∈ R, ∀t = 1, . . . , k,

where c is the penalization cost. Despite the fact that this method has proven to

obtain good results for many multiclass problems, managing more than one error

variable per observation can lead to some troubles when dealing with outlier obser-

vations. A few years later, Crammer and Singer proposed in (Crammer and Singer

(2001)) a similar method which only requires an error variable per observation. Nev-

ertheless, in order to reduce the number of error variables, some binary variables

need to be added to the problem. Such a set of variables is defined follows:

δyit =


1 if yi 6= t,

0 if yi = t.

Therefore, Crammer and Singer (CS) model is formulated as follows:

min
1

2

k∑
t=1

‖ωt‖22 + c

n∑
i=1

di (CS)

s.t. ω′yixi + δyit − ω′txi ≥ 1− di, ∀i = 1, . . . , n, t = 1, . . . , k,

di ≥ 0, ∀i = 1, . . . , n,

ωt ∈ Rp, ωt0 ∈ R, ∀t = 1, . . . , k.

WW and CS approaches have some similarities, both problems are popular be-

cause of their good performance, the solutions are relatively fast to calculate, both

problems share the same decision rule as the OVA method, and both methods seem

to have missed the same little margin optimization detail: maximizing the margin

amongst the k hyperplanes can be computed as max
k∑
t=1

2

‖ωt‖22
, and that maximiza-

tion does not always equate to compute min
1

2

k∑
t=1

‖ωt‖22, which is the term appearing

in both objective functions. This detail is further discussed in Chapter 2.

16 Chapter 1. Introduction

1.2 Classification Trees

Classification Trees (CT) are a family of classification methods based on a hierarchi-

cal relation among a set of nodes. CT involve a set of branches conecting the nodes

and defining the paths that observations can take by following a tree graph scheme.

At the first stage of a CT method all the observations belong to one node, which is

known as the root node. From this node, branches are sequentially created by splits

on the feature space, creating intermediate nodes (which are called branch nodes)

until the terminal nodes (which are called leaf nodes) are reached. The predicted

label for an observation is given by the majority class of the leaf node where it is

located. Observations fall from the root node to the leaf nodes visiting a certain

number of nodes. The maximum number of nodes an observation can visit within

the tree is referred to as the tree depth.

Specifically, at each branch node, t, of the tree a hyperplane Ht = {z ∈ Rp :

ω′tz+ωt0 = 0} is constructed and the feature space splits are defined as ω′tz+ωt0 < 0

(left branch) and ω′tz + ωt0 ≥ 0 (right branch). In Fig. 1.9 we show a simple

classification tree with depth two, for a small dataset with 6 observations, all of

them correctly classified in the leaf nodes.

Figure 1.9: Decision tree of depth two.

On the one hand, there are many different heuristic approaches to build a CT.

The most popular method is CART, introduced by Breiman et al. (1984), which is

to be described in next section. However, we can also find in the literature other well

known algorithms as for instance C4.5 (Salzberg (1994)) or ID3 (Quinlan (1996)).

On the other hand, Bertsimas and Dunn (2017) have recently proposed an optimal

approach to build a CT by solving a Mathematical Programming problem. This

classification method is further detailed in 1.2.2.

1.2. Classification Trees 17

1.2.1 CART

CART is a greedy heuristic approach which myopically constructs the CT without

further foreseen to deeper nodes. Starting at the root node, it constructs the splits by

means of hyperplanes minimizing an impurity measure at each of the branch nodes.

Each split results in two new nodes, and this procedure is repeated until a stopping

criteria is reached. These criteria normally encompass some of the following:

• Reaching the maximum allowed depth in the tree.

• Obtaining a node with only one class represented amongst its observations.

• Obtaining less than a minimun number of observations required to be in a

node.

• Imposibility to obtain a reduction of the impurity measure.

Gini index (Gini (1912)) is used in CART as impurity measure. In a CART

classification problem with k classes, denoting by ptq the probability of belonging to

class q in node t, the Gini index is obtained by the following sum:

k∑
q=1

ptq(1− ptq).

Therefore, a new split is performed in node t if the above sum is greater than the

average of the analogous sums over its resulting child nodes. According to this

top-down procedure, CART may lead to deep trees if a maximum depth is not

stablished. The problem with very deep trees is that these may lead to making

mistakes on predictions in out-of-sample observations because of overfitting over the

training sample. Hence, trees are normally subject to a prune process based on the

trade-off between the impurity function reduction and a cost-complexity parameter.

The main advantage of CART is that it is easy to implement and it is also fast

to train. Moreover, the solution is often constrained to univariate splits, i.e., splits

in which only one of the hyperplane coefficients is allowed to be different from zero.

These univariate splits are used to ease interpretability in the model. In practise, it

is easier to understand whether a variable is greater or lower than a certain number

rather than analyzing an oblique hyperplane (i.e., a hyperplane with freedom in its

coefficients).

Nevertheless, the main disadvantage of CART is that, based on its top-down

greedy nature, some good splits according to a global classification in the leaf nodes

might never be found because of some good previous local splits. In fact, this weak-

ness has motivated different heuristic approaches to rank the variable importance

amongst a dataset. These are usually based on using different subsamples (varying

18 Chapter 1. Introduction

on the number of observations or variables) to build the trees in order to account

for the most popular variables over the set of local splits. See Breiman (2002) and

Liaw et al. (2002) for further details on this topic, and Archer and Kimes (2008) for

a case of study in a real life example.

1.2.2 Optimal Classification Trees

The formulation of an Optimal Classification Tree (OCT) was firstly introduced in

Bertsimas and Dunn (2017). The authors proposed two mathematical optimization

problems, one of these aiming to obtain OCT with univariate splits, and another one

to obtain Optimal Classification Trees with oblique splits (OCT-H). These models

have proven to obtain higher accuracies than other heuristic approaches in different

real-life datasets, showing that the models were able to capture more reliable data

distributions.

In the rest of this section we focus on describing the OCT formulation, but before

doing this, we need to fix the notation and introduce some parameters required by

the method. The parameters OCT needs to be fixed before training the model are

the following:

• D: Tree depth.

• Nmin: Minimum number of observations required to be in a leaf node.

• c: Complexity cost parameter.

• ε: A vector formed by positive constants used to model the branches in the

tree.

OCT is based on constructing a maximal tree for a given depth D, despite the

fact that some of these nodes might be empty. Such a tree has T = 2D+1− 1 nodes,

which are indexed by t = 1, . . . , T . The authors used the notation p(t) to refer to

the parent of node t, and A(t) to denote the set of ancestors of t. In addition to this,

they consider the left-branch ancestors, AL(t), as the set of ancestors of t whose

left branch has been followed on the path from the root node to t, and analogously

AR(t) for the right-branch ancestors. Moreover, as it has alraedy been pointed out,

nodes are distinguished in two types:

- Branch nodes, τb = {1, . . . , bT/2c}: nodes in which a split in the form ω′x < ω0

is applied. Observations which satisfy this constraint follow the left branch

whereas observations which do not satisfy it follow the right one.

- Leaf nodes, τl = {bT/2c+1, . . . , T}: nodes in which class predictions are made.

1.2. Classification Trees 19

Given a training sample containing n observations with p features and a label over

k possible classes, OCT is formulated according to minimize an objective function

formed by two terms. The first one manages the number of misclassified observations

whereas the second one regulates the tree complexity. Complexity is understood as

the number of non-empty nodes. On the one hand, in order to control complexity,

some binary variables are introduced for each of the branch nodes, δt ∈ {0, 1}, t ∈ τb.
δt takes value one if t is a non-empty node, and zero otherwise. On the other hand,

for the purpose of accounting for misclassification errors, some variables, Lt ∈ Z+,

are introduced at each of the leaf nodes, t ∈ τl, where Lt is equal to the number

of misclassified observations in leaf t. Therefore, the authors derive the objective

function of the problem as follows:

1

L̂

∑
t∈τl

Lt + c
∑
t∈τb

δt,

where c is the complexity cost parameter, and L̂ is the baseline accuracy (the accu-

racy obtained predicting the most represented class for the whole dataset).

Regarding to OCT constraints, one may start by defining the univariate splits.

The authors define the splitting hyperplane coefficients as binary variables, ω ∈
{0, 1}p, an they impose the sum over these coefficients to be equal to one. Never-

theless, complexity plays its role in this part as well, since δt = 0 means that no

observations belong to node t, and therefore no splitting hyperplane should be built

in such a node. In order to satisfy the above requirements, the following constraints

are added to the problem:

p∑
j=1

ωtj = δt, ∀t ∈ τb,

0 ≤ ω0t ≤ δt, ∀t ∈ τb.

These two constraints allow the model to build a univariate split in node t if and only

if δt = 1 (note that the second constraint is valid for normalized data, xi ∈ [0, 1]p,

which can be done without loss of generality).

Once splits and complexity variables are defined, the authors endow the tree

with a hierarchical structure by means of the following constraints:

δt ≤ δp(t), ∀ ∈ τb\{1}.

According to this, if a split is not applied in node t, further splits will not be allowed

in its successors nodes.

Another important part of the model is tracking the observations allocation

20 Chapter 1. Introduction

within the tree nodes. In order to do this, a set of binary variables, zit, i =

1, . . . , n, t = 1, . . . , T , is added to the problem. These variables take value one

if observation i is in node t, and zero otherwise. Moreover, to assure the proper

functioning of the model, each observation must be assigned to exactly one leaf

node (where classification errors are accounted for), which can be done by imposing

the usual assignment constraints:∑
t∈τl

zit = 1, ∀i = 1, . . . , n.

Furthermore, OCT fixes a minimum number of observations per leaf (Nmin), and

so as to regulate this, some binary variables, lt ∈ {0, 1}, l ∈ τl, need to be added to

the problem to indicate whether leaf t contains points (lt = 1), or not (lt = 0). This

requirement can be modeled by adding to the problem the following constraints:

zit ≤ lt, ∀i = 1, . . . , n, t ∈ τl,
n∑
i=1

zit ≥ Nminlt, ∀t ∈ τl.

With the above constraints, leaf t is forced to contain more than Nmin observations.

The allocation on the leaf nodes is not correctly defined yet. Observations need

to satisfy the branch inequalities which lead indeed to leaf t so as to actually be

located in t. For such a purpose, the authors start by pointing out the need of the

following constraints:

ω′mxi < ω0m −M1(1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AL(t),

ω′mxi ≥ ω0m −M2(1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AR(t),

where M1 and M2 are big enough constants. Note that the first set of constraints

use a strict inequality, and therefore the authors use a vector of parameters ε to

transform these into non-strict inequalities. The way of computing this vector as

well as the discussion on the values M1 = 1 +max(ε), and M2 = 1 is detailed in the

paper. In the following we introduce the reformulation of these constraints presented

by the authors:

ω′m(xi + ε) ≤ ω0m − (1 +max(ε))(1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AL(t),

ω′mxi ≥ ω0m − (1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AR(t).

Finally, misclassification errors must be defined. In order to do this, the authors

1.2. Classification Trees 21

define first the variables Nt ∈ Z+, and Nst ∈ Z+, t ∈ τl, s = 1, . . . , k, as follows:

Nst =
1

2

n∑
i=1

(1 + Yis)zit, ∀s = 1, . . . , k, t ∈ τl,

Nt =

n∑
i=1

zit, ∀t ∈ τl,

where Yis, which is derived from original data, takes value one if observation i

belongs to class s, and minus one otherwise. According to this, Nt is the number

of observations located in leaf t, and Nst is the number of observations belonging to

class s inside leaf t. Hence, misclassified observations in leaf t can be calculated as the

difference between Nt and the maximum value amongst the Nst variables. Recalling

that Lt variables are being minimized at the objective function, the authors compute

these differences by means of the following constraints:

Lt ≥ Nt −Nst −M(1− cst), ∀s = 1, . . . , k, t ∈ τl,
Lt ≤ Nt −Nst +Mcst, ∀s = 1, . . . , k, t ∈ τl,

where M is a big enough constant (n is a valid value for this constant), and cst ∈
{0, 1} is a binary variable that takes value one if class s is predicted in leaf t, and

zero otherwise. For these last variables, one more set of constraints is required, since

exactly one class has to be predicted in leaf t (in case t is a non-empty leaf), which

is done imposing the assingment constraints:

k∑
s=1

cst = lt, ∀t ∈ τl.

Gathering all the constraints together, OCT is formulated as the following Mixed

Integer Problem (MIO):

min
1

L̂

∑
t∈τl

Lt + c
∑
t∈τb

δt (OCT)

22 Chapter 1. Introduction

s.t.

p∑
j=1

ωtj = δt, ∀t ∈ τb,

0 ≤ ω0t ≤ δt, ∀t ∈ τb,
δt ≤ δp(t), ∀ ∈ τb\{1},∑
t∈τl

zit = 1, ∀i = 1 . . . , n,

zit ≤ lt, ∀i = 1, . . . , n, t ∈ τl,
n∑
i=1

zit ≥ Nminlt, ∀t ∈ τl,

ω′m(xi + ε) ≤ ω0m − (1 +max(ε))(1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AL(t),

ω′mxi ≥ ω0m − (1− zit), ∀i = 1, . . . , n, t ∈ τl, m ∈ AR(t),

Nst =
1

2

n∑
i=1

(1 + Yis)zit, ∀s = 1, . . . , k, t ∈ τl,

Nt =

n∑
i=1

zit, ∀t ∈ τl,

Lt ≥ Nt −Nst − n(1− cst), ∀s = 1, . . . , k, t ∈ τl,
Lt ≤ Nt −Nst + ncst, ∀s = 1, . . . , k, t ∈ τl,
k∑
s=1

cst = lt, ∀t ∈ τl,

ωt ∈ {0, 1}p, ω0t ∈ R, δt ∈ {0, 1}, ∀t ∈ τb,
lt ∈ {0, 1}, Nt, Lt ∈ R, ∀t ∈ τl,
Nst ∈ R, cst ∈ {0, 1}, ∀s = 1, . . . , k, t ∈ τl,
zit ∈ {0, 1}, ∀i = 1, . . . , n.

1.3 Fitting Hyperplanes Theory

In this section we summarize some of the elements presented in Blanco et al. (2018)

about fitting hyperplanes problems. The problem of locating hyperplanes with re-

spect to a given set of point is well known in Location Theory (LT) (Schöbel (2013)).

This problem is closely related to another common question in Data Analysis: to

study the behavior of a given dataset with respect to a fitting body expressed with

an equation of the form f(x) = 0, with x = (X1, . . . , Xp) ∈ Rp. This last problem

reduces to the estimation of the ‘best’ function f that expresses the relationship be-

tween the data or, in the jargon of LT, to the location of the surface f(x) = 0 that

minimizes some aggregation function of the distances to these points (see Amaldi et

al. (2016); Drezner et al. (2002); Dıaz-Bánez et al. (2004)). In many cases the family

1.3. Fitting Hyperplanes Theory 23

of functions where f belongs to is fixed and then, the parameters defining such an op-

timal function must be determined. The family of linear functions is the most widely

used. This implies that the above equation is of the form f(x) = ω0+
∑p

l=1 ωlXl = 0

for ω0, ω1, . . . , ωp ∈ R.

To perform such a fitting, we are given a training sample {x1, . . . , xn} ⊂ Rp,
where the goal is to find ω̂0 and ω̂ = (ω̂1, . . . , ω̂p) that minimizes some measure of

the deviation of the data with respect to the hyperplane they induce, H = {z ∈
Rp : ω̂′z + ω̂0 = 0}. For a given point x ∈ Rp, we define the residual with respect

to a generic x as a mapping εx : Rp+1 → R+, that maps any set of coefficients

(ω0, ω) = (ω0, ω1, . . . , ωp) ∈ Rp+1, into a measure εx(ω0, ω) that represents the

deviation of the given point x from the hyperplane with those parameters. The

problem of locating a hyperplane for a given set of points {x1, . . . , xn} ⊆ Rp consists

of finding the coefficients minimizing an aggregation function, Φ : Rn → R, of the

residuals of all the points. Different choices for the residuals and the aggregation

criteria will give, in general, different optimal values for the parameters and thus

different properties for the resulting hyperplanes. This problem is not new and some

of these criteria, as the minisum, minimax and some other alternatives, have been

widely analyzed from a LT perspective (see Megiddo and Tamir (1983); Schöbel

(1996, 1997, 1998, 2013), amongst others).

For a further analysis on the problem of locating a hyperplane to fit our training

sample, minimizing different forms of measuring the residuals and their aggregation,

we define the Fitting Hyperplane Problem (FHP) as the problem of finding ω̂0 and

ω̂ such that:

ω̂0, ω̂ ∈ arg min
ω0∈R, ω∈Rp

Φ(ε(ω0, ω)), (FHP)

where ε(ω0, ω) = (ε1(ω0, ω), . . . , εn(ω0, ω)) is the vector of residuals. Note that the

difficulty of solving the FHP depends on both the expressions for the residuals and

the aggregation criterion Φ. If Φ and εx are linear, the above problem becomes a

linear programming problem (LP).

In the following we present a multiparametric family of functions, called ordered me-

dian functions, introduced in Nickel et al. (2005). In order to do this, let λ1, . . . , λn ∈
R and let ε ∈ Rn be the vector of residuals of all of the points in the given training

sample. Thus, the ordered median functions are derived by means of the aggregation

criteria Φ : Rn → R+ defined as:

Φ(ε) =
n∑
i=1

λi ε
ρ
(i), 1 ≤ ρ < +∞,

where ε(i) ∈ {ε1, . . . , εn} is such that ε(1) ≤ · · · ≤ ε(n).

24 Chapter 1. Introduction

According to this, the choice of the λ-weights will lead to different problems,

capturing many of the models proposed in the literature. Most classical models

assume that the residuals are defined as the vertical distance (with respect to the

last coordinate) from the points to the hyperplane:

εx(ω0, ω) =

∣∣∣∣∣xp − ω0

ωp
−

p−1∑
l=1

ωl
ωp
xl

∣∣∣∣∣ ,
(assuming that ωp 6= 0). Therefore, the difference between them comes from the

choice of the aggregation criterion Φ. We show below how some classical methods

can be accommodated to this framework.

1. The Least Sum of Squares (LSS) method, credited to Gauss (1877), is the

most widely used approach to estimate the coefficients of a linear model due

to its simplicity (a closed form for the optimal coefficients is obtained) and its

theoretical implications for the inference over the total population. However,

somehow restricting hypotheses are required in order to be applied (see, e.g.,

Giloni and Padberg (2002)). The LSS criterion is defined as the sum of the

squares of the residuals, that is: ΦLSS(ε1, . . . , εn) =
∑n

i=1 ε
2
i , where the resid-

uals εi are given by the above expression. The reader may observe that LSS

corresponds to the FHP with λ = (1, . . . , 1), ρ = 2 and ε the vertical distance.

2. The Least Absolute Deviation (LAD) method, introduced by Edgeworth (1887),

consists of minimizing the sum of the absolute value of the vertical residuals.

Therefore, ΦLAD(ε1, . . . , εn) =
∑n

i=1 |εi|. Note that LAD corresponds to the

FHP for λt = (1, . . . , 1) and ρ = 1.

3. The Least Quantile of Squares (LQS), introduced by Bertsimas and Mazumder

(2014), is a generalization of the Least Median of Squares (LMS) introduced

by Hampel (1975). It also considers vertical distances as residuals, but they

are aggregated to minimize the r-quantile of its distribution (r ranges in

{1, . . . , n}). Hence, ΦLQS(ε1, . . . , εn) = r − quantile(ε21, . . . , ε
2
n) := ε2(r).

This method also fits to the general form of the aggregation criteria considered

in this paper. In this case, the LQS hyperplane can be obtained for ρ = 2 and

λ = (

(r−1)︷ ︸︸ ︷
0, . . . , 0, 1,

(n−r)︷ ︸︸ ︷
0, . . . , 0). (Observe that LMS hyperplane is also obtained

within the same scheme when p = 2 and λ = (

bn
2
c︷ ︸︸ ︷

0, . . . , 0, 1,

bn
2
c︷ ︸︸ ︷

0, . . . , 0)).

1.3. Fitting Hyperplanes Theory 25

4. The Least Trimmed Sum of Squares (LTS) method was introduced by Rousseeuw

Rousseeuw (1984) as a robust alternative to the LSS method, in that it has

a high breakdown point. Recall that, intuitively, the breakdown point of an

estimator is the proportion of incorrect observations (e.g., arbitrarily large ob-

servations) an estimator can handle before giving an incorrect (e.g., arbitrarily

large) result. With our notation, it corresponds to choose again as residuals

the vertical distance, ρ = 2, and the aggregation criterion ΦLTS(ε1, . . . , εn) =∑h
i=1 ε

2
(i) where ε(i) ∈ {ε1, . . . , εn} with ε(i) ≤ ε(i+1) for i = 1, . . . , n − 1, and

h ∈ {1, . . . , n}. The most common choice for h is bn2 c, considering the best

50% square residuals.

Going back to the general agregation and residual function definitions, on the

one hand we have that the function Φ is invariant against permutations of its compo-

nents and, for non negative lambda weights, a monotone function, ensuring that the

ordering of the individual residuals do not affect the overall goodness of the fitting.

Moreover, it also implies that a componentwise smaller vector of residuals gives rise

to a more accurate fitting. On the other hand, the natural implication of the as-

sumption made about the definition of residuals is that, as expected, the response

(projection) of a point on a given hyperplane differs from the classical evaluation.

In this setting the response is the closest point, with respect to the distance D, to

the hyperplane H, and for a given point x ∈ Rp this is, recalling from Mangasarian

(1999), εx =
|ω′x+ ω0|
‖ω‖∗

, where ‖ · ‖∗ is the dual norm of the one inducing distance

D. We should remark at this point that the standard residual (vertical distance)

is a distance measure that is not induced by a norm, however its expression can

be written in a analogous form and so it fits to the shape of the distances that are

considered in this FHP.

Gathering all these elements, and considering λ ∈ Rn, such that λ1 ≥ · · · ≥ λn ≥ 0,

the FHP is equivalent to the following Mathematical Programming problem (Blanco

et al. (2018)):

min
n∑
j=1

uk +

n∑
i=1

vi

s.t. uk + vi ≥ λkei, ∀i, k = 1, . . . , n,

ei ≥ εxi(ω0, ω), ∀i = 1, . . . , n,

ei, ui, vi ∈ R+, ∀i = 1, . . . , n,

ω0 ∈ R, ω ∈ Rp.

According to this, the first set of constraints control the order over the residuals

26 Chapter 1. Introduction

meanwhile the second one ensures proper residual definition. Hence, the distance

involved in such a problem will determine whether we obtain a LP (as for instance

when using vertical distances, `1 or `∞ norms) or a NLP (as for instance when using

the Euclidean norm). To conlcude this section, observe that when the points in the

dataset lie exactly on a hyperplane, H, this hyperplane is always optimal for all

versions of the FHP, although for some specific choices of λ the solution may not be

unique and different hyperplanes may be alternative optimal.

1.4 Contributions of this thesis

In this thesis we analyze different classical Data Science problems through a Loca-

tion Theory perspective. In particular, we focus on locating hyperplanes to address

the problems.

Chapter 2 is based on the paper Blanco et al. (2020b). In this chapter we present a

multiclass extension of the SVM methodology. In contrast to other SVM multiclass

approaches, we propose some MIP and MINLP formulations which maximize the

minimum of the margins amongst a set of hyperplanes. Furthermore, our method-

ology is based on a novel idea consisting on dividing the p feature space, by means

of locating j hyperplanes, into a set of cells that are unequivocally identified with a

pattern of signs over a j-tuple. Once the hyperplanes are located, each of the cells

is assigned to the most represented class amongst its obervations. Therefore, the

decision rule for out-of-sample observations is nothing but predicting the class of the

cell in which observations lie in, or the class of the closest non-empty cell. We pro-

pose four different models depending on the norm used to measure the margins, `1

or `2, and depending on whether using a bounded or an unbounded error meassure.

Moreover, we prove that the kernel trick can be used in all the models. Finally, we

report some computational experiment results in which we show the effectiveness of

our approaches.

Afterwards studying a multiclass classification problem by means of locating m hy-

perplanes, we study in Chapter 3 the problem of locating m hyperplanes minimizing

a distance based error function from observations to the hyperplanes. Although we

study a very general problem, allowing one to use many different distances mea-

sures and error functions, particular cases result into usual Data Science problems.

For instance, when fixing m = 1 and considering the vertical distance, our problem

turns into classical linear regression. Therefore, locating m hyperplanes when using

the vertical distance can be seen as a m-extension to the classical linear regression

problem.

Chapter 3 is based on the paper Blanco et al. (2021a). In this work, two approaches

are presented to solve the above mentioned problems. On the one hand, exact prob-

1.4. Contributions of this thesis 27

lem formulations are presented by means of some MIP and MINLP. On the other

hand, some set partitioning formulations are presented as well as a column gen-

eration procedure to solve them. Moreover, convergence results are proven under

certain conditions, and some heuristics are also developed so as to speed up the

solution processes. Lastly, a discussion of the presented methods performance over

an extensive battery of computational experiments is reported.

Whereas Chapters 2 and 3 consider a set of m hyperplanes, Chapter 4, which is

based on the work Blanco et al. (2020a), focuses on locating a single hyperplane in

a binary classification context. This hyperplane is located following a SVM clas-

sification principle where some noise might exist within the observation labels set.

The motivation of this work comes from different real life situations in which the

reliability of the label set in the training sample is not completely truthful. In order

to approach this problem, we present three models which combine SVM and cluster

ideas. The goal of these models is to create two clusters, as homogeneous as possible,

which are separated by a hyperplane, and at the same time the margin betweem

them is maximized. A SVM hyperplane separates observations with respect to their

classes, nevertheless, we are able to separate observations with respect to the cluters

since our models permit observations to be relabeled, i.e., to be treated as if they

belong to their opposite class. These methods obtain much higher accuracies than

standard SVM when some label noise is added to the training sample, as can be

seen in the computational experiments of the work.

Optimal Classification Trees have been studied when using splits that do not maxi-

mize the separating hyperplanes margin and do not take into account distance based

errors. In Chapter 5, which is based on the paper Blanco et al. (2021c), we propose

a formulation of an OCT with SVM-based splits, that we call OCTSVM, for binary

classification problems. Moreover, in our solution we take advantage of the relabel

formulation presented in Chapter 4, and hence our model is also robust against label

noise on the training sample. The computational results presented in this chapter

show how OCTSVM outperforms OCT, OCT-H and CART methodologies in both

noisy label training samples and normal training samples.

The multiclass extension of the OCTSVM, that we call MOCTSVM, is later on in-

troduced in Chapter 6. This chapter is based on the work by Blanco et al. (2021b).

The tools developed in Chapter 4 are again essential to allow us to formulate the

MOCTSVM. This is due to the fact that SVM splits are designed to separate two

classes, and therefore we permit the model to create SVM-splits by relabeling ob-

servations over two fictitious classes that are separated in the branch nodes, until

observations reach the leaf nodes were misclassification errors amongst the original

labels are measured. This method is rather similar to the multiclass SVM approach

presented in Chapter 2, nevertheless, MOCTSVM follows a hierarchical structure

28 Chapter 1. Introduction

when locating the m hyperplanes. According to this, when looking at the global

configuration of the hyperplanes in the p-features space, some parts of themselves

do not play any action in the decision rule, what can lead to a lower number of

cells in a classification problem. This does not necessarily have an impact on the

predictive power of the model, but the interpretability of the solution is often easier

when the number of cells is low. Finally, we conclude this chapter with some com-

putational experiment results which show that MOCTSVM reports more accurate

results than CART, OCT and OCT-H in a battery of real life datasets.

Chapter 2

Multiclass Support Vector

Machines

30

32 Chapter 2. Multiclass Support Vector Machines

In this chapter we present a novel SVM-based approach to construct multiclass

classifiers by means of arrangements of hyperplanes. We propose different mixed

integer (linear and non linear) programming formulations for the problem using ex-

tensions of widely used measures for misclassifying observations where the kernel

trick can be adapted to be applicable. Some dimensionality reductions and variable

fixing strategies are also developed for these models. An extensive battery of ex-

periments has been run which reveal the powerfulness of our proposal as compared

with other previously proposed methodologies.

2.1 Introduction

SVM has proven to be a very useful tool in a wide range of real world applications

(see e.g. Bahlmann et al. (2002); Harris (2013); Majid et al. (2014); Radhimeenakshi

(2016)). Most of the SVM literature concentrates on binary classification where

several extensions are available. One can use different measures for the separation

between classes (see e.g., Blanco et al. (2020d); Ikeda and Murata (2005)), select

important features (Labbé et al. (2019)), apply regularization strategies (López et al.

(2018); Maŕın et al. (2021)), etc. However, the analysis of SVM-based methods for

datasets with more than two classes has been, from our point of view, only partially

investigated. Given a training sample X = {(x1, y1), . . . , (xn, yn)} ⊆ Rp×{1, . . . , k},
the multiclass (k > 2) SVM consists of constructing a decision rule able to accurately

classify out-of-sample observations.

Different multiclass classification techniques that take advantage of the SVM

methods for binary classification can be found in the literature. The most popular

multiclass SVM-based approaches are OVA and OVO. The former, OVA, computes,

for each class r ∈ {1, . . . , k}, a binary SVM classifier labeling the observations as

1, if the observation is in the class r and −1 otherwise. The process is repeated

for all classes (k times), and then each observation is classified into the class whose

constructed hyperplane is the furthest from it in the positive halfspace. In the OVO

approach, classes are separated with
(
k
2

)
hyperplanes using one hyperplane for each

pair of classes, where the decision rule comes from a voting strategy in which the

most represented class amongst votes becomes the class predicted. OVA and OVO

inherit most of the good properties of binary SVM. In spite of that, they are not

able to correctly classify datasets where separated clouds of observations may belong

to the same class (and thus are given the same label) when a linear kernel is used.

Another popular method is the directed acyclic graph SVM, DAGSVM (Platt et al.

(1999)). In this technique, although the decision rule involves the same hyperplanes

built with the OVO approach, it is not given by a unique voting strategy but for

a sequential number of votings in which the most unlikely class is removed until

2.1. Introduction 33

only one class remains. In addition, apart from OVA and OVO, there are some

other methods based on decomposing the original multiclass problem into several

binary classification ones. In particular, in (Allwein et al. (2000)) and (Dietterich

and Bakiri (1994)), this decomposition is based on the construction of a coding

matrix that determines the pairs of classes that will be used to build the separating

hyperplanes. Alternatively, other methods such as CS (Crammer and Singer (2001)),

WW (Weston and Watkins (1998)) or LLW (Lee et al. (2004)), do not address the

classification problem sequentially but as a whole considering all the classes within

the same optimization model. Obviously, this seems to be the correct approach. In

particular, in WW, k hyperplanes are used to separate the k classes, each hyperplane

separating one class from the others, using k − 1 misclassification errors for each

observation. The same separating idea, is applied in CS but reducing the number of

misclassification errors for each observation to a unique value. In LLW, a different

error measure is proposed to cast the Bayes classification rule into the SVM problem

implying theoretical statistical properties in the obtained classifier. These properties

cannot be ensured in WW or CS.

We can also find a quadratic extension based on LLW proposed by Guermeur

and Monfrini (2011). Finally, van den Burg and Groenen (2016) propose a multiclass

SVM-based approach, GenSVM, in which the classification boundaries for a problem

with k classes are obtained in a (k− 1)-dimensional space using a simplex encoding.

Some of these methods have become popular and are implemented in most software

packages in Machine Learning as e1071 (Meyer et al. (2019)), scikit-learn (Abra-

ham et al. (2014)) or Lauer and Guermeur (2011). Nevertheless, as far as we are

concerned, none of the existing multiclass SVM methods keeps the essence of binary

SVM which stems from finding a globally optimal partition of the feature space.

In this chapter we propose a novel approach to handle multiclass classification

extending the paradigm of binary SVM classifiers. In particular, our method finds

a polyhedral partition of the feature space and an assignment of classes to the cells

of the partition, by maximizing the separation between classes and minimizing two

intuitive misclassification errors. Obviously, as in standard SVM, we can also ac-

count in different ways the misclassification errors (hinge or ramp-based losses). For

bi-class instances, and using a single separating hyperplane, our method coincides

with the standard SVM. Nevertheless, even for 2-classes datasets, new alternatives

appear if more than one hyperplane is permited to separate the data. In particular,

our approach allows one to generalize the polyhedral conic classifiers presented in

(Bagirov et al. (2013)).

Apart from justifying the rationale of our method, we also propose different

Mathematical Programming formulations in order to solve the resulting optimization

problems. These formulations belong to the family of Mixed Integer (Linear and Non

34 Chapter 2. Multiclass Support Vector Machines

Linear) Programming (MILP and MINLP) problems, in which the nonlinearities

come from the representation of the Euclidean distance margin between classes,

that can be modeled as a set of second order cone constraints (see Blanco et al.

(2014)). This type of constraints can be handled nowadays by any of the most

popular off-the-shelf optimization solvers (CPLEX, Gurobi, XPress, SCIP, ...).

These models also have a combinatorial nature induced by the correct allocation

of labels to cells. Therefore, they require to use some binary variables. This approach

is not new and recently, a few attempts have been proposed for different classification

problems using discrete optimization tools. For instance, Üney and Türkay (2006)

construct classification hyperboxes for multiclass classification, Bennett et al. (1999)

provide formulations for SVM with unlabelled data (semi-supervised SVM), and

Ghaddar and Naoum-Sawaya (2018), López et al. (2018) and Labbé et al. (2019),

mixed integer linear programming tools for feature selection in SVM. Handling a

large number of binary variables in the models may become an inconvenient when

trying to compute classifiers for medium to large size instances. This inconvenience

is alleviated with some preprocessing and dimensionality reduction techniques that

are also introduced.

In case the data are, by nature, nonlinearly separable, in classical SVM one can

apply the so-called kernel trick to project the data out onto a higher dimensional

space where the linear separation has a better performance. The key point is that

one does not need to know neither the dimension of the final space nor the specific

transformation that is applied to the data: the resulting Mathematical Programming

problem is in the same space as the original one. Here, we show that the kernel trick

can be extended to our framework and therefore, it also allows us to find nonlinear

classifiers with this methodology.

To assess the validity of our method we have performed a battery of computa-

tional tests on two different families of data. We have tested our method against

some well known multiclass SVM classifiers (OVO, CS, WW and LLW) on 7 real

databases. Moreover, we also report results on synthetic datasets specially tailored

to capture the difficulty of multiclass supervised classification. In all cases, our

methods give results similar or superior to those provided for the other methods. In

particular, for the synthetic data instances the improvement in accuracy on the test

samples are remarkable (see Table 2.3).

The rest of the chapter is organized as follows. In sections 2.2 and 2.3 we

describe and set up the elements of the problem to be considered. Afterwards,

we introduce a MINLP formulation for our model. Alternatively, we also present

a linear version, which is obtained whenever the margins are measured with the

`1-norm. A discussion on the extension, with very few modifications, of the previous

models to the Ramp Loss versions is included as well. In Subsection 2.3.2 we discuss

2.2. Preliminaries 35

how an analogous to the kernel trick can be extended to be applied in this model.

Section 2.4 describes some heuristic strategies, preprocessing and dimensionality

reductions to obtain good quality initial solutions of the MINLP. Finally, in section

2.5 we report our computational results on different real and synthetic datasets, and

compare our method with the standard ones for multiclass SVM.

2.2 Preliminaries

In this section we introduce the problem under study. Given a training sample

X = {(x1, y1), . . . , (xn, yn)} ⊆ Rp × {1, . . . , k} the goal of supervised classification

is to find a decision rule to assign labels to data, in order to be applied to out-of-

sample data. We assume that a given number, m, of hyperplanes in Rp have to

be built to obtain a subdivision of this space into full dimension polyhedral regions

that we shall denote as cells. (Here, we would like to mention that the term cell

stands for a nonempty intersection of the semispaces induced by the hyperplanes in

the considered family). Let us denote by H1, . . . ,Hm the hyperplanes to be found,

which are in the form Hr = {z ∈ Rp : ω′rz + ωr0 = 0} for some ωr ∈ Rp, ωr0 ∈ R,

for r = 1, . . . ,m. Each cell induced with such an arrangement of hyperplanes will

be then assigned to a label in {1, . . . , k}. In Figure 2.1 we illustrate a subdivision of

R2 induced by 2 hyperplanes and the labels assigned to each cell. In the left figure,

we represent the observations, highlighting the classes with different symbols (stars,

circles and squares). In the right figure, two hyperplanes which induce 4 cells are

constructed to separate the three classes. Each cell is assigned to a class (north

→ circles, south → stars, east → stars and west → squares). In this example the

subdivision in cells and the assignment of labels reaches a perfect classification on

the given observations.

Class Stars

Class Stars

Class Squares

Class Circles

Figure 2.1: Illustration of a subdivision induced by 2 hyperplanes in R2.

From the above, we would like to construct an arrangement of m hyperplanes,

H = {H1, . . . ,Hm}, determined by ω1, . . . , ωm ∈ Rp (coefficients) and ω10, . . . , ωm0 ∈

36 Chapter 2. Multiclass Support Vector Machines

R (intercepts) and a decision rule that assigns a single label to each one of the cells

in the subdivision of the space induced by such an arrangement. We would like

to point out that each cell in the subdivision can be univocally identified with a

{−1,+1}-vector in Rm: the `-component of that vector represents the side (positive

or negative) with respect to the hyperplane H` where that cell lies in.

Definition 2.1 (Suitable Assignment). Given a subdivision C of Rp into cells in-

duced by the arrangement of hyperplanes H = {H1, . . . ,Hm} in Rp, a function

g : {−1, 1}m → {1, . . . , k} is said a suitable assignment, if g univocally maps cells

(equivalently, sign-patterns) to labels in {1, . . . , k}.

Observe that a suitable assignment, g, allows us to classify any observation

x ∈ Rp within the set of classes {1, . . . , k}, as follows:

1. Identify x with a sign-pattern: s(x) = (s1(x), . . . , sm(x)) ∈ {−1,+1}m, where

sr(x) = sign(ω′rx+ ωr0) for r = 1, . . . ,m.

2. Apply the function g to the sign-patterns: ŷ(x) = g(s(x)) ∈ {1, . . . , k}, is the

predicted label of x.

The quality of the decision rule is based, on comparing predictions and actual

labels on a training sample, but also on maximally separating the classes in order

to find good predictions and avoid undesired overfitting.

SVM is a particular case of our approach for classifying two-class datasets if

m = 1, i.e., a single hyperplane to subdivide the feature space is used. In such a

case, signs are in {−1, 1} and classes in {1, 2}, so whenever there are observations

in both classes, the assignment is one-to-one. However, even for biclass instances,

if more than one hyperplane is used, one may find better classifiers (we illustrate

this behavior with the dataset 2C4N of our computational experiments in Table 2.3).

In Figure 2.2, left-and-right, we draw the same dataset of labeled (red and blue)

observations and the result of applying a standard SVM (left) and our method with

2 hyperplanes. In that picture one may see that not only the misclassification errors

are smaller with two hyperplanes, as expected, but also the separation between

classes is larger, improving the predictive power of the classifier.

The rationale of our approach is particularly adequate for datasets in which

there are several separated “clouds” of observations that belong to the same class.

In Figure 2.3, we show two different instances in which, again, the colors indicate

the class of the observations. The classes in both instances cannot be appropriately

separated using any of the available linear SVM-based methods in the literature

since they are based on subdividing the space on class-connected regions. However,

we are able to perfectly separate the classes using 5 hyperplanes.

2.2. Preliminaries 37

Figure 2.2: Standard SVM (left) and our approach with 2 hyperplanes (right).

In Figure 2.4 we compare our approach and the OVO approach in an instance

with 24 observations. In the left figure we show the result of separating the classes

with four hyperplanes, reaching a perfect classification on the training sample. In

the right figure we show the best linear OVO classifier, in which only 66% of the data

were correctly classified. We would also like to highlight that, although nonlinear

SVM-approaches may separate the data more conveniently, our approach may help

to avoid using kernels and ease the interpretation of the results.

Different alternatives could be admissible to justify the rationale of the multiclass

classifiers in our framework. To simplify the presentation, we will concentrate on

two different models which share the same paradigm but differ in the way they

account for misclassification errors. Recall that in SVM-based methods, two criteria

are simultaneously optimized when constructing a classifier. On the one hand, a

measure of the quality of the decision rule on out-of-sample observations, based on

finding a maximum separation between classes; and on the other hand a measure

of the misclassification errors for the training set of observations. Both criteria are

adequately weighted in order to find a good compromise between the two goals.

In what follows we describe how similar measures can be defined in our multiclass

classification framework and the way we account them for.

2.2.1 Separation between classes

Separation between classes will be measured as it is usual in SVM-based methods.

Let ω1, . . . , ωm ∈ Rp and ω10, . . . , ωm0 ∈ R be the coefficients and intercepts of a set

of hyperplanes. The distance induced by a norm ‖·‖ between the shifted hyperplanes

H+
r = {z ∈ Rp : ω′rz + ωr0 = 1} and H−r = {z ∈ Rp : ω′rz + ωr0 = −1} is given by

38 Chapter 2. Multiclass Support Vector Machines

Figure 2.3: A 5-classes instance classified with our approach using 5 hyperplanes
(left) and a 6-classes instance classified with our approach using 5 hyperplanes
(right).

Figure 2.4: A 4-classes instance classified with our approach using 4 hypeplanes
(left) and the same intance classified using the OVO SVM approach (right).

2
‖ωr‖∗ , where ‖ · ‖ is a given norm in Rp and ‖ · ‖∗ is its dual norm (see Mangasarian

(1999)). Unless explicitly mentioned, we will consider that ‖ · ‖ is the Euclidean

norm which dual is also the Euclidean norm.

Hence, in order to find globally optimal hyperplanes with maximum separation,

we maximize the minimum separation between classes, that is min
{

2
‖ω1‖ , . . . ,

2
‖ωm‖

}
.

This measure will conveniently keep the minimum separation between classes as

large as possible. Observe that finding the maximum min-separation is equivalent to

minimize max{1
2‖ω1‖2, . . . , 1

2‖ωm‖2}. For a given arrangement of hyperplanes, H =

{H1, . . . ,Hm}, we will denote by hH(H1, . . . ,Hm) = max{1
2‖ω1‖2, . . . , 1

2‖ωm‖2}.
We note in passing that different criteria could have been used to model the

separation between classes. For instance, one may consider to maximize the sum-

mation of all separations namely

m∑
r=1

2

‖ωr‖2
or the inverse of that summation, namely

2.2. Preliminaries 39

2∑m
r=1 ‖ωr‖2

. However, although mathematically possible, these approaches do not

capture the original concept in classical SVM and we have left them to be developed

by the interested reader.

2.2.2 Misclassification errors

The performance of a classifier on the training set is usually measured with some

function of the misclassification errors. Classical SVM with hinge-loss errors use, for

non well-classified observations, a penalty proportional to the distance to the side

in which they would have been well-classified. Then the overall sum of these errors

is minimized. We extend the notion of hinge-loss errors to the multiclass setting as

follows.

Let H = {H1, . . . ,Hm} be an arrangement of hyperplanes and (x, y) a pair

observation (x), label (y), with s(x) = (s1(x), . . . , sm(x)) being the sign-pattern of

x with respect to the hyperplanes in H. Let g : {−1, 1}m → {1, . . . , k} be a suitable

assignment. We denote by t(x) = (t1(x), . . . , tm(x)) the signs of the closest cell to

x whose class by g is y. We will say that (x, y) is wrong-classified with respect to

Hr if sr(x) 6= tr(x), otherwise it is said that (x, y) is well-classified.

In what follows we describe the different error measures (misclassification errors

due to different causes) that will be considered for x in order to construct an optimal

decision rule.

Definition 2.2 (Multiclass In-Margin Hinge-Loss). The multiclass in-margin hinge-

loss for (x, y) with respect to the hyperplane Hr is given as:

hI

(
x, y,Hr

)
=

{
max{0, 1− sr(x) · (ω′rx+ ωr0)} if x is well classified through Hr,

0 otherwise.

Observe that hI models the error due to observations that although adequately

classified with respect to Hr, belong to the margin between the shifted hyperplanes

H+
r and H−r . These errors will be zero if the observation is wrong-classified, or if it

is well-classified and does not belong to the margin induced by the r-th hyperplane.

Definition 2.3 (Multiclass Out-Margin Hinge-Loss). The multiclass out-margin

hinge-loss for (x, y) with respect to the hyperplane Hr is given as:

hO

(
x, y,Hr

)
=

{
1− tr(x) · (ω′rx+ ωr0) if x is not well classified through Hr,

0 otherwise.

hO measures, for wrong-classified observations, how far they are from being well-

classified. This error is zero whenever an observation is well-classified. Note that if

an observation, besides being wrong-classified, belongs to the margin between H+
r

40 Chapter 2. Multiclass Support Vector Machines

and H−r , then only hO should be accounted for. In Figure 2.5 we illustrate the

differences between the two types of losses.

hI > 0

hO > 0

Figure 2.5: Illustration of the error measures considered in our approach.

2.3 Mathematical Programming formulations

In this section we describe the mathematical optimization models that we propose

for the multiclass classification problem. Using the notation introduced in previous

sections, the problem can be mathematically stated as follows:

min hH(H1, . . . ,Hm) + c1

n∑
i=1

m∑
r=1

hI

(
xi, yi,Hr

)
+ c2

n∑
i=1

m∑
r=1

hO

(
xi, yi,Hr

)
(2.1)

s.t. Hr is a hyperplane in Rp, for r = 1, . . . ,m,

where c1 and c2 are parameters which model the cost of misclassified and strip-

related errors. Usually these constants will be considered equal, nevertheless, in

practice analyzing different values for them might lead to better results on predic-

tions. A case of interest results considering c2 = mc1, i.e., the unitary cost of mis-

classification errors caused by out-margin observations is m times the unitary cost

caused by in-margin observations. This method gives a larger penalty to wrongly

classified observations, avoiding the calibration of a larger number of parameters.

Observe that the problem above consists of finding the arrangement of hyper-

planes minimizing a combination of the three quality measures described in the

previous section: 1) the maximum margin between classes, 2) the overall sums of

the in-margin errors and 3) the out-margin misclassification errors. In what follows,

2.3. Mathematical Programming formulations 41

we describe how the above problem can be rewritten as a mixed integer non linear

programming problem by means of adequate decision variables and constraints. Fur-

thermore, the proposed model will consist of a set of continuous and binary variables,

a linear objective function, and a set of linear and second order cone constraints.

This form allows us to push the model to a commercial solver.

First, we describe the variables and constraints needed to model the first term in

the objective function. We consider the continuous variables ωr ∈ Rp and ωr0 ∈ R
to represent the coefficients and intercept of the hyperplane Hr, for r = 1, . . . ,m.

Since there is no distinction between hyperplanes, we can assume, without loss of

generality that they are non-decreasingly sorted with respect to the norms of their

coefficients, i.e., ‖ω1‖ ≥ ‖ω2‖ ≥ · · · ≥ ‖ωm‖. Then, it is straightforward to see that

the term hH(H1, . . . ,Hm) can be replaced in the objective function by 1
2‖ω1‖2, once

the following set of constraints is included in the model:

1

2
‖ωr−1‖2 ≥

1

2
‖ωr‖2, ∀r = 2, . . . ,m. (2.2)

For the second term, the in-margin misclassification error, hI

(
xi, yi,Hr

)
, corre-

sponding to the observation (xi, yi) will be identified with the continuous variable

eir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. Observe that to properly determine these

errors, one has to determine whether the observation xi is well-classified or not with

respect to the rth hyperplane. In order to do that we need to introduce some binary

variables. First, we consider the two following sets of binary variables:

tir =

{
1 if ω′rxi + ωr0 ≥ 0,

0 otherwise,
and zis =

{
1 if i is assigned to class s,

0 otherwise,

for i = 1, . . . , n, r = 1, . . . ,m, s = 1, . . . , k. The t-variables model the sign-pattern

of the observations, while the z-variables give the allocation profile of observations

to classes. As mentioned above, the classification rule is based on assigning sign-

patterns to classes.

The adequate definition of the t-variables is assured with the following con-

straints:

ω′rxi + ωr0 ≥ −T (1− tir), ∀i = 1, . . . , n, r = 1, . . . ,m, (2.3)

ω′rxi + ωr0 ≤ Ttir, ∀i = 1, . . . , n, r = 1, . . . ,m, (2.4)

where T is a big enough constant. Observe that T can be accurately estimated based

on the data set under consideration.

Furthermore, the following constraints assure the adequate relationships between

42 Chapter 2. Multiclass Support Vector Machines

the variables:

k∑
s=1

zis = 1, ∀i = 1, . . . , n, (2.5)

‖zi − zj‖1 ≤ 2‖ti − tj‖1, ∀i = 1, . . . , n,  = 1, . . . , n. (2.6)

Observe that (2.5) enforces that a single class is assigned to each observation while

(2.6) assures that the assignments of two observations must coincide if their sign-

patterns are the same. Additionally, the set of z-variables determines whether an

observation is well-classified. Indeed, let δi ∈ {0, 1}k be defined as δis = 1 if yi = s

and 0 otherwise. (Observe that δi is the binary encoding of the class of the ith

observation.) Then, ξi = 1
2‖zi − δi‖1 ∈ {0, 1} assumes the value zero if and only if

the observation i is well-classified, i.e.,

ξi =

{
0 if i is well-classified,

1 otherwise.

Now, we will model whether the ith observation is well-classified or not, with

respect to the rth hyperplane. Observe that the measure of how far is a wrong-

classified observation from being well-classified, needs a further analysis. One may

have a wrong-classified observation and several training observations in its same

class. We assume that the error for this observation is the misclassification error

with respect to the closest cell for which there are well-classified observations in its

class. Thus, we need to model the decision on the well-classified representative ob-

servation for a wrong-classified observation. In Figure 2.6, we illustrate this type of

misclassification errors. The observation xi is wrong-classified but the misclassifica-

tion error of xi, in case xj is chosen as its representative (well-classified) observation,

is 0 with respect to hyperplane H1 (note that both xi and xj are in the same side

of H1), whereas the misclassification error with respect to H2 is h. Observe that h

is the distance between xi and the shifted hyperplane defining the halfspace where

xj lies in. We consider the following set of binary variables:

hij =


1 if xj , which is well classified and verifies yj = yi, is the representative of xi

in its closest cell through hyperplanes,

0 otherwise.

2.3. Mathematical Programming formulations 43

These variables require to impose the following constraints:

n∑
j=1:
yi=yj

hij = 1, ∀i = 1, . . . , n, (2.7)

ξj + hij ≤ 1, ∀i, j = 1, . . . , n, (yi = yj), (2.8)

hii = 1− ξi, ∀i = 1, . . . , n. (2.9)

The first set of constraints, (2.7), imposes a single assignment between observa-

tions belonging to the same class. Constraints (2.8) avoid choosing wrong-classified

representative observations. The set of constraints (2.9) enforces well-classified ob-

servations to be represented by themselves.

h

H1

H2

xj

xi

Figure 2.6: Illustration of the wrong-classification errors.

With these variables, we can model the in-margin errors by means of the following

constraints:

ω′rxi + ωr0 ≥ 1− eir − T (3− tir − tjr − hij), ∀r = 1, . . . ,m, (2.10)

ω′rxi + ωr0 ≤ −1 + eir + T (1 + tir + tjr − hij), ∀r = 1, . . . ,m. (2.11)

These constraints model, by using the sign-patterns given by t, that, eir = max{0,min{1, 1−
sr(x)(ω′rxi +ωr0}}. Note that the constraints are active if either tir = tjr = hij = 1,

i.e., if the well-classified observation xj is the representative observation for xi and

both are in the positive side of the rth-hyperplane; or tir = tjr = 0 and hij = 1, i.e.,

if the well-classified observation xj is the representative observation for xi and both

are in the negative side of the rth-hyperplane. Thus, constraints (2.10) and (2.11)

adequately model the in-margin errors for all observations . Furthermore, because

of (2.3) and (2.4), and those described above, the variables eir always take values

44 Chapter 2. Multiclass Support Vector Machines

smaller than or equal to 1.

Finally, the third addend, the out-margin errors, will be modeled through the

continuous variables dir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. With the set of variables

described above, the out-margin misclassification errors can be adequately modeled

through the following constraints:

dir ≥ 1− ω′rxi − ωr0 − T (2 + tir − tjr − hij), ∀i, j = 1, . . . , n(yi = yj), r = 1, . . . ,m,

(2.12)

dir ≥ 1 + ω′rxi + ωr0 − T (2− tir + tjr − hij), ∀i, j = 1, . . . , n(yi = yj), r = 1, . . . ,m.

(2.13)

Constraints (2.12) are active only if tir = 0 and tjr = hij = 1, that is, if xj is a

well-classified observation in the positive side of Hr, while xi is wrong-classified in

the negative side of Hr being xj the representative observation for xi (note that if xi

is well-classified then hii = 1 by (2.9) and then, the constraint cannot be activated).

The second set of constraints, namely (2.13), can be analogously justified in terms

of the negative side of Hr. The main difference of these constraints with respect to

(2.10) and (2.11) is that (2.12) and (2.13) are active only if xi is wrong-classified.

According to the above constraints, a misclassified observation xi is penalized in

two ways with respect to each hyperplane Hr. In case that xi is well-classified with

respect to Hr, but it belongs to the margin, then eir = 1− sign(ω′rxi + ωr0)(ωtrxi +

ωr0) ≤ 1 and dir = 0 (tir = tjr). Otherwise, if xi is wrong-classified with respect

to Hr, then dir = 1 − sign(ω′rxi + ωr0)(ωtrxj + ωr0) ≥ 1 and eir = 0 (hij = 1 and

tir 6= tjr).

We illustrate the rationale of the proposed constraints on the data drawn in

Figure 2.7. Observe that A is not correctly classified since it lies within a cell in

which the blue-class is not assigned. Suppose that B, a well-classified observation, is

the representative of A (hAB = 1), then the model would have to penalize two types

of errors. The first one with respect to H2. If we suppose tB2 = 1, then tA2 = 0,

leading to an activation on constraint (2.12) being dA2 > 0. On the other hand, even

though A is well-classified with respect to H1, we also have to penalize its margin

violation. Again, if we assume tB1 = 1, then tA1 = 1, what would activate constraint

(2.10) being eA1 > 0.

2.3. Mathematical Programming formulations 45

Figure 2.7: Illustration of the in-margin and out-margin constraints of our model.

The previous comments can be summarized in the following Mathematical Pro-

gramming formulation for the problem:

min ‖ω1‖2 + c1

n∑
i=1

m∑
r=1

eir + c2

n∑
i=1

m∑
r=1

dir (MCSVM)

s.t. (2.2)− (2.13) and additionally,

ωr ∈ Rp, ωr0 ∈ R, ∀r = 1, . . . ,m,

dir, eir ∈ R+, tir ∈ {0, 1} ∀i = 1, . . . , n, r = 1, . . . ,m,

hij ∈ {0, 1}, ∀i, j = 1, . . . , n,

zis ∈ {0, 1}, ∀i = 1, . . . , n, s = 1, . . . , k,

ξi ∈ {0, 1}, ∀i = 1, . . . , n.

(MCSVM) is a mixed integer non linear programming model, whose nonlinear

terms come from the norm minimization in the objective function and constraints

(2.2), so that they are second order cone representable. In case one chooses the

`1-norm instead of the Euclidean norm, the model becomes a mixed integer linear

programming problem. Therefore, the model is suitable to be solved using any of

the available commercial solvers, as Gurobi, CPLEX, etc. The main bottleneck of

the above formulation relies on the number O(n2) of binary variables.

Remark 2.1 (Ramp Loss misclassification errors). An alternative measure of mis-

classification training errors is the ramp loss. The ramp loss version of the model is

interesting for certain instances since it allows one to improve the robustness against

potential outliers. Instead of using out of margin hinge loss errors hO, the ramp-loss

46 Chapter 2. Multiclass Support Vector Machines

measure consists of penalizing wrong-classified observations by a constant, indepen-

dently on how far they are from being well-classified. Given an observation/label,

(x, y), the ramp-loss with respect to H, is defined as:

RL(x, y,H) =

{
0 if x is well-classified

1 otherwise

Note that, for the training sample, the ramp-loss is represented in our model through

the ξ-variables. More specifically, RL(xi, yi,H) = ξi for all i = 1, . . . , n. In order to

do that we just need to introduce the following modifications on the MINLP problem:

min ‖ω1‖2 + c1

n∑
i=1

m∑
r=1

eir + c2

n∑
i=1

ξi (MCSVMRL)

s.t. (2.2)− (2.11) and additionally,

ωr ∈ Rp, ωr0 ∈ R, ∀r = 1, . . . ,m,

eir ∈ R+, tir ∈ {0, 1}, ∀i = 1, . . . , n, r = 1, . . . ,m,

hij ∈ {0, 1}, ∀i, j = 1, . . . , n,

zis ∈ {0, 1}, ∀i = 1, . . . , n, s = 1, . . . , k,

ξi ∈ {0, 1}, ∀i = 1, . . . , n.

Remark 2.2 (Controlling misclassification errors while training the model).

The benefits of imposing a minimum accuracy, sensitivity, or specificity on the train-

ing sample of binary SVM models has been recently analyzed by Beńıtez-Peña et al.

(2019). As it has been pointed out before, the ξ-variables in our model allow us to

know whether an observation is well or wrong-classified. Hence, using these vari-

ables one may impose a minimum desired accuracy on the training sample in the

multiclass scenario. Given a minimum threshold for the accuracy, µ ∈ (0, 1], the fol-

lowing constraint enforces to construct a classification rule with at least an accuracy

of µ:

1

n

n∑
i=1

ξi ≤ 1− µ.

Observe that the left-hand-side of the inequality indicates the proportion of wrong-

classified observations. Thus, by fixing µ = 1, our models guarantee a perfect clas-

sification on the training sample for a large enough number of hyperplanes (m),

independently of the chosen kernel. This property is especially outstanding in the

linear kernel case, in which other multiclass SVM methods may not achieve a perfect

classification on some training samples.

2.3. Mathematical Programming formulations 47

Moreover, the same analysis can be applied to subset of classes, extending the

notions of specificity and sensibility in binary classification to a multiclass classi-

fication rule. Actually, if one desires to impose a minimum true rate on a given

subset of the classes, S ⊆ {y1, . . . , yk}, one can easily modify the previous constraint

as follows:

1

|S|
n∑

i=1
yi∈S

ξi ≤ 1− µ.

2.3.1 Building the classification rule

Keep in mind that the main goal of multiclass classification is to determine a decision

rule such that, given any observation, it is able to assign it a class, i.e., to determine

the optimal suitable assignment. Hence, once the solution of (MCSVM) is obtained,

the decision rule has to be derived. Given x ∈ Rp, two different situations are

possible: (a) x belongs to a cell with an assigned class; and (b) x belongs to a cell

with no training observations inside, so with non assigned class. For the first case,

x is assigned to its cell’s class. In the second case, different strategies to determine

a class for x are possible.

We propose the following assignment rule based on the same allocation methods

used in (MCSVM): observations are assigned to their closest well-classified repre-

sentatives. More specifically, let s(x) be the sign-pattern of x with respect to the

optimal arrangement of hyperplanes H∗ = {(ω∗1, ω∗10), . . . , (ω∗m, ω
∗
m0)} obtained from

(MCSVM), and let J = {j ∈ {1, . . . , n} : ξ∗j = 0} (here ξ∗ stands for the optimal

vector obtained by solving (MCSVM)). Then, among all the well-classified obser-

vations in the training sample, J , we assign to x the class of the one whose cell

is the closest (less separated from x). Such a classification of x can be obtained

by enumerating all the possible assignments, O(|J |) and computing the distance

measure over all of them. Equivalently, one can solve the following Mathematical

Programming problem:

min
∑
j∈J

m∑
r=1

s(xj)r+s(x)r=0,

γj |(ω∗r)′x+ ω∗r0|

s.t.
∑
j∈J

γj = 1,

γj ∈ {0, 1}, ∀j ∈ J,

where γj =

{
1 if x is assigned to the same cell as xj ,

0 otherwise.

48 Chapter 2. Multiclass Support Vector Machines

The integrality condition in the problem above can be relaxed, since the unique

constraint in the problem is totally unimodular and thus, the problem is a linear

programming problem. Clearly, the solution of the above problem gives the optimal

labelling of x with respect to the existing cells in the arrangement.

One could also consider other robust measures for such an assignment following

the same paradigm, as min-max error or the like.

2.3.2 Non-Linear classifiers

Finally, we analyze a crucial question in any SVM-based methodology, which is

whether one can apply the Theory of Kernels in our framework. Using kernels

means being able to map the observations (via some transformation ϕ : Rp → RP)

to a higher dimensional space, where data separation is more adequately performed.

If the desired transformation, ϕ, is known, one could transform the data and solve

the problem (MCSVM) with a higher number of variables. However, in binary

SVM, when formulating the dual of the classification problem, one can observe

that it only depends on the original data via the inner products of each pair of

observations (originally in Rp), i.e., through the amounts x′ixj for i, j = 1, . . . , n.

If the transformation ϕ is applied to the data, the observations only appear in the

(classical SVM) problem as ϕ(xi)
′ϕ(xj) for j = 1, . . . , n. Thus, kernels are defined

as generalized inner products as K(a, b) = ϕ(a)′ϕ(b) for each a, b ∈ Rp, and they can

be introduced using any of the well known families of kernel functions (see e.g., Horn

et al. (2018)). Moreover, Mercer’s theorem gives sufficient conditions for a function

K : Rp × Rp → R to be a kernel function (one which is constructed as the inner

product of a transformation of the features). This result allows one to construct

kernel measures that induce transformations. The main advantage of using kernels,

apart from a probably better separation in the projected space, is that in binary

SVM, the complexity of the transformed problem is the same as the original one.

More specifically, the dual problems have the same structure and the same number

of variables.

Although problem (MCSVM) is a MINLP, and then, duality results do not hold,

one can apply decomposition techniques to separate the binary and the continuous

variables and then, iterate over the binary variables by recursively solving certain

continuous and easier problems (see e.g., Benders (1962); Geoffrion (1972)). The

following result, whose proof can be found in the Apendix, states that our approach

also allows us to find nonlinear classifiers via the kernel tools.

This result is interesting by itself since links the general theory of nonlinear clas-

sifiers, very well known for the standard SVM theory with Euclidean distance, to

our multiclass framework. It is worth noting that for a function hH(H1, . . . ,Hm) =∑m
r=1 ‖ωr‖2 the usual kernel trick construction applies mutatis-mutandis. Never-

2.3. Mathematical Programming formulations 49

theless, as already pointed out, we elaborate our approach based on the natural

measure of margin that maximizes the minimum separation between classes, namely

hH(H1, . . . ,Hm) = max{‖ω1‖2, . . . , ‖ωm‖2}. This change implies that the mathe-

matical development known for the standard kernel trick does not carry over our

new approach without a further analysis. We prove below that in this new frame-

work one can also find nonlinear multiclass classifiers that, as in the standard SVM

case, only depend on the transformation by means of inner products of the original

data. Hence, extending the kernel trick to this multiclass framework.

Theorem 2.1. Let ϕ : Rp → RP be a transformation of the feature space. Then,

one can obtain a multiclass classifier which only depends on the original data by

means of the inner products ϕ(xi)
′ϕ(xj), for i, j = 1, . . . , n.

Proof. Note that once the binary variables of our model are fixed, the problem

becomes polynomial time solvable and it reduces to find the coordinates of the

coefficients and intercepts of the hyperplanes and the different misclassifying errors.

In particular, it is clear that the MINLP formulation for the problem is equivalent

to:

min
h,z,t,ξ

Φ(h, z, t, ξ)

s.t. (2.5)− (2.9),

hij ∈ {0, 1}, ∀i, j = 1, . . . , n,

tir ∈ {0, 1}, ∀i = 1, . . . , n, r = 1, . . . ,m,

zis ∈ {0, 1}, ∀i = 1, . . . , n, s = 1, . . . , k,

ξi ∈ {0, 1}, ∀i = 1, . . . , n.

where Φ is the evaluation of the margin and hinge-loss errors for any assignment

provided by the binary variables. That is,

Φ(h, z, t, ξ) = min
ω,ω0,e,d

1

2
‖ω1‖2 + c1

n∑
i=1

m∑
r=1

eir + c2

n∑
i=1

m∑
r=1

dir (φval)

s.t. (2.2), (2.10)− (2.13),

ωr ∈ Rp, ωr0 ∈ R, ∀r = 1, . . . ,m,

dir, eir ≥ 0, ∀i = 1, . . . , n, r = 1, . . . ,m.

The above problem would be separable provided that the first m− 1 constraints

(2.2) were relaxed. For the sake of simplicity in the notation, we consider the

50 Chapter 2. Multiclass Support Vector Machines

following functions, κ` : {0, 1} → R for ` = 1, 2, 3, defined as:

κ1(t) := T (1− t), κ2(t) := Tt, κ3(t) := −1 + Tt

for t ∈ {0, 1}. Note that κ1(0) = κ2(1) = T , κ1(1) = κ2(0) = 0, and that κ3(0) = −1,

κ3(1) = T − 1.

Based on the separability mentioned above, we introduce another instrumental

family of problems for all r = 2, . . . ,m, namely,

Φr(h, z, t, ξ, ω1) = min
ωr,ωr0,e,d

c1

n∑
i=1

eir + c2

n∑
i=1

dir

s.t.
1

2
‖ωr‖2 −

1

2
‖ω1‖2 ≤ 0,

−ω′irxi − ωr0 ≤ κ1(tir),∀i = 1, . . . , n,

ω′irxi + ωr0 ≤ κ2(tir),∀i = 1, . . . , n,

−ω′rxi − ωr0 − eir ≤ κ3(u+
ijr), ∀i, j = 1, . . . , n,

ω′rxi + ωr0 − eir ≤ κ3(u−ijr), ∀i, j = 1, . . . , n,

−ω′rxi − ωr0 − dir ≤ κ3(q+
ijr), ∀i, j = 1, . . . , n (yi = yj),

(SPr)

ω′rxi + ωr0 − dir ≤ κ3(q−ijr), ∀i, j = 1, . . . , n (yi = yj),

−dir ≤ 0, ∀i = 1, . . . , n,

−eir ≤ 0,∀i = 1, . . . , n,

ωr ∈ Rp,ωr0 ∈ R,

where for simplifying the notation we have introduced the auxiliary variables

u+
ijr := 3− tir − tjr − hij , u−ijr := 1 + tir + tjr − hij , q+

ijr = 3 + tir − hij − tjr − ξi and

q−ijr = 3 + tjr − hij − tir − ξi, for i, j = 1, . . . , n, and r = 2, . . . ,m.

Observe that Φr, apart from the first constraint, only considers variables associ-

ated to the rth hyperplane.

2.3. Mathematical Programming formulations 51

Moreover, we need another problem that accounts for the first part of Φ.

Φ1(h, z, t, ξ) = min
ω1,ω10,e,d

1

2
‖ω1‖2 + c1

n∑
i=1

ei1 + c2

n∑
i=1

di1

s.t. − ω′1xi − ω10 ≤ κ1(ti1),∀i = 1, . . . , n,

ω′1xi + ω10 ≤ κ2(ti1),∀i = 1, . . . , n,

− ω′1xi − ω10 − ei1 ≤ κ3(u+
ij1),∀i, j = 1, . . . , n,

ω′1xi + ω10 − ei1 ≤ κ3(u−ij1),∀i, j = 1, . . . , n,

− ω′1xi − ω10 − di1 ≤ κ3(q+
ij1), ∀i, j = 1, . . . , n (yi = yj), (SP1)

ω′1xi + ω10 − di1 ≤ κ3(q−ij1), ∀i, j = 1, . . . , n (yi = yj),

− di1 ≤ 0,∀i = 1, . . . , n,

− ei1 ≤ 0, ∀i = 1, . . . , n,

ω1 ∈ Rp, ω10 ∈ R.

Thus, using the above notation, (MCSVM) is equivalent to the following problem:

min
h,z,t,ξ,ω1

Φ1(h, z, t, ξ) +
m∑
r=2

Φr(h, z, t, ξ, ω1)

s.t. (2.5)− (2.9)

hij ∈ {0, 1}, ∀i, j = 1, . . . , n,

tir ∈ {0, 1}, ∀i = 1, . . . , n, r = 1, . . . ,m,

zis ∈ {0, 1}, ∀i = 1, . . . , n, s = 1, . . . , k,

ξi ∈ {0, 1}, ∀ = 1, . . . , n.

Observe that the above problem only accounts for ω1 and the binary variables.

Once they are fixed can be plugged into the SPr, r = 1, . . . ,m subproblems and then

it allows one to find the optimal values of the continuous variables. The elements

κ1(tir), κ
2(tir), κ

3(u+
ijr), κ

3(u−ijr), κ
3(q+

ijr), and κ3(q−ijr) are fixed constants once the

binary variables are fixed.

In order to solve the problem for a fixed set of binary variables we can proceed

recursively, solving independently (SPr) for all r = 2, . . . ,m, and then combining

their solutions with (SP1).

Therefore, to get that goal we apply Lagrangean duality to obtain and exact

dual reformulation. Indeed, relaxing the constraints of (SPr) with dual multipliers

µr ≥ 0 (assuming that µ0
r 6= 0) and denoting by αir = αir = µ1

ir−µ2
ir +

∑
j:yi=yj

(µ3
ijr−

µ4
ijr + µ5

ijr − µ6
ijr), for all i = 1, . . . , n and r = 1, . . . ,m; after some derivations that

52 Chapter 2. Multiclass Support Vector Machines

can be followed in Lemma 2.1, one can check that evaluating Φ for given values of

the binary variables, can be obtained solving the continuous optimization problem

(JSP). (All details can be found in Lemma 2.1.)

Next, we analyze how the evaluation of the function φ, given in (φval), depends

on the original data. In order to do that we find the optimal solutions of (JSP).

Dualizing the constraints that correspond to Φ1 with multipliers µ1 ≥ 0 and those

where the variables Γr appear, with dual multipliers γr, the Lagrangean function of

the problem (JSP) results in:

L(ω1, ω01, d, e;µ) =
1

2
‖ω1‖2(1−

m∑
r=2

γrµ
0
r) + c1

n∑
i=1

ei1 + c2

n∑
i=1

di1 +
m∑
r=2

Γr(1− γr)

+

m∑
r=2

 γr
2µ0

r

n∑
i,j=1

αirαjrx
′
ixj +

∑
i,j:u+

ijr=0

µ3
ijr

+
∑

i,j:u−ijr=0

µ4
ijr +

∑
i,j:q+

ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr


+

n∑
i=1

µ1
i1

(
− ω′1xi − ω10 − κ1(ti1)

)
+

n∑
i=1

µ2
i1

(
ω′1xi + ω10 − κ2(ti1)

)
+

n∑
i=1

µ3
ij1

(
− ω′1xi − ω10 − ei1 − κ3(ū+

ij1)
)

+
n∑
i=1

µ4
ij1

(
ω′1xi + ω10 − ei1 − κ3(ū−ij1)

)

+

n∑
i,j=1

µ5
ij1

(
− dir − ω′1xi − ω10 − κ3(q̄+

ij1)
)

+

n∑
i,j=1

µ6
ij1

(
− dir + ω′1xi + ω10 − κ3(q̄−ij1)

)
+

n∑
i=1

µ7
i1(−di1) +

n∑
i=1

µ8
i1(−ei1),

and its KKT optimality conditions reduce to:

• (1−∑m
r=2 γrµ

0
r)ω1 =

n∑
i=1

(
µ1
i1 − µ2

i1 +
∑

j:yi=yj

(µ3
ij1 − µ4

ij1 + µ5
ij1 − µ6

ij1)
)
xi.

2.3. Mathematical Programming formulations 53

•
n∑
i=1

(
µ1
i1 − µ2

i1 +
∑

j:yi=yj

(µ3
ij1 − µ4

ij1 + µ5
ij1 − µ6

ij1)
)

= 0.

•
∑

j:yi=yj

(µ3
ij1 + µ4

ij1) + µ8
i1 = c1, ∀i = 1, . . . , n.

•
∑

j:yi=yj

(µ5
ijr + µ6

ijr) + µ7
ir = c2, ∀i = 1, . . . , n.

• 1− γr = 0, ∀r = 2, . . . ,m.

• µ ≥ 0, γ ≥ 0.

Using the same notation as before, αi1 = µ1
i1−µ2

i1+
∑

j:yi=yj

(µ3
ij1−µ4

ij1+µ5
ij1−µ6

ij1),

for all i = 1, . . . , n, and simplifying the expressions using the KKT conditions and

the complementary slackness conditions we get that the strong dual of (JSP) is:

54 Chapter 2. Multiclass Support Vector Machines

max
ω,ω.0,d,e;µ

1

2(1−∑m
r=2 µ

0
r)

n∑
i,j=1

αi1αj1x
′
ixj +

∑
i,j:u+

ij1=0

µ3
ijr +

∑
i,j:u−ij1=0

µ4
ij1

+
∑

i,j:q+
ij1=0

µ5
ijr +

∑
i,j:q−ij1=0

µ6
ij1 +

m∑
r=2

 1

2µ0
r

n∑
i,j=1

αirαjrx
′
ixj

+
∑

i,j:u+
ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr +

∑
i,j:q+

ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr


s.t.

n∑
i=1

αir = 0, ∀r = 1, . . . ,m, (DJSP)

n∑
i=1

αi1xi = (1−
m∑
r=2

µ0
r)ω1,

n∑
i=1

αirxi = µ0
rωr,∀r ≥ 2,∑

j:u+
ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ c1, ∀i = 1, . . . , n,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ c2, ∀i = 1, . . . , n, r = 1, . . . ,m,

µ1
ir = 0, ∀i = 1, . . . , n, r = 1, . . . ,m, with t̄ir = 0,

µ2
ir = 0, ∀i = 1, . . . , n, r = 1, . . . ,m, with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q−+ij1=0

µ5
ijr −

∑
i,j:q−ij1=0

µ6
ijr,

∀i = 1, . . . , n,

µr ≥ 0,∈ R, ∀r = 1, . . . ,m.

Note that the objective function of (DJSP) only depends of the x-input data

through the inner products x′ixj for i, j = 1, . . . , n, and also the expressions of ω1

from the dual variables is given as:

(1−
m∑
r=2

µ0
r)ω1 =

n∑
i=1

αi1xi.

The dependence of ω1 with other ωr in the primal formulation is only through the

nonincreasing sorted values of ‖ω1‖, . . . , ‖ωm‖ in which we now that the largest

value is ‖ω1‖. Thus, solving the dual problem (DJSP) allows us to determine all

the optimal hyperplanes ωr, for all r = 1, . . . ,m. In case a transformation ϕ is

2.3. Mathematical Programming formulations 55

performed to the input data, the dependence of the data in the problem will be

through the inner products ϕ(xi)
′ϕ(xj) for all i, j = 1, . . . , n, and the kernel Theory

can be applied.

Lemma 2.1. The evaluation of Φ for given values of the binary variables t̄, ξ̄, h̄

and z̄ can be obtained solving the following continuous optimization problem:

Φ̂(h, z, t, ξ) = min

{
1

2
‖ω1‖2 + c1

n∑
i=1

ei1 + c2

n∑
i=1

di1 +
m∑
r=2

Γr

}

s.t.

−µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
′
ixj

+
∑

i,j:u+
ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr

+
∑

i,j:q+
ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr + c1

 ≤ Γr, ∀r ≥ 2,

− ω′1xi − ω10 ≤ κ1(ti1), ∀i = 1, . . . , n,

ω′1xi + ω10 ≤ κ2(ti1),∀i = 1, . . . , n,

− ω′1xi − ω10 − ei1 ≤ κ3(u+
ij1), ∀i, j = 1, . . . , n,

ω′1xi + ω10 − ei1 ≤ κ3(u−ij1),∀i, j = 1, . . . , n,

− ω′1xi − ω10 − di1 ≤ κ3(q+
ij1), ∀i, j = 1, . . . , n, (yi = yj), (JSP)

ω′1xi + ω10 − di1 ≤ κ3(q−ij1), ∀i, j = 1, . . . , n, (yi = yj),

− di1 ≤ 0, i = 1, . . . , n,

− ei1 ≤ 0, i = 1, . . . , n,

ω1 ∈ Rp, ω10 ∈ R,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr + µ8

ir ≥ c1, i = 1, . . . , n,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ c2,∀i = 1, . . . , n, r = 1, . . . ,m,

µ1
ir = 0,∀i = 1, . . . , n, r = 1, . . . ,m, with t̄ir = 0,

µ2
ir = 0,∀i = 1, . . . , n, r = 1, . . . ,m, with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr −

∑
i,j:q−ij1=0

µ6
ijr,

∀i = 1, . . . , n,

µ ≥ 0.

56 Chapter 2. Multiclass Support Vector Machines

where µr ≥ 0 are the dual multipliers of the constraints in Problem (SPr).

Proof. In order to prove the result, in what follows we derive the optimality condi-

tions of the Lagrangean dual of (SPr) for r = 2, . . . ,m. Relaxing the constraints of

(SPr) with dual multipliers µr ≥ 0, the Lagrangean function for given values of the

binary variables t̄, ξ̄, h̄ and z̄ (and consequently for values ū+, ū−, q̄+ and q̄−) is:

Lr(ωr, ω0r, d, e;µ) = c1

n∑
i=1

eir + c2

n∑
i=1

dir + µ0
r

(1

2
‖ωr‖2 −

1

2
‖ω1‖2

)
+

n∑
i=1

µ1
ir

(
− ω′rxi − ωr0 − κ1(tir)

)
+
∑
i=1

µ2
ir

(
ω′rxi + ωr0 − κ2(tir)

)
+

n∑
i,j=1

µ3
ijr

(
− ω′rxi − ωr0 − eir − κ3(ū+

ijr)
)

+
n∑

i,j=1

µ4
ijr

(
ω′rxi + ωr0 − eir − κ3(ū−ijr)

)
+

n∑
i,j=1

µ5
ijr

(
− dir − ω′rxi − ωr0 − κ3(q̄+

ijr)
)

+

n∑
i,j=1

µ6
ijr

(
− dir + ω′rxi + ωr0 − κ4(q̄−ijr)

)
+

n∑
i=1

µ7
ir(−dir) +

n∑
i=1

µ8
ir(−eir).

Therefore, the KKT optimality conditions read as:

• µ0
rωr =

n∑
i=1

(
µ1
ir − µ2

ir +
∑

j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr)
)
xi.

•
n∑
i=1

(
µ1
ir − µ2

ir +
∑

j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr)
)

= 0.

•
∑

j:yi=yj

(µ3
ijr + µ4

ijr) + µ8
ir = c1, ∀i = 1, . . . , n.

•
∑

j:yi=yj

(µ5
ijr + µ6

ijr) + µ7
ir = c2, ∀i = 1, . . . , n.

• µr ≥ 0.

First of all, we observe that if ‖ωr‖ < ‖ω1‖ at optimality then µ0
r = 0 and

actually, we do not have to consider the corresponding constraint nor the addend
µ0
r

2 (‖ωr‖2−‖ω1‖2) in the Lagrangean function. Hence, denoting by αir = µ1
ir−µ2

ir +∑
j:yi=yj

(µ3
ijr − µ4

ijr + µ5
ijr − µ6

ijr), for all i = 1, . . . , n, and assuming that µ0
r 6= 0, the

2.3. Mathematical Programming formulations 57

dual of (SPr) reads as:

max
ωr,ωr0,d,e;µ

− µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
′
ixj −

n∑
i=1

µ1
irκ

1(t̄ir)−
n∑
i=1

µ2
irκ

2(t̄ir)−
n∑
i=1

µ3
irκ

3(ū+
ijr)

−
n∑
i=1

µ4
irκ

4(ū−ijr)−
n∑

i,j=1

µ5
ijrκ

5(q̄+
ijr)−

n∑
i,j=1

µ6
ijrκ

6(q̄−ijr)

s.t.

n∑
i=1

αirxi = µ0
rωr,

n∑
i=1

αir = 0,∑
j:yi=yj

(µ3
ijr + µ4

ijr) ≤ c1,∀i = 1, . . . , n,

∑
j:yi=yj

(µ5
ijr + µ6

ijr) ≤ c2,∀i = 1, . . . , n,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr −

∑
i,j:q−ij1=0

µ6
ijr,

∀i = 1, . . . , n,

µr ≥ 0.

Let us simplify further the expressions above. We observe that:

∑
i

µ1
irκ

1(t̄ir) +
∑
i

µ2
irκ

2(t̄ir) = 0,

−
n∑

i,j=1

µ3
ijrκ

3(ū+
ijr)−

n∑
i,j=1

µ4
ijrκ

3(ū−ijr) =
∑
i,j:

ū+
ijr

=0

µ3
ijr +

∑
i,j:

ū−
ijr

=0

µ4
ijr,

and

−
∑
i,j

µ5
ijrκ

3(q̄+
ijr)−

∑
i,j

µ6
ijrκ

4(q̄−ijr) =
∑
i,j:

q̄+
ijr

=0

µ5
ijr +

∑
i,j:

q̄−
ijr

=0

µ6
ijr.

58 Chapter 2. Multiclass Support Vector Machines

Using those equations and substituting the problem becomes:

max
ωr,ω0,d,e;µ

− µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
′
ixj +

∑
i,j:u+

ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr

+
∑

i,j:q+
ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr

s.t.
n∑
i=1

αirxi = µ0
rωr,

n∑
i=1

αir = 0, ∀r = 1, . . . ,m,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ c1, ∀i = 1, . . . , n,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ c2,∀i = 1, . . . , n, r = 1, . . . ,m, (DSPr)

µ1
ir = 0, ∀i = 1, . . . , n, r = 1, . . . ,m with t̄ir = 0,

µ2
ir = 0, ∀i = 1, . . . , n, r = 1, . . . ,m with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr −

∑
i,j:q−ij1=0

µ6
ijr,

∀i = 1, . . . , n,

µ ≥ 0.

Using the strong duality in all the subproblems (SPr) for r = 2, . . . ,m, we can

obtain the following expansion of the join subproblem (SPr) that allows one the

evaluation of φ defined by φval.

2.4. Math-heuristic approach 59

Φ̂(h, z, t, ξ) = min

{
1

2
‖ω1‖2 + c1

n∑
i=1

ei1 + c2

n∑
i=1

di1)

+ max
ωr,ω0,d,e;µ

m∑
r=2

−µ0
r

2
‖ω1‖2 +

1

2µ0
r

n∑
i,j=1

αirαjrx
′
ixj +

∑
i,j:u+

ijr=0

µ3
ijr +

∑
i,j:u−ijr=0

µ4
ijr

+
∑

i,j:q+
ijr=0

µ5
ijr +

∑
i,j:q−ijr=0

µ6
ijr


s.t. − ωt1xi − ω10 ≤ κ1(ti1),∀i = 1, . . . , n,

ω′1xi + ω10 ≤ κ2(ti1),∀i = 1, . . . , n,

− ω′1xi − ω10 − ei1 ≤ κ3(u+
ij1), ∀i, j = 1, . . . , n,

ω′1xi + ω10 − ei1 ≤ κ3(u−ij1),∀i, j = 1, . . . , n,

− ω′1xi − ω10 − di1 ≤ κ3(q+
ij1), ∀i, j = 1, . . . , n (yi = yj),

ω′1xi + ω10 − di1 ≤ κ3(q−ij1), ∀i, j = 1, . . . , n (yi = yj),

− di1 ≤ 0,∀i = 1, . . . , n,

− ei1 ≤ 0, ∀i = 1, . . . , n,

ω1 ∈ Rp, ω10 ∈ R,∑
j:u+

ijr=0

µ3
ijr +

∑
j:u−ijr=0

µ4
ijr ≤ c1, ∀i = 1, . . . , n,

∑
j:q+

ijr=0

µ5
ijr +

∑
j:q−ijr=0

µ6
ijr ≤ c2,∀i = 1, . . . , n, r = 1, . . . ,m

µ1
ir = 0, ∀i = 1, . . . , 1, r = 1, . . . ,m, with t̄ir = 0,

µ2
ir = 0,∀i = 1, . . . , 1, r = 1, . . . ,m, with t̄ir = 1,

αir = µ1
ir − µ2

ir +
∑

i,j:u+
ij1=0

µ3
ijr −

∑
i,j:u−ij1=0

µ4
ijr +

∑
i,j:q+

ij1=0

µ5
ijr −

∑
i,j:q−ij1=0

µ6
ijr,

∀i = 1, . . . , n,

µ ≥ 0.

The usual transformation of the maximum in the objective function gives rise to the

equivalent reformulation of the above problem as (JSP). �

2.4 Math-heuristic approach

As mentioned in previous section, the computational burden for solving (MCSVM),

that is a mixed integer non linear programming problem (in which the nonlinearities

60 Chapter 2. Multiclass Support Vector Machines

come from the norm minimization in the objective function), is the combination of

the discrete aspects and the non-linearities in the model. In this section we pro-

vide some heuristic strategies that allow us to cut down the computational effort

by fixing some of the variables. It will also provide good-quality initial feasible so-

lutions when solving, exactly, (MCSVM) using a commercial solver. Two different

strategies are provided. The first one consists of applying a variable fixing strategy

to reduce the number of h-variables in the model (originally n2). The second ap-

proach consists of fixing to zero some of the z-variables. These nk variables allow

us to model assignments between observations and classes. The proposed method

is a math-heuristic approach, since after applying the adequate dimensionality re-

ductions, Problem (MCSVM) (or (MCSVMRL)) has to be solved. Also, although

our strategies do not ensure any kind of optimality certificate, they produce a very

good performance as will be shown in our computational experiments. Observe that

when classifying datasets, the measure of the efficiency of a decision rule, as ours,

is usually assessed by means of the accuracy of the classification on out-of-sample

data, whereas the objective value of the proposed model is just an approximated

measure of such an accuracy which cannot be computed only with the training data.

Algorithm 1 A math-heuristic approach.

1. Apply dimensionality reductions test based on algorithms 2 and 3.

2. Find an initial solution generating k separating hyperplanes.

3. Solve problem (MCSVM) (or (MCSVMRL)) up to a prescribed accuracy for

the train data.

In what follows we describe two strategies to reduce the dimensionality of the

problem. These approaches are based on applying clustering techniques to the data.

The methods are sensible to the number of clusters. For determining this parame-

ter, we run a hierarchical clustering method, using as termination criterion a given

squared Euclidean distance between the observations and their centroids.

2.4.1 Reducing the h-variables

Our first strategy comes from the fact that for a given observation xi, there may be

several possible choices for hij to assume the value one with the same final result.

Recall that hij could be equal to one whenever xj is a well-classified observation in

the same class as xi. The errors eir and dir are then computed by using the class of

xj but not the observation xj itself. Thus, if a set of well-classified observations of

the same class is close enough, only one of them can be the representative element

of the group. In order to illustrate the procedure, we show in Figure 2.8 (left) a

2.4. Math-heuristic approach 61

4-classes and 24-points instance in which the classes are easily identified by applying

any clustering strategy. In such a case (MCSVM) has (24 × 24 =) 576 h-variables,

but if we allow h only to take value 1 at a single point in each cluster, we obtain

the same result but reducing to 162 (24 × 6 + 18, where the 18 comes from the

observation mentioned in the formulation in which each well-classified observation

can be a representative element of itself) the number of variables. In Figure 2.8

(right), we show some clusters based on the data, and a (random) selection of a

unique point at each cluster for which the h-values are allowed to be one.

Figure 2.8: Clustering observations for reducing h-variables.

This strategy is summarized in Algorithm 2.

Algorithm 2 Strategy to reduce h-variables.

1. Cluster the dataset by approximated classes: C1, . . . , Cc.

2. Randomly choose a single point at each cluster, xij ∈ Cj , for j = 1, . . . , c.

3. Set hij = 0 for j 6∈ {i1, . . . , ic}.

Figure 2.9: Illustration of the strategy to reduce the z-variables.

62 Chapter 2. Multiclass Support Vector Machines

2.4.2 Reducing the z-variables

The second strategy consists of fixing to zero some of the point-to-class assignments

(z-variables). In the picture shown in Figure 2.9 (left), one can see a set of points

which seems reasonable to group in 5 clusters. One may notice that assignments from

the red class to the black class (and vice versa) are rarely going to occur following our

approach. This is due to the fact that given this configuration of points, our model

would provide a cell for red points located far from a black cell (otherwise it would

probably not be maximizing the distance between classes). Following this idea, we

derived a procedure to fix some of the z-variables to zero. Another observation

that comes from Figure 2.9, is that with respect to the red cluster we obtain the

following sorting on the set of distances: d1
green ≤ dblue ≤ dblack ≤ d2

green. Then,

since d1
green < d2

green, we may not take into account the distance to the green cluster

on the very right. Thus, we would fix to zero all zis variables that relate the red

cluster with the maximum of their minimum distance set, that is, in this case we

would fix to zero the zis-variables associated to the black cluster with the red cluster

(d1
green < dblack and dblue < dblack) and vice versa.

The above observations lead us to some strategies for fixing z-variables to zero

that we summarize in Algorithm 3.

Algorithm 3 Strategy to reduce z-variables.

1. Group the observations in L clusters, being each cluster formed by points of the

same class. Let a`s be the centroids of the cluster, ` = 1, . . . , L, s ∈ {1, . . . , k}.

2. Compute the squared Euclidean distance matrix between centroids: D =(
‖a`s − aqs̄‖2

)
.

3. For each cluster `, ` = 1, . . . , L, assigned to class s, compute the cluster q

with class s̄ 6= s such that ‖a`s − aqs̄‖2 is maximum and greater than a given

threshold. For each observation i in cluster q, set zis = 0. For each observation

ı̂ in cluster `, set ẑıs̄ = 0.

2.5 Experiments

In this section we report the results of our computational experience. We have

run a series of experiments to analyze the performance of our model in both real

and synthetic datasets. In what follows we describe the instances and the obtained

results.

2.5. Experiments 63

2.5.1 Real datasets

First, we study some real datasets widely used in the classification literature, and

that are available in the UCI Machine Learning repository (Lichman et al. (2013)).

Summarized information about the datasets is detailed in Table 2.1. In such a table

we report, for each dataset, the number of observations (n), the number of features

(p), the number of classes (k), the number of hyperplanes used in our separation

(m), and the number of hyperplanes required by the OVO methodology (mOVO).

Dataset n p k m mOVO

Forest 523 28 4 3 6
Glass 214 10 6 6 15
Iris 150 4 3 2 3
Seeds 210 7 3 2 3
Waveform 5000 21 3 2 3
Wine 178 13 3 2 3
Zoo 101 17 7 4 21

Table 2.1: Data sets used in our computational experiments.

For these datasets, we have run both the hinge-loss (MCSVM) and the ramp-loss

(MCSVMRL) models, measuring the margin with the `1 and the `2 norms. We have

performed a 5-cross validation scheme to test each of the approaches. Thus, the data

sets were split into 5 train-test random partitions. Then, the models were solved

for the training sample and the resulting classification rule was applied to the test

sample. We report the average accuracy, ACC, in percentage, of the 5 repetitions

of the experiment on test:

ACC =
#Well Classified Test Observations

#Test Observations
· 100.

The parameters of our models were chosen following a grid-based scheme. In

particular, we calibrate the value of m (number of hyperplanes to be located) and

the misclassification costs c1 and c2 in:

m ∈ {2, . . . , k}, c1, c2 ∈ {0.0001, 0.001, 0.001, 0.1, 0.5, 1, 5, 10, 100, 1000, 10000}.

The same methodology was also applied to the other methods: OVO, WW, CS

and LLW, calibrating the misclassifying cost c in {10i, i = −6, . . . , 6}.
The Mathematical Programming models solving the MCSVM methods were

coded in Python 3.6, and solved using Gurobi 7.5.2 on a PC Intel Core i7-7700

processor at 2.81 GHz and 16GB of RAM. The standard methods (OVO, WW and

CS) were applied using R-KernLab. Finally, LLW was applied using the software

package Lauer and Guermeur (2011).

64 Chapter 2. Multiclass Support Vector Machines

In Table 2.2 we report the average accuracies obtained with our 4 models:

((MCSVM) and (MCSVMRL) with `1 and `2 norms) and those obtained with OVO,

WW, CS and LLW. The first two columns (`1 RL and `1 HL) show the average

accuracies of our two approaches (Ramp Loss - RL- and Hing Loss -HL-) using the

`1-norm. On the other hand, the third and four columns (`2 RL and `2 HL) provide

the same results for the `2-norm. In the last four columns, we report the average ac-

curacies obtained with the OVO, WW, CS and LLW methods. The best accuracies

obtained for each dataset are bolfaced in Table 2.2.

One can observe that our methods always outperform the results obtained by

OVO, WW and CS, although the results are rather similar. Actually, running the

two samples proportion test among them, we can not ensure significant differences

in all cases. Comparing our methods with LLW the results are different. In four

out of the 7 databases (Forest, Glass, Iris and Wavefront) our methods are

superior to LLW with up to 10% significant differences with respect to the two

samples proportion tests. In the remaining three databases (Seeds, Wine and Zoo)

the results are similar with no statistical significant differences with respect to the

two samples proportion test.

The results indicate that these UCI databases are friendly for linear classifiers

(with the only exception of Glass) and thus all these methods perform reasonably

well on test prediction. Thus, it is not possible to establish a clear ranking of

these classification methods based only on these databases. In order to asses a

more complete comparative of the methods we continue the analysis in the following

subsection with a battery of more complex datasets.

Dataset `1 RL `1 HL `2 RL `2 HL OVO WW CS LLW

Forest 80.66 80.12 82.30 81.62 82.10 78.40 78.60 72.54
Glass 64.92 64.92 65.32 65.32 58.76 56.25 59.26 57.04
Iris 95.08 95.40 96.44 96.66 93.80 96.44 96.44 84.17
Seeds 93.66 93.66 93.52 93.52 91.02 93.52 93.52 95.46
Waveform 89.17 89.17 91.27 91.27 85.95 86.32 85.12 71.46
Wine 95.20 95.20 96.82 96.82 96.34 96.09 96.17 96.31
Zoo 89.75 89.75 89.75 89.75 87.44 87.68 87.68 91.53

Table 2.2: Average accuracies obtained for the real-world instances

2.5.2 Synthetic experiments

This section reports extra computational experiments over some synthetic instances

that allow us to establish some rank of the methods based on their accuracies. We

have generated 6 instances of 750 observations in R10 distributed as multivariate

normal distributions separated by a constant factor. In addition to these, we have

2.5. Experiments 65

also generated a bigger instance with 3000 observations belonging to 12 different

classes. The instances are denoted as XCY N where X is the number of classes

(ranging in {2, 3, 4, 7, 10, 12}) and Y the number of different multivariate normal

distributions (ranging in {4, 6, 8, 15, 20, 24}). All the instances are available at http:

//bit.ly/SynthData_MCSVM for benchmarking purposes. Observe that for each

instance, the class labels have been randomly assigned to the normal distributions.

For illustration purposes, a two-dimensional instance generated in the same way

that our 10-dimensional instances is shown in Figure 2.10: the data are generated

according to 20 normal distributions which are assigned to 10 classes.

Figure 2.10: A 2-dimensional illustration of our instances.

In Table 2.3 we report the average accuracies obtained with a 10-fold cross vali-

dation experiment, in which 75 observations are taken into the training samples and

675 in the test samples for the first six instances, whereas 300 and 2700 observations

are taken for the train and test samples in the last instance. As before, we have

compared our approach (with the Euclidean norm and Hinge-Loss misclassification

error) with the existing methodologies: OVO, WW, CS and LLW. The calibration

of the parameters was also done as in the previous section.

Dataset `2 HL m OVO WW CS LLW

2C4N 94.35 2 60.75 60.75 60.75 60.75
3C6N 85.74 3 39.47 41.69 39.03 36.50
4C8N 1 92.76 4 36.46 32.37 29.14 31.86
4C8N 2 91.78 4 48.54 35.14 34.69 39.14
7C15N 88.54 6 27.37 19.64 18.63 20.35
10C20N 85.81 7 29.73 16.17 15.37 15.10
12C24N 86.71 8 28.02 18.14 13.13 14.19

Table 2.3: Average accuracies obtained for the synthetic instances.

http://bit.ly/SynthData_MCSVM
http://bit.ly/SynthData_MCSVM

66 Chapter 2. Multiclass Support Vector Machines

One can observe in Table 2.3 that the results obtained with our approach are

much better than those obtained with the other approaches. The generation proce-

dure permits that, in the synthetic instances, separated clouds of points are assigned

to the same class. As it can be anticipated, our methodology adapts well to this

characteristic whereas the other approaches fail to handle these data. The reader

may observe that this type of data are common in real-world datasets. In particular,

many diseases are associated to low or high values of certain medical indices thus

fitting to this topology in which separated clusters of observations belong to the

same class.

Our main conclusion, from the results reported in Table 2.3, is that our method

is adequate for this type of synthetic data, highly outperforming OVO, WW, CS and

LLW. Moreover, the accuracy percentages are not only superior but they are also

statistically better with respect to the two samples proportion test with a significance

level of 1%.

2.6 Conclusions

In this chapter we propose a novel modeling framework for multiclass classification

based on the Support Vector Machine paradigm, in which the different classes are

linearly separated and the separation between classes is maximized. We propose

two approaches, that depend on the way to account for the misclassification error,

to compute an optimal arrangement of hyperplanes subdividing the space into cells,

and so that each cell is assigned to a class based on the training data. The models

result in Mixed Integer (Linear and Non Linear) Programming problems. Some

dimensionality reduction and preprocessing strategies are presented in order to help

solvers to find good (optimal) solutions of the corresponding problems. We also

prove that an analogue of the kernel trick can be extended to this framework. The

performance of this approach is illustrated on some well known datasets of the

multi-category classification literature as well as in some synthetic, but still realistic,

examples, in which our approach works remarkably well compared to the existing

methodologies.

Chapter 3

Multisource hyperplanes

location problem to fitting set of

points

68

70 Chapter 3. Multisource hyperplanes location problem to fitting set of points

In this chapter we study the problem of locating a given number of hyperplanes

minimizing an objective function of the closest distances from a set of points. We

propose a general framework for the problem in which norm-based distances between

points and hyperplanes are aggregated by means of ordered median functions. A

compact Mixed Integer Linear (or Non Linear) programming formulation is pre-

sented for the problem and also an extended set partitioning formulation with an

exponential number of variables is derived. We develop a column generation pro-

cedure embedded within a branch-and-price algorithm for solving the problem by

adequately performing its preprocessing, pricing and branching. We also analyze

geometrically the optimal solutions of the problem, deriving properties which are

exploited to generate initial solutions for the proposed algorithms. Finally, the re-

sults of an extensive computational experience are reported. The issue of scalability

is also addressed showing theoretical upper bounds on the errors assumed by replac-

ing the original datasets by aggregated versions.

3.1 Introduction

Location Analysis deals with the determination of the optimal positions of facilities

to satisfy the demand of a set of customers. The problems analyzed in the field

are diverse but can be usually classified as: Discrete Location problems (DLP) and

Continuous Location problems (CLP). In the first family, a set of potential facilities

is previously given and the goal is to select, among them, the optimal ones under

one or more criteria. The main tools for solving these problems come from Discrete

Optimization, or more precisely, from Integer Linear Programming. In the second

family of problems, the facilities have to be located in a continuous space and then,

convex analysis and global optimization tools are needed to solve the problems. The

most popular problem in the latter family is the Weber problem (Weber, 1909) in

which a single point-facility has to be positioned on the plane so as to minimize the

overall sum of the (Euclidean) distances to a set of (planar) demand points. The

applications of both types of location problems are vast. DLP are more common

in the location of physical facilities (as ATMs, supermarkets, stations, etc), while

CLP are more useful when locating facilities in telecommunication networks (as wifi

routers, servers, etc) or even to provide the sets of potential facilities for a DLP.

In this chapter we study a problem that falls into the family of CLP. More

specifically, we focus on the determination of optimal hyperplanes fitting a given

finite set of demand points. The location of a single hyperplane is a classical problem

that has been addressed in different fields. On the one hand, this problem clearly

extends the classical Weber problem, but where instead of locating zero-dimensional

facilities one looks for locating higher dimensional structures. On the other hand, in

3.1. Introduction 71

Statistics and Data Analysis, the determination of a hyperplane minimizing the sum

of squares of vertical residuals is key for estimating a multivariate linear regression

model using the Least Sum of Squares (Gauss (1877)). One can also find useful

applications, both in Location Science and Data Analysis, for the problem of finding

optimal hyperplanes fitting a set of points. For instance, Espejo and Rodŕıguez-Ch́ıa

(2011) deals with the location of a rapid transit line on the plane to be used as an

alternative transportation mean. Analogously, SVM is also based on constructing a

hyperplane minimizing certain loss functions of the distances to a given set of points.

Scanning the literature one can find that most of the attention has been devoted

to finding hyperplanes with any of the following assumptions (see e.g., (Martini and

Schöbel, 1998; Schöbel, 2013, 2003, 2015; Martini and Schöbel, 2001; Brimberg et

al., 2002, 2003; Blanco et al., 2018)): (a) the problem is embedded on the plane; (b)

a single hyperplane has to be located; (c) the vertical distance between each point

and the hyperplane is considered; or (d) the residuals are aggregated by the sum or

the maximum operators. Our goal here is to study a generalization of this problem

in which, we construct simultaneously a given number, m, of hyperplanes in any

finite dimensional space, Rp, by minimizing a rather general globalizing function,

an ordered median function, of the residuals from the points to the fitting bodies.

Ordered median functions aggregate the set of distances from the demand points

to their closest hyperplanes (residuals) by means of a sorting, weighting averaging

operation: distances are sorted and then their weighted sum is performed. The sum

and maximum functions can be easily represented as ordered median functions with

adequate choices of the weights inducing the median and center objective functions.

Also, the k-centrum (sum of the k-th largest distances) or the cent-dian (convex com-

bination of the sum and the max criteria) can be cast within this family of functions.

In addition, different point-to-hyperplane norm-based distances are considered as a

measure of the residuals of the fitting. Thus, this chapter naturally extends the

analysis performed in Blanco et al. (2018) where the location of a single ordered

median hyperplane was studied.

As in the classical Weber problem (Weber, 1909), the extension from the location

of one to several facilities (the so-called multisource problem) is not trivial (Blanco

et al., 2016). Actually, while the classical single-facility point location problem with

standard distances (`p, polyhedral, etc) can be formulated as a Second Order Cone

programming problem (Blanco et al., 2014) (being then polynomially solvable), its

multisource version becomes a non-convex NP-hard problem (Blanco et al., 2016).

In the case of locating hyperplanes, the situation is even harder, since the location

of a single hyperplane is, in general, an NP-hard problem (see Blanco et al. (2018))

whose exact solution can only be obtained for vertical and polyhedral norm based

residuals.

72 Chapter 3. Multisource hyperplanes location problem to fitting set of points

The problem considered in this chapter is not fully new although, in our opin-

ion, it has not been fully analyzed and there is room for further improvement. In

particular, similar problems have been analyzed from the Data Analysis field, and

different names have been adopted. In the so-called Clusterwise Linear Regression

(CLR) problem, a set of observations is provided and the goal is to cluster them by

means of the sum of the squared residuals of several multivariate regression models

(Späth, 1982; Hennig, 1999; Carbonneau et al., 2014; Park et al., 2017; Gitman et

al., 2018). In (Bertsimas and Shioda, 2007), classification and regression are simul-

taneously performed, and also clustering by classical linear regression approaches.

Finally, in (Bradley and Mangasarian, 2000), the clusters are constructed based on

the closest distances to optimal hyperplanes in a given p-dimensional space. In the

so-called Piecewise Linear Regression problem, a dependent variable is partitioned

into j intervals and it adjusts linear bodies to each of them (see (McGee and Carleton,

1970)). However, only local search heuristic algorithms have been proposed for these

problems, alternating clustering and regression techniques sequentially. Carbonneau

et al. (2014) present a column generation algorithm for the (planar) clusterwise re-

gression problem with sum of squared residuals which combined with some heuristic

strategies outperforms previous results in the literature. Moreover, Park et al. (2017)

generalized the clusterwise regression problem by allowing each entity to have more

than one observation and propose an exact Mathematical Programming-based ap-

proach relying on column generation, and several heuristics.

In this chapter we provide a general framework for the simultaneous location of

several hyperplanes to fit a data set using Mathematical Programming tools. We

formulate the problem by using general norm-based error measures of the distance

from points to hyperplanes and ordered median functions to aggregate the residuals.

This approach generalizes both the standard multisource regression (Carbonneau et

al., 2014; Park et al., 2017) and also the more recent proposal for the m = 1 case

(Blanco et al., 2018).

The rest of the chapter is organized as follows. In section 3.2 we introduce the

problem and fix the notation for the rest of the sections. This section also contains

two illustrative examples taken from the literature. Section 3.3 is devoted to a first

compact formulation for the problem. This formulation has a polynomial number of

variables and constraints but its performance is not always good since it has a large

integrality gap. For that reason, in section 3.4 we develop an alternative formulation

with an exponential number of variables that is solved (exactly, for vertical and

polyhedral-norm based residuals) within a branch-and-price (B&P) algorithm using

column generation at each node of the branching tree. This section describes all the

elements of this B&P: initialization, pricing (exact and heuristic) and branching.

Section 3.5 reports our computational results based on two different datasets: the

3.2. Multisource location of hyperplanes 73

classical 50 points dataset by Eilon et al. (1971) and another synthetic dataset

randomly generated. Section 3.6 is devoted to explore scalability issues and finally

section 3.7 draws some conclusions and future extensions.

3.2 Multisource location of hyperplanes

In this section we describe the problem under study and fix some set-related notation

used in the chapter.

We are given a set of n observations/demand points (denoted as points from

the rest of the chapter) in Rp, {x1, . . . , xn} ⊂ Rp and m ∈ Z+ (p > 0). Our goal

is to find m hyperplanes in Rp that minimize an objective function of the closest

distances from points to hyperplanes. We denote the index sets of demand points

and hyperplanes by I = {1, . . . , n} and J = {1, . . . ,m}, respectively. Given ω ∈ Rp
and ω0 ∈ R, we denote by H(ω, ω0) = {z ∈ Rp : ω′z + ω0 = 0}, the hyperplane in

Rp with coefficients ω and intercept ω0.

Several elements are involved when finding the best m hyperplanes to fit a set of

demand points. In what follows we describe them:

• Residuals: The point-to-hyperplane measure of closeness. Given a demand

point x = (x1, . . ., xp) ∈ Rp and a hyperplane H(ω, ω0), how far/close is the

point from the hyperplane? The classical fitting methods use the so-called

vertical-distance measure, which given a reference coordinate, say the p-th,

computes the deviation xp + ω0
ωp

+
∑p−1

`=1
ω`
ωp
x` for all i ∈ I, whenever ωp 6= 0.

However, it has been already proposed that the use of more general distance

measures based on norms may be advisable. In particular, some authors (see

Blanco et al. (2020c)) have shown the usefulness of norm-based distances,

such as polyhedral, or `p-distances (p ≥ 1). Amongst them, we mention, for

their importance, the Manhattan (`1-norm), the Tchebyshev (`∞-norm) or the

Euclidean (`2-norm) distances.

Thus, for a point x ∈ Rp and a hyperplane H(ω, ω0), we consider the residual

from x to H(ω, ω0) as:

εx(ω, ω0) = D
(
x,H(ω, ω0)

)
:= min{D(x, y) : y ∈ H(ω, ω0)},

where D is a norm-based distance or the vertical distance in Rp (see Mangasar-

ian (1999); Blanco et al. (2018) for further details on this projection).

• Allocation Rule: Given a set of hyperplanes and a point, once the residuals to

each of the hyperplanes are calculated, one has to allocate the point to a single

hyperplane. Different alternatives can be considered, as the allocation to the

74 Chapter 3. Multisource hyperplanes location problem to fitting set of points

closest or the furthest hyperplane. In our framework we assume, as usual in

Location Analysis, that each point is allocated to the hyperplane with the

smallest residual, i.e., for a point x ∈ Rp and an arrangement of hyperplanes

H =
{
H(ωj , ω0j) : j ∈ J

}
, the final residual point-to-hyperplanes is computed

as:

εx

(
H
)

= min
j∈J

εx(ωj , ω0j),

and the hyperplane, H(ω, ω0j), reaching such a minimum is the one where

x is allocated (in case of ties among more than one hyperplane, a random

assignment is performed).

• Aggregation of Residuals: Given a set of points and an arrangement of hyper-

planes, once the residuals are computed with respect to the arrangement, and

in order to find the m hyperplanes that best fit the n data points, a global mea-

sure of goodness must be chosen for aggregating the residuals. The classical

aggregation functions are the sum or maximum of squared residuals. Most of

these criteria can be cast within the framework of the family of ordered median

aggregation criteria. More explicitly, given x1, . . . , xn ∈ Rp, an arrangement of

hyperplanes H =
{
H(ωj , ω0j) : j ∈ J

}
, and λ ∈ Rn+ (with λ1 ≥ · · · ≥ λn ≥ 0),

we can extend the definition presented in Chapter 1 and consider λ-ordered

median function defined as:

OMλ(ε1, . . . , εn) =

n∑
i=1

λi e
ρ
(i), 1 ≤ ρ <∞ (OMF)

where e(1), . . . , e(n) are defined such that e(i) ∈ {εx1(H), . . . , εxn(H)} for all

i ∈ I and e(1) ≥ · · · ≥ e(n). Observe that particular cases of ordered median

problem for ρ = 1 (we consider ρ = 1 for the rest of the chapter) are the sum

(λi = 1, i = 1, . . . , n), the maximum (λ1 = 1, λi = 0, i 6= 1), the k-centrum

(λi = 1, i = 1, . . . , k, λj = 0, j > k) or the ν-centdian, a convex combination

of sum and max criterion (λ1 = 1, λi = ν, i = 2, . . . , n), for 0 < ν < 1.

Summarizing all the above considerations, the Multisource Ordered Median Fit-

ting Hyperplanes Problem (MOMFHP) can be stated as the problem of finding

ω1, . . . , ωm ∈ Rp and ω01, . . . , ω0m ∈ R solving the following optimization problem:

min

n∑
i=1

λi e(i) (MOMFHP0)

s.t. ei ≥ min
j∈J

εxi(ωj , ω0j), ∀i = 1 . . . , n,

ω ∈ Rp, ω0j ∈ R, ∀j = 1, . . . ,m,

ei ≥ 0, ∀i = 1 . . . , n.

3.2. Multisource location of hyperplanes 75

where ei represents the residual for the i-th point in the data set, for all i = 1 . . . , n.

MOMFHP appears when different trends or clouds have to be differentiated on

the demand points, and then, different hyperplanes want to be use to fitting to

the points, such that the global error assumed, when the points are allocated to

their closest hyperplanes, is as small as possible. In Figure 3.1 we illustrate a set of

demand points in the plane which could be clustered into three groups according to

different linear trends which are drawn in gray color.

Figure 3.1: Illustration of a feasible solution of our problem for a set of demand
points.

In the following example we illustrate the problem under analysis in two classical

instances.

Example 3.1. In the seminal paper by McGee and Carleton (1970), the authors

illustrate the Clusterwise Linear Regression method with two instances. The first

instance, (Quandt, 1958), consists of 20 points on the plane, {x1, . . . , x20} generated

as follows:

xi2 = 2.5 + 0.7xi1 + εi, i = 1, . . . , 12, and

xi2 = 5 + 0.5xi1 + εi, i = 13, . . . , 20,

where ε is randomly generated as a univariate normal distribution with mean 0 and

standard deviation 1.

We run our model with this dataset choosing as residuals the `1-norm projec-

tion of the data onto the hyperplanes, and four different ordered median crite-

76 Chapter 3. Multisource hyperplanes location problem to fitting set of points

ria: Weber, Center, dn2 e-Centrum (λ = (

dn
2
e︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)) and 0.9-centdian (λ =

(1, 0.9, . . . , 0.9)). The results are shown in Figure 3.2.

Figure 3.2: Lines obtained for Quandt dataset for `1-norm residuals and different
criteria.

McGee and Carleton (1970) also analyzed a real instance, the Boston dataset. It

was motivated by the fact that regional stock exchanges were hurt by the abolition of

give-ups in 1968. The model tries to analyze the dollar volume of sales on the Boston

Stock Exchange with respect to dollar volumes for the New York and American Stock

Exchanges, based on a dataset with 35 monthly observations from January 1967 to

November 1969. One can observe, in the results shown in (Figure 3.3), that our

models are able to adequately cast the trends of these observations.

3.3 A compact formulation for (MOMFHP0)

In this section we provide a Mathematical Programming formulation for (MOMFHP0).

The main components which involve decisions in this problem, and that have to

be adequately included in a suitable formulation, are the representation of general

norm-based residuals and the aggregation of residuals using an ordered median func-

tion. We describe here how to incorporate all these elements into a Mathematical

Programming formulation which in many cases is suitable to be solved with any of

the available MIP/MINLP solvers.

3.3. A compact formulation for (MOMFHP0) 77

Figure 3.3: Lines obtained for Boston dataset for `1-norm residuals and different
criteria.

Theorem 3.1. Let {x1, . . . , xn} ⊆ Rp, m ∈ Z+ (m > 0) and λ1 ≥ · · · ≥ λn ≥ 0.

Then, (MOMFHP0) can be equivalently reformulated as follows:

min
n∑
k=1

uk +
n∑
i=1

vi (MOMFHP)

s.t. uk + vi ≥ λkei, ∀i, k = 1, . . . , n, (3.1)

ei ≥ εxi(ωj , ω0j)−Mij(1− zij), ∀i = 1, . . . , n, j = 1, . . . ,m, (3.2)
m∑
j=1

zij = 1, ∀i = 1, . . . , n, (3.3)

zij ∈ {0, 1}, ∀i = 1, . . . , n, j = 1, . . . ,m, (3.4)

ei ∈ R+, ∀i = 1, . . . , n, (3.5)

ωj ∈ Rp, ω0j ∈ R, ∀j = 1, . . . ,m, (3.6)

uk, vi ∈ R, ∀i, k = 1, . . . , n. (3.7)

where Mij are upper bounds on the residual values εxi(ωj , ω0j), ∀i = 1, . . . , n, j =

1, . . . ,m.

Proof. First, observe that given a set of residuals e1, . . . , en ≥ 0, the evaluation of

the objective function in (MOMFHP0) requires sorting and averaging them (the

78 Chapter 3. Multisource hyperplanes location problem to fitting set of points

residuals) with the λ-weights. In Blanco et al. (2014), the authors proved that the

computation of
n∑
k=1

λke(k) can be done by means of the optimal value of the following

Linear Programming Problem (see Blanco et al. (2014)):

n∑
k=1

λke(k) =


min

n∑
k=1

uk +

n∑
i=1

vi

s.t. uk + vi ≥ λkei, ∀k, i = 1, . . . , n,

uk, vi ∈ R, ∀k, i = 1, . . . , n.

Thus, the objective function in (MOMFHP0) can be replaced by the above objective

function and the constraints incorporated to the rest of constraints in the model.

In order to identify the point-to-hyperplane allocation we consider the following

set of binary variables:

zij =

{
1 if the i-th observation is assigned to H(ωj , ω0j),

0 otherwise,

∀i = 1, . . . , n, j = 1, . . . ,m.

Note that with our allocation rule, an observation can be always assigned to a

hyperplane that reaches the minimum residual among all the possible assignments

to the m hyperplanes.

Finally, using the variables previously described, the objective function computes

the ordered median function of the residuals. Constraints (3.2) assure the correct

definition of the residuals ei and the allocation to their correct hyperplane. Indeed,

if zij = 1 this constraint forces ei to take the value of εxi(ωj , ω0j). Constraints (3.3)

assure that only one of these variables will be equal to 1, which in turns forces by

the minimization character of the objective function to be the one with the correct

assignment. Finally, (3.4)–(3.7) are the domains of the variables.

Remark 3.1. Observe that the different choices of ordered median functions are

embedded into constraint (3.1). In some particular cases, this formulation can be

simplified avoiding useless variables and constraints.

• m-Median Problem (λ = (1, . . . , 1)) In this case, since the ordering does

not affect the aggregation operator, the u and v-variables can be avoided, and

the problem simplifies to:

min

n∑
i=1

ei

s.t. (3.2)− (3.6).

3.3. A compact formulation for (MOMFHP0) 79

• m-Center Problem (λ = (1, 0, . . . , 0)): For the Center problem, one can

represent the objective function, maxi∈I ei, by using an auxiliary variable, t,

in the usual manner:

min t

s.t. (3.2)− (3.6),

t ≥ ei, ∀i = 1, . . . , n.

• m-k-Center Problem (λ = (

k︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)): For the m-Centrum problem,

in Ogryczak and Tamir (2003) the authors derive a formulation similar to the

one for the center problem:

min k t+
n∑
i=1

ri

s.t. (3.2)− (3.6),

ri ≥ ei − t, ∀i = 1, . . . , n,

t ≥ 0,

ri ≥ 0, ∀i = 1, . . . , n.

Note also that the explicit expression of εxi(ωj , ω0j) and then, the difficulty of the

optimization problem above, depends (apart from the binary variables that appears

in the problem) on the choice of the distance measure D which defines the residuals

of the fitting. In what follows we describe general shapes for the distances inducing

the residuals and how they can be incorporated to (MOMFHP).

3.3.1 Vertical Distance Residuals

Although not rigorously a distance measure, the so-called vertical distance is a very

common measure for computing the residuals in Data Analysis. The vertical distance

is computed as the absolute deviation, with respect to one of the coordinates, of the

hyperplane. Without loss of generality, we consider that the deviation is computed

with respect to the p-th coordinate, and then, one can assume that ωjp = −1 for

j ∈ J . Given x ∈ Rp and an hyperplane H(ω, ω0) the vertical distance residual is

calculated as:

εx(ω, ω0) =

∣∣∣∣∣xp − ω0 −
p−1∑
`=1

ω`x`

∣∣∣∣∣ .
This measure can be incorporated to (MOMFHP), replacing (3.2) by the follow-

80 Chapter 3. Multisource hyperplanes location problem to fitting set of points

ing set of linear constraints:

ei ≥ xip − ω0j −
p−1∑
`=1

ωj`xi` −Mij(1− zij),∀i = 1, . . . , n, j = 1, . . . ,m,

ei ≥ −xip + ω0j +

p−1∑
`=1

ωj`xi` −Mij(1− zij),∀i = 1, . . . , n, j = 1, . . . ,m, .

Thus, becoming (MOMFHP) a Mixed Integer Linear Programming problem.

Remark 3.2 (Support Vector Regression). One particular case in which verti-

cal residuals are used in Machine Learning tools is in Support Vector Regression.

Drucker et al. (1997) proposed this methodology for obtaining regression models based

on Support Vector Machines. The method is based on fitting a hyperplane to the set

of points {x1, . . . , xn} with a modified vertical distance, such that only the residuals

greater than a given threshold ∆ ≥ 0 are accounted for, apart from maximizing the

separation between the observations at each of the sides of the hyperplanes. SVR

can be modeled as follows:

min
1

2
‖ω‖22 + c

n∑
i=1

ei

s.t. ei ≥
∣∣∣∣∣xip −

p−1∑
`=1

ω`xi` − ω0

∣∣∣∣∣−∆, ∀i = 1, . . . , n,

ω ∈ Rp−1, ω0 ∈ R,
ei ≥ 0, ∀i = 1, . . . , n,

where c is a given parameter.

Observe that the measure used in this approach is nothing but a truncated version

of the vertical distance:

εx(ω, ω0) =


|xp − α−

p−1∑
`=1

ω`x`| if |xp − ω0 −
p−1∑
`=1

ω`x`| > ∆,

0 otherwise.

Thus, this shape of the residuals can also be embedded in our multisource frame-

work, just by adding to the objective functions the terms measuring the norms of the

coefficients of the hyperplanes, i.e., replacing the objective function in (MOMFHP)

by

1

2

m∑
j=1

‖ωj‖22 +
n∑
i=1

λi e(i).

In case m = 1 and λ = (1, . . . , 1), we obtain classical SVR taking also into account

3.3. A compact formulation for (MOMFHP0) 81

the parameter ∆, but more flexible counterparts can be generated with our framework.

3.3.2 Norm-based Residuals

For general norm-based distances, a given observation x ∈ Rp and a set of m hyper-

planes defined by ω1, . . . , ωm ∈ Rp and ω01, . . . , ω0m ∈ R inducing the arragement

H =
{
H(ωj , ω0j) : j ∈ J

}
, based on (Mangasarian, 1999, Theorem 2.1), the projec-

tion, x̂, of x consistent with the residual ε induced by a norm ‖ · ‖ is

x̂ = x−0 −min
j∈J

ω0j + ω′jx

‖(ωj1, . . . , ωjp)‖∗
κ(ωj),

where ‖ · ‖∗ is the dual norm of ‖ · ‖ and κ(ω) = arg max
‖z‖=1

(ωj1, . . . , ωjp)
′z. Moreover,

the residuals can be written as:

εx(H) = min
j∈J

|ω0j + ω′jx|
‖(ωj1, . . . , ωjp)‖∗

. (3.8)

Remark 3.3 (`1-norm case). In the case of the `1-norm residuals, the expression

above reduces to:

εxi(ωj , ω0j) = min
j∈J

|ω0j + ω′jxi|
max
`=1,...,p

|ωj`|
, (3.9)

and constraints (3.2) can be replaced in (MOMFHP) by:

ei ≥ ω0j +

p∑
`=1

ωj`xi` −Mij(1− zij), ∀i = 1, . . . , n, j = 1, . . . ,m, (3.10)

ei ≥ −ω0j −
p∑
`=1

ωj`xi` −Mij(1− zij), ∀i = 1, . . . , n, j = 1, . . . ,m, (3.11)

ωj` = η+
j` − η−j`, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.12)

η+
j` ≤ Uj` ξj`, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.13)

η−j` ≤ Uj` (1− ξj`), ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.14)

θj` = η+
j` + η−j`, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.15)

θj` ≤ 1, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.16)

θj` ≥ µj`, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.17)
p∑
`=1

µj` = 1, ∀j = 1, . . . ,m, (3.18)

η+
j`, η

−
j`, θj` ∈ R

p
+, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.19)

µj`, ξj` ∈ {0, 1}, ∀j = 1, . . . ,m, ` = 1, . . . , p, (3.20)

82 Chapter 3. Multisource hyperplanes location problem to fitting set of points

where Mij and Uj` are big enough constants.

We have introduced in the above formulation some new variables to model the

`∞-distance in the denominator of the residual (3.9). In particular, for each j =

1, . . . ,m, the p-dimensional variable θj models the vector (|ωj1|, . . . , |ωjp|) for which

the maximum has to be taken; η+
j` represents max{ωj`, 0} and on the other hand η−j`

the amount max{−ωj`, 0}, for all ` = 1, . . . , p. Clearly, one has thatωj = η+
j − η−j

and θj = η+
j + η−j as imposed in constraints (3.12)-(3.15), where the auxiliary

variables ξ enforce that for each coordinate, either the positive or the negative part

assumes value zero (avoiding other types of decompositions). Constraints (3.16),

(3.17) and (3.18) assure that maxj∈J |ωj | = 1 via the auxiliary binary variables

µj` ∈ {0, 1} that take value 1 in exactly one position (the one where the maximum

is achieved).

Thus, the formulation assures that maxl=1,...,p |ωj`| = 1, and then, the expression

of the residual becomes εxi(ωj , ω0j) = min
j∈J
|ω0j + ω′jxi| for all i = 1, . . . , n, and

j = 1, . . . ,m.

In this case, also (MOMFHP) becomes a Mixed Integer Linear Programming

problem.

3.4 Set partitioning formulation

In this section we alternatively reformulate (MOMFHP0) as a set partitioning prob-

lem (SPP) (see e.g., Balas and Padberg (1976)). Our SPP is based on the idea

that once the m clusters of demand points are known , (MOMFHP0) reduces to

finding the optimal hyperplanes for each of those clusters in which all the residuals

are aggregated by means of an ordered median function. In particular, let S be a

cluster of observations S ⊆ I. We denote by eS the cost of cluster S, i.e. the overall

aggregation of the residuals of the data in S, and for each i ∈ S, eiS the marginal

contribution of observation i in the cluster (eS =
∑
i∈S

eiS). Finally, we define the

variables

yS =

{
1 if cluster S is selected,

0 otherwise
, ∀S ⊆ I.

3.4. Set partitioning formulation 83

The set partitioning formulation for (MOMFHP0) is:

min
∑
i∈I

∑
S⊆I:S3i

λie
(i)
S yS (3.21)

s.t.
∑
S⊆I

yS = m, (3.22)

∑
S⊂I:
S3i

yS = 1, ∀ i ∈ I, (3.23)

yS ∈ {0, 1}, ∀S ⊆ I. (3.24)

where e
(i)
S is the i-th element in the sorted sequence of (active) residuals. In the above

formulation the objective function computes the ordered median aggregation of the

residuals (each demand point i allocated to its cluster S). Constraint (3.22) assures

that m clusters have to be computed and constraints (3.23) that each observation

belongs to a single cluster.

In the same manner that we formulate the ordered median objective function

in the compact formulation we can equivalently reformulate the problem above as

follows:

min
n∑
k=1

uk +
n∑
i=1

vi (3.25)

s.t. uk + vi ≥ λk
∑
S3k

eiSyS , ∀i, k ∈ I, (3.26)∑
S⊆I

yS = m, (3.27)

∑
S⊂I:
S3i

yS = 1, ∀ i ∈ I, (3.28)

yS ∈ {0, 1}, ∀S ⊂ I,
uk, vi ∈ R, ∀i, k ∈ I.

This problem will be referred to as the Master Problem.

The problem above, although adequately solves the problem of finding the m

hyperplanes once the optimal clusters are computed, has an exponential number of

variables (and coefficients to incorporate to constraints (3.26)), and then it is hard

to solve unless the number of points is very small. Thus, we propose a column

generation (CG) approach for solving, efficiently, the problem above by adding new

variables to the model as needed and not considering all of them at the same time.

A pseudocode indicating the general procedure is shown in Algorithm 4.

Initially, a (small) subset of the y-variables is considered (those indexed by the

sets in S0) and a relaxed version of the problem is solved with only these variables.

84 Chapter 3. Multisource hyperplanes location problem to fitting set of points

It implies to compute the amounts eiS for all S ∈ S0 and i ∈ S. Next, it has to be

checked whether the optimality condition is satisfied. If it is not the case, a new

set of variables is found and added to the relaxed problem and the procedure is

repeated.

Algorithm 4 General Scheme for the CG approach.

Data: {x1, . . . , xn} ⊆ Rp, m ∈ Z+ (m > 0), λ1 ≥ · · · ≥ λn ≥ 0.

1. Preprocessing: Compute a set of initial solutions for the problem S0 =
{S1, . . . , SK} with Sk ⊆ I for all k = 1, . . . ,K.

2. Relaxed Master: Solve the relaxed master problem:

min

n∑
k=1

uk +

n∑
i=1

vi

s.t. uk + vi ≥ λk
∑
S3k

eiSyS , ∀i, k ∈ I,∑
S∈S0

yS = m, (RMP)

∑
S∈S0:
S3i

yS = 1, ∀ i ∈ I,

0 ≤ yS ≤ 1, ∀S ∈ S0.

3. New Columns : Check if new columns have to be added to (RMP).

If: Optimality is satisfied
C∗ = {S ⊆ I : y∗S = 1}.
Else: Update S0 with the new
columns and go to 2.
End

Result:{H(ωS , ω0S) : S ∈ C∗}.

The crucial steps in the implementation of the CG approach are the following:

1. Preprocessing: Generation of initial feasible solutions in the form of initial clus-

ters (and their costs). This step may be improved by the theoretical properties

verified by the corresponding optimal hyperplanes. We have implemented dif-

ferent initial solutions based on properties of the optimal solution of median

and center hyperplanes (see Section 3.4.2).

2. Pricing: As already mentioned, in set partitioning problems, instead of solv-

ing initially the problem with the whole set of exponentially many variables,

the variables have to be incorporated on-the-fly by solving adequate pricing

3.4. Set partitioning formulation 85

subproblems derived from previously computed solutions until the optimality

of the solution is guaranteed.

3. Branching: The rule that creates new nodes of the branch and bound tree when

a fractional solution is found at a node of the search tree. In this problem, we

have adapted the Ryan-and-Foster branching complemented by a secondary

ad-hoc branching in some special situations.

3.4.1 Preprocessing

In the preprocesing phase, we generate different types of initial solutions, which

implies the initialization of the CG algorithm with a given set of variables.

We consider different types of initial solutions derived from the construction of

hyperplanes fitting the sets of points. First, to initialize the pool of columns, S0,

we randomly generate hyperplanes passing through p original points. Among the

various strategies compared, we have eventually implemented one that performs

completions with p−2 points of all possible couples of original points. This strategy

augment n(n−1)
2 new variables into the pool. In addition, we also augment to the

pool the best single hyperplane that fits all the points, assuring that the problem is

feasible at the root node of the branch-and-price tree. Finally, apart from the above

initial columns, we also charge an initial heuristic solution (in the y-variables) so

as to have a good upper bound in our branch-and-price algorithm. Our algorithm

chooses at random m mutually disjoint subsets of p points and finds the hyperplanes

determined by those m sets of p points. Next, we perform a 1-interchange heuristic

generating a new hyperplane that replaces, one at a time, one of those currently

considered in the configuration until the first iteration where no improvement is

possible. The incumbent set of hyperplanes and their corresponding allocations is

considered an initial solution that is loaded into the solver.

3.4.2 Median and center optimal hyperplanes

We have used the following properties to build the initial solutions of our CG ap-

proach since they determine optimal hyperplanes for specific objective functions, see

e.g., Schöbel (2003).

Lemma 3.1. The following properties are verified:

1. Weak incidence property: There exists an optimal median hyperplane passing

through p affinely independent points.

2. Pseudo-halving property: Every optimal median hyperplane, H(ω∗, ω∗′) verifies

#
{
i ∈ I : xi ∈ H−(ω∗, ω∗0)

}
≤ n

2 and #
{
i ∈ I : xi ∈ H+(ω∗, ω∗0)

}
≤ n

2 .

86 Chapter 3. Multisource hyperplanes location problem to fitting set of points

3. Weak blockedness property: There exists an optimal center hyperplane that is

at maximum distance from p+ 1 of the points.

4. Parallel facets property: There exists an optimal center hyperplane that is

parallel to a facet of the convex hull of the given points.

For the more general ordered median objective function, we have proved the

following result that characterizes the ordered median hyperplanes. In what follows,

we derive a novel result for these hyperplanes that will be useful in the preprocessing

phase of our CG approach.

Let us introduce the following notation:

• Let B be the subdivision of Rp+1 induced by the following arrangement of

hyperplanes:

Bab
ij =

{
(ω, ω0) ∈ Rp+1 : a(ω′xi +ω0) = b(ω′xj +ω0)

}
, ∀i, j ∈ I, a, b ∈ {−1, 1}.

• Let S be the subdivision of of Rp+1 induced by the following arrangement of

hyperplanes

Si =
{

(ω, ω0) ∈ Rp+1 : ω′xi + ω0 = 0
}
, ∀i ∈ I.

Lemma 3.2. If H(ω, ω0) is an optimal ordered median hyperplane then (ω, ω0) is an

extreme point of a cell in the subdivision of Rp+1 induced by the intersection B ∩ S.

Proof. For a given hyperplane H(ω, ω0), let us consider the objective function of the

problem, namely
∑

i∈I λie(i), where ei = D(H(ω, ω0), xi).

It is clear that within each cell of the subdivision B the sorting of the residuals

does not change. In addition, in each cell of the subdivision S the sign of ω′xi + ω0

is either positive or negative (but does not change) for each i ∈ I. Therefore, if

C ∈ B ∩ S is a cell in the subdivision induced by B ∩ S, there is a permutation

σ that fixes the sorting of the residuals and also a constant vector (sign(ω′x1 +

ω0), . . . , sign(ω′xn + ω0)) ∈ {−1, 1}n such that

∑
i∈I

λie(i) =
∑
i∈I

λi
sign(ω′xi + ω0)(ω′xi + ω0)

‖ω‖∗
=

∑
i∈I λisign(ω′xi + ω0)(ω′xi + ω0)

‖ω‖∗
.

The above function is the ratio of a non-negative linear function and a convex

function, then it is quasiconcave provided that (ω, ω0) ∈ C. Therefore, it attains its

minima at the extreme points of this region. Hence, ifH(ω, ω0) is an optimal ordered

median hyperplane (ω, ω0) must be an extreme point of some of those cells.

3.4. Set partitioning formulation 87

The above result allows us to interpret optimal ordered median hyperplanes also

in terms of a geometrical description as those that meet p conditions between the

following cases: i) passing through points xi, i ∈ I, and ii) being at the same distance

of two points xi, xj , i, j ∈ I. Optimal ordered median hyperplanes must also satisfy,

for some k = 1, . . . , p, the following property: it contains k points xi, i ∈ I and it is

at the same distance from p− k pairs xi, xj i, j ∈ I.

In our computational results we have computed the initial solutions and the

initial pool of variables for the objective functions of type median, k-centrum and

centdian, using the weak incidence property, whereas for the center objective func-

tion we use the weak blockedness property.

3.4.3 Pricing problem

Certifying optimality in a CG approach avoiding the inclusion of all the columns

into the relaxed master problem, (RMP), requires testing whether a new tentative

column must be added to the problem. In case no new candidates are added to the

master problem, the optimality is guaranteed, otherwise, one should add the new

columns and repeat the process (Step 3 in Algorithm 4). Searching for new columns

to be added to the model will be performed by looking at the dual formulation of

the set partitioning formulation.

Let γ be the dual variable for constraint (3.27), φi the dual variables for con-

straints (3.28) and δik the dual variables for constraints (3.26). Then, the dual of

the Master Problem is the following:

max−mγ +

n∑
i=1

φi

s.t.

n∑
k=1

δik = 1, ∀i ∈ I,

n∑
i=1

δik = 1, ∀k ∈ I,

−
∑
i∈S

n∑
k=1

λke
i
Sδik − γ +

∑
i∈S

φi ≤ 0, ∀S ⊆ S0,

δik, γ, φi ≥ 0.

Hence, for any S ⊂ S0, since yS does not appear in the objective function, the

reduced cost for variable yS is:

ēS = γ −
∑
i∈S

φi +
∑
i∈S

n∑
k=1

λkδike
i
S .

88 Chapter 3. Multisource hyperplanes location problem to fitting set of points

Then, given an optimal dual solution (γ∗, φ∗, δ∗), and considering the binary vari-

ables

wi =

{
1 if the ith observation is chosen for the set S indexing the new column,

0 otherwise,

the pricing problem is to choose the subset S with minimum reduced cost, i.e., to

solve:

min−
n∑
i=1

φ∗iwi + γ∗ +
n∑
i=1

c∗i ri

s.t. zi ≥ εxi(ω, ω0)), ∀i ∈ I,
ri ≥ zi −M(1− wi), ∀i ∈ I,
wi ∈ {0, 1}, ∀i ∈ I,
zi, ri ≥ 0, ∀i ∈ I,
ω ∈ Rp, ω0 ∈ R,

where c∗i =
∑n

k=1 λkδ
∗
ik, ∀ = 1, . . . , n.

If the optimal value of this problem is negative, the new column yŜ is added to

the pool, where Ŝ = {i : wi = 1}, since its reduced cost in the (RMP) is negative,

and thus, it improves the objective function of the master problem. Otherwise,

optimality is certified and we are finished.

Heuristic pricing

The exact pricing routine described above is an NP-hard problem and thus in gen-

eral, it takes time finding new columns to be added to the pool or to certify opti-

mality of the reduced master problem. This last task cannot be avoided, provided

that we design an exact solution algorithm. Nevertheless, in many occasions finding

promising new variables can be done at very low computational time resorting to

heuristic schemes.

In our problem, we propose to test hyperplanes chosen from a discrete set of

potential candidates. To do so, we set a p-dimensional grid on the normalized space

of ω0 and ω coefficients. Each point represents a hyperplane to be tested. Once the

candidate (ω, ω0) is chosen we determine which set of points S is going to be added

to the new variable yS . This is done with a simple greedy rule: choose those points

with negative reduced cost with respect to H(ω, ω0).

If after this process we find a hyperplane that produces a negative reduced cost,

we add this new column to the pool. Otherwise, we proceed with the exact pricer.

This scheme speeds up the search for new columns without loosing the exactness of

3.4. Set partitioning formulation 89

the whole algorithm.

3.4.4 Branching

The set partitioning formulation of the MOMFHP0 is often not solved at the root

node, in contrast with what is stated in Park et al. (2017). Thus, some branching

strategy must be implemented to cope with the branch and bound search. Ryan-

Foster (R-F) is one of the most popular techniques for branching in set partitioning

problems (see Ryan and Foster (1981)). If a fractional solution is reached at a node,

R-F creates two new branches as follows: Given to elements i1, i2 ∈ I, they may

never go together on a set in the whole branch, or they may always go together, i.e.,

if one of them belongs to a set S, the other one must also be included in S.

To implement this branching, we can take advantage of the wi variables defined

on the previous section for the pricing subproblem, to easily adapt this way of

branching in our problem, by means of the following constraints:

A) wi1 + wi2 = 1 ensuring that elements i1 and i2 are not assigned to the same

hyperplane.

B) wi1 = wi2 ensuring that elements i1 and i2 are assigned to the same hyperplane.

Moreover, in our formulation there is a new case in which, despite the fact of

having fractional solutions on a node, we will not create new branches following

the R-F rule. This fact is motivated because in our problem may appear different

columns (different y-variables) but being associated to the same set S, although

possibly with different hyperplanes.

Let S ⊆ I be a subset of points and let y1
S , ..., y

q
S be fractional variables for the

same set S although with different hyperplanes H(ωi, ωi0), i = 1 . . . q, with q > 1,

such that

q∑
i=1

yiS = 1. If there are no more fractional variables, or the rest of the

fractional variables of the node satisfy the same conditions for some other subsets

of points, we cannot apply R-F rule and either the node need not be branched (see

Theorem 3.2 and Remark 3.4) or a different branching strategy must be implemented

in these cases.

Without loss of generality, we will describe the new branching for the case in

which two fractional variables, y1
S and y2

S , with hyperplanesH(ω1, ω1
0) andH(ω2, ω2

0),

are obtained in a node for the same subset S. In this situation, the new branching

rule that we propose creates three new branches as follows:

1. A branch where y1
S = 1 meaning that this variable will be in the solution in

this branch. This is easily implemented in the pricing routine since it amounts

to avoid considering the elements in S in any further column in that branch

90 Chapter 3. Multisource hyperplanes location problem to fitting set of points

because they are already in the set S which is part of the solution. Therefore,

it suffices to fix the variables wi = 0, ∀i ∈ S in all the subproblems in the

branch.

2. Analogously, it creates another branch where y2
S = 1.

3. The third branch sets y1
S = y2

S = 0. This branch represents the case in which

none of the original fractional solutions are part of the integer solution. Once

again, this can be enforced by adding the following constraints to the pricing

subproblems of the branch:((
|S| −

∑
i∈S

wi

)
+

∣∣∣∣∣|S| −
n∑
i=1

wi

∣∣∣∣∣+
d∑
`=1

|ωj` − ω∗` |+ |ω
j
0 − ω∗0|

)
·M ≥ 1,

for j=1,2, and M a big enough constant, where ω∗ and ω∗0 define the new

hyperplane H(ω∗, ω∗0). These constraints will make the problem infeasible if

and only if all the individuals in S, and only the individuals of S, belong to the

new solution, and moreover, the new solution provides a hyperplane H(ω∗, ω∗0)

that is equal to H(ω1, ω1
0) or H(ω2, ω2

0).

The alternative branching may be necessary in case of using general norm based

residuals. Nevertheless, as we show below, the situation is simpler using vertical

distance residuals.

Theorem 3.2. Ryan and Foster branching is enough in the set partitioning formu-

lation of (MOMFHP0) for the vertical distance residuals: If for a subset of points

S ⊆ I, there exists a fractional solution 0 < yS < 1 with # {yS 6= 0} > 1, at a node

of the branch and bound tree then there exists an explicit solution that combines

these variables to obtain a single one satisfying yS = 1 (# {yS 6= 0} = 1).

Proof. Let us consider a subset of points S ⊆ I. At a fractional node, we can have

two possible scenarios: 1) # {yS 6= 0} = 1, hence, it would exist a single hyperplane

(a facility) H(ω, ω0) that would serve the points of S, and hence, R-F branching is

enough, and 2) # {yS 6= 0} > 1. This latter case needs a further analysis since it

may seem as if more than one facility would need to be involved to optimally serve

the points in S.

Without loss of generality we can assume # {yS 6= 0} = 2 (a case with # {yS 6= 0} >
2 can be treated sequentially by smaller problems with two solutions). In this sit-

uation there are two variables, y1
S and y2

S , with values σ and 1 − σ, σ ∈ (0, 1), so

that y1
S + y2

S = 1. These variables are represented by two hyperplanes H(ω1, ω1
0)

and H(ω2, ω2
0), where the cost of a point i ∈ S with coordinates x ∈ Rp, ei, is given

by ei = σD(x,H(ω1, ω1
0)) + (1 − σ)D(x,H(ω2, ω2

0)). We prove that the hyperplane

H(ω∗, ω∗0) defined as

3.4. Set partitioning formulation 91

H(ω∗, ω∗0) =
{
z ∈ Rp : σ(ω1z + ω1

0) + (1− σ)(ω2z + ω2
0) = 0

}
,

satisfies that D(x,H(ω∗, ω∗0)) ≤ σD(x,H(ω1, ω1
0)) + (1− σ)D(x,H(ω2, ω2

0)) for ver-

tical distance residuals, and this would mean that there exists a unique hyperplane

that optimally serves all the points in S. Therefore, considering y∗S , no further

branching is required.

If we consider the normalized hyperplanes H(ω1, ω1
0), and H(ω2, ω2

0), such that

ω1
p = ω2

p = −1, then ω∗p = −1, the vertical distance from x to H(ω∗, ω∗0) is

Dv(x,H(ω∗, ω∗0)) =

∣∣∣∣∣xp − ω∗0 −
p−1∑
`=1

ω∗`x`

∣∣∣∣∣.
Hence,

Dv(x,H(ω∗, ω∗0)) =

∣∣∣∣∣xp − ω∗0 −
p−1∑
`=1

ω∗`x`

∣∣∣∣∣
=

∣∣∣∣∣σxp + (1− σ)xp − (σω1
0 + (1− σ)ω2

0)−
p−1∑
`=1

(σω1
` + (1− σ)ω2

`)x`

∣∣∣∣∣
≤ σ

∣∣∣∣∣xp − ω1
0 −

p−1∑
`=1

ω1
`x`

∣∣∣∣∣+ (1− σ)

∣∣∣∣∣xp − ω2
0 −

p−1∑
`=1

ω2
`x`

∣∣∣∣∣
= σDv(x,H(ω1, ω1

0)) + (1− σ)Dv(x,H(ω2, ω2
0)).

Remark 3.4. We prove that under mild conditions, R-F branching is also enough

for the `1-norm based residuals.

Without loss of generality, assume that there is a solution with two fractional

variables y1
S and y2

S, with values σ and (1 − σ), and corresponding hyperplanes

H(ω1, ω1
0) and H(ω2, ω2

0). Let us define the set SP =
{
j : |ω1

j | = |ω2
j | = 1, j = 1, . . . , p

}
.

Hence, if SP 6= ∅, RF-branching is enough for the `1-norm residuals.

Indeed, let ̂ be an index such that |ω1
̂ | = |ω2

̂ | = 1 and define

sign(̂) =

{
1 if ω1

̂ · ω2
̂ = 1

−1 if ω1
̂ · ω2

̂ = −1.

It is clear that for any ̂ ∈ SP , ω∗̂ = σω1 + sign(̂)(1 − σ)ω2 satisfies ‖ω∗̂ ‖∞ = 1.

Consider for any ̂ ∈ SP the hyperplane

H(ω∗̂ , ω
∗
0) =

{
z ∈ Rp : σ(ω1z + ω1

0) + sign(̂)(1− σ)(ω2z + ω2
0) = 0

}
,

then for any individual i ∈ S with coordinates xi ∈ Rp, taking into account that

92 Chapter 3. Multisource hyperplanes location problem to fitting set of points

||ω1||∞ = ||ω2||∞ = 1, we obtain that

D`1(xi,H(ω∗, ω∗0)) =
|ω∗0 +

∑p
`=1 ω

∗
`xi`|

||ω∗||∞

≤ σ |ω
1
0 +

∑p
`=1 ω

1
`xi`|

||ω1||∞
+ (1− σ)

|ω2
0 +

∑p
`=1 ω

2
`xi`|

||ω2||∞
= σD`1(xi,H(ω1, ω1

0)) + (1− σ)D`1(xi,H(ω2, ω2
0)).

and hence, y∗S = 1 is an optimal solution for the problem.

3.5 Computational results

A series of computational experiments has been performed in order to test the two

proposed methodologies. We consider two different sets of instances, one based on

Eilon et al. (1971) dataset and another on synthetic data. For all of them we solve

(MOMFHP0) for four different objective functions: Weber (W), Center (C), dn2 e-

Centrum (K) (λ = (

dn
2
e︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)) and 0.9-Centdian (D) (λ = (1, 0.9, . . . , 0.9))

and with the two proposed approaches: the compact approach based on formulation

(MOMFHP) and with the branch-and-price methodology. We test the performance

of the algorithms on two different types of residuals: `1-norm based residuals and

absolute value vertical distance residuals.

The models were coded in C and solved with SCIP v.6.0.1 using as optimization

solver CPLEX 12.8 in a Mac OS El Capitan with a Core i7 CPU clocked at 2.8 GHz

and 16GB of RAM memory. A time limit of 5 hours was fixed for all the instances.

It is well-known in the field of location analysis that continuous multifacility ordered

median problems are very difficult to solve and already problems of moderate sizes

(n = 50 demand points) can not often be solved to optimality (see e.g., Blanco

et al. (2016)). The same or even a harder behavior should be expected here since

these problems introduce a new degree of difficulty in the representation of general

distance based residuals.

3.5.1 Eilon et al. (1971) dataset

First, we tested our approach on instances based on the classical planar 50-points

dataset provided by Eilon et al. (1971). We randomly generate five instances from

such a dataset with sizes n ∈ {20, 30, 40, 45} and the entire complete original in-

stance with n = 50. We run the models for m ∈ {2, 5} hyperplanes. The average

results obtained for these instances are shown in tables 3.1 and 3.2. There, for each

combination of n (size of the instance), m (number of hyperplanes to be located)

and type (ordered median objective function to be minimized), we provide both for

3.5. Computational results 93

the compact formulation MOMFHP (Compact) and for the branch-and-price (B&P)

approach: the CPU time in seconds needed to solve the problem (Time (secs.)), the

MIP Gap (GAP) remaining after the time limit, the number of nodes (Nodes) explored

in the branch and bound tree and the RAM memory (Memory (MB)) in Megabytes

required during the execution process. Within each column (Time, GAP, Nodes and

Memory), we highlight in bold the best result between the two formulations, namely

Compact or B&P. Table 3.1 gives the results for the models with vertical distance

residuals while Table 3.2 provides the results for the `1-norm residuals.

As expected, the difficulty of the problem increases with n and m. Problems

with smaller n are easier and m = 2 is also easier than m = 5. We also observe in

Table 3.1 that the B&P approach is more efficient than formulation MOMFHP in

all cases with the only exception of center problems. For that type of problem with

vertical distance residuals the compact formulation is able to solve all instances in

all cases whereas the B&P reports an overall gap of 20.36%. As it can be expected

the number of nodes to be explored in order to solve the problems is several orders

of magnitude larger for the compact formulation than for the B&P algorithm. This

fact shows that the former formulation is much less accurate than the latter thus

requiring many more nodes to be explored to solve the problems, implying a better

scalability of the B&P approach. In addition, MOMFHP requires very large RAM

memory resources since already for n = 50 points, it demands, in some cases, more

than 11 GB whereas B&P solves the problems using at most 4 GB of RAM memory.

Turning to Table 3.2 we observe, as expected, that using `1-norm residuals make

problems harder to solve mainly due to the representation of the projections point-

to-hyperplane stated in Remark 3.3. In this case, the overall gaps increase from

29.36% and 11.24% in Table 3.1, for MOMFHP and B&P, respectively, to 62.69%

and 20.53%. This behavior is more severe for MOMFHP because already for n = 20

and m = 5 that formulation is not able to certify optimality for any of the problems

regardless of the type within the time limit. On the contrary, B&P is affected less

and its behavior is similar to what one observes for vertical distance in Table 3.1.

The rest of comments regarding number of nodes and memory requirements are

similar to those given previously for vertical distances.

3.5.2 Synthetic Instances

We have also randomly generated another set of instances to evaluate the perfor-

mance of the two solution approaches depending on the space dimension (p). We

have generated five instances of random points in the unit hypercube for each mean-

ingful combination of n ∈ {20, 30, 40, 45, 50}, m ∈ {2, 5, 10} and p ∈ {2, 3, 8} (note

that for these datasets, we have included additionally m = 10 to analyze how in-

creasing the number of hyperplanes affects the complexity for larger space dimension

94 Chapter 3. Multisource hyperplanes location problem to fitting set of points

Time (secs.) GAP Nodes Memory (MB)
n m type Compact B&P Compact B&P Compact B&P Compact B&P

20

2

W 2.08 68.15 0.00% 0.00% 2878 2 3 23
K 2.10 69.18 0.00% 0.00% 2878 2 3 23
D 6.70 86.14 0.00% 0.00% 2904 2 3 24
C 0.11 3171.27 0.00% 0.00% 35 5070 1 1347

5

W 12411.90 23.48 18.67% 0.00% 23623465 16 2226 13
K 12422.17 23.31 18.70% 0.00% 23560539 16 2221 13
D 13082.16 43.96 18.67% 0.00% 24131841 26 2161 15
C 103.70 2798.43 0.00% 0.00% 204693 12259 36 300

Average 20: 4753.86 785.49 7.00% 0.00% 8941154 2174 832 220

30

2

W 52.13 1439.90 0.00% 0.00% 60401 11 9 109
K 52.77 1440.09 0.00% 0.00% 60401 11 9 109
D 57.57 2410.21 0.00% 0.00% 62889 7 9 107
C 0.17 18000.00 0.00% 25.73% 40 2833 3 4033

5

W 18000.00 654.68 87.13% 0.00% 22547601 109 7194 47
K 18000.00 653.84 87.11% 0.00% 22459376 109 7161 47
D 18000.00 242.66 83.94% 0.00% 22252049 25 7240 41
C 349.26 11310.31 0.00% 28.76% 503141 7537 89 1318

Average 30: 6814.04 4518.97 32.27% 6.81% 8493237 1330 2714 726

40

2

W 1870.93 18000.00 0.00% 11.71% 1453146 1 91 251
K 1923.60 18000.00 0.00% 11.73% 1453146 1 91 248
D 1765.95 18000.00 0.00% 10.56% 1290038 1 87 244
C 0.26 17809.35 0.00% 22.50% 81 408 4 1264

5

W 18000.00 15077.97 99.96% 1.88% 15197462 280 9801 141
K 18000.00 15029.85 99.96% 1.77% 15210786 281 9792 142
D 18000.00 3346.72 99.83% 0.00% 14810951 864 9700 183
C 982.10 12375.95 0.00% 18.17% 1196810 1358 205 1559

Average 40: 7567.91 14705.75 37.47% 9.79% 6326552 399 3722 504

45

2

W 10238.75 18000.00 0.00% 27.97% 6492828 1 219 351
K 10438.84 9514.96 0.00% 5.05% 6532368 9 208 401
D 10192.16 18000.00 0.00% 45.37% 6066819 1 217 336
C 0.35 14541.26 0.00% 7.58% 133 2286 5 932

5

W 18000.00 18000.00 99.86% 29.67% 12121664 32 10427 139
K 18000.00 18000.00 100.00% 47.44% 12720196 25 11047 142
D 18000.00 7525.10 99.46% 0.01% 12193404 2383 9076 336
C 1268.05 17486.12 0.00% 36.94% 1570195 1490 244 2245

Average 45: 10767.32 15133.56 37.41% 25.00% 7212201 778 3930 610

50

2

W 18000.00 18000.00 22.46% 3.48% 9401360 1 1593 582
K 18000.00 18000.00 22.57% 3.48% 9275884 1 1584 583
D 18000.00 18000.00 21.06% 2.84% 8902849 1 1238 515
C 0.29 18000.00 0.00% 19.79% 37 372 6 923

5

W 18000.00 18000.00 100.00% 52.33% 10760962 1 11353 127
K 18000.00 18000.00 100.00% 52.33% 10743398 1 11335 126
D 18000.00 18000.00 100.00% 46.21% 9732814 1 9864 134
C 1778.36 18000.00 0.00% 43.86% 2234747 470 281 1432

Average 50: 13722.40 18000.00 45.76% 28.04% 7631506 106 4657 553
Total Average: 7773.24 9224.75 29.36% 11.24% 7737963 1120 2888 517

Table 3.1: Results for Eilon et al. (1971) instances for vertical distance.

3.5. Computational results 95

Time (secs.) GAP Nodes Memory (MB)
n m type Compact B&P Compact B&P Compact B&P Compact B&P

20

2

W 166.73 136.75 0.00% 0.00% 163750 21 17 30
K 167.49 136.65 0.00% 0.00% 163750 21 17 30
D 624.85 103.66 0.00% 0.00% 690721 26 40 30
C 0.98 10126.55 0.00% 5.13% 1398 3597 3 2141

5

W 18000.00 111.13 100.00% 0.00% 29829455 32 10437 14
K 18000.00 109.85 100.00% 0.00% 30416596 32 10655 14
D 18000.00 56.87 100.00% 0.00% 31528234 15 10624 13
C 18000.00 15315.35 100.00% 12.23% 40775405 18269 7513 2118

Average 20: 9120.10 3262.10 50.00% 2.17% 16696164 2752 4913 549

30

2

W 13046.35 4509.86 28.75% 0.00% 13086135 26 1187 123
K 13034.52 4507.75 28.74% 0.00% 13098248 26 1188 123
D 11959.18 4595.89 26.93% 0.01% 13057250 27 1724 127
C 2.92 12061.62 0.00% 19.61% 1192 507 4 2154

5

W 18000.00 947.24 98.89% 0.00% 20504433 35 10616 39
K 18000.00 927.14 98.88% 0.00% 21254042 35 11006 39
D 18000.00 1885.54 100.00% 0.00% 20197549 140 10972 49
C 14811.15 18000.00 80.00% 46.40% 25951648 3028 8158 3031

Average 30: 13356.84 5929.39 57.77% 8.25% 15893812 478 5607 711

40

2

W 18000.00 18000.00 42.82% 6.40% 13047861 1 2218 201
K 18000.00 18000.00 42.95% 6.40% 12998370 1 2214 201
D 18000.00 18000.00 65.74% 7.03% 10642421 1 1809 213
C 2.64 17184.72 0.00% 39.56% 3792 124 5 1593

5

W 18000.00 18000.00 100.00% 39.89% 14778541 49 10698 98
K 18000.00 18000.00 100.00% 39.20% 15280145 59 11070 101
D 18000.00 18000.00 100.00% 35.47% 14043320 111 9495 145
C 18000.00 18000.00 100.00% 60.84% 23716675 299 11125 1002

Average 40: 15750.45 17900.37 68.94% 29.35% 13063891 81 6079 444

45

2

W 18000.00 18000.00 42.39% 4.85% 10512338 1 2795 287
K 18000.00 18000.00 49.79% 25.56% 10903011 1 2767 299
D 18000.00 18000.00 62.64% 24.59% 8683785 1 2263 296
C 2.13 18000.00 0.00% 41.79% 2251 37 6 1036

5

W 18000.00 18000.00 100.00% 49.90% 11757058 2 10826 97
K 18000.00 18000.00 100.00% 55.13% 12704430 1 11911 98
D 18000.00 18000.00 100.00% 48.34% 11591052 3 9553 95
C 18000.00 18000.00 100.00% 61.79% 22769758 133 11064 728

Average 45: 15750.39 18000.00 69.35% 38.99% 11115460 22 6398 367

50

2

W 18000.00 18000.00 96.53% 8.22% 7215656 1 3368 371
K 18000.00 18000.00 96.51% 8.22% 7288856 1 3402 371
D 18000.00 18000.00 96.34% 8.21% 6792290 1 2722 338
C 4.21 18000.00 0.00% 47.22% 5241 15 8 680

5

W 18000.00 18000.00 100.00% 53.68% 11063050 1 9171 109
K 18000.00 18000.00 100.00% 53.68% 11115826 1 9212 109
D 18000.00 18000.00 100.00% 55.80% 11147925 1 9840 118
C 18000.00 18000.00 100.00% 63.66% 19632691 52 9468 488

Average 50: 15750.64 18000.00 86.17% 37.34% 9282692 9 5899 323
Total Average: 13601.88 11593.62 62.69% 20.53% 13958539 794 5756 508

Table 3.2: Results for Eilon et al. (1971) instances for `1-distance.

96 Chapter 3. Multisource hyperplanes location problem to fitting set of points

(p = 8)). At this point, it is important to point out that several combinations of the

above factors result in trivial problems, for instance for n = 20 and m = 10 there is

always a solution passing through all the points and thus with zero objective value.

All those cases that give rise to trivial solutions are not reported. Table 3.3 reports

the results for the models with vertical distance residuals while Table 3.4 provides

the results for the `1-norm residuals. We report the same information as the one

provided in the previous section but this time the results do not distinguish the type

of objective function but the dimension of the space. (Needless to say that all the

results disaggregated also by type are available upon request.)

For this dataset the results reinforce our previous observations in that for prob-

lems with vertical distances (see Table 3.3), MOMFHP is much weaker than B&P

for m = 5, 10 and in any dimension. In this case, however as seen in Table 3.3 there

are cases where for m = 2 MOMFHP (see column Compact) is more efficient. Turn-

ing to problems with `1-norm residuals the performance is more homogeneous and

B&P is more efficient than MOMFHP for all n, m and p. Once again, one observes

that problems with `1-norm residuals are more difficult than with vertical residuals.

The overall gaps increase from 51.49% and 29.93% in Table 3.3, for MOMFHP and

B&P, respectively, to 83.78% and 37.41% in Table 3.4.

3.6 Scalability: bounding the error in aggregation pro-

cedures

This section is devoted to analyze the issue of scalability of our approach. We

are aware that the methodology based on a branch and price algorithm may be

computationally costly (we refer the reader to the Section 3.5 for further details).

For that reason, we derive an approach that allows one to handle large data sets

with appropriate error bounds.

Our approach is based on aggregating data to reduce the dimensionality of the

original problem so that our branch and price approach can properly handle the

problem. The important issue is that we can provide error bounds on these approxi-

mations that monotonically decrease with the quality of the aggregation. Obviously,

aggregation strategies are not new since they have been already applied in some other

areas although mostly from a heuristic point of view (see e.g., Current and Schilling

(1987, 1990)).

Let X = {x1, . . . , xn} ⊂ Rp be a set of demands points. Aggregating X into

a new set of demand points X ′ consists of replacing X by X ′ = {x′1, . . . , x′n} and

to assign each point xi in X to a point x′i in X ′ (since usually the cardinality of

the different elements of X ′ is smaller than the cardinality of X, several xi may be

assigned to the same x′i and thus actually, some of the elements in X ′ coincide). A

3.6. Scalability: bounding the error in aggregation procedures 97

Time (secs.) GAP Nodes Memory (MB)
n m p Compact B&P Compact B&P Compact B&P Compact B&P

20
2

2 11.00 56.48 0.00% 0.00% 2710 139 2 49
3 4.39 233.22 0.00% 0.00% 2922 417 3 137
8 30.88 1506.93 0.00% 0.00% 29777 1530 3 782

5
2 13017.91 3930.76 46.32% 1.25% 13909807 40836 2209 430
3 18000.00 4516.39 100.00% 19.56% 19586370 8330 629 29

Average 20: 6212.84 2048.76 29.26% 4.16% 6706317 10250 569 285

30

2
2 55.66 2879.51 0.00% 1.34% 44038 1039 7 1218
3 60.81 8779.12 0.00% 5.77% 48533 1741 8 2737
8 414.28 18000.00 0.00% 67.19% 270055 779 23 1516

5
2 13933.75 5046.83 74.14% 11.01% 11575613 7989 4058 1274
3 18000.00 12362.06 100.00% 18.32% 15098323 5033 3187 384

10 2 18000.00 4523.03 100.00% 11.05% 15536270 10046 1572 298
Average 30: 8410.77 8598.55 45.69% 19.11% 7095472 4438 1476 1238

40

2
2 1490.88 17404.04 0.00% 14.85% 903463 805 56 2186
3 1164.19 18000.00 0.00% 18.04% 726140 466 40 1579
8 8455.38 18000.00 0.00% 71.44% 4005359 59 140 417

5
2 15809.48 12850.71 75.78% 18.52% 10566235 3642 5303 1187
3 18000.00 18000.00 100.00% 57.67% 12378840 705 5061 412

10
2 18000.00 5498.89 100.00% 19.66% 12196952 1770 2179 159
3 18000.00 13721.20 100.00% 43.81% 12359358 584 1121 79

Average 40: 11560.01 14784.91 53.68% 34.85% 7590907 1147 1986 860

45

2
2 11045.65 18000.00 4.56% 25.70% 5700797 587 316 2353
3 8390.99 18000.00 0.00% 25.64% 4494533 235 127 1205
8 13570.97 18000.00 33.32% 67.26% 5409179 11 962 324

5
2 16704.69 16218.37 75.04% 33.86% 9858979 2061 6104 945
3 18000.00 18000.00 100.00% 63.19% 11396830 353 5914 344
8 18000.00 18000.00 100.00% 100.00% 11094838 1 329 64

10
2 18000.00 6512.29 100.00% 20.37% 11236807 889 2124 111
3 18000.00 9421.82 100.00% 28.47% 10911247 272 1471 71

Average 45: 15214.06 15307.51 64.12% 45.56% 8762901 551 2168 677

50

2
2 13500.09 18000.00 18.38% 6.95% 6135466 393 1132 2361
3 13500.51 18000.00 20.60% 30.71% 6182966 112 989 1209
8 13568.18 18000.00 45.65% 67.16% 4649063 2 1243 407

5
2 16593.29 18000.00 75.02% 51.32% 8984044 801 7563 729
3 18000.00 18000.00 100.00% 65.74% 10380563 157 5969 268
8 18000.00 18000.00 100.00% 100.00% 10407264 1 1472 83

10
2 18000.00 9490.74 100.00% 20.01% 10892069 363 2483 83
3 18000.00 18000.00 100.00% 68.93% 10139295 214 1537 75

Average 50: 16145.28 16946.05 69.96% 51.35% 8471341 255 2791 652
Total Average: 11231.69 11409.54 51.49% 29.93% 7735135 3287 1718 773

Table 3.3: Results for synthetic instances for vertical distance.

98 Chapter 3. Multisource hyperplanes location problem to fitting set of points

Time (secs.) GAP Nodes Memory (MB)
n m p Compact B&P Compact B&P Compact B&P Compact B&P

20
2

2 2799.81 1413.43 0.03% 1.50% 4193628 545 216 424
3 10649.52 4226.37 8.41% 0.01% 17136729 617 696 693
8 18000.00 14942.66 100.00% 36.68% 32145208 324 488 476

5
2 17977.28 3686.10 100.00% 4.15% 35717983 5312 9878 922
3 18000.00 4610.48 100.00% 16.99% 39208660 3325 5832 52

Average 20: 13485.35 5775.81 61.69% 11.87% 25680442 2025 3422 514

30

2
2 11021.12 10263.53 43.06% 4.35% 11908005 293 2283 1230
3 13503.52 15061.10 50.87% 18.57% 13408414 178 2644 894
8 18000.00 18000.00 100.00% 85.77% 18682135 14 3855 171

5
2 18000.00 9923.88 100.00% 14.72% 24028581 1361 11038 1765
3 18000.00 12882.81 100.00% 22.45% 23654639 631 9211 785

10 2 17998.01 4745.50 100.00% 14.56% 24603724 1162 8567 169
Average 30: 16087.22 11815.89 82.32% 26.74% 19380916 607 6266 835

40

2
2 13500.52 17798.69 63.24% 14.27% 8495764 76 2259 1074
3 13509.64 18000.00 64.33% 31.75% 7710536 25 2929 601
8 18000.00 18000.00 100.00% 73.86% 12839616 2 4272 192

5
2 18000.00 18000.00 100.00% 42.62% 17696588 193 10524 904
3 18000.00 18000.00 100.00% 69.83% 19758253 76 9542 378

10
2 17688.37 10787.01 100.00% 22.17% 17749077 212 8306 45
3 18000.00 18000.00 100.00% 63.85% 16865456 111 5522 44

Average 40: 16671.31 16943.82 89.65% 45.48% 14445041 99 6193 463

45

2
2 13500.65 17927.36 61.73% 16.31% 7295436 26 2189 1101
3 13507.23 18000.00 74.40% 25.74% 5456543 10 2359 602
8 18000.00 18000.00 100.00% 69.62% 10392241 1 4242 243

5
2 18000.00 16684.12 100.00% 45.50% 13916126 714 9640 729
3 18000.00 18000.00 100.00% 68.74% 15523670 31 9216 294
8 18000.00 18000.00 100.00% 100.00% 13168789 1 1284 57

10
2 18000.00 13383.58 100.00% 24.11% 14582103 234 8573 61
3 18000.00 16757.30 100.00% 60.65% 14067756 54 6130 59

Average 45: 16876.16 17096.84 92.02% 51.33% 11800333 134 5454 393

50

2
2 13500.40 15300.83 71.34% 10.99% 6941692 11 3250 950
3 13512.06 18000.00 60.70% 13.84% 5691897 5 1877 1068
8 18000.00 18000.00 100.00% 64.78% 9864048 1 3915 345

5
2 18000.00 15543.12 100.00% 46.58% 15611084 492 10326 704
3 18000.00 18000.00 100.00% 85.37% 14771026 9 8255 199
8 18000.00 18000.00 100.00% 100.00% 10436698 1 3278 69

10
2 18000.00 15309.03 100.00% 29.85% 14012908 273 6934 72
3 18000.00 18000.00 100.00% 67.47% 12123118 26 5274 69

Average 50: 16876.66 17023.10 91.50% 52.36% 11181559 102 5388 434
Total Average: 16038.45 13854.81 83.78% 37.41% 16590341 569 5435 531

Table 3.4: Results for synthetic instances for `1 distance.

3.6. Scalability: bounding the error in aggregation procedures 99

possible choice can be substituting the set of original demand points by the centroids

obtained by any of the available clustering techniques. In any case, when solving

(MOMFHP0) for X ′ instead of using X one incurs in aggregation errors.

Let H be the optimal arrangement of m hyperplanes for the problem and e =

(e1, . . . , en) with ei = εxi

(
H
)

, for i ∈ I, the residuals with respect toH. Analogously,

let H′ be the optimal arrangement for the demand points in X ′ and e′ the vector of

residuals.

Theorem 3.3. Let T = max
i=1,...,n

D(xi, x
′
i). Then, the following relation holds:

|OMλ(e′)−OMλ(e)| ≤ 2OMλ(T, . . . , T). (3.29)

Proof. First of all, observe that, based on the triangular inequality, for any H

εxi(H) ≤ εx′i(H) + D(xi, x
′
i), ∀i = 1, . . . , n.

Let us also consider the vector t = (D(x1, x
′
1), . . . ,D(xn, x

′
n)) of distances from

the original points in X to their corresponding points in X ′ and denote by ẽ =

(εx′1(H), . . . , εx′n(H)). Since the function OM is non-decreasing monotone and sub-

linear, it follows that:

OMλ(e) ≤ OMλ(ẽ + t) ≤ OMλ(ẽ) + OMλ(t).

Hence, since T ≥ D(xi, x
′
i) for all i = 1, . . . , n, we get that:

|OMλ(e)− OMλ(ẽ)| ≤ OMλ(T, . . . , T).

From the above inequality we can apply (Geoffrion, 1977, Theorem 5) to conclude

that

|OMλ(e′)− OMλ(e)| ≤ 2OMλ(T, . . . , T).

The difference considered in the above theorem is the excess due to the imple-

mentation of an approximate solution based on the reduced model with data set

X ′ rather than the correct optimal solution for the original data in the larger set

X. This result allows us to scale our CG algorithm to problems of any size using

aggregation techniques and providing estimates on the deviation from the optimal

value.

We illustrate the application of the above result including the percent error

obtained aggregating to 20 points some of our random problems with 50 points by

the 20-mean clustering technique. As one can see in Table 3.5 the percent errors

100 Chapter 3. Multisource hyperplanes location problem to fitting set of points

error (%)

m type p = 2 p = 3

2

W 3.48 2.78

K -17.84 -16.52

C 4.40 5.90

D 3.59 2.87

5

W -0.16 1.21

K -9.17 -2.99

C 6.60 20.86

D 0.16 -11.16

Table 3.5: % aggregation errors for 50 points problems and vertical distance.

are small. Observe that in some cases they are even negative, for problems that

were not solved to optimality, and where the hyperplanes obtained by aggregating

points, once evaluated on the actual 50 points, produce a smaller error than the

upper bound found by the algorithm on the original dataset.

3.7 Conclusions

This chapter considers the problem of locating a given number of hyperplanes in

order to minimize an objective function of the distances from a set of points. Each

point is assigned to its closest hyperplane, thus inducing as many clusters as the

number of fitting hyperplanes. The distance from each point to its corresponding

fitting hyperplane can be seen as a residual and these residuals are aggregated using

ordered median functions that are ordered weighted averages representing different

types of utilities. Two exact approaches are presented to solve the problem. The

first one is based on a compact mixed integer formulation whereas the second one

is an extended set partitioning formulation with an exponential number of variables

that is handled by a branch-and-price approach. To enhance the performance of

this last method we have developed a generator of initial feasible solutions based on

geometrical properties of the optimal solutions of the hyperplane location problem

that we have also derived in this chapter, and that are used to initialize the column

generation routine of this branch-and-price. We have also presented a heuristic

pricing strategy that is used in combination with the exact one to speed up some

pricing iterations. We report the comparison of both method to solve the problem

in two different datasets on an extensive battery of computational experiments. The

issue of scalability of the exact methods is also analyzed obtaining theoretical upper

bounds of the error induced by some aggregated versions of the original dataset.

Chapter 4

SVM-based classification with

label noise

102

104 Chapter 4. SVM-based classification with label noise

In this chapter we propose novel methodologies to optimally construct SVM-

based classifiers that takes into account that label noise occur in the training sample.

We propose different alternatives based on solving Mixed Integer Linear and Non

Linear models by incorporating decisions on relabeling some of the observations in

the training dataset. The first method incorporates relabeling directly in the SVM

model while a second family of methods combines clustering with classification at the

same time, giving rise to a model that applies simultaneously similarity measures

and SVM. Extensive computational experiments are reported based on a battery

of standard datasets taken from UCI Machine Learning repository, showing the

effectiveness of the proposed approaches.

4.1 Introduction

Amongst the most relevant applications of classification methods there are those

related with security, as in spam filtering or intrusion detection. The main difference

of these applications with respect to other uses of classification approaches is that

malicious adversaries can adaptively manipulate their data to mislead the outcome

of an automatic analysis. For instance, spammers often modify their emails by

obfuscating words which typically appear in known spam or by adding words which

are likely to appear in legitimate emails. Also, as stated in Weerasinghe et al.

(2019), when Machine Learning algorithms utilized in safety-critical environments

are compromised by adversaries, it could even result in loss of human lives. Note

that, doubting on the reliability of the labels on the target variable is usual when

having suspicions about the possibility of an intentional flip amongst these labels.

However, it is not by far the only case in which one must think about this possibility.

Nowadays, it is commonly said that data scientists spend a large percentage of their

time dealing with collecting and preprocessing data, meanwhile the remainder is used

to model and extract information from databases. Mistakes converted into wrong

label assignments are very likely to happen. For instance, data can be wrongly

identified at the very beginning of the data collection phase, or code errors can

occur when preprocessing a database, leading to a dataset with label noise. Then,

one has to, not only derive a classification rule from a training sample, able to

adequately classify out-of-sample data, but also to take into account that some of the

labels might be incorrect. The goal of this chapter is to analyze the power of using

Mathematical Programming tools for the label noise detection when constructing

a SVM classifier. As pointed out in Ganapathiraju et al. (2000), amongst all the

available optimization-based classifiers, SVM particularly suffer the effect of noisy

labels because their reliance on support vectors and the feature interdependence

assumption.

4.1. Introduction 105

Analyzing the vulnerabilities of classifiers and their robustness against attacks, to

better understand how their security may be improved, has recently received grow-

ing interest from the scientific community. Bi and Zhang (2005) provided robust

alternatives when the features of the training sample observations are corrupted.

On the other hand, Biggio et al. (2011) proposed an algorithmic approach to handle

adversarial modifications of the labels, in case the labels are independently flipped

with the same probability, by correcting the kernel matrix. According to Nalepa and

Kawulok (2019), three main groups of approaches for dealing with noisy datasets

have been already proposed in the literature: (1) Design of algorithms which filter

noisy and/or mislabeled vectors from the input data (as in Ekambaram et al. (2016),

or Han and Chang (2013)); (2) Construction of robust classifiers against noisy la-

belling (see Duan and Wu (2016); Natarajan et al. (2017)); and (3) Use of noise

models in parallel with the obtention of the classifier, which are finally coupled for

a higher-quality classification (see Ganapathiraju et al. (2000); Weerasinghe et al.

(2019)). Further details on the different approaches to deal with datasets containing

mislabeled observations can be found in the survey in Frénay and Verleysen (2013).

Most recent methodologies to deal with noisy datasets are sequential. Thus, loos-

ing the optimal performance obtained by one shot methods based on Mathematical

Programming approaches. For instance, in the recent method presented in North-

cutt et al. (2021), based in SVM with Confident Learning (SVM-CL) approach, the

authors propose a probabilistic method in three sequential phases: 1) estimate the

transition matrix of class-conditional label noise, 2) filter out noisy examples, and

3) train the dataset once noisy data are removed via Co-Teaching. Analogously, in

de França and Coelho (2015) it is proposed a novel method in which first the train-

ing sample is biclustered (see e.g., (Yang et al., 2003)) trying to capture correlation

between features and observations, next the training sample is modified according

to the biclusters, and then the classification is performed on the modified dataset.

Furthermore, there are some globally optimal methods that have been proposed in

the literature. In particular, in Bertsimas et al. (2019), the authors present different

robust adaptations of classical classification methods to deal with uncertainty in

labels and/or features in the training sample.

In contrast to those methods that have been already proposed to deal with

classification and noisy labels, our approach simultaneously construct a SVM-based

classifier and re-label observations, leading to an optimal method. In addition, this

approach allows one to get separating hyperplanes that would had been impossible

to obtain throughout standard SVM and that report better results for many different

problems.

Although the method proposed in Bertsimas et al. (2019) also optimally con-

structs the classifier under the presence of noisy labels, it is thought to be robust

106 Chapter 4. SVM-based classification with label noise

against the worse possible situation. On the contrary, our method builds the hyper-

planes always on the convenience of finding good classifiers and not to be protected

against the worst possible flip of labels which results in better classifiers in most

scenarios.

The construction of SVM-based classifiers that simultaneously relabel observa-

tions has many advantages when dealing with label noise datasets, but also when

working on problems in which false positives and false negatives have different mis-

classifying costs. Also, in problems with unbalanced classes (as for instance in

datasets on fraud with credit card transactions in which around a 99.9% of the ob-

servations are not fraudulent transactions (Maldonado et al., 2017) or in the number

of claims in non-life insurances (Boucher et al., 2009)). In Figure 4.1 we illustrate

this situation. One can observe in the left picture the projection on the plane of a set

of observations labeled by fraudulent (red) and non fraudulent (green) transactions.

Linear separators seems to be impossible to construct for this instance, but also non

linear classifiers may result in overfitting. However, as shown in the right picture, if

one allows a few of the labels to be changed, one can obtain better classifiers. Note

that in this case, false positives are more costly than false negatives (since asking

for a little more of information via text message on the phone normally solves this

true negative cases). It is also important to remark that this separating hyperplane

could not have been obtained through standard SVM since all the support vectors

belong to the same class (green points).

Figure 4.1: Original data (left) and optimal hyperplane separating re-labeled classes
with our method (right).

In this chapter we propose two different approaches. We present a model in

which re-labeling observations depends on the errors of the SVM-based method itself

searching for a compromise between the gain obtained in misclassification error and

4.2. Mathematical Programming formulations 107

margin and the penalty paid for each change of labels. On the other hand, we will

also introduce two models in which re-labeled observations will come from similarity

measures on the data. Our method is distribution-free so that it does not assume

any distribution on the dataset and the detection of mislabeled observations and the

construction of the classifier is optimal based on solving an add-hoc Mathematical

Programming problem.

To asses the validity of these methods we have performed a battery of computa-

tional experiments on 7 different real datasets. For these datasets we have repeated

the experiments for 5 different scenarios, by randomly flipping a 0%, 20%, 30%, 40%

or 50% of the labels in the original data. When comparing our method with respect

to classical SVM, and with SVM-CL from (Northcutt et al., 2021), we can see that

ours gets better results on noisy label datasets.

4.2 Mathematical Programming formulations

4.2.1 Preliminaries

In this chapter we consider a given training sample X = {(x1, y1), . . . , (xn, yn)} ⊆
Rp×{−1,+1} and a SVM-based separating hyperplaneH = {z ∈ Rp : ω′z + ω0 = 0},
ω ∈ Rp, ω0 ∈ R.

We show in Figure 4.2 an example where we can see a set of points belonging

to two different, blue and green, classes (left picture) and its SVM optimal solution

for a given parameter c (right picture). The black line is the separating hyperplane

while the other two parallel lines are delimiting the strip, S, between classes. The

points that lie on these parallel lines, the boundary of the strip, are the so called

support vectors, and they verify that |ω′xi + ω0| = 1. Finally, we represent in red

color the magnitude of the errors induced by margin violations.

Figure 4.2: Original set of points (left) and optimal SVM solution on these points
(right).

If we further analyze the above dataset, we can see that there are four blue

observations at the very right of the dataset, and two green observations on the left

108 Chapter 4. SVM-based classification with label noise

that have a strong impact when building the classifier. These observations do not

allow one to construct a SVM separator of the dataset as the one we can see in

Figure 4.3, since that would lead to very big misclassification errors with a very tiny

margin.

Figure 4.3: Not optimal solution on the SVM problem.

Moreover, there are another two green observations, besides the two on the left,

that are closer to the blue cloud of points than to the green one. Hence, if we

could consider that these four green points and the four blue ones on the right were

wrongly labeled (because of their closeness to the rest of points), we might consider

a separating hyperplane with a slope like the one presented on the left of Figure 4.4

as a better classifier. However, this separating hyperplane would be impossible to

obtain with the SVM model since all the support vectors belong to the same class

and to avoid huge misclassification errors the model would forbid such a slope.

Motivated by the above kind of configurations, we have studied different models

in which a separating hyperplane is obtained not only based on the original labels

but also on the possibility of relabeling some of the original observations of the

training sample at a given penalty cost. We say that an observation is relabelled if

one of the following assumptions occurs:

yi = ±1 but our model considers that yi = ∓1.

We will use the notation ŷi to represent the class that the model is considering for

observation i. Hence, an observation is said to be relabelled if yi 6= ŷi.

Following the example shown in Figures 4.2 and 4.3, we can see on the right of

Figure 4.4 the solution of our model, with a separating hyperplane with the desired

4.2. Mathematical Programming formulations 109

slope. Considering the original classes (blue and green), purple points represent the

points that the model considers to be blue (despite of their actual label), and orange

points represent the points that the model considers to be green. This separating hy-

perplane is optimal in our problem, the model considers that support points belong

to different classes (even thought that is not true regarding to the original values)

and no misclassification errors appear in the solution (which is also not true for the

original labels). The underlying idea in these models is that based on the geometry

Figure 4.4: Optimal solution after re-labeling.

of the problem, relabeling some observations can lead to more robust/accurate clas-

sifiers. These classifiers can be very useful when dealing with datasets with outliers,

and also in datasets in which some noise is known to be added to the data labels.

In the following we present the three mathematical optimization models that

we propose to solve the problem consisting on building a hyperplane for binary

classification, and, simultaneously, relabeling potential noisy observations. In the

first model, relabeling labels on the original observations will be based on the errors

with respect to the separating hyperplane. On the other hand, besides considering

the errors with respect to the separating hyperplane, the other two models will

also take into account information from data based on the geometry of the points

through the k-means and the k-medians methods. Nevertheless, despite the fact

that some observations are relabelled in our models, in order to make predictions,

we will maintain the state for predictions on out of sample data which establishes

that observations that lie on the positive half-space of the separating hyperplane

will be predicted as positive class observations, meanwhile observations that lie on

the negative half-space will be predicted as negative class observations.

4.2.2 Model 1: Re-label SVM

The first model that we propose relies on a very basic idea, observations will be

relabelled based on the error with respect to the separating hyperplane, i.e., a penalty

for each relabeling will be considered and the model will determine whether the

110 Chapter 4. SVM-based classification with label noise

cost compensates the global misclassification error. Let ŷi be the final label for

the observation i (after relabeling), for all i = 1, . . . , n. Hence, using the notation

introduced before, the model can be synthetically summarized in the following way.

min
1

2
‖ω‖22 + c1

n∑
i=1

di + relabelingCost(ŷ)

s.t. ŷi(ω
′xi + ω0) ≥ 1− di ∀i = 1, . . . , n,

ω ∈ Rp, ω0 ∈ R,
di ∈ R+, ∀i = 1, . . . , n,

ŷi ∈ {−1, 1}, ∀i = 1, . . . , n.

The model above is a SVM model in which observations can be relabelled, and thus,

instead of considering yi on the separability constraint, the relabelled observations

ŷi are used. In what follows we describe how to incorporate the relabeling to the

constraints and the objective function. Observe that if no cost is assumed for relabel-

ing, the model will relabel most of the observations to obtain a null misclassification

error, resulting in senseless classifiers. Thus, we model this cost with a penalty,

so that the model will try to maintain the original labels on data and it will only

relabel observations when a strong gain on the margin or a strong minimization on

the errors is produced.

In order to derive a suitable Mathematical Programming formulation for the

problem, we consider the following set of binary variables to model relabeling:

ξi =

 1, if ŷi = −yi,
0, otherwise.

for i = 1, . . . , n.

With these variables, relabelingCost(ŷ) = c2

n∑
i=1

ξi, where c2 is the unitary cost

of relabeling. Also, to construct the classifier, we consider the following auxiliary

set of continuous variables:

βij =

 ωj , if observation i is relabelled,

0, otherwise.
∈ R for i = 1, . . . , n, for j = 0, . . . , p.

where βi = (βi1, . . . , βip) ∈ Rp.
Observe that, with the above notation,

ŷi(ω
′xi + ω0) = yi(ω

′xi + ω0)− 2yi(βix
′
i + βi0)

4.2. Mathematical Programming formulations 111

Based on the discussion above, our problem can be formulated as follows:

min
1

2
‖ω‖22 + c1

n∑
i=1

di + c2

n∑
i=1

ξi (RE− SVM)

s.t. yi(ω
′xi + ω0)− 2yi(β

′
ixi + βi0) ≥ 1− di, ∀i = 1, . . . , n, (4.1)

βij = ξiωj , ∀i = 1, . . . , n, j = 0, . . . , p, (4.2)

ω ∈ Rp, ω0 ∈ R, (4.3)

βi ∈ Rp, βi0 ∈ R, ∀i = 1, . . . , n, (4.4)

di ∈ R+, ξi ∈ {0, 1} , ∀i = 1, . . . , n. (4.5)

In the formulation above, constraints (4.1) and (4.2) allow to model the relabelled

observations whereas (4.3) declares that the coefficients of the hyperplane are con-

tinuous variables. Constraint (4.4) defines a set of variables that will be equal to

the coefficients of the hyperplane when an observation is relabelled, and zero oth-

erwise. With these new coefficients, if an observation is not relabelled, constraints

(4.1) coincide with those of the classical SVM, that together with the objective func-

tion and (4.5) allow one modeling the misclassification errors as hinge losses, i.e.,

di = max{0, 1− yi(ω′xi + ω0)} for all i = 1, . . . , n.

Note that (RE− SVM) is a Mixed Integer Nonlinear Problem due to its objective

function, because even though constraints (4.2) are written in a nonlinear way, they

can be linearized as follows:

ωj −M(1− ξi) ≤ βij ≤ ωj +M(1− ξi), ∀i = 1, . . . , n, j = 0, . . . , p,

−Mξi ≤ βij ≤Mξi, ∀i = 1, . . . , n, j = 0, . . . , p.

for M � 0 a big enough constant. Observe that one can always assume that the

coefficients of the hyperplane are normalized and that ‖(ω, ω0)‖∞ ≤ 1, and then,

the value of M can be fixed to one.

With the above considerations, (RE− SVM) can be reformulated as a Quadratic

Mixed Integer Programming problem with linear constraints (MIQP), which can be

solved by the available off-the-shelf solvers (Gurobi, CPLEX, XPRESS, ...), which

use a non-linear branch and bound approach (Gupta and Ravindran, 1985) whose

continuous subproblems are efficiently solved using interior-point algorithms.

4.2.3 Cluster-SVM models

The second family of models that we propose for detecting label noise in the data are

based on using similarity measures on the observations. These models will be called

Cluster-SVM methods since they perform, simultaneously, two tasks: clustering and

112 Chapter 4. SVM-based classification with label noise

classification by SVM. On the one hand, the cluster phase of these methods will

induce relabeling based on heterogeneity of the information, whereas the SVM phase

computes the classifier after relabeling. We present here two different alternatives

for clustering data into two groups and its linkage to a classification system: the

2-median and the 2-mean problems.

The goal of these methods is to find two clusters for a given set of observations,

considering that an observation will belong to exactly one cluster. These clusters are

built by finding two distinguished points (centroids or medians) representing each

of the two groups determined by the observations closer to them, in a way that

the overall sum of distances from points to their respective distinguished points is

minimum. We distinguish two models under these settings by using two different

distance measures: the `1 and the `2 norms.

Let us denote by K+ ∈ Rp and K− ∈ Rp the two (unknown) distinguished points,

and ri = min{‖xi−K+‖, ‖xi−K−‖}, the distance from the observation i to its closest

distinguished points, for i = 1, . . . , n (here ‖ · ‖ will represent either the `1 or the

`2-norm). The representation of such a closest distance to the distinguished points

will be incorporated to the Mathematical Programming model using the following

set of binary variables:

θi =

 1, if observation i is assigned to cluster +,

0, if observation i is assigned to cluster −,
for i = 1, . . . , n.

These clusters represent similar observations and will help the SVM methodol-

ogy, together with the relabeling, to find more accurate classifiers.

Combining the ideas presented on RE-SVM with the clustering based methods,

we can derive a new family of models, that assign observations to two groups based

on the clusters obtained by minimizing the overall sum of the norm-based distances

from the data points to their corresponding reference points. Moreover, it also tries

to separate as much as possible these two clusters by means of a hyperplane. Each

one of the clusters is assigned to one of the differentiated classes in our classification

problem. Finally, this hyperplane will induce a subdivision of the data space in a

way that the decision rule of the classification problem for out-of-sample data is the

same that is used in standard SVM. We present below a MIP formulation for this

problem. Let M1,M2,M3 � 0 be big enough positive constants and ‖·‖ representing

either the `1 or the `2-norm.

4.2. Mathematical Programming formulations 113

min
1

2
‖ω‖+ c1

n∑
i=1

di + c2

n∑
i=1

ξi + c3

n∑
i=1

ri (Cluster− SVM)

s.t. yi(ω
′xi + ω0) ≥ −M1ξi, ∀i = 1, . . . , n, (4.6)

ri ≥ ‖xi −K+‖ −M2(1− θi), ∀i = 1, . . . , n, (4.7)

ri ≥ ‖xi −K−‖ −M2θi, ∀i = 1, . . . , n, (4.8)

ω′xi + ω0 ≥ 1− di −M3(1− θi), ∀i = 1, . . . , n, (4.9)

ω′xi + ω0 ≤ −1 + di +M3θi, ∀i = 1, . . . , n, (4.10)

θi, ξi ∈ {0, 1}, ∀i = 1, . . . , n, (4.11)

ei, di ∈ R+, ∀i = 1, . . . , n, (4.12)

K+,K− ∈ Rp, (4.13)

ω ∈ Rp, ω0 ∈ R. (4.14)

Note that the constants M1,M2,M3 in the formulation above must be chosen such

that M1 > maxi=1,...,n

yi
 p∑
j=1

xij + 1

 (considering w.l.o.g. that the coeffi-

cients are taken so that ‖(ω, ω0)‖∞ ≤ 1), M2 > max{‖xi − xj‖ : i, j = 1, . . . , n} and

M3 >

p∑
j=1

xij + 2 + max{‖xi − xj‖2 : i, j = 1, . . . , n}.

The objective function of Cluster− SVM aggregates the following four elements

to be simultaneously optimized:

- The margin (measured with the `1 or `2 norm) has to be maximized.

- The errors of classification with respect to the separating hyperplane have to

be minimized.

- Relabelled observations have to be penalized.

- Distances from observations to their reference points have to be minimized.

The aggregation of these four terms leads to define a hyperplane with a good

margin, separating two homogenous clusters with respect to distances and classes.

Constraint (4.6) enforces the positive (resp. negative) class observations to be lo-

cated on the positive (resp. negative) half-space of the separating hyperplane. Each

relabelled observation is penalized by c2 units, not allowing a large number of rela-

beling unless it compensates large misclassification errors or unless they lead to a

margin gain. This methodology allows us to keep the same decision rule for out-of-

sample data as the one used in standard SVM. Constraints (4.7) and (4.8) permit

to determine the closest centroid to each observation, whereas constraints (4.9) and

114 Chapter 4. SVM-based classification with label noise

(4.10) enforce the misclassification errors to be computed with respect to the clus-

ter, i.e. the classification is performed with respect to the classes ŷi that have been

created based on the similarity of the observations.

The above model results in two different problems depending on the norm-based

distances applied.

2Median SVM Model This model results from (Cluster− SVM) using the norm

`1. It will be referred to as the 2-Median SVM model. The problem turns

out to be a mixed integer linear problem and can be solved using any of the

off-the-shelf MIP solvers.

2Mean SVM Model This is the version of model (Cluster− SVM) using the `2.

Since we are using a nonlinear norm, the 2-Means SVM results in a Mixed

Integer Nonlinear Programming problem, that can be reformulated as a Mixed

Integer Second Order Cone Optimization (MISOCO) problem. As for the

MIP there are nowadays available off-the-shelf commercial optimization solvers

implementing routines for its efficient solution.

Remark 4.1 (2-`τ Cluster SVM Model). One could also consider different `τ -norms

(τ ≥ 1) for both the margin measure and the clusters similarity measures. In this

case, the problem becomes also a MINLP problem, but based on the results provided

by Blanco et al. (2014), it can be cast as a second order cone programming problem.

4.3 Experiments

In this section we report the results of our computational experience. We have

studied seven real datasets from UCI Machine Learning Repository (Lichman et

al. (2013)), all of them are binary classification problems that come from different

topics. The datasets used are: Statlog - Australian Credit Approval (Australian),

Breast Cancer (BreastCancer), Statlog - Heart (Heart), Parkinson Dataset with

replicated acoustic features (Parkinson), QSAR biodegradation (QSARbiodeg), Ver-

tebral Column (Vertebral) and Wholesale Customers (Wholesale). The dimensions

(n: number of observations, p: number of features) of these datasets is reported in

Table 4.1.

For each of these datasets we have performed five different experiments. The

goal in these experiments is to make predictions as accurate as possible on out of

sample data. The first experiment consists on making predictions by training the

models with the original data. On the other hand, in order to represent attacks in

the training data, we have considered four different scenarios in which a random

amount of labels, within the set {20%, 30%, 40%, 50%}, have been flipped for train-

ing data, i.e., four scenarios in which we have added some label-noise on training

4.3. Experiments 115

data.

We have performed a 5-fold cross validation scheme. Thus, data have been split into

5 train-test random partitions. In each of these folds we have trained our models

and we have used the other four folds for testing. Moreover, we have repeated this

5-fold cross validation 5 times for each dataset, in order to avoid beneficial starting

partitions, and we report the average results obtained. For all the instances we have

trained our three models and we have compared them with standard SVM and SVM-

CL (Northcutt et al., 2021). We have considered standard SVM as benchmark since,

despite the good results provided by SVM-CL for some experiments, standard SVM

provided a better performance on average among all the experiments (see Table 4.1

and Figure 4.5). The measure used to evaluate the performance of the models have

been the accuracy, in percentage, on out of sample data.

The parameters that appears in the different methods that we compare are vali-

dated as usual, that is, for each of the instances we perform a grid search on the

cost parameters and the best result obtained in the validation sample among these

parameters is the one reported. More specifically, the grids used in the experiments

are the following:

SVM: c ∈
{

10i : i = −5, . . . , 5
}

.

RE-SVM: c1, c2 ∈
{

10i : i = −5, . . . , 5
}

.

2-medians-SVM: c1, c2 ∈
{

10i : i = −5, . . . , 5
}

, c3 ∈
{

10i : i = −3, . . . , 0
}

.

2-means-SVM: c1, c2 ∈
{

10i : i = −5, . . . , 5
}

, c3 ∈
{

10i : i = −3, . . . , 0
}

.

SVM-CL: Default tuning parameters (see (Northcutt et al., 2021)).

The Mathematical Programming models were coded in Python 3.6, and solved

using Gurobi 7.5.2 on a PC Intel Core i7-7700 processor at 2.81 GHz and 16GB

of RAM. Due to the complexity of the 2-means-SVM, we have helped the solver

uploading an initial feasible solution that was obtained in the 2-medians-SVM prob-

lem. We have not solved to optimality all the instances, especially those with the

2-means-SVM in which the problem becomes nonlinear, and hence we have estab-

lished a time limit of 30 seconds for all the experiments. This training time has

sufficed to obtain rather good classifiers. Indeed, as one can observe from the re-

sults obtained, this time limit is adequate to construct robust classifiers under noisy

labels. Note that not guarantying the optimality of the solutions of our models does

not necessarily imply that the classifiers are not adequate.

In Table 4.1 we report the average accuracy results obtained in all the experi-

ments for the different models and the different levels of label-noise. In such a table

we have used the yellow-green color to indicate the results in which we are a 3%−5%

116 Chapter 4. SVM-based classification with label noise

better than the benchmark, the green color to indicate whether we are a 5%− 10%

better than the benchmark, and the cyan color to highlight the results in wich we

are at least a 10% above the benchmark. Also, we show in Figure 4.5 the accuracy

boxplots of the 625 instances per dataset (5 partitions × 5 scenarios × 5 folds × 5

models).

Regarding to the results, several conclusions can be pointed out:

• Our three models perform consistently better than classical SVM when the

training dataset is corrupted. Besides, the stronger the percentage of flipped

labels, the bigger the difference between our models’ results and SVM’s results.

In Figure 4.5 one can check how SVM model has lower tails and wider boxes

than RE-SVM.

• 2-medians-SVM and 2-means-SVM perform better than RE-SVM for heavy

attacks (40% − 50% of flipped observations). In contrast, the cluster-based

models require more time to be trained than RE-SVM, both because the prob-

lems are harder to solve (apart from relabeling, the distances to the centroids

and the assignments observations-to-centroids are modeled) and the number

of parameters that must be tuned. In Figure 4.5 one can easily check that

RE-SVM has wider boxes than 2-medians-SVM and 2-means-SVM, which are

explained by the behavior of these models against the attacks.

• Our models have a better performance than the rest of approaches even for the

original datasets in which no labels are flipped. This is due to the flexibility

offered by methodologies, because some of the observations are allowed to be

relabeled looking for a better classifier. The original datasets may contain out-

liers that contaminate the sample and so they deteriorate the classifier. This

situation is automatically detected and fixed by our methods, by adequately

relabeling observations.

• Our methods outperform SVM-CL, which is a specialized method, designed to

detect noisy labels. The rationale under these results is that SVM-CL seems to

wrongly identify the right distributions of the data. These mistakes propagate

to the construction of the classifier since it is built on some incomplete data.

This fact also results in worse accuracies than standard SVM that works with

the entire dataset without paying attention to the existence of outliers.

Overall, as one may expect and it is confirmed in our computational experiments,

it is better to construct the classifier without identifying incorrectly the noise labels

(as SVM does) than using inadequate flips to build the classifier (as SVM-CL seems

to do in the tested datasets). Obviously, the results in the experiments also show

4.3. Experiments 117

that it is rather advantageous the correct identification of the wrong labels since it

improves significantly the classification rates.

118 Chapter 4. SVM-based classification with label noise

Percentage of Flipped Labels

Dataset Method 0% 20% 30% 40% 50%

SVM-CL 84.55 82.10 71.12 58.93 49.68

Australian SVM 86.11 85.43 79.23 68.13 59.47

(690,14) RE-SVM 86.42 85.68 83.37 76.97 66.13

2-medians-SVM 86.08 85.84 84.67 78.95 69.54

2-means-SVM 85.97 85.74 82.65 77.14 67.70

SVM-CL 95.73 91.87 87.37 78.49 58.36

BreastCancer SVM 96.49 93.47 89.96 85.94 68.16

(683,9) RE-SVM 96.88 96.20 94.97 90.36 77.00

2-medians-SVM 96.63 95.31 94.46 91.10 87.31

2-means-SVM 96.96 95.93 95.39 93.11 90.01

SVM-CL 78.70 71.03 60.09 56.01 49.66

Heart SVM 82.23 76.86 69.68 63.79 56.90

(270,13) RE-SVM 82.84 78.38 73.16 68.86 61.25

2-medians-SVM 82.01 78.75 77.29 75.38 71.99

2-means-SVM 82.06 78.81 77.40 75.97 72.90

SVM-CL 78.18 65.56 59.47 55.58 49.29

Parkinson SVM 81.66 74.74 70.17 62.28 57.82

(240,40) RE-SVM 82.43 77.64 73.22 67.29 62.97

2-medians-SVM 80.32 78.62 78.12 77.51 76.28

2-means-SVM 80.47 79.22 78.78 78.20 77.03

SVM-CL 81.62 78.86 74.07 56.78 46.78

QSARbiodeg SVM 82.12 78.07 74.09 63.38 48.97

(1055,40) RE-SVM 84.53 79.61 75.00 66.42 54.58

2-medians-SVM 84.08 78.79 74.32 67.87 67.02

2-means-SVM 83.61 78.55 74.42 67.86 66.81

SVM-CL 80.94 72.79 68.54 60.53 50.69

Vertebral SVM 84.51 75.43 71.34 66.78 57.47

(310,6) RE-SVM 85.10 79.61 74.83 72.33 67.92

2-medians-SVM 85.31 82.62 80.80 78.30 76.31

2-means-SVM 86.28 84.32 81.77 79.91 76.76

SVM-CL 88.98 85.40 78.03 57.19 45.42

Wholesale SVM 90.08 85.30 79.74 72.23 57.73

(440,7) RE-SVM 90.39 88.77 85.97 80.12 69.07

2-medians-SVM 90.58 89.54 87.79 82.78 73.54

2-means-SVM 91.23 89.56 87.39 85.88 82.92

Table 4.1: Accuracy results of our computational experiments.

4.4. Conclusions 119

Figure 4.5: Accuracy Boxplots of the obtained accuracies.

4.4 Conclusions

This chapter presents a methodology to construct a classification rule that at the

same time incorporates the detection of label noise in the datasets. Our methodology

combines the power of SVM and the features of clustering analysis to simultaneously

identify wrong labels to build a separating hyperplane maximizing the margin, mini-

mizing the misclassification errors and penalizing relabeling. The rationale is simple:

observations identified as wrongly labeled will be relabelled only if the gain in mar-

gin or the decrease in misclassification error compensate the flipping. In spite of its

theoretical simplicity we show the exceptional performance of our methodology in a

number of databases taken from the UCI repository.

These models are implemented using Mathematical Programming formulations

with some integer variables (MIP). In all cases, they give rise to models that are sim-

ple and that enjoy the quality of being solvable by nowadays off-the-shelf commercial

solvers (Gurobi, CPLEX, XPRESS...)

Our findings are not only of theoretical interest. Its practical performance when

applied to databases is remarkable. In all tested cases, our methods are superior

to the considered benchmark that in our case is standard SVM. Thus, they are

directly applicable to datasets in which flipped labels are suspected, resulting in

robust classifiers to noisy labels.

Chapter 5

Robust Optimal Classification

Trees under Noisy Labels

122

124 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

In this chapter we propose a novel methodology to construct Optimal Classi-

fication Trees that takes into account that noisy labels may occur in the training

sample. The motivation of this new methodology is based on the superaditive effect

of combining together margin based classifiers and outlier detection techniques. Our

approach rests on two main elements: (1) the splitting rules for the classification

trees are designed to maximize the separation margin between classes applying the

paradigm of SVM; and (2) some of the labels of the training sample are allowed

to be changed during the construction of the tree trying to detect the label noise.

Both features are considered and integrated together to design the resulting Optimal

Classification Tree. We present a Mixed Integer Non Linear Programming formu-

lation for the problem, suitable to be solved using any of the available off-the-shelf

solvers. The model is analyzed and tested on a battery of standard datasets taken

from UCI Machine Learning repository, showing the effectiveness of our approach.

Our computational results show that in most cases the new methodology outper-

forms both in accuracy and AUC the results of the benchmarks provided by OCT

and OCT-H.

5.1 Introduction

Interpretability is a crucial requisite demanded to Machine Learning methods pro-

voked by the tremendous amount of methodologies that have arised in the last

decade (Du et al., 2019). It is expected that the model that results when applying

a Machine Learning methodology using a training sample, apart from being able to

adequately predict the behaviour of out-of-sample observations, can be interpreted.

Different tools have been applied to derive interpretable Machine Learning meth-

ods. One of the most popular strategies to simplify the obtained models is feature

selection, in which a reduced set of attributes is to be selected without loosing qual-

ity in the predictions. Reducing the number of parameters to analyze, the models

can be easier to understand, yielding higher descriptive accuracy. One could also

consider models that can be modulated, in the sense that a great proportion of

its prediction-making process can be interpreted independently. This is the case of

generalized linear models (Hastie and Tibshirani, 2017). Other methods incorporate

interpretability as a synonym of being able to be reproduced by humans in its entire

construction(Letham et al., 2015). This is the case of Decision Trees with small

depth which can be visualized and interpreted easily by users even not familiar with

the tools behind their construction.

CART is the most popular Decision Trees method. In CART, one constructs the

decision rule based on a hierarchical relation amongst a set of nodes which is used to

define paths that lead observations from the root node (highest node in the hierar-

5.1. Introduction 125

chical relation), to some of the leaves in which a class is assigned to the data. These

paths are obtained according to different optimization criteria over the predictor

variables of the training sample. The decision rule comes up naturally, the classes

predicted for new observations are the ones assigned to the terminal nodes in which

observations fall in. Historically, CART is obtained heuristically through a greedy

approach, in which each level of the tree is sequentially constructed: starting at the

root node and using the whole training sample, the method minimizes an impurity

measure function obtaining as a result a split that divides the sample into two dis-

joint sets which determine the two descendant nodes. This process is repeated until

a given termination criterion is reached (minimum number of observations belonging

to a leaf, maximum depth of the tree, or minimum percentage of observations of the

same class on a leaf, amongst others). In this approach, the tree grows following

a top-down greedy approach, an idea that is also shared in other popular decision

tree methods like C4.5 (Salzberg, 1994) or ID3 (Quinlan, 1996). The advantage of

these methods is that the decision rule can be obtained rather quickly even for large

training samples, since the whole process relies on solving manageable problems at

each node. Furthermore, these rules are interpretable since the splits only take into

account information about lower or upper bounds on a single feature. Neverthe-

less, there are some remarkable disadvantages in these heuristic methodologies. The

first one is that they may not obtain the optimal classification tree, since they look

for the best split locally at each node, not taking into account the splits that will

come afterwards. Thus, these local branches may not capture the proper structure

of the data, leading to misclassification errors in out-of-sample observations. The

second one is that, specially under some termination criteria, the solutions provided

by these methods can result into very deep (complex) trees, resulting in overfitting

and, at times, loosing interpretability of the classification rule. This difficulty is

usually overcome by pruning the tree as it is being constructed by comparing the

gain on the impurity measure reduction with respect to the complexity cost of the

tree.

Recently, Bertsimas and Dunn (2017) introduced the notion of OCT by ap-

proaching CART under optimization lens, providing a Mixed Integer Linear Pro-

gramming formulation to optimally construct Classification Trees. In this formula-

tion, binary variables are introduced to model the different decisions to be taken in

the construction of the trees: deciding whether a split is applied and if an observa-

tion belongs to a terminal node. Moreover, the authors proved that this model can

be solved for reasonable size datasets, and equally important, that for many differ-

ent real datasets, significant improvements in accuracy with respect to CART can

be obtained. In contrast to the standard CART approach, OCT builds the tree by

solving a single optimization problem taking into account (in the objective function)

126 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

the complexity of the tree, avoiding post pruning processes. Moreover, every split

is directly applied in order to minimize the misclassification errors on the terminal

nodes, and hence, OCT are more likely to capture the essence of the data. Further-

more, OCT can be easily adapted in the so-called OCT-H model to decide on splits

based on hyperplanes (oblique) instead of on single variables. Another remarkable

advantage of using optimization tools in supervised classification methods is that

features such as sparsity or robustness, can be incorporated to the models by means

of binary variables and constraints Günlük et al. (2021).

At this point, we would like to finish this discussion pointing out one of the main

differences between SVM, which has been deeply analyzed throughout this disser-

tation, and Classification Trees: SVM accounts for misclassification errors based on

distances (to the separating hyperplane), i.e., the closer to the correct side of the

separating hyperplane, the better, whereas in Classification Trees all misclassified

observations are equally penalized.

In previous chapter we proposed different SVM-based methods that provide ro-

bust classifiers under the hypothesis of label noises. The main idea supporting those

methods is that labels are not reliable, and in the process of building classification

rules it may be beneficial to flip some of the labels of the training sample to obtain

more accurate classifiers. With this paradigm, one of the proposed methods, RE-

SVM, is based on constructing a SVM separating hyperplane, but simultaneously

allowing observations to be relabeled during the training process. The results ob-

tained by this method, in datasets in which noise was added to the training labels,

showed that this strategy outperforms, in terms of accuracy, classical SVM and other

SVM-based robust methodologies. See Bertsimas et al. (2019) for alternative robust

classifiers under label noise.

In this chapter we propose a novel binary supervised classification method, called

Optimal Classification Tree with Support Vector Machines (OCTSVM), that profits

both from the ideas of SVM and OCT to build classification rules. Specifically, our

method uses the hierarchical structure of OCT, which leads to easily interpretable

rules, but splits are based on SVM hyperplanes, maximizing the margin between

the two classes at each node of the tree. The fact that the combination of SVM and

classification tree tools provides enhanced classifiers is not new. A similar approach

can be found in Bennett and Blue (1998). Nevertheless, in that paper the authors

analyze the greedy CART strategy by incorporating, sequentially the maximization

of the margin, over known assignments of observations to the leaves of the tree.

Opposite to that, OCTSVM does not assume those assumptions and it performs an

exact optimization approach. Moreover, this new method also incorporates decisions

on relabeling observations in the training dataset, making it specially suitable for

datasets where adversary attacks are suspected. The results of our experiments show

5.2. Preliminaries 127

that OCTSVM outperforms other existing methods under similar testing conditions.

In contrast to the robust classifiers under label noise provided in Bertsimas et al.

(2019), our method is not based on the worst-case paradigm commonly used in the

field of robust optimization, but in the convenience of finding good classifiers under

the presence of unknown noisy labels.

The rest of the chapter is organized as follows. In Section 5.2 we recall some of

the notation used through the following sections. Section 5.3 is devoted to introduce

our methodology, and presents a valid Mixed Integer Non Linear Programming

formulation. In Section 5.4 we report the results obtained in our computational

experiments, in particular, the comparison of our method with OCT, OCT-H and

the greedy CART. Finally, some conclusions and further research on the topic are

drawn in Section 5.5.

5.2 Preliminaries

In this section we recall the main elements in the approach that will be presented in

Section 5.3 which allows us to construct robust classifiers under label noises, namely,

RE-SVM and OCT-H.

On the one hand, we saw in previous chapter that given a training sample of

a binary classification problem in the form X = {(x1, y1) , . . . , (xn, yn), } ⊆ Rp ×
{−1,+1}, and a separating hyperplane H = {z ∈ Rp : ω′z + ω0 = 0}, RE-SVM can

be formulated as follows:

min
1

2
‖ω‖22 + c1

n∑
i=1

di + c2

n∑
i=1

ξi (RE− SVM)

s.t. yi(ω
′xi + ω0)− 2yi(β

′
ixi + βi0) ≥ 1− di, ∀i = 1, . . . , n,

βij = ξiωj , ∀i = 1, . . . , n, j = 0, . . . , p,

ω ∈ Rp, ω0 ∈ R,
βi ∈ Rp, βi0 ∈ R, ∀i = 1, . . . , n,

di ∈ R+, ξi ∈ {0, 1} , ∀i = 1, . . . , n.

where ξi takes value 1 if the ith observation of the training sample is relabelled, and

0 otherwise and di is the misclassifying error defined as the hinge loss:

di =

 max{0, 1− yi(ω′xi + ω0)} if observation i is not relabelled

max{0, 1 + yi(ω
′xi + ω0)} if observation i is relabelled

,

for i = 1, . . . , n. The costs parameters c1 and c2 (unit cost per misclassifying error

and per relabelled observation) allow one to find a trade-off between large separation

128 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

between classes: c1 and c2 are parameters modelling the unit cost of misclassified

errors and relabelling, respectively. (‖ · ‖2 stands for the Euclidean norm in Rp.)
On the other hand, Classification Trees (CT) are a family of classification meth-

ods based on a hierarchical relation among a set of nodes. The decision rule for

CT methods is built by recursively partitioning the feature space by means of hy-

perplanes. At the first stage, a root node for the tree is considered where all the

observations belongs to. Branches are sequentially created by splits on the feature

space, creating intermediate nodes until a leaf node is reached. Then, the predicted

label for an observation is given by the majority class of the leaf node where it

belongs to.

Specifically, at each node, t, of the tree a hyperplane Ht = {z ∈ Rp : ω′tz+ωt0 =

0} is constructed and the splits are defined as ω′tz + ωt0 < 0 (left branch) and

ω′tz + ωt0 ≥ 0 (right branch). In Fig. 5.1 we show a simple classification tree with

depth two, for a small dataset with 6 observations, that are correctly classified on

the leaves.

Figure 5.1: Decision tree of depth two.

The most popular method to construct Classification Trees from a training

dataset is CART, introduced by Breiman et al. (1984). CART is a greedy heuristic

approach, which myopically constructs the tree without further foreseen to deeper

nodes. Starting at the root node, it decides the splits by means of hyperplanes

minimizing an impurity function in each node. Each split results in two new nodes,

and this procedure is repeated until a stopping criterion is reached (maximal depth,

minimum number of observations in the same node, etc). Deep CART trees may

5.2. Preliminaries 129

lead to overfitting in out-of-sample observations, and therefore trees are normally

subject to a prune process based on the trade-off between the impurity function

reduction and a cost-complexity parameter. The main advantage of CART is that

it is easy to implement and fast to train.

On the other hand, Bertsimas and Dunn (2017) propose an optimal approach

to build CT by solving a Mathematical Programming problem which builds the

decision tree in a compact model considering its whole structure and at the same

time making decisions on pruning or not pruning the branches.

Given a maximum depth, D, for the Classification Tree it can have at most

T = 2D+1 − 1 nodes. These nodes are differentiated in two types:

• Branch nodes: τB = {1, . . . , bT/2c} are the nodes where the splits are applied.

• Leaf nodes: τL = {dT/2e, . . . , T} are the nodes where predictions for observa-

tions are performed.

We use the following notation concerning the hierarchical structure of a tree:

• p(t): parent of node t, for t = 1, . . . , T .

• τbl: set of nodes that follow the left branch on the path from their parent

nodes. Analogously, we define τbr as the set of nodes whose right branch has

been followed on the path from their parent nodes.

• u: set of nodes that have the same depth inside the tree. We represent by U

the whole set of levels. The root node is the zero-level, u0, hence, for a given

depth D we have D + 1 levels, being uD the set of leaf nodes.

OCTs are constructed by minimizing the following objective function:∑
t∈τL

Lt + c
∑
t∈τB

δt,

where Lt stands for the misclassification errors at the leaf t (measured as the num-

ber of wrongly classified observations in the leaf), and δt is a binary variable that

indicates if a split is produced at t. Therefore, the constant c is used to regulate the

trade-off between the complexity (depth) and the accuracy (misclassifying errors of

the training sample) of the tree. In its simplest version, motivated by what it is

done in CART, the splits are defined by means of a single variable, i.e., in the form

xj ≤ ωj0. Nevertheless, OCT can be extended to a more complex version where

the splits are hyperplanes defined by their normal vector, a ∈ Rp which is known as

OCT-H. Moreover, a robust version of OCT has also been studied under the noise

label scenario Bertsimas et al. (2019).

130 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

5.3 Optimal Classification Trees with SVM splits and

Relabeling (OCTSVM)

This section is devoted to introduce our new classification methodology, namely

OCTSVM. The rationale of this approach is to combine the advantage of hierarchi-

cal classification methods such as Classification Trees, with the benefits from using

distance-based classification errors, by means of hyperplanes maximizing the margin

between them (SVM paradigm). Therefore, this new model rests on the idea of con-

structing an optimal classification tree in which the splits of the nodes are performed

by following the underlying ideas of model RE-SVM: 1) the splits are induced by

hyperplanes in which the positive and the negative classes are separated maximizing

the margin between classes, 2) minimizing the classification errors, and 3) allowing

observations to be relabeled along the training process. In contrast to what it is

done in other Classification Tree methods, OCTSVM does not make a distinction

(beyond the hierarchical one) between branch and leaf nodes, in the sense that RE-

SVM based splits are sequentially applied in each node, and the final classification

for any observation comes from the hyperplanes resulting at the last level of the tree,

in case there are no pruned branches, or at the last node where a split was made in

case of a pruned branch.

As it has already been pointed out, OCT-H is a classification tree that allows the

use of general (oblique) hyperplane splits, which is built by solving a single optimiza-

tion problem that takes into account the whole structure of the tree. Nevertheless,

despite the good results this method has proven to obtain in real classification prob-

lems, a further improvement is worth to be considered. In Figure 5.2 we see a set

of points in the plane differentiated by geometrical elements (triangles and circles)

in two classes. Looking at the left picture, one can see one of the optimal solutions

of OCT-H for depth equal to two, where the red hyperplane is the split applied

at the root node and the black ones are applied on the left and right descendants,

which define the four leaves. This solution is optimal, for a certain value of the

cost-complexity parameters, since it does not make any mistakes on the final clas-

sification. Nevertheless, since this method does not have any kind of control on the

distances from points to the hyperplanes, one can observe that the blue class has

very tiny margins at the leaves, and hence, for this class, misclassification errors

are more likely to occur in out-of-sample observations. On the other hand, on the

right side of Figure 5.2 one sees another possible optimal solution for the OCTSVM

model with depth equal to one (note that unlike OCT-H, OCTSVM constructs a

final SVM-based classifier at each of the leaf nodes, which may be identified with an

extra depth). Again, the red hyperplane is the split applied at the root node and

the black ones are the classification splits applied at the two leaves. Despite these

5.3. Optimal Classification Trees with SVM splits and Relabeling (OCTSVM) 131

two methods are obtaining a perfect classification on the training sample, Figure 5.2

shows that OCTSVM provides a more balanced solution than OCT-H since it has

wider margins between both classes, what could be translated into a higher accuracy

for out-of-sample observations.

Figure 5.2: Optimal solutions for OCT-H with D = 2 (left) and OCTSVM with
D = 1 (right).

In order to formulate the OCTSVM as a MINLP, we will start describing the

rationale of its objective function that must account for the margins induced by

the splits at all nodes, the classification errors, the penalty paid for relabelling

observations and the cost-complexity of the final classification tree. To formulate the

above concepts we need different sets of variables. First of all, we consider continuous

variables: ωt ∈ Rp, ωt0 ∈ R, t = 1, . . . , T , which represent the coefficients and the

intercept of the hyperplane performing the split at node t. Taking into account that

the margin of the hyperplane Ht = {z : ω′tz+ωt0 = 0} is given by 2
||ωt|| , maximizing

the minimum margin between classes induced by the splits can be done introducing

an auxiliary variable ι ∈ R (that will be minimized in the objective function) which

is enforced by the following constraints:

1

2
||ωt||2 ≤ ι ∀t = 1, . . . , T. (5.1)

Once the maximization of the margin is set, we have to model the minimiza-

tion of the errors at the nodes, whereas at the same time we minimize the num-

ber of relabelled observations. These two tasks are accomplished by the variables

dit ∈ R, i = 1, . . . , n, t = 1, . . . , T , that account for the misclassification error of

observation i at node t, and ξit ∈ {0, 1} binary variables modelling whether observa-

tion i is relabeled or not at node t. If c1 and c2 are the unit costs of misclassification

and relabelling, respectively, our goal is achieved adding to the objective function

132 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

the following two terms:

c1

n∑
i=1

T∑
t=1

dit + c2

n∑
i=1

T∑
t=1

ξit.

The correct meaning of these two sets of variables must be enforced by some families

of constraints that we describe next. Nevertheless, for the sake of readability before

describing those constraints modeling these dit and ξit, we must introduce another

family of variables the βit ∈ Rp, βi0 ∈ R, i = 1, . . . , n, t = 1, . . . , T , which are

continuous variables equal to the coefficients of the separating hyperplane at node t

when observation i is relabelled, and equal to zero otherwise. In addition, we consider

binary variables zit ∈ {0, 1} needed to control whether observation i belongs to node

t of the tree. Now, putting all these elements together, as it is done in RE-SVM,

we can properly define the splits and their errors at each node of the tree using the

following constraints:

yi(ω
′
txi + ωt0)− 2yi(β

′
txi + βit0) ≥ 1− dit −M(1− zit),

 ∀i = 1, . . . , n,

t = 1, . . . , T,
(5.2)

βitj = ξitωtj , ∀i = 1, . . . , n, t = 1, . . . , T, j = 0, . . . , p. (5.3)

Constraints (5.3), which can be easily linearized, are used to define the βit variables:

they equal the ωt variables when the observation i is relabelled (ξi = 1), and are

equal to zero otherwise (ξi = 0). On the other hand, constraints (5.2) control the

relabelling at each node of the tree. If an observation i is in node t (zit = 1),

and ξi = 0, we obtain the standard SVM constraints for the separating hyperplane.

Nevertheless, if ξi = 1, then the separating constraints are applied for the observation

i as if its class were the opposite to its actual one, i.e., as if observation i is relabeled.

Moreover, since M is a big enough constant, these constraints do not have any kind

of impact in the error variables of node t if observation i does not belong to this

node (zit = 0).

On the other hand, there are still some details left that must be imposed to make

the model to work as required. In the decision tree, observations start at the root

node and they advance descending through the levels of the tree until they reach a

leaf or a pruned node. Hence, we have to guarantee that observations must belong

to one, and only one, node per level. By means of the zit variables, this can be easily

done by the usual assignment constraints applied in each level, u ∈ U , of the tree:∑
t∈u

zit = 1, ∀i = 1, . . . , n, u ∈ U. (5.4)

5.3. Optimal Classification Trees with SVM splits and Relabeling (OCTSVM) 133

Moreover, for consistency in the relation between a node and its ancestor, it is clear

that if observation i is in node t (zit = 1), then, observation i must be also in the

parent of node t (zip(t) = 1), with the only exception of the root node. Besides, if

observation i is not in node t (zit = 0), then i can not be in its successors, and this

is modeled by adding the following constraints to the problem:

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T. (5.5)

So far, the OCTSVM model has everything it needs to properly perform the splits by

following the RE-SVM rationale described in the previous chapter, taking into con-

sideration the tree complexity, and maintaining the hierarchical relationship amongst

nodes. The last element that we need to take care of, to assure the correct perfor-

mance of the whole model, is to define how observations follow their paths inside

the tree. We get from constraints (5.5) that observations move from parent to chil-

dren (nodes), but every non terminal node has a left and a right child node, and

we need to establish how observations take the left or the right branch. Since the

splits are made by the separating hyperplane, we force observations that lie on the

positive half space of a hyperplane to follow the right branch of the parent node,

and observations that lie on the negative one to take the left branch. This behavior

is modeled with the binary variables θit ∈ {0, 1}, that are used to identify whether

observation i lies in the positive half space of the separating hyperplane at node t,

θit = 1, or if observation i lies on the negative half space, θit = 0. By considering M

a big enough constant, the correct behavior of the path followed by the observations

is enforced by the following constraints:

ω′txi + ωt0 ≥ −M(1− θit), ∀i = 1, . . . , n, t = 1, . . . , T, (5.6)

ω′txi + ωt0 ≤Mθit, ∀i = 1, . . . , n, t = 1, . . . , T. (5.7)

Hence, by making use of these θit variables, and distinguishing between nodes that

come from left splits, τbl (nodes indexed by even numbers), and right splits, τbr

(nodes indexed by odd numbers), we control that the observations follow the paths

through the branches in the way we described above throughout the following con-

straints:

zip(t) − zit ≤ θip(t), ∀i = 1, . . . , n, t ∈ τbl, (5.8)

zip(t) − zit ≤ 1− θip(t), ∀i = 1, . . . , n, t ∈ τbr. (5.9)

According to constraints (5.8), if an observation i is on the parent node of an even

node t (zip(t) = 1), and i lies on the negative half space of the hyperplane defining

the split on p(t) (θip(t) = 0), then zit is forced to be 1. Hence, θip(t) = 0 implies that

134 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

observation i takes the left branch to the child node t ∈ τbl. Moreover, we can see

that this constraint is consistent since if zip(t) = 1, but observation i is not in the left

child node, zit = 0, t ∈ τbl, then θip(t) equals 1, what means that observation i lies

on the positive half space of the hyperplane of p(t). On the other hand, constraints

(5.9) are similar but for the right child nodes, τbr. If an observation i is in the parent

node of an odd node t ∈ τbr, and i lies on the positive half space of the hyperplane

of p(t) (θip(t) = 1), then, zit = 1 what means that observation i has to be on node t.

The final term to be included in the objective function of the problem is the

complexity of the resulting tree. Following the approach in OCT and OCT-H, we

consider binary variables δt ∈ {0, 1} , t = 1, . . . , T , that control whether a separating

split is applied at node t. Thus, to control the tree complexity resulting of the

process, we minimize the sum of these variables multiplied by a cost penalty c3.

Gathering all the components together, the objective function to be minimized in

our problem results in

ι+ c1

n∑
i=1

T∑
t=1

dit + c2

n∑
i=1

T∑
t=1

ξit + c3

T∑
t=1

δt.

According to this, it is important to make a distinction between the methods that

use, or the ones that do not use, SVM based splits. When a model does not use

SVM based splits, taking into account that the binary variable δt = 1 implies that

a hyperplane is being used to split the points in node t, complexity can be easily

regulated by just imposing ‖ωt‖2 ≤Mδt in all the branch nodes. Nevertheless, when

using a SVM based method such as the one we are presenting here, the previous

constraint would be in conflict with constraints (5.2). This is due to the fact that

δt = 0 would imply ‖ωt‖2 = 0, and under this scenario, observations in this node

would have to pay for the margin violation error dit = 1, even though these errors

are not justified since points are not being separated at this node. To overcome

this issue, we need to add some other constraints to the model, but before getting

into the mathematical formulation, we would like to emphasize the different aspects

that explain the difficulty of the problem. The objective function accounts for the

complexity cost of node t (δt = 1) when a hyperplane is actually built so as to split

the points in node t. In case we do not pay the complexity cost in node t (δt = 0), it

does not necessarily mean that a hyperplane is not built at this node, it could simply

turn out to be a hyperplane that leaves all the observations at one of the half spaces

it creates, i.e., a hyperplane that is not splitting the points. These non splitting

hyperplanes do not affect the training set at all, and more importantly, they would

not affect out of sample observations since predictions will occur in leaf nodes or

in the first branch node in which δt = 0. Going back to the formulation, the first

5.3. Optimal Classification Trees with SVM splits and Relabeling (OCTSVM) 135

step now is to introduce some binary variables, hit ∈ {0, 1} , i = 1, . . . , n, t ∈ τb,
that will be relaxed afterwards, defined by hit = zitθit. These variables tell us which

observations belong to node t and at the same time lie on the positive half space

of the split created in t. It is important to define these variables because they are

used to measure whether the hyperplane is splitting the points in node t or not.

This is going to be done by means of some new binary variables vt ∈ {0, 1} , t ∈ τb,
that will be equal to zero in case all the points in node t belong to the positive half

space of the hyperplane built in this node, Ht, and one otherwise. For the definition

of the δt variables to make sense, the following constraints must simultaneously be

considered:

hit = zitθit, ∀i = 1, . . . , n, t = 1, . . . , T, (5.10)
n∑
i=1

(zit − hit) ≤Mvt, ∀t = 1, . . . , T, (5.11)

n∑
i=1

hit −M(1− vt) ≤Mδt, ∀t = 1, . . . , T, (5.12)

where M is a big enough constant. The reader should observe that (5.10) is the

definition of the hit variables as the product of zit by θit. These constraints can be

easily linearized by the usual tricks. On the other hand, taking into account that

vt variables would tend to be zero (by the effects on constraints (5.12)), constraints

(5.11) stand for the definition of the vt variables, since these variables could be equal

to zero just in case all the hit are equal to one, what means that all the observations

belong to the positive half space of Ht. Finally, we obtain through constraints (5.12)

the definition of the δt variables. Since these variables are being minimized in the

objective function, they would try to be equal to zero. Nevertheless, this can just

happen if vt = 0, what means that all the observations belong to the positive half

space of Ht, or if
n∑
i=1

hit = 0 in case vt = 1, what means that all the observations

belong to the negative half space of Ht. Hence, δt is equal to one if and only if the

points in node t are being actually separated by Ht.
Finally, another point that it is important to remark about the δt variables is that

once a non-leaf node does not split (that is, the corresponding branch is pruned

at this node), the successors of node t can not make splits either to maintain the

correct hierarchical structure of the tree. Recalling that p(t) is the parent node of

node t, we can guarantee this relationship throughout the following constraints

δt ≤ δp(t), ∀t = 2, . . . , T. (5.13)

Some of the constraints discussed above require big-M constants. The value of

136 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

these constants can be adjusted once we know the dimension (n, p) of the dataset

involved in the optimization problem. Recall that xi ∈ [0, 1]p, therefore it is well

known that the maximum distance between two points in such a domain is
√
p.

Hence, the maximum distance from a point to a hyperplane is also
√
p. According

to this, the big-M constant in constraints (5.2), (5.5) and (5.6) is actually
√
p.

On the other hand, the hit variables are upper bounded by one, and therefore
n∑
i=1

hit

is upper bounded by n. As a result, the big-M constant involved in constraints (5.10)

and (5.11) is n as well.

Gathering all the constraints together, and substituting the generic big-M constants

by those estimated in our discussion above, the OCTSVM is obtained by solving the

following MINLP:

min ι+ c1

n∑
i=1

T∑
t=1

dit + c2

n∑
i=1

T∑
t=1

ξit + c3

T∑
t=1

δt (OCTSVM)

s.t.
1

2
||ωt||2 ≤ ι, ∀t = 1, . . . , T,

yi(ω
′
txi + ωt0)− 2yi(β

′
txi + βit0) ≥ 1− dit −

√
p(1− zit), ∀i = 1, . . . , n, t = 1, . . . , T,

βitj = ξitωtj , ∀i = 1, . . . , n, t = 1, . . . , T, j = 0, . . . , p, (5.14)∑
t∈u

zit = 1, ∀i = 1, . . . , n, u ∈ U,

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T,

ω′txi + ωt0 ≥ −
√
p(1− θit), ∀i = 1, . . . , n, t = 1, . . . , T,

ω′txi + ωt0 ≤
√
pθit, ∀i = 1, . . . , n, t = 1, . . . , T,

zip(t) − zit ≤ θip(t), ∀i = 1, . . . , n, t ∈ τbl,
zip(t) − zit ≤ 1− θip(t), ∀i = 1, . . . , n, t ∈ τbr,
hit = zitθit, ∀i = 1, . . . , n, t = 1, . . . , T, (5.15)
n∑
i=1

(zit − hit) ≤ nvt, ∀t = 1, . . . , T,

n∑
i=1

hit − n(1− vt) ≤ nδt, ∀t = 1, . . . , T,

δt ≤ δp(t), ∀t = 2, . . . , T,

dit ∈ R+, βit ∈ Rp, βit0 ∈ R, ξit, zit, θit, hit ∈ {0, 1} , ∀i = 1, . . . , n, t = 1, . . . , T,

ωt ∈ Rp, ωt0 ∈ R, δt, vt ∈ {0, 1} , ∀t = 1, . . . , T,

ι ∈ R.

The reader may note that the above formulation has two families of bilinear

5.4. Experiments 137

constraints, namely (5.14) and (5.15), that can be easily linearized giving rise to a

mixed integer second order cone formulation.

5.4 Experiments

In this section we present the results of our computational experiments. Five

different classification tree-based methods are compared, CART, OCT, OCT-H,

OCT+SVM and OCTSVM, on nine popular real-life datasets from UCI Machine

Learning Repository Lichman et al. (2013). Notice that OCT+SVM is a modifica-

tion of our OCTSVM in which the ξit variables are fixed to zero, i.e., no relabeling

is allowed in the model. This method is included so as to assess the isolated ef-

fect of using margin-based splits, without relabeling, within the classification trees.

The considered datasets together with their names and dimensions (n: number of

observations, p: number of features) are reported in the three tables of this section.

Our computational experiments focus on the analysis of the accuracy and AUC

(area under the ROC curve) of the different classification tree-based methods. This

analysis is based in four different experiments for each one of the nine considered

dataset. Our goal is to analyze the usefulness of the different methods for classifying

data affected by label noise. Therefore, in our experiments we use, apart from

the original datasets, three different modifications where in each one of them a

percentage of the labels in the sample are randomly flipped. The percentages of

flipped labels range in {0%, 20%, 30%, 40%}, where 0% indicates that the original

training data set is used to construct the tree.

We perform a 4-fold cross-validation scheme, i.e., datasets are split into four

random train-test partitions. One of the folds is used for training the model while

the rest are used for testing. When testing the classification rules, we compute the

accuracy, in percentage, on out of sample data, as well as the AUC, which provides

an aggregate measure of performance across all possible classification thresholds.

One way of interpreting AUC is as the probability that the model ranks a random

positive example more highly than a random negative example.

The CART method was coded in R using the rpart library. OCT, OCT-

H, OCT+SVM and OCTSVM Mathematical Programming models were coded in

Python and solved using Gurobi 8.1.1 on a PC Intel Core i7-7700 processor at 2.81

GHz and 16GB of RAM. A time limit of 30 seconds was set for training. Not all

the problems were solved to optimality, nevertheless, this time limit was enough in

order to obtain good classifiers. The average gap of the experiments is reported in

table 5.3.

The calibration of the parameters of the different optimization-based models

compared in these experiments was set as follows:

138 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

• For OCTSVM we used a grid on
{

10i : i = −5, . . . , 5
}

for the constants c1 and

c2, and a smaller one
{

10i : i = −2, . . . , 2
}

for c3. For OCT+SVM c2 is not

used since all the ξit variables are set to zero.

• For OCT, in order to check every possible optimal subtree of a maximal tree for

a given depth D, we did the predictions in two steps. We first set up a grid on

the parameter c1 =
{

1, . . . , 2D − 1
}

and solved a slightly different OCT model

in which the objective function did not take into account the complexity term,

since complexity was already considered in the model by adding the following

constraint
∑
t∈τB

δt ≤ c1. The resulting solutions that were optimal for a certain

c1 of the original OCT problem were afterwards computed. This methodology

was not used in OCT-H since the grid of the modified problem should have

been extended to c1 =
{

1, . . . , p(2D − 1)
}

, therefore we used the same grid

that we used for c1 in OCTSVM directly into OCT-H formulation. On the

other hand, the minimum number of observations per leaf was set to a 5% of

the training sample size.

• CART trees were post-processed to satisfy any depth constraint as it was done

with OCT. The minimum number of observations per leaf was the same 5%

of the training sample size that we used for OCT and OCT-H.

Last to mention, the depth, D, considered in these experiments was set equal to

three for CART, OCT and OCT-H, whereas for OCTSVM and OCT+SVM we fixed

depth equal to two, creating consequently trees with 3 levels, to set a fair comparison

amongst the different methods.

For each dataset, we replicate each experiment four times. In Table 5.1 we

show the average (± standard deviation) accuracies for each one of the methods

and datasets. In addition, Table 5.2 shows the average (± standard deviation) AUC

results. The best results are highlighted (boldfaced). The first column stands for

the percentage of flipped labels (FL) of the training sets. On the other hand, the

last column shows the mean difference (Diff) between OCTSVM and the best result

amongst OCT and OCT-H. Finally, in Table 5.3 we report the average MINLP gaps

obtained by the models at the end of the training time limit.

5.5 Conclusions

One of the classification methods that has experienced a more in depth transfor-

mation in the last years is classification trees. Since the pioneer contribution by

Breiman et al. Breiman et al. (1984), where CART was proposed, this technique

has included tools from mathematical optimization giving rise to the so called OCT

5.5. Conclusions 139

%
F

L
C

A
R

T
O

C
T

O
C

T
-H

O
C

T
+

S
V

M
O

C
T

S
V

M
D

iff

0
84

.9
1
±

1.
31

85
.4

8
±

0.
99

85
.1

6
±

1
.2

8
85

.6
2
±

1.
08

8
6
.1

6
±

0
.6

8
0
.6

8
±

0.
76

A
u

st
ra

li
an

20
83

.3
5
±

5.
30

8
5
.3

1
±

1
.1

2
80

.0
5
±

4
.5

7
81

.9
3
±

7.
83

85
.2

5
±

1
.3

4
-0

.0
6
±

1.
03

(6
90

,1
4)

30
70

.5
0
±

11
.8

9
79

.2
7
±

7.
55

72
.0

1
±

4
.2

5
75

.2
4
±

10
.4

6
8
2
.5

7
±

7
.4

6
3.

29
±

11
.9

6

40
54

.3
4
±

7.
94

70
.3

6
±

9.
56

64
.6

3
±

4
.2

5
64

.3
8
±

7.
93

7
7
.9

2
±

8
.1

9
7.

56
±

11
.7

1

0
91

.6
4
±

2.
09

87
.9

4
±

1.
54

9
8
.6

0
±

0
.4

7
92

.6
8
±

4.
86

96
.0

6
±

3
.1

9
-2

.5
4
±

3.
32

B
an

k
n

ot
e

20
88

.0
0
±

2.
63

85
.9

9
±

1.
91

70
.0

1
±

9
.1

8
66

.4
6
±

10
.0

1
8
9
.9

7
±

4
.7

1
3
.9

7
±

4.
63

(1
37

2,
5)

30
85

.7
9
±

3.
38

8
5
.9

6
±

2
.2

7
63

.1
8
±

9
.9

1
67

.3
6
±

12
.8

5
8
4.

03
±

12
.4

6
-1

.9
3
±

12
.7

2

40
69

.1
3
±

10
.3

3
77

.7
3
±

9.
25

59
.1

5
±

8
.5

3
58

.4
5
±

12
.6

6
8
7
.1

6
±

1
2
.4

6
9
.4

2
±

8.
67

0
91

.8
1
±

1.
51

93
.7

1
±

0.
94

94
.2

1
±

1
.0

6
9
6
.1

5
±

0
.9

4
95

.0
9
±

5
.2

7
2
.4

4
±

1.
07

B
re

as
tC

an
ce

r
20

90
.3

8
±

2.
63

9
2
.8

8
±

1
.7

2
89

.4
5
±

4
.2

4
82

.9
6
±

5.
29

91
.8

5
±

3
.0

7
-1

.0
3
±

3.
08

(6
83

,9
)

30
87

.5
2
±

3.
38

9
2
.1

5
±

1
.8

4
84

.4
1
±

5
.4

1
79

.1
6
±

4.
94

89
.9

0
±

2
.7

5
-2

.2
4
±

3.
85

40
73

.9
5
±

12
.5

3
9
0
.4

4
±

2
.6

8
75

.3
6
±

6
.8

1
74

.5
8
±

5.
15

87
.2

8
±

4
.7

1
-3

.1
5
±

5.
26

0
72

.3
4
±

3.
57

75
.0

2
±

1.
82

78
.9

5
±

2
.2

9
82

.3
1
±

2.
05

8
3
.3

6
±

1
.4

1
4
.4

1
±

1.
88

H
ea

rt
20

70
.5

3
±

6.
16

74
.1

0
±

3.
57

74
.6

6
±

4
.2

4
73

.9
5
±

5.
98

8
0
.1

3
±

4
.3

9
5
.4

6
±

4.
92

(2
70

,1
3)

30
71

.8
7
±

3.
72

71
.8

7
±

6.
23

71
.1

9
±

5
.6

1
7
3.

7
±

4
.6

9
7
7
.2

5
±

6
.3

1
5
.3

7
±

7.
24

40
71

.7
2
±

3.
63

64
.1

8
±

5.
32

65
.1

8
±

5
.0

4
66

.8
2
±

5.
15

7
4
.2

6
±

3
.3

9
9
.0

7
±

4.
94

0
81

.0
9
±

4.
73

85
.3

4
±

2.
36

84
.7

7
±

1
.9

7
83

.1
5
±

4.
46

8
5
.5

5
±

2
.6

5
0
.2

0
±

2.
70

Io
n

os
p

h
er

e
20

74
.4

6
±

6.
77

7
8
.7

4
±

3
.1

4
74

.8
8
±

5
.7

8
77

.0
6
±

3.
63

78
.0

5
±

4
.6

5
-0

.6
8
±

5.
43

(3
51

,3
4)

30
65

.8
0
±

6.
76

74
.3

0
±

5.
70

73
.6

1
±

4
.4

7
74

.8
4
±

4.
46

7
6
.8

3
±

5
.2

1
2
.5

3
±

7.
27

40
60

.4
8
±

7.
39

70
.8

9
±

5.
30

66
.0

6
±

6
.6

9
71

.7
3
±

4.
64

7
5
.6

8
±

2
.6

2
4
.7

9
±

5.
77

0
59

.1
9
±

3.
04

60
.3

0
±

2.
90

61
.2

4
±

2
.4

0
60

.4
8
±

2.
59

6
2
.8

5
±

1
.7

2
1
.6

1
±

2.
90

M
O

N
K

’s
20

55
.4

0
±

7.
01

59
.5

9
±

3.
42

58
.9

6
±

4
.9

3
59

.4
9
±

1.
77

6
2
.4

0
±

2
.1

5
2
.8

0
±

3.
79

(4
15

,1
7)

30
55

.1
0
±

4.
88

57
.9

0
±

5.
00

59
.2

1
±

2
.9

1
58

.7
3
±

0.
97

6
0
.5

7
±

4
.6

7
1
.3

6
±

4.
93

40
50

.3
0
±

5.
99

56
.8

6
±

3.
04

56
.8

6
±

3
.6

1
58

.8
4
±

2.
11

6
1
.9

1
±

2
.3

0
5
.0

5
±

4.
41

0
69

.1
9
±

8.
95

76
.0

9
±

4.
82

74
.8

2
±

3
.1

8
80

.6
6
±

2.
26

8
1
.6

7
±

4
.2

6
5
.5

7
±

4.
26

P
ar

k
in

so
n

20
61

.9
5
±

12
.3

9
73

.9
5
±

4.
34

66
.4

0
±

5
.2

0
74

.9
6
±

4.
69

7
7
.2

9
±

3
.8

8
3
.3

3
±

5.
27

(2
40

,4
0)

30
57

.8
2
±

10
.6

1
71

.0
5
±

7.
03

62
.6

3
±

6
.4

6
70

.2
7
±

5.
42

7
5
.5

7
±

3
.7

0
4
.5

2
±

6.
56

40
51

.7
6
±

8.
18

67
.9

5
±

7.
44

59
.3

9
±

3
.9

8
62

.3
8
±

5.
51

6
9
.5

9
±

5
.1

0
1
.6

4
±

9.
46

0
62

.1
1
±

10
.8

6
69

.1
7
±

4.
82

71
.5

3
±

4
.6

9
74

.1
5
±

3.
70

7
6
.8

6
±

3
.8

6
5
.3

2
±

6.
16

S
on

ar
20

58
.0

6
±

9.
03

64
.4

1
±

5.
65

67
.4

1
±

4
.0

7
75

.2
1
±

5.
59

7
1
.6

2
±

4
.2

9
4
.2

0
±

4.
84

(2
08

,6
0)

30
53

.3
5
±

6.
40

60
.6

2
±

4.
78

65
.1

1
±

5
.7

6
67

.3
6
±

7.
27

7
0
.0

7
±

4
.3

6
4
.9

6
±

5.
38

40
50

.0
4
±

6.
76

58
.7

9
±

5.
18

60
.2

4
±

4
.1

5
62

.4
4
±

4.
13

6
4
.9

5
±

1
1
.8

8
4.

71
±

10
.6

8

0
89

.6
1
±

2.
22

90
.3

5
±

1.
28

9
0
.5

2
±

1.
2
7

87
.5

4
±

3.
80

88
.5

9
±

1
.8

2
-1

.9
3
±

2
.6

3

W
h

ol
es

al
e

20
81

.2
2
±

10
.1

2
8
7
.8

0
±

3
.5

6
85

.1
4
±

2
.9

5
75

.2
1
±

5.
59

81
.6

3
±

4
.6

7
-6

.1
7
±

5.
67

(4
40

,7
)

30
77

.4
0
±

12
.0

3
8
3
.9

9
±

5
.1

5
78

.0
1
±

7
.0

1
74

.8
9
±

6.
35

78
.9

5
±

5
.0

6
-5

.0
3
±

8.
30

40
61

.4
6
±

14
.4

1
73

.1
4
±

16
.1

1
72

.3
1
±

5
.7

0
72

.0
1
±

10
.5

2
7
6
.0

6
±

4
.9

4
3.

76
±

16
.9

0

Table 5.1: Average accuracies (± standard deviations) obtained in our computa-
tional experiments.

140 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

%
F

L
C

A
R

T
O

C
T

O
C

T
-H

O
C

T
+

S
V

M
O

C
T

S
V

M
D

iff

0
8
5.

31
±

1.
72

8
6.

10
±

0
.9

3
85

.1
8
±

1
.5

2
8
5.

92
±

1
.1

6
8
6
.3

0
±

0
.7

8
0.

2
0
±

0.
7
0

A
u

st
ra

li
a
n

20
8
3.

78
±

5.
81

8
5
.8

8
±

1
.2

3
80

.3
3
±

5
.1

9
8
1.

87
±

9
.4

2
8
5.

5
2
±

8
.7

7
-0

.3
5
±

1
.1

5

(6
90

,1
4)

30
7
0.

26
±

12
.4

9
7
9.

44
±

7
.7

0
71

.8
7
±

4
.3

2
74

.8
9
±

11
.9

6
8
2
.7

0
±

8
.7

7
3
.2

6
±

1
3.

0
8

40
5
3.

98
±

6.
12

70
.0

4
±

1
0.

26
64

.9
1
±

5
.5

8
6
3.

07
±

9
.8

0
7
7
.3

9
±

9
.3

9
7
.3

5
±

1
2.

5
3

0
9
1.

37
±

2.
15

8
7.

52
±

1
.4

7
9
8
.5

6
±

0
.4

3
9
0.

84
±

7
.1

1
9
6.

0
1
±

3
.2

3
-2

.5
5
±

3
.3

4

B
an

k
n

ot
e

20
8
7.

80
±

2.
69

8
5.

87
±

1
.7

6
66

.9
1
±

10
.9

5
63

.3
8
±

1
2.

1
5

8
9
.4

7
±

5
.2

6
3.

6
0
±

5.
1
7

(1
37

2,
5)

30
8
5.

33
±

3.
90

8
5
.5

4
±

2
.4

0
60

.1
3
±

11
.0

4
64

.9
7
±

1
3.

8
3

84
.1

7
±

1
1
.6

3
-1

.3
7
±

11
.8

4

40
6
7.

54
±

12
.0

6
76

.6
4
±

1
0.

95
56

.0
5
±

8
.1

4
55

.6
8
±

1
2.

3
3

8
5
.8

5
±

1
0
.0

2
9.

2
0
±

9.
9
8

0
9
1.

36
±

1.
92

9
3.

10
±

1
.3

3
93

.6
0
±

1
.5

4
9
5
.7

3
±

1
.2

7
9
4.

2
0
±

7
.9

8
2.

6
2
±

1.
4
1

B
re

a
st

C
an

ce
r

20
8
9.

62
±

2.
86

9
1
.9

5
±

2
.4

6
88

.5
2
±

5
.7

6
7
9.

58
±

8
.6

9
9
0.

3
2
±

3
.4

0
-1

.0
9
±

4
.1

4

(6
8
3,

9)
30

8
5.

28
±

8.
18

9
0
.8

2
±

2
.4

6
82

.9
6
±

8
.5

0
7
4.

00
±

7
.9

4
8
7.

0
6
±

4
.3

7
-3

.7
5
±

6
.2

3

40
6
7.

61
±

15
.0

4
8
8
.9

0
±

3
.9

6
69

.7
1
±

10
.2

8
6
7.

46
±

8
.3

3
8
5.

4
8
±

7
.5

7
-3

.4
2
±

9
.1

0

0
7
1.

91
±

2.
89

7
4.

49
±

1
.9

7
78

.6
2
±

2
.1

9
8
2.

17
±

1
.5

3
8
2
.8

7
±

1
.2

1
4.

2
4
±

1.
9
6

H
ea

rt
20

6
9.

88
±

6.
09

7
3.

31
±

3
.4

2
74

.2
4
±

3
.9

1
7
3.

04
±

6
.0

8
7
9
.4

0
±

4
.2

9
5.

1
5
±

4.
4
3

(2
70

,1
3)

30
7
1.

47
±

3.
04

7
1.

16
±

6
.4

0
70

.1
4
±

5
.8

2
7
2.

75
±

5
.1

5
7
3
.9

7
±

6
.8

7
4.

7
3
±

7.
8
9

40
7
1.

45
±

3.
01

6
3.

91
±

5
.3

4
64

.0
7
±

6
.1

4
6
6.

29
±

5
.8

5
7
3
.9

7
±

3
.0

8
9.

8
9
±

6.
2
9

0
7
8.

29
±

6.
21

8
1.

90
±

3
.8

4
81

.4
6
±

2
.0

4
7
7.

49
±

5
.6

6
8
2
.3

8
±

3
.7

1
0.

4
8
±

4.
2
6

Io
n

os
p

h
er

e
20

6
9.

22
±

9.
11

7
4
.3

9
±

3
.8

7
70

.6
9
±

6
.6

4
7
3.

18
±

4
.4

6
7
2.

6
4
±

7
.3

9
-1

.7
0
±

7.
4
8

(3
51

,3
4)

30
6
0.

11
±

8.
73

7
0.

20
±

6
.5

6
69

.0
9
±

4
.6

2
7
0.

62
±

6
.4

2
7
1
.3

7
±

5
.0

7
1.

1
6
±

7.
3
9

40
5
6.

09
±

7.
09

6
8.

23
±

5
.5

6
60

.0
0
±

7
.8

4
6
4.

32
±

6
.3

5
6
9
.4

4
±

3
.5

1
1.

2
1
±

6.
8
0

0
5
8.

49
±

4.
06

5
9.

83
±

3
.2

1
59

.8
4
±

3
.8

5
5
9.

90
±

2
.7

8
6
0
.9

2
±

2
.4

6
1.

0
8
±

3.
1
6

M
O

N
K

’s
20

5
4.

93
±

6.
45

5
9.

06
±

3
.9

6
58

.2
9
±

3
.8

5
57

.5
1
±

2
.8

3
6
0
.6

8
±

2
.3

6
1.

6
2
±

4.
5
0

(4
15

,1
7)

30
5
3.

56
±

5.
26

5
7.

25
±

5
.9

8
57

.8
5
±

2
.9

5
5
5.

86
±

2
.9

1
5
9
.5

8
±

3
.0

9
1.

7
3
±

3.
3
9

40
4
9.

51
±

4.
56

5
6.

08
±

3
.4

1
55

.6
7
±

4
.1

1
5
7.

33
±

2
.5

7
5
9
.7

9
±

2
.9

6
4.

1
2
±

3.
8
1

0
6
9.

58
±

8.
13

7
6.

15
±

1
.7

7
74

.9
5
±

3
.0

5
8
0.

77
±

2
.1

9
8
1
.8

1
±

4
.0

7
5.

6
6
±

4.
1
4

P
ar

k
in

so
n

20
6
2.

69
±

11
.6

3
7
4.

08
±

4
.3

4
66

.4
8
±

5
.2

7
7
5.

13
±

4
.7

2
7
7
.3

7
±

3
.4

7
3.

2
9
±

5.
3
4

(2
40

,4
0)

30
5
8.

15
±

10
.4

3
7
0.

89
±

7
.5

7
62

.5
7
±

6
.7

1
7
0.

18
±

5
.5

4
7
5
.8

7
±

3
.4

7
4.

9
7
±

7.
2
8

40
5
1.

94
±

8.
09

6
7.

89
±

7
.6

1
59

.3
6
±

3
.9

0
6
2.

27
±

5
.9

8
6
9
.3

2
±

5
.3

0
1.

4
2
±

9.
5
2

0
6
2.

11
±

10
.8

6
6
8.

68
±

4
.6

5
71

.1
9
±

4
.7

7
7
3.

64
±

4
.2

5
7
6
.5

5
±

3
.6

8
5.

3
5
±

6.
3
4

S
on

ar
20

5
8.

06
±

9.
03

6
3.

75
±

6
.2

0
67

.4
6
±

5
.6

7
6
8.

81
±

4
.8

6
7
1
.6

1
±

4
.4

1
4.

1
5
±

4.
8
5

(2
08

,6
0)

30
5
3.

35
±

6.
40

5
9.

88
±

5
.5

4
65

.2
0
±

5
.6

7
6
6.

65
±

7
.7

8
6
9
.6

4
±

4
.4

2
4.

4
3
±

5.
1
0

40
5
0.

04
±

6.
76

5
8.

00
±

5
.2

5
59

.8
2
±

4
.9

8
6
2.

05
±

4
.4

0
6
4
.9

9
±

1
1
.1

8
5
.1

7
±

1
0.

1
7

0
8
9.

61
±

2.
22

8
8.

82
±

2
.4

7
8
8
.9

4
±

3
.0

2
8
6.

25
±

3
.5

8
8
7.

3
6
±

2
.9

8
-1

.5
7
±

4
.2

5

W
h

ol
es

al
e

20
8
1.

22
±

10
.1

2
8
5
.8

0
±

5
.3

7
82

.4
1
±

5
.5

3
67

.1
0
±

1
2.

6
4

7
7.

1
2
±

7
.9

4
-8

.6
7
±

7
.5

0

(4
4
0,

7)
30

7
7.

40
±

12
.0

3
8
1
.8

0
±

8
.1

2
74

.5
7
±

10
.1

3
67

.9
9
±

1
2.

2
9

7
2.

4
0
±

9
.1

2
-9

.3
9
±

13
.0

3

40
6
1.

46
±

14
.4

1
7
2
.3

0
±

1
5
.5

7
64

.7
2
±

12
.8

5
59

.8
8
±

1
0.

5
2

69
.6

6
±

1
0
.3

5
-2

.6
4
±

9
.8

9

Table 5.2: Average AUC (± standard deviations) obtained in our computational
experiments.

5.5. Conclusions 141

% FL OCT OCT-H OCT+SVM OCTSVM

0 12.50 85.36 27.33 91.59

Australian 20 18.75 97.50 30.01 86.80

(690,14) 30 68.75 99.23 45.31 82.92

40 62.50 99.66 35.84 85.53

0 100.00 78.00 76.64 82.53

Banknote 20 68.75 99.99 75.16 93.65

(1372,5) 30 56.25 99.99 76.69 91.75

40 43.75 99.70 73.77 85.20

0 56.25 80.62 19.19 79.40

BreastCancer 20 56.04 87.50 54.07 78.17

(683,9) 30 81.09 94.81 37.54 81.35

40 82.89 98.26 23.57 86.62

0 66.93 88.86 29.55 68.34

Heart 20 54.68 93.78 45.09 81.01

(270,13) 30 54.97 93.22 36.63 90.98

40 99.06 96.82 32.54 85.05

0 68.33 75.00 47.23 84.15

Ionosphere 20 61.42 85.94 52.38 100.00

(351,34) 30 80.80 89.63 74.39 84.16

40 75.00 92.42 46.26 78.52

0 12.25 97.09 24.99 78.19

MONK’s 20 37.22 97.03 18.68 68.73

(415,17) 30 24.77 99.75 12.09 90.95

40 62.01 96.41 21.62 83.78

0 34.52 76.15 36.61 89.07

Parkinson 20 55.92 79.91 40.15 85.52

(240,40) 30 43.75 87.07 40.79 97.06

40 36.97 88.49 41.49 84.54

0 50.00 75.63 19.88 77.73

Sonar 20 68.75 81.94 39.45 79.17

(208,60) 30 68.75 83.00 30.48 88.75

40 75.00 78.62 38.71 91.91

0 31.25 38.67 28.71 32.34

Wholesale 20 30.88 96.20 14.22 94.26

(440,7) 30 31.25 95.07 7.39 91.25

40 75.00 88.35 6.34 97.52

Table 5.3: Average MINLP Gaps of the optimization-based models to construct
classification trees, within the time limit.

142 Chapter 5. Robust Optimal Classification Trees under Noisy Labels

Bertsimas and Dunn (2017); Bertsimas et al. (2019), methods that are optimal in

some sense. In spite of that, there is still some extra room for further improve-

ments, in particular making classifiers more robust against perturbed datasets. The

contribution in this chapter goes in that direction and it augments the catalogue of

classification tree methods able to handle noise in the labels of the dataset.

We have proposed a new optimal classification tree approach able to handle la-

bel noise in the data. Two main elements support our approach: the splitting rules

for the classification trees are designed to maximize the separation margin between

classes and wrong labels of the training sample are detected and changed at the

same time that the classifier is built. The method is encoded on a Mixed Inte-

ger Second Order Cone Optimization problem so that one can solve medium size

instances by any of the nowadays available off-the-shelf solvers. We report inten-

sive computational experiments on a battery of datasets taken from UCI Machine

Learning repository showing the effectiveness and usefulness of our approach.

Chapter 6

Multiclass Optimal

Classification Trees with

SVM-splits

144

146 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

In this chapter we present a novel mathematical optimization-based methodology

to construct tree-shaped classification rules for multiclass instances. Our approach

consists of building Classification Trees in which, except for the leaf nodes, the labels

are temporarily left out and grouped into two classes by means of a SVM separating

hyperplane. We provide a Mixed Integer Non Linear Programming formulation for

the problem and report the results of an extended battery of computational experi-

ments to assess the performance of our proposal with respect to other benchmarking

classification methods.

6.1 Introduction

In this chapter we provide a novel multiclass classification method which is con-

structed using one of the most interpretable classification methods, Classification

Trees, but combined with Support Vector Machines, which provide highly predic-

tive models.

We have developed a Mathematical Programming model that allows to construct

an Optimal Classification Tree for a given training sample, in which each split is gen-

erated by means of a SVM-based hyperplane. When building the tree, the labels

of the observations are ignored in the branch nodes, and they are only accounted

for in the leaf nodes where misclassification errors are considered. The classification

tree is constructed to minimize the complexity of the tree (assuring interpretabil-

ity) and also the misclassification risk (assuring predictive power). This idea has

been studied in the previous chapter for biclass classification problems, where the

OCTSVM model was introduced showing that it is able to outperform CART, OCT

and OCT-H in different real life datasets.

In Figure 6.1 we see a CT constructed by CART for a biclass problem with

maximal depth 2. We draw the classification tree, and also in the top right corner,

the partition of the feature space (in this case R2). As can be observed, the obtained

classification is not perfect (not all leaf nodes are composed by pure classes) while in

this case is not difficult to construct a CT with no classification errors. This situation

is caused by the myopic construction done by the CART approach that, at each node

only cares on better classification at their children, but not at the final leaf nodes,

while subsequent branching decisions clearly affect the overall shape of the tree. In

Figure 6.1 (right) we show a solution provided by OCT-H for the same example.

One can observe that when splitting the root node (orange branches) a good local

split is not obtained (the nodes contain half of the observations in different classes),

however, when adding the other two splits, the final leaves only have observations

of the same class, resulting in a perfect classification rule for the training sample.

On the other hand, in Figure 6.2 we show how one could construct a CT with

6.1. Introduction 147

Figure 6.1: Example of a CT obtained with CART (left) and OCT-H (right) ap-
proaches for the same instance.

larger separations between the classes using OCTSVM but still with the same 100%

accuracy in the training sample as in OCT-H, but more protected to misclassification

in out-of-sample observations.

Figure 6.2: Example of a CT obtained with OCTSVM.

Nevertheless, the combination of OCT and SVM has only been analyzed for

biclass instances. The extension of this method to multiclass settings (more than two

classes) is not trivial, since one could construct more complex trees or use a multiclass

SVM-based methodology (see e.g. Crammer and Singer (2001); Weston and Watkins

(1998); Lee et al. (2004)). However, these adaptations of the classical SVM method

have been proved to fail in real-world instances (see Blanco et al. (2020b)). In the

rest of the chapter we describe a novel methodology to construct accurate multiclass

tree-shaped classifiers based on a different idea: constructing CT with splits induced

by bi-class SVM separators in which the classes of the observations at each one of

the branch nodes are determined by the model, but adequately chosen to provide

148 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

small classification errors at the leaf nodes. The details of the approach are given

in the following sections.

6.2 Multiclass OCT with SVM splits

In this section we describe the method that we propose to construct classification

rules for multiclass instances, in particular Classification Trees in which splits are

generated based on the SVM paradigm.

As already mentioned, our method, namely Multiclass Optimal Classification

Trees with SVM-splits (MOCTSVM), is based on constructing OCT with SVM

splits, but where the classes of the observations are momentarily ignored and only

accounted for at the leaf nodes. In order to illustrate the idea under our method,

in Figure 6.3 we show a toy instance with a set of points with four different classes

(blue, red, orange and green).

Figure 6.3: Instance for a 4-class problem.

First, at the root node (the one in which all the observations are involved), our

method constructs a SVM separating hyperplane for two fictitious classes (which

have to be also decided). A possible separation could be the one shown in Figure

6.4, in which the training dataset has been classified into two classes (black and

white). This separation allows one to generate two child nodes, the black and the

white nodes. At each of these nodes, the same idea is applied until the leaf nodes

are reached. In Figure 6.5 we show the final partition of the feature space according

to this procedure.

Clearly, ignoring the original classes of the training sample in the whole process

would result in senseless trees, unless one accounts for the goodness in the classifi-

cation rule in the training sample at the leaf nodes. Thus, at the final leaf nodes,

the original labels are recovered and the classification is performed according to the

generated hyperplanes. The final result of this tree is shown in Figure 6.6 where one

6.3. Mathematical Programming formulation for MOCTSVM 149

Figure 6.4: Root split on the 4-class classification problem

Figure 6.5: Child node splits on the 4-class classification problem higheleted as the
fictitious classes decided in our model.

can check that the constructed tree achieves a perfect classification of the training

sample.

Once the tree is constructed with this strategy, the decision rule comes up natu-

rally as it is usually done in decision trees methods, that is, out of sample observa-

tions will follow a path on the tree according to the splits and they will be assigned

to the class of the leaf where they lie in (the most represented class of the leaf over

the training set). In case a branch is pruned when building the tree, observations

will be assigned to the most represented class of the node where the prune took

place.

6.3 Mathematical Programming formulation for MOCTSVM

In this section we derive a Mixed Integer Non Linear Programming formulation for

the MOCTSVM method described in the previous section.

We assume to be given a training sample X = {(x1, y1), . . . , (xn, yn)} ⊆ Rp ×

150 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

Figure 6.6: Child node splits on the 4-class classification problem with their original
labels (colors).

{1, . . . , k}. We also consider the binary representation of the labels y as:

Yik =

 1 if yi = s,

0 otherwise,
for all i = 1, . . . , n, s = 1, . . . k.

Moreover, without loss of generality we will assume the features to be normalized,

i.e., x1, . . . , xn ∈ [0, 1]p.

We will construct decision trees with a fixed maximum depth D. Thus, the

classification tree is formed by at most T = 2D+1 − 1 nodes. We denote by τ =

{1, . . . , T} the index set for the tree nodes, where node 1 is the root node and nodes

2D, . . . , 2D+1 − 1 are the leaf nodes.

For any node t ∈ τ\{1}, we denote by p(t) its (unique) parent node. The tree

nodes can be classified in two sets: branching and leaf nodes. The branching nodes,

that we denote by τb, will be those in which the splits are applied. In constrast,

in the leaf nodes, denoted by τl, no splits are applied but is where predictions take

place. The branching nodes can be also classified into two sets: τbl and τbr depending

on whether they follow the left or the right branch on the path from their parent

nodes, respectively. τbl nodes are indexed with even numbers meanwhile τbr nodes

are indexed with odd numbers.

Moreover, as it has been done in previous chapter, we define a level as a set

of nodes which have the same depth within the tree. The number of levels in the

tree to be built is D + 1 since the root node is assumed as the zero-level. Let

U = {u0, . . . , uD} be the set of levels of the tree, where each ur ∈ U is the set of

nodes at level r, for r = 0, . . . , D. With this notation, the root node is u0 while uD

represent the set of leaf nodes.

In Figure 6.7 we show the above mentioned elements in a 3-depth tree.

Apart from the information about the topological structure of the tree, we also

6.3. Mathematical Programming formulation for MOCTSVM 151

t = 1
(root)

t = 2

t = 4

t = 8 t = 9

t = 5

t = 10 t = 11

t = 3

t = 6

t = 12 t = 13

t = 7

t = 14 t = 15

u0

u1

u2

u3

p(4) = = p(5) = p(7)p(6) =

τb 3

τb 3

τb 3

τl 3

τbl τbr

τbl τbr τbrτbl

Figure 6.7: Elements in a depth D = 3 tree.

consider three regularization parameters that have to be calibrated in the validation

process that allow us to find a trade-off between the different goals that we combine

in our model: margin violation and classification errors of the separating splitting

hyperplanes, correct classification at the leaf nodes and complexity of the tree. These

parameters are the following:

c1: unit misclassification cost at the leaf nodes.

c2: unit distance based misclassification errors for SVM splits.

c3: unit cost for each splitting hyperplane introduced in the tree.

Our model uses a set of decision and auxiliary variables that are described in

Table 6.1. We use both binary and continuous decision variables to model the

MOCTSVM. The binary variables allow us to decide the allocation of observations

to the decision tree nodes, or to decide whether a node is splited or not in the

tree. The continuous variables allow us to determine the coefficients of the splitting

hyperplanes or the misclassification errors (both in th SVM separations or at the

leaf nodes). We also use auxiliary binary and integer variables that are useful to

model adequately the problem.

In Figure 6.8 we illustrate the use of these variables in a feasible solution of a

toy instance with three classes (red,blue and green).

The whole set of training observation is considered at the root node (node t = 1).

There, the original labels are ignored and to determine the fictitious class of each

observation a SVM-based hyperplane is constructed. Such a hyperplane is defined

by the coefficients ω1 ∈ Rp and ω01 ∈ R (hyperplane/line drawn with a dotted line in

the picture) and it induces a margin separation (2
‖ω1‖2) and misclassification errors

ei1. In the feasible solution drawn in the figure, only three observations induce

positive errors (those that are classified either in the margin area or in the opposite

side of the hyperplane). Such a hyperplane also determines the splitting rule for

152 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

Continuous Decision Variables

ωt ∈ Rp Coefficients of the separating hyperplane of node t.

ωt0 ∈ R Intercept of the separating hyperplane of node t.

eit ∈ R+ Misclassification error of observation i at node t.

ι ∈ R+ Inverse of the minimum margin between splitting hy-
perplanes.

Binary Decision Variables

zit ∈ {0, 1} Is one if observation i belongs to node t and zero oth-
erwise.

δt ∈ {0, 1} Is one if a split is applied at node t and zero otherwise.

Auxiliary Variables

Lt ∈ Z+ Number of misclassified observations at leaf node t.

αit ∈ {0, 1} Is one if observation i belongs to the reference fictitious
class in node t and zero otherwise.

hit ∈ {0, 1} Is one if observation i is in node t and lies on the
positive half space of the hyperplane of node t, and
zero otherwise.

vt ∈ {0, 1} Is one if not all observations in node t lie on the pos-
itive half space of the hyperplane in node t and zero
otherwise.

qst ∈ {0, 1} Is one if class s is the most represented one in leaf
node t and zero otherwise.

Table 6.1: Summary of the variables used in our model.

the definition of the children of that node. Since the node is split (δ1 = 1), the

observations that belongs to the positive side of the hyperplane are assigned to the

left node (node t = 2) while those in the negative side are assigned to the right node

(node t = 3) through the z-variables. At node t = 2, the same scheme is applied,

that is, the hyperplane defined by ω2 is constructed, inducing SVM-based margin

and errors and since δ2 = 1, also the splitting rule applies to define nodes t = 4 and

t = 5. At node t = 2, one must control the observations in that node to quantify

the misclassifying errors, ei2, only for those observations in the objective function.

Specifically, we only account for these errors for the observations that belong to the

node (zi2 = 1) and either belong to the positive (αi2 = 1) or the negative (αi2 = 0)

side of the hyperplane. Also, in order to control the complexity of the tree, the

h-variables are used to know whether an observation belongs to the node and to

the positive side of the SVM-hyperplane. If all observations in a node belong to the

positive side of the hyperplane, the variable v assumes the value 0. Otherwise, in

case v takes value 1, two situations are possible: 1) there are observations in both

sides of the hyperplane (as in node t = 2) inducing a new split (δ2 = 1), and 2) all

6.3. Mathematical Programming formulation for MOCTSVM 153

Figure 6.8: Illustration of the sets of variables used in our model in a toy example.

observations belong to the negative side (as in node t = 3) determining that the tree

is pruned at that node (δ3 = 0).

Concerning the leaf nodes, node t = 2 is split into nodes t = 4 and t = 5 and

node t = 3, which was decided to be no longer split, is fictitiously split in two leaf

nodes, although one of them is empty and the other one receives all the observations

of the parent node (node t = 3). The allocation of any leaf node τl to a class is

done through the q-variables (to the most popular class in the node or arbitrarily in

case the node has no observations) and the number of misclassified observations is

accounted for by the L-variables.

As already mentioned, our method aims to construct classification trees with

small misclassification errors at the leaf nodes, but at the same time with maximal

separation between the classes with the SVM-based hyperplanes and minimum dis-

tance based errors. Using the variables described above, the four terms that are

included in the objective functions are the following:

Margins of the splitting hyperplanes: The separating hyperplane of branching

node t ∈ τb has margin 2
‖ωt‖2 . Thus, our method aims to maximize the min-

154 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

imum of these margins. This is equivalent to minimize the maximum among

the inverse margins {1
2‖ωt‖22 : t ∈ τb} which is represented by the auxiliary

variable ι.

Misclassification Errors at the leaf nodes: Variable Lt accounts for the num-

ber of misclassified observations in leaf node t, i.e., the number of observations

that do not belong to the most represented class in that leaf node. These

variables allow us to count the overall number of misclassified observations in

the training sample. Therefore, the amount to be minimized by the model is

given by the following sum:

c1

∑
t∈τl

Lt

Distance-based Errors at branching nodes: Each time a split is added to the

tree, a SVM-based hyperplane in which the labels are assigned based on the

global convenience of for the overall tree is incorporated. Thus, we measure,

at each branching node in τb, the distance-based errors incurred by the SVM

classifier at that split. This amount is measured by the eit variables and is

incorporated to the model through the sum:

c2

n∑
i=1

∑
t∈τb

eit

Complexity of the tree The simplicity of the resulting tree is measured by the

number of splits that are done in its construction. Since the δt variable tells

us whether node t is split or not, this term is accounted for in our model as:

c3

∑
t∈τb

δt

Summarizing, the overall objective function of our model is:

min ι+ c1

∑
t∈τl

Lt + c2

n∑
i=1

∑
t∈τb

eit + c3

∑
t∈τb

δt. (OBJ)

Note that the coefficients c1, c2 and c3 trade-off the misclassification of the

training sample, the separation between classes and the complexity of the tree,

respectively. These parameters should be carefully calibrated in order to construct

simple decision trees with high predictive power, as can be seen in our computational

experiments.

The requirements on the relationships between the variables and the rationale

of our model are described through the following constraints that define the Math-

6.3. Mathematical Programming formulation for MOCTSVM 155

ematical Programming model.

First of all, in order to adequately represent the maximum among the inverse mar-

gins of the sppliting hyperplanes, we require:

ι ≥ 1

2
‖ωt‖22, ∀t ∈ τb. (6.1)

Next, we impose how the splits are performed in the tree. To this end, we need

to know which observations belong to a certain node t (z-variable) and how these

observations are distributed with respect to the two fictitious classes to be separated

(α-variables). Gathering all these elements together, we use the following constraints

to define the splits of the decision tree:

ω′txi + ωt0 ≥ 1− eit − (1− hit), ∀i = 1, . . . , n, t ∈ τb, (6.2)

ω′txi + ωt0 ≤ −1 + eit + (1− zit + αit), ∀i = 1, . . . , n, t ∈ τb. (6.3)

According to this, constraint (6.2) is activated just in case the observation i belongs

to the reference class and it is in node t (hit = 1). On the other hand, (6.3) is

activated if i is allocated to node t (zit = 1) but it does not belong to the reference

class (αit = 0). Therefore, the reference class is located on the positive half space of

hyperplane Ht, while the other class is positioned in the negative half space, and at

the same time, margin violations are regulated by the eit variables.

To ensure the correct behaviour of the above constraints, we must correctly define

the zit variables. First, it is required that each observation belongs to exactly one

node per level in the tree. This can be easily done by adding the usual assingment

constraints to the problem at each of the levels, u ∈ U , of the tree:∑
t∈u

zit = 1, ∀i = 1, . . . , n, u ∈ U. (6.4)

Furthermore, we should enforce that if observation i is in node t (zit = 1), then

observation i must also be in the parent node of t, p(t) (zip(t) = 1), and also obser-

vation i can not be in node t if it is not in its parent node (zip(t) = 0 ⇒ zit = 0).

These implications can be obtained by means of the following constraints:

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T. (6.5)

Nevertheless, the way observations descend through the tree needs a further analysis,

since at this point they could just randomly define a path in the tree. Whenever

an observation i is in the positive half space of the splitting hyperplane at node t,

Ht, this observation should follow the right branch connecting to the child node of

t. Otherwise, in case i is on the negative half space, it should follow the left branch.

156 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

The knowledge on the side of the splitting hyperplane where an observation belongs

to is encoded in the α-variables. Then, in case i lies on the positive half space of

Ht, αit will never be equal to zero since it would lead to a value of eit greater than

one, while eit < 1 is guaranteed in case αit = 1.

With the above observations, the constraints that assure the correct construction

of the splitting hyperplanes with respect to the side of them where the observations

belong to are the following:

zip(t) − zit ≤ αip(t) ∀i = 1, . . . , n, t ∈ τbl, (6.6)

zip(t) − zit ≤ 1− αip(t) ∀i = 1, . . . , n, t ∈ τbr. (6.7)

Constraints (6.6) assure that if observation i is on the parent node of an even node

t (zip(t) = 1), and i lies on the negative half space of Hp(t) (αip(t) = 0), then zit is

enforced to be equal to one. As a result, αip(t) = 0 forces observation i to take the

left branch in node t. Note that in case zip(t) = 1, and at the same time observation i

is not in the left child node of t (zit = 0 for i ∈ τbl), then αip(t) = 1, which means that

observation i lies on the positive half space of Hp(t). Constraints (6.7) are analogous

to (6.6) but allowing to adequately represent right branching nodes.

Moreover, two additional important elements need to be incorporated to com-

plete our model: the tree complexity and the correct definition of misclassified obser-

vations. Recall that OCT and OCT-H do not use SVM-based splits, and therefore

the complexity can be easily regulated by just imposing ‖ωt‖22 ≤ Mδt (for a big

enough M constant) in all the branch nodes, since in case a node is no further

branched (δt = 0), the coefficients of the splitting hyperplane are set to zero. How-

ever, in our case, in which the splitting hyperplanes are SVM-based hyperplanes,

these constraints are in conflict with constraints (6.2) and (6.3), since in case δt = 0

(and therefore ωt = 0) it would not only imply that the coefficients ωt are equal to

zero, but also that the distance based errors would be set to the maximum value of

1, i.e., eit = 1 for every observation i in the node, even though these errors would not

make any sense since observations would not be separated at the node. To overcome

this issue, we consider the auxiliary binary variables hit = zitαit (hit takes value 1

if observation i belongs to node t and lies in the positive half-space of the splitting

hyperplane applied at node t) and vt (that takes value zero in case all the points

in the node belong to the positive halfspace and one otherwise). The variables are

6.3. Mathematical Programming formulation for MOCTSVM 157

adequatelly defined if the following constraints are incorporated to the model:

hit ≥ zit + αit − 1, ∀i = 1, . . . , n t ∈ τb, (6.8)

hit ≤ zit − αit + 1, ∀i = 1, . . . , n t ∈ τb, (6.9)
n∑
i=1

(zit − hit) ≤ nvt, ∀t ∈ τb, (6.10)

n∑
i=1

hit ≤ n(1 + δt − vt), ∀t ∈ τb, (6.11)

where constraints (6.8) and (6.9) are the linearization of the bilinear constraint

hit = zitαit. On the other hand, Constraints (6.10) assure that in case vt = 0, then

all observations in node t belong to the positive halfspace of Ht, and constraints

(6.11) assure that if vt = 1 and the tree is pruned at node t (δt = 0), then those

observations allocated to node t are placed in the negative halfspace defined by the

splitting hyperplane. Thus, it implies that δt takes value one if and only if the

observations in node t are separated by Ht, and therefore producing an effective

split at the node.

Finally, in order to adequately represent the Lt variables (the ones that measure

the number of misclassified observations at the leaf nodes) we use the constraints

already incorporated in the OCT-H model in Bertsimas and Dunn (2017). On the

one hand, we assign each leaf node to a single class (the most popular class of the

observations that belong to that node). We use the binary variable qst to check

whether leaf node t ∈ τl is assigned to class s = 1, . . . , k. The usual assignment

constraints are considered to assure that each node is assigned to exactly one class:

k∑
s=1

qst = 1, ∀t ∈ τl. (6.12)

The correct definition of the variable Lt is then guaranteed by the following set

of constraints:

Lt ≥
n∑
i=1

zit −
n∑
i=1

Yiszit − n(1− qst), ∀s = 1, . . . , k, t ∈ τl. (6.13)

These constraints are activated if and only if qst = 1, i.e., if observations in node t

are assigned to class s. In such a case, since Lt is being minimized in the objective

function, Lt will be determined by the number of training observations in node t

except those whose label is s, i.e., the number of missclasified observations in node

t according to the s-class assignment.

Observe that the constant n in (6.13) can be decreased and fixed to the maximum

158 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

number of misclassified observations in the training sample. This number coincide

with the difference between the number of observations in the training sample (n)

and the number of observations in the most represented class in the sample.

Summarizing the above paragraphs, the MOCTSVM can be formulated as the

following MINLP problem:

min ι+ c1

∑
t∈τl

Lt + c2

n∑
i=1

∑
t∈τ

eit + c3

∑
t∈τ

δt (MOCTSVM)

s.t. ι ≥ 1

2
‖ωt‖, ∀t ∈ τb,

ω′txi + ωt0 ≥ 1− eit − (2− zit − αit), ∀i = 1, . . . , n, t ∈ τb,
ω′txi + ωt0 ≤ −1 + eit + (1− zit + αit), ∀i = 1, . . . , n, t ∈ τb,∑
t∈u

zit = 1, ∀i = 1, . . . , n, u ∈ U,

zit ≤ zip(t), ∀i = 1, . . . , n, t = 2, . . . , T,

zip(t) − zit ≤ αip(t), ∀i = 1, . . . , n, t ∈ τbl,
zip(t) − zit ≤ 1− αip(t), ∀i = 1, . . . , n, t ∈ τbr,
hit ≥ zit + αit − 1, ∀i = 1, . . . , n, t ∈ τb,
hit ≤ zit − αit + 1, ∀i = 1, . . . , n, t ∈ τb,
n∑
i=1

(zit − hit) ≤ nvt, ∀t ∈ τb,

n∑
i=1

hit ≤ n(1 + δt − vt), ∀t ∈ τb,

k∑
s=1

qst = 1, ∀t ∈ τl,

Lt ≥
n∑
i=1

zit −
n∑
i=1

Yiszit − n(1− qst), ∀s = 1, . . . , k, t ∈ τl,

eit ∈ R+, αit, hit ∈ {0, 1}, ∀i = 1, . . . , n, t ∈ τb,
zit ∈ {0, 1}, ∀i = 1, . . . , n, t = 1, . . . , T,

qst ∈ {0, 1}, ∀s = 1 . . . , k, t ∈ τl,
ωt ∈ Rp, ωt0 ∈ R, δt ∈ {0, 1}, ∀t = 1, . . . , T.

6.3.1 Strengthening the model

The MINLP formulation presented above is valid for our MOCTSVM model. How-

ever, it is a computationally costly problem, and although it can be solved by most

of the off-the-shelf optimization solvers, it is able to solve optimally only small to

6.4. Experiments 159

medium size instances. To improve its performance, the problem can be strengthen

by means of valid inequalities which allows one to reduce the gap between the con-

tinuous relaxation of the problem and its optimal integer solution, being then able

to solve larger instances in smaller CPU times. In what follows we describe some of

these inequalities that we have incorporated to the MINLP formulation:

• If observations i and i′ belongs to different nodes, they cannot be assigned to

the same node for the remainder levels of the tree:

zir + zi′r ≤ zit + zi′t, ∀t ∈ u, r ∈ u′u ≤ u′

• If leaf nodes t and t′ are the result of proper splitting hyperplanes, then, both

nodes cannot be assigned to the same class:

qst + qst′ ≤ 2− dp(t), ∀t, t′ = 2, . . . , T (t 6= t′) with p(t) = p(t′), s = 1, . . . , k.

• Variable αit is enforced to take value 0 in case zit = 0:

αit ≤ zit, ∀i = 1, . . . , n, t ∈ τb.

• Variable hit is not allowed to take value one if αit takes value zero:

hit ≤ αit, ∀i = 1, . . . , n, t ∈ τb.

• There should be at least a leaf node to which each class is assigned to (assuming

that each class is represented in the training sample). It also implies that the

number of nodes to which a class is assigned is bounded as:

1 ≤
∑
t∈τl

qst ≤ 2D − 1, ∀s = 1, . . . , k.

6.4 Experiments

In order to analyze the performance of this new methodology we have run a series of

experiments among different real datasets from UCI Machine Learning Repository

Lichman et al. (2013). We have chosen twelve datasets with number of classes

between two and seven. The dimension of these problems is reported in Table 6.2 by

the tuple (n : number of observations, p : number of features, k : number of classes).

We have compared the MOCTSVM model with three other Classification Tree-

based methodologies, namely CART, OCT and OCT-H. The maximum tree depth,

D, for all the models was equal to 3, and the minimum number of observations per

160 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

node in CART, OCT and OCT-H was equal to the 5% of the training size.

We have performed, for each instance a 5-fold cross validation scheme, i.e.,

datasets have been splited into five random train-test partitions where one of the

folds is used to build the model and the remaining are used to measure the accu-

racy of the predictions. Moreover, in order to avoid taking advantage of beneficial

initial partitions, we have repeated the cross-validation scheme five times for all the

datasets.

The CART method was coded in R using the rpart library. On the other hand,

MOCTSVM, OCT and OCT-H were coded in Python and solved using the opti-

mization solver Gurobi 8.1.1. All the experiments were run on a PC Intel Xeon

E-2146G processor at 3.50GHz and 64GB of RAM. A time limit of 300 seconds was

set for training the training folds. Although not all the problems were optimally

solved within the time limit, as can be observed in Table 6.2, the results obtained

with our model already outperform the other methods.

In order to calibrate the parameters of the different models that regulate the

complexity of the tree, we have used different approaches. On the one hand, for

CART and OCT, since the maximum number of nodes for such a depth is 2D −
1 = 7, one can search for the tree with best complexity by searching in the grid{

1, . . . , 2D − 1
}

of possible active nodes. For OCT-H, we search the complexity

regularization factor in the grid
{

10i : i = −5, . . . , 5
}

. Finally, in MOCTSVM we

used the same grid
{

10i : i = −5, . . . , 5
}

for c1 and c2, and
{

10i : i = −2, . . . , 2
}

for

c3.

In Table 6.2 we report the results obtained in our experiments for all the models.

The first column of the table indicates the identification of the dataset (together with

its dimensionality). Second, for each of the methods that we have tested, we report

the obtained average test accuracy and the standard deviation. We have highlighted

in bold the best average test accuracies obtained for each dataset.

As can be observed, our method clearly outperforms in most of the instances

the rest of the methods in terms of accuracy. Clearly, our model is designed to

construct Optimal Classification Trees with larger separations between the classes,

which results in better accuracies in the test sample. The datasets Australian and

BalanceScale obtain their better results with OCT-H, but, as can be observed, the

differences with respect the rest of the methods are tiny (it is the result of correctly

classifying in the test sample just a few more observations than the rest of the

methods). In that case, our method gets an accuracy almost as good as OCT-H.

In the rest of the datasets, our method consistently gets better classifiers and for

instance for Dermatology the difference with respect to the best classifiers among

the others ranges in [4%, 19%], for Parkinson the accuracy with our model is at least

6% better than the rest, for Wine we get 5% more accuracy than OCTH and 10%

6.4. Experiments 161

more than CART and for Zoo the accuracy of our model is more than 17% greater

than the one obtained with CART.

Concerning the variability of our method, the standard deviations reported in

Table 6.2 show that our results are, in average, more stable than the others, with

small deviations with respect to the average accuracies. This behaviour differs from

the one observed in CART or OCT, where larger deviations are obtained, implying

that the accuracies highly depends of the test folder where the method is applied.

CART OCT OCT-H MOCTSVM Diff

Australian

(690,14,2)
85.54 ± 0.81 85.22 ± 1.27 85.65 ± 1.02 85.27 ± 1.11 -0.38 ± 0.63

BalanceScale

(625,4,3)
69.55 ± 1.76 73.30 ± 1.20 90.43 ± 1.07 89.53 ± 1.28 -0.90 ± 1.69

Banknote

(1372,5,2)
89.27 ± 0.95 88.50 ± 1.17 98.89 ± 0.33 98.91 ± 0.46 0.02 ± 0.43

BreastCancer

(683,9,2)
92.69 ± 1.01 94.16 ± 0.54 95.10 ± 1.26 96.27 ± 0.64 1.17 ± 1.39

Dermatology

(358,34,6)
75.69 ± 3.60 77.82 ± 4.34 91.41 ± 2.83 95.39 ± 1.47 3.98 ± 2.74

Heart

(294,13,5)
64.37 ± 1.48 65.14 ± 1.57 64.30 ± 1.79 66.41 ± 1.54 1.26 ± 1.38

Iris

(150,4,3)
94.26 ± 1.90 95.37 ± 0.97 95.64 ± 1.46 95.72 ± 1.79 0.08 ± 1.70

Parkinson

(240,40,2)
72.29 ± 4.05 73.53 ± 2.26 74.92 ± 3.01 80.83 ± 1.89 5.91 ± 3.06

Seeds

(210,7,3)
86.36 ± 4.02 88.52 ± 2.69 91.12 ± 2.99 92.98 ± 1.82 1.85 ± 2.23

Teaching

(150,5,3)
41.91 ± 5.64 48.35 ± 3.80 48.09 ± 2.92 48.62 ± 3.37 0.26 ± 4.60

Thyroid

(215,5,3)
89.77 ± 2.37 92.43 ± 2.12 92.46 ± 2.49 94.57 ± 2.08 2.11 ± 3.10

Wine

(178,13,3)
84.52 ± 2.66 92.22 ± 3.41 89.35 ± 3.71 94.13 ± 1.78 1.90 ± 3.37

Zoo

(101,16,7)
74.96 ± 5.79 87.75 ± 1.99 89.11 ± 2.58 92.31 ± 2.15 3.20 ± 2.95

Table 6.2: Average accuracies (± standard deviations) obtained in our computa-
tional experiments.

162 Chapter 6. Multiclass Optimal Classification Trees with SVM-splits

6.5 Conclusions

We have presented in this chapter a novel methodology to construct classifiers for

multiclass instances by means of a Mathematical Programming model. The pro-

posed method outputs a classification tree were the splits are based on SVM-based

hyperplanes. At each branch node of the tree, a binary SVM hyperplane is con-

structed in which the observations are classified in two fictitious classes (the original

classes are ignored in all the splitting nodes), but the global goodness of the tree

is measured at the leaf nodes, where misclassification errors are minimized. Also,

the model minimizes the complexity of the tree together with the two elements that

appear in SVM-approaches: margin separation and distance-based misclassifying

errors. We have run an extensive battery of computational experiments that shows

that our method outperforms most of the Decision Tree-based methodologies both

in accuracy and stability.

Chapter 7

Conclusions and future research

lines

164

166 Chapter 7. Conclusions and future research

Motivated by the advances made in Mathematical Programming over Data Sci-

ence in recent years, in this thesis we have focused on analyzing hyperplanes location

to address Classification and Aggregation problems. Throughout all the chapters of

this dissertation we have developed MILP and MINLP formulations to design new

models in which theoretical properties have been discussed along with an extensive

computational analysis to measure the performance of the proposed methodologies,

thus proving their validity. In the following, we briefly summarize the major achieve-

ments and discuss possible future research lines of each chapter.

Chapter 2 proposes a novel modeling framework based on the Support Vector Ma-

chines to address multiclass classification problems. In such a framework, the classes

are linearly separated and the separation between classes is maximized. Different

approaches are presented regarding to two kinds of error and distance measures.

These approaches compute an optimal arrangement of hyperplanes subdividing the

space into cells, and so that each cell is assigned to a class based on the training

sample. Dimensionality reduction techniques are developed in order to help solvers

finding the optimal solutions of the problems. Furthermore, we prove that an anal-

ogous of the kernel trick is valid for our methods. The performance of this approach

is tested amongst a set of real and synthetic datasets, in which our methods showed

to work remarkably well compared to other methods existing in the literature.

Several extensions of our approach are possible. Amongst them we would like

to mention the use of heuristic algorithms to solve the complex MILP and MINLP

problems which may alleviate the computational burden of the methodology still

keeping high quality solutions. Moreover, our approach could also be extended to

the framework of semisupervised learning by assigning unlabelled observations to

their closest well-classified cells.

In Chapter 3 we study the problem of locating a set of hyperplanes in order

to minimize an objective function of the distances from a set of points where each

point is assigned to its closest hyperplane. The distance from each point to its

corresponding fitting hyperplane can be seen as a residual, and these residuals are

aggregated using ordered median functions. Two exact approaches are presented

to solve the problem. One based on a compact mixed integer formulation and

another one based on an extended set partitioning formulation with an exponential

number of variables handled by a branch-and-price approach. We developed initial

feasible solutions to initialize the column generation procedure of this branch-and-

price. Moreover, we present a heuristic pricing strategy that is used in combination

with the exact one to speed up the pricing iterations. In our computational study

we report the comparison of both methods over two different real datasets and an

extensive battery of synthetic instances. Finally, we analyze the issue of scalability

of the exact methods, obtaining theoretical upper bounds of the error induced by

167

some aggregated versions of the original dataset.

A possible extension to be developed in future studies is the development of

alternative heuristic algorithms capable to solve the problem for large instances.

Other types of tools could also be explored under the multisource ordered median

paradigm, as for instance, in view of the good results obtained in Chapter 2, Support

Vector Machines.

Chapter 4 presents a methodology to construct a classification rule that simulta-

neously incorporates the detection of label noise within the datasets. This methodol-

ogy combines SVM and clustering techniques to simultaneously identify wrong labels

while building a separating hyperplane maximizing the margin and minimizing mis-

classification errors, allowing observations to be relabeled in the training process.

The rationale is simple: observations identified as wrongly labeled will be relabelled

only if the gain in margin or the decrease in misclassification error compensate the

flipping. Our findings are not only of theoretical interest. Its practical performance

when applied to real datasets is remarkable. In all tested cases, our methods are

superior to the considered benchmark. Thus, they are directly applicable to datasets

in which flipped labels are suspected, resulting in robust classifiers to noisy labels.

Further research on the topic includes the extension of our models to deal with

multiclass instances by modifying the relabel -variables to identify the new (non-

binary) labels. The strategy should be carefully chosen using a multiclass SVM-

based approach (as One versus One, One versus All or any of the unified tools).

This extension is not trivial and requires a deeper analysis.

Other lines of research that would extend our methods are the application of al-

ternative clustering strategies, as those based on ordered median objective functions

or the twin SVM methodology. Also, the use of kernel tools in our approaches, in

order to be able to construct non linear classifiers has to be investigated.

Chapters 5 and 6 approach the problem of building optimal Classification Trees

with SVM-based splits. On the one hand, Chapter 5 introduces the OCTSVM

model, which is designed to deal with binary classification problems and which is

able to handle label noise in the data. On the other hand, Chapter 6 presents the

MOCTSVM, a model that extends the OCTSVM to the multiclass scenario. We

have reported intensive computational experiments on a battery of datasets taken

from UCI Machine Learning repository, showing that our methods outperform most

of the Decision Tree-based methodologies both in accuracy and stability.

Future research lines on this topic include the analysis of nonlinear splits when

branching in OCTSVM and MOCTSVM, both using kernel tools derived from SVM

classifiers or specific families of nonlinear separators. This approach will result

into more flexible classifiers able to capture the nonlinear trends of many real-life

datasets. Furthermore, we also plan to incorporate features selection in our methods

168 Chapter 7. Conclusions and future research

in order to construct highly predictive but also more interpretable classification tools.

Additionally, we also plan to address the design of math-heuristic algorithms which

keep the essence of OCT but capable to train larger datasets.

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi,

J., Gramfort, A., Thirion, B., and Varoquaux, G. (2014). Machine learning for

neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8:14.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary:

A unifying approach for margin classifiers. Journal of machine learning research,

1(Dec):113–141.

Amaldi, E., Coniglio, S., and Taccari, L. (2016). Discrete optimization methods

to fit piecewise affine models to data points. Computers & Operations Research,

75:214–230.

Archer, K. J. and Kimes, R. V. (2008). Empirical characterization of random

forest variable importance measures. Computational statistics & data analysis,

52(4):2249–2260.

Bagirov, A. M., Ugon, J., Webb, D., Ozturk, G., and Kasimbeyli, R. (2013). A novel

piecewise linear classifier based on polyhedral conic and max–min separabilities.

Top, 21(1):3–24.

Bahlmann, C., Haasdonk, B., and Burkhardt, H. (2002). Online handwriting recog-

nition with support vector machines-a kernel approach. In Proceedings Eighth

International Workshop on Frontiers in Handwriting Recognition, pages 49–54.

IEEE.

Balas, E. and Padberg, M. W. (1976). Set partitioning: A survey. SIAM review,

18(4):710–760.

Baldomero-Naranjo, M., Mart́ınez-Merino, L. I., and Rodŕıguez-Ch́ıa, A. M. (2020).

Tightening big ms in integer programming formulations for support vector ma-

chines with ramp loss. European Journal of Operational Research, 286(1):84–100.

Baldomero-Naranjo, M., Mart́ınez-Merino, L. I., and Rodŕıguez-Ch́ıa, A. M. (2021).

A robust svm-based approach with feature selection and outliers detection for

classification problems. Expert Systems with Applications, 178:115017.

170

References 171

Benati, S., Puerto, J., and Rodŕıguez-Ch́ıa, A. M. (2017). Clustering data that are

graph connected. European Journal of Operational Research, 261(1):43–53.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables program-

ming problems. Numerische mathematik, 4(1):238–252.

Beńıtez-Peña, S., Blanquero, R., Carrizosa, E., and Ramı́rez-Cobo, P. (2019). On

support vector machines under a multiple-cost scenario. Advances in Data Anal-

ysis and Classification, 13(3):663–682.

Bennett, K., Demiriz, A., et al. (1999). Semi-supervised support vector machines.

Advances in Neural Information processing systems, pages 368–374.

Bennett, K. P. and Blue, J. (1998). A support vector machine approach to decision

trees. In 1998 IEEE International Joint Conference on Neural Networks Proceed-

ings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227),

volume 3, pages 2396–2401. IEEE.

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning,

106(7):1039–1082.

Bertsimas, D., Dunn, J., Pawlowski, C., and Zhuo, Y. D. (2019). Robust classifica-

tion. INFORMS Journal on Optimization, 1(1):2–34.

Bertsimas, D. and Dunn, J. W. (2019). Machine learning under a modern optimiza-

tion lens. Dynamic Ideas LLC.

Bertsimas, D. and Mazumder, R. (2014). Least quantile regression via modern

optimization. The Annals of Statistics, 42(6):2494–2525.

Bertsimas, D. and Shioda, R. (2007). Classification and regression via integer opti-

mization. Operations Research, 55(2):252–271.

Bi, J. and Zhang, T. (2005). Support vector classification with input data uncer-

tainty. Advances in neural information processing systems, 17(1):161–168.

Biggio, B., Nelson, B., and Laskov, P. (2011). Support vector machines under

adversarial label noise. In Asian conference on machine learning, pages 97–112.

PMLR.

Blanco, V., Japón, A., Ponce, D., and Puerto, J. (2021a). On the multisource

hyperplanes location problem to fitting set of points. Computers & Operations

Research, 128:105124.

172 References

Blanco, V., Japón, A., and Puerto, J. (2020a). A mathematical programming

approach to binary supervised classification with label noise. arXiv preprint

arXiv:2004.10170.

Blanco, V., Japón, A., and Puerto, J. (2020b). Optimal arrangements of hyper-

planes for svm-based multiclass classification. Advances in Data Analysis and

Classification, 14(1):175–199.

Blanco, V., Japón, A., and Puerto, J. (2021b). Multiclass optimal classification trees

with svm-splits. arXiv preprint arXiv:2111.08674.

Blanco, V., Japón, A., and Puerto, J. (2021c). Robust optimal classification trees

under noisy labels. Advances in Data Analysis and Classification, pages 1–25.

Blanco, V., Puerto, J., and Ben-Ali, S. E.-H. (2016). Continuous multifacility

ordered median location problems. European Journal of Operational Research,

250(1):56–64.

Blanco, V., Puerto, J., and El-Haj Ben-Ali, S. (2014). Revisiting several problems

and algorithms in continuous location with lp norms. Computational Optimization

and Applications, 58 (3), 563-595.

Blanco, V., Puerto, J., and Rodŕıguez-Ch́ıa, A. M. (2020c). On `p-support vector

machines and multidimensional kernels. Journal of Machine Learning Research.

Blanco, V., Puerto, J., and Rodriguez-Chia, A. M. (2020d). On lp-support vector

machines and multidimensional kernels. J. Mach. Learn. Res., 21:14–1.

Blanco, V., Puerto, J., and Salmerón, R. (2018). Locating hyperplanes to fitting set

of points: A general framework. Computers & Operations Research, 95:172–193.

Boland, N., Domı́nguez-Maŕın, P., Nickel, S., and Puerto, J. (2006). Exact proce-

dures for solving the discrete ordered median problem. Computers & Operations

Research, 33(11):3270–3300.

Boucher, J.-P., Denuit, M., and Guillen, M. (2009). Number of accidents or number

of claims? an approach with zero-inflated poisson models for panel data. Journal

of Risk and Insurance, 76(4):821–846.

Bradley, P. S. and Mangasarian, O. L. (2000). K-plane clustering. Journal of Global

Optimization, 16(1):23–32.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L. (2002). Manual on setting up, using, and understanding random forests

v3. 1. Statistics Department University of California Berkeley, CA, USA, 1(58).

References 173

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and

regression trees. wadsworth int. Group, 37(15):237–251.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (2017). Classification

and regression trees. Routledge.

Brimberg, J., Juel, H., and Schöbel, A. (2002). Linear facility location in three

dimensions—models and solution methods. Operations Research, 50(6):1050–

1057.

Brimberg, J., Juel, H., and Schöbel, A. (2003). Properties of three-dimensional

median line location models. Annals of Operations Research, 122(1-4):71–85.

Brooks, J. P. (2011). Support vector machines with the ramp loss and the hard

margin loss. Operations research, 59(2):467–479.

Carbonneau, R. A., Caporossi, G., and Hansen, P. (2014). Globally optimal clus-

terwise regression by column generation enhanced with heuristics, sequencing and

ending subset optimization. J. Classif., 31(2):219–241.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE trans-

actions on information theory, 13(1):21–27.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of machine learning research, 2(Dec):265–

292.

Current, J. R. and Schilling, D. A. (1987). Elimination of source a and b errors in

p-median location problems. Geographical Analysis, 19(2):95–110.

Current, J. R. and Schilling, D. A. (1990). Analysis of errors due to demand data

aggregation in the set covering and maximal covering location problems. Geo-

graphical Analysis, 22(2):116–126.

de França, F. O. and Coelho, A. L. (2015). A biclustering approach for classification

with mislabeled data. Expert Systems with Applications, 42(12):5065–5075.

Dıaz-Bánez, J., Mesa, J. A., and Schöbel, A. (2004). Continuous location of dimen-

sional structures. European Journal of Operational Research, 152(1):22–44.

Dietterich, T. G. and Bakiri, G. (1994). Solving multiclass learning problems via

error-correcting output codes. Journal of artificial intelligence research, 2:263–

286.

174 References

Drezner, Z., Steiner, S., and Wesolowsky, G. O. (2002). On the circle closest to a

set of points. Computers & Operations Research, 29(6):637–650.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and Vapnik, V. (1997). Support

vector regression machines. Advances in neural information processing systems,

9:155–161.

Du, M., Liu, N., and Hu, X. (2019). Techniques for interpretable machine learning.

Communications of the ACM, 63(1):68–77.

Duan, Y. and Wu, O. (2016). Learning with auxiliary less-noisy labels. IEEE

transactions on neural networks and learning systems, 28(7):1716–1721.

Edgeworth, F. Y. (1887). On observations relating to several quantities. Hermath-

ena, 6(13):279–285.

Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. (1971). Distribution man-

agement : mathematical modelling and practical analysis. London : Griffin.

Ekambaram, R., Fefilatyev, S., Shreve, M., Kramer, K., Hall, L. O., Goldgof, D. B.,

and Kasturi, R. (2016). Active cleaning of label noise. Pattern Recognition,

51:463–480.

Espejo, I. and Rodŕıguez-Ch́ıa, A. M. (2011). Simultaneous location of a service

facility and a rapid transit line. Computers & operations research, 38(2):525–538.

Frénay, B. and Verleysen, M. (2013). Classification in the presence of label noise: a

survey. IEEE transactions on neural networks and learning systems, 25(5):845–

869.

Friedman, J. H. (2017). The elements of statistical learning: Data mining, inference,

and prediction. springer open.

Ganapathiraju, A., Picone, J., et al. (2000). Support vector machines for automatic

data cleanup. In INTERSPEECH, pages 210–213.

Gaudioso, M., Gorgone, E., Labbé, M., and Rodŕıguez-Ch́ıa, A. M. (2017). La-

grangian relaxation for svm feature selection. Computers & Operations Research,

87:137–145.

Gauss, C. F. (1877). Theoria motus corporum coelestium in sectionibus conicis solem

ambientium, volume 7. FA Perthes.

Geoffrion, A. (1977). Objective function approximations in mathematical program-

ming. Mathematical Programming, 13:23–39.

References 175

Geoffrion, A. M. (1972). Generalized benders decomposition. Journal of optimization

theory and applications, 10(4):237–260.

Ghaddar, B. and Naoum-Sawaya, J. (2018). High dimensional data classification and

feature selection using support vector machines. European Journal of Operational

Research, 265(3):993–1004.

Giloni, A. and Padberg, M. (2002). Alternative methods of linear regression. Math-

ematical and Computer Modelling, 35(3-4):361–374.

Gini, C. (1912). Variabilità e mutabilità (variability and mutability). Cuppini,

Bologna, 156.

Gitman, I., Chen, J., Lei, E., and Dubrawski, A. (2018). Novel prediction techniques

based on clusterwise linear regression. arXiv preprint arXiv:1804.10742.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Guermeur, Y. and Monfrini, E. (2011). A quadratic loss multi-class svm for which

a radius–margin bound applies. Informatica, 22(1):73–96.

Günlük, O., Kalagnanam, J., Li, M., Menickelly, M., and Scheinberg, K. (2021).

Optimal decision trees for categorical data via integer programming. Journal of

Global Optimization, pages 1–28.

Gupta, O. K. and Ravindran, A. (1985). Branch and bound experiments in convex

nonlinear integer programming. Management science, 31(12):1533–1546.

Hampel, F. R. (1975). Beyond location parameters: Robust concepts and methods.

Han, X. and Chang, X. (2013). An intelligent noise reduction method for chaotic

signals based on genetic algorithms and lifting wavelet transforms. Information

Sciences, 218:103–118.

Harris, T. (2013). Quantitative credit risk assessment using support vector ma-

chines: Broad versus narrow default definitions. Expert Systems with Applications,

40(11):4404–4413.

Hastie, T. J. and Tibshirani, R. J. (2017). Generalized additive models.

Hennig, C. (1999). Models and methods for clusterwise linear regression. In Classi-

fication in the Information Age, pages 179–187. Springer.

Horn, D., Demircioğlu, A., Bischl, B., Glasmachers, T., and Weihs, C. (2018). A

comparative study on large scale kernelized support vector machines. Advances

in Data Analysis and Classification, 12(4):867–883.

176 References

Ikeda, K. and Murata, N. (2005). Effects of norms on learning properties of support

vector machines. In Proceedings.(ICASSP’05). IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2005., volume 5, pages v–241. IEEE.

Kalcsics, J., Nickel, S., Puerto, J., and Tamir, A. (2002). Algorithmic results for

ordered median problems. Operations Research Letters, 30(3):149–158.

Labbé, M., Mart́ınez-Merino, L. I., and Rodŕıguez-Ch́ıa, A. M. (2019). Mixed integer

linear programming for feature selection in support vector machine. Discrete

Applied Mathematics, 261:276–304.

Labbé, M., Ponce, D., and Puerto, J. (2017). A comparative study of formulations

and solution methods for the discrete ordered p-median problem. Computers &

Operations Research, 78:230–242.

Lauer, F. and Guermeur, Y. (2011). Msvmpack: a multi-class support vector ma-

chine package. The Journal of Machine Learning Research, 12:2293–2296.

Lee, Y., Lin, Y., and Wahba, G. (2004). Multicategory support vector machines:

Theory and application to the classification of microarray data and satellite radi-

ance data. Journal of the American Statistical Association, 99(465):67–81.

Letham, B., Rudin, C., McCormick, T. H., and Madigan, D. (2015). Interpretable

classifiers using rules and bayesian analysis: Building a better stroke prediction

model. The Annals of Applied Statistics, 9(3):1350–1371.

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest.

R news, 2(3):18–22.

Lichman, M. et al. (2013). Uci machine learning repository.

López, J., Maldonado, S., and Carrasco, M. (2018). Double regularization methods

for robust feature selection and svm classification via dc programming. Informa-

tion Sciences, 429:377–389.

Majid, A., Ali, S., Iqbal, M., and Kausar, N. (2014). Prediction of human breast

and colon cancers from imbalanced data using nearest neighbor and support vector

machines. Computer methods and programs in biomedicine, 113(3):792–808.

Maldonado, S., Bravo, C., López, J., and Pérez, J. (2017). Integrated framework

for profit-based feature selection and svm classification in credit scoring. Decision

Support Systems, 104:113–121.

Mangasarian, O. (1999). Arbitrary-norm separating plane. Operations Research

Letters, 24(1-2):15–23.

References 177

Maŕın, A., Mart́ınez-Merino, L. I., Puerto, J., and Rodŕıguez-Ch́ıa, A. M.

(2021). The soft-margin support vector machine with ordered weighted average.

Knowledge-Based Systems, page 107705.

Martini, H. and Schöbel, A. (1998). Median hyperplanes in normed spaces—a survey.

Discrete Applied Mathematics, 89(1-3):181–195.

Martini, H. and Schöbel, A. (2001). Median and center hyperplanes in minkowski

spaces—a unified approach. Discrete Mathematics, 241(1-3):407–426.

McGee, V. E. and Carleton, W. T. (1970). Piecewise regression. Journal of the

American Statistical Association, 65(331):1109–1124.

Megiddo, N. and Tamir, A. (1983). Finding least-distances lines. SIAM Journal on

Algebraic Discrete Methods, 4(2):207–211.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C.,

Lin, C.-C., and Meyer, M. D. (2019). Package ‘e1071’. The R Journal.

Nalepa, J. and Kawulok, M. (2019). Selecting training sets for support vector ma-

chines: a review. Artificial Intelligence Review, 52(2):857–900.

Natarajan, N., Dhillon, I. S., Ravikumar, P., and Tewari, A. (2017). Cost-sensitive

learning with noisy labels. J. Mach. Learn. Res., 18(1):5666–5698.

Nickel, S., Puerto, J., Rodŕıguez-Ch́ıa, A., and Weissler, A. (2005). Multicriteria pla-

nar ordered median problems. Journal of Optimization Theory and Applications,

126(3):657–683.

Northcutt, C., Jiang, L., and Chuang, I. (2021). Confident learning: Estimating

uncertainty in dataset labels. Journal of Artificial Intelligence Research, 70:1373–

1411.

Ogryczak, W. and Tamir, A. (2003). Minimizing the sum of the k largest functions

in linear time. Information Processing Letters, 85(3):117–122.

Park, Y. W., Jiang, Y., Klabjan, D., and Williams, L. (2017). Algorithms for gener-

alized clusterwise linear regression. INFORMS Journal on Computing, 29(2):301–

317.

Platt, J. C., Cristianini, N., Shawe-Taylor, J., et al. (1999). Large margin dags for

multiclass classification. In nips, volume 12, pages 547–553.

Quandt, R. E. (1958). The estimation of the parameters of a linear regression system

obeying two separate regimes. Journal of the american statistical association,

53(284):873–880.

178 References

Quinlan, J. (1996). Machine learning and id3. Morgan Kauffman, Los Altos.

Radhimeenakshi, S. (2016). Classification and prediction of heart disease risk using

data mining techniques of support vector machine and artificial neural network.

In 2016 3rd International Conference on Computing for Sustainable Global De-

velopment (INDIACom), pages 3107–3111. IEEE.

Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American

statistical association, 79(388):871–880.

Ryan, D. M. and Foster, A. (1981). An integer programming approach to scheduling.

In Wren, A., eds., Computer Scheduling of Public Transport: Urban Passenger

Vehicle and Crew Scheduling, pages 269–280. North-Holland, Amsterdan.

Salzberg, S. L. (1994). C4. 5: Programs for machine learning by j. ross quinlan.

morgan kaufmann publishers, inc., 1993.

Schöbel, A. (1996). Locating least-distant lines with block norms. Studies in Loca-

tional Analysis, 10:139–150.

Schöbel, A. (1997). Locating line segments with vertical distances. Studies in Loca-

tional Analysis, 11:143–158.

Schöbel, A. (1998). Locating least-distant lines in the plane. European Journal of

Operational Research, 106(1):152–159.

Schöbel, A. (2003). Anchored hyperplane location problems. Discrete and Compu-

tational Geometry, 29(2):229–238.

Schöbel, A. (2013). Locating lines and hyperplanes: theory and algorithms, vol-

ume 25. Springer Science & Business Media.

Schöbel, A. (2015). Location of dimensional facilities in a continuous space. In

Location Science, pages 135–175. Springer.

Späth, H. (1982). A fast algorithm for clusterwise linear regression. Computing,

29(2):175–181.

Tukey, J. W. (1962). The future of data analysis. The annals of mathematical

statistics, 33(1):1–67.

Üney, F. and Türkay, M. (2006). A mixed-integer programming approach to

multi-class data classification problem. European journal of operational research,

173(3):910–920.

References 179

van den Burg, G. and Groenen, P. (2016). Gensvm: A generalized multiclass support

vector machine. Journal of Machine Learning Research, 17:1–42.

Weber, A. (1909). Ueber den standort der industrien. erster teil. reine theorie der

standorte. Mohr, Tübingen.

Weerasinghe, S., Erfani, S. M., Alpcan, T., and Leckie, C. (2019). Support vector

machines resilient against training data integrity attacks. Pattern Recognition,

96:106985.

Weston, J. and Watkins, C. (1998). Multi-class support vector machines. Technical

report, Citeseer.

Yang, J., Wang, H., Wang, W., and Yu, P. (2003). Enhanced biclustering on ex-

pression data. In Third IEEE Symposium on Bioinformatics and Bioengineering,

2003. Proceedings., pages 321–327. IEEE.

	Resumen
	Abstract
	Introduction
	Support Vector Machines
	Original problem
	Multiclass approaches

	Classification Trees
	CART
	Optimal Classification Trees

	Fitting Hyperplanes Theory
	Contributions of this thesis

	Multiclass Support Vector Machines
	Introduction
	Preliminaries
	Separation between classes
	Misclassification errors

	Mathematical Programming formulations
	Building the classification rule
	Non-Linear classifiers

	Math-heuristic approach
	Reducing the h-variables
	Reducing the z-variables

	Experiments
	Real datasets
	Synthetic experiments

	Conclusions

	Multisource hyperplanes location problem to fitting set of points
	Introduction
	Multisource location of hyperplanes
	A compact formulation for (MOMFHP0)
	Vertical Distance Residuals
	Norm-based Residuals

	Set partitioning formulation
	Preprocessing
	Median and center optimal hyperplanes
	Pricing problem
	Branching

	Computational results
	EWC74 dataset
	Synthetic Instances

	Scalability: bounding the error in aggregation procedures
	Conclusions

	SVM-based classification with label noise
	Introduction
	Mathematical Programming formulations
	Preliminaries
	Model 1: Re-label SVM
	Cluster-SVM models

	Experiments
	Conclusions

	Robust Optimal Classification Trees under Noisy Labels
	Introduction
	Preliminaries
	Optimal Classification Trees with SVM splits and Relabeling (OCTSVM)
	Experiments
	Conclusions

	Multiclass Optimal Classification Trees with SVM-splits
	Introduction
	Multiclass OCT with SVM splits
	Mathematical Programming formulation for MOCTSVM
	Strengthening the model

	Experiments
	Conclusions

	Conclusions and future research lines
	References

