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Abstract 

Spain is one of the major producers of high-quality wine vinegars having three 
protected designations of origin (a.k.a. PDOs): “Vinagre de Jerez”, “Vinagre de 
Condado de Huelva” and “Vinagre de Montilla-Moriles”. Their high prices due to their 
high quality and their high production costs explain the need for developing an adequate 
quality control technique and the interest in extensive characterization in order to 
capture the identity of each denomination. In this framework, methodologies based on 
non-targeted techniques, such as spectroscopies, are becoming popular in food 
authentication. Thus, for improving vinegar quality assessment, fusion of data blocks 
obtained from the same samples but different analytical techniques could be a good 
strategy, since the quantity and quality of sample knowledge could be enhanced 
providing new insights into the differentiation of vinegars. Therefore, the aim of this 
manuscript is the development of a multi-platform methodology and a model able to 
classify the Spanish wine vinegar PDOs. Sixty-five PDO wine vinegars were analyzed 
by four spectroscopic techniques: Fourier-transform mid-infrared spectroscopy (MIR), 
near infrared spectroscopy (NIR), multidimensional fluorescence spectroscopy (EEM) 
and proton nuclear magnetic resonance (1H-NMR). Two different data fusion strategies 
were evaluated: Mid-level data fusion with different preprocessing, and Common 
Component and Specific Weights analysis multiblock method. Exploratory and 
classification analysis on the data from individual techniques were also performed and 
compared with data fusion models. The data fusion models improved the classification, 
providing a more efficient differentiation, than the models based on single methods, and 
supporting the approach to combine these methods to achieve synergies for an 
optimized PDO differentiation.  

Keywords: wine vinegars, food authentication, spectroscopy, classification, data fusion, 
P-Comdim. 
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1. INTRODUCTION 1 

Nowadays, there is a growing consumer’s demand for high quality food products. 2 

The term “quality” in food is directly related to a known origin and specific chemical 3 

composition, adequate and satisfactory physical and sensory properties, as well as 4 

meeting safety and health requirements [1,2]. Protected Designation of Origin (PDO) 5 

indication is one of the label adopted by the European Community as recognition of 6 

some specific food quality attributes. A product with a PDO registration must be 7 

produced, processed and prepared in a given geographical area using a recognized 8 

know-how [3]. The PDO denomination confers to these products a high added value, 9 

consequently there is also an increasing of deceptive practices aiming at counterfeiting 10 

them, such as mislabeling of geographical origin, disregarding the production protocol 11 

or adulteration of the product. In this respect, assessing the authenticity of traditional 12 

food is a complex issue because it has to encompass several aspects going from 13 

assessing the compliance to the legal requirements stated in the product label, i.e. 14 

controlling the geographical origin and the respect of the traditional protocols, to 15 

detecting fraudulent processing practices or adulteration.  16 

Among the PDO products with high demand there are the high-quality vinegars. In 17 

particular, in addition to the well-known “Aceto Balsamico Tradizionale di Modena” 18 

from Italy [4], Spain is also one of the major producers of high-quality wine vinegars. 19 

Thus, three important Spanish wine vinegars have gained the PDO label because of 20 

their unique characteristics and traditional production, namely: “Vinagre de Jerez” (also 21 

known as “Sherry wine vinegar”), “Vinagre de Condado de Huelva” and the most 22 

recently “Vinagre de Montilla-Moriles”. Furthermore, within each PDO, there are 23 

different categories according to their time and method of aging (‘‘criaderas and solera” 24 

or ‘‘añada” systems) in wood barrels as well as the sweetness. The high quality of these 25 

wine vinegars is linked to the raw material used (i.e. high quality wines, also protected 26 

by the corresponding PDO), the traditional production protocol and method of aging in 27 

wooden barrels.  Therefore, the high prices of these vinegars, due to their high quality, 28 

the long aging time and hence, the high cost of their production, explain the need of 29 

proper characterization in order to provide an adequate quality control to defend their 30 

identity [4–9].  31 
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Due to the traditional making procedure, the raw material used and the aging process, 32 

these wine vinegars are very complex multi-component mixtures from the chemical 33 

point of view, thus different analytical techniques have been applied to obtain an 34 

extensive characterization in order to assess their authenticity [6,7,9–11]. Spectroscopic 35 

techniques, based on infrared (IR), fluorescence or nuclear magnetic resonance (NMR) 36 

spectroscopy, are the most commonly used food fingerprinting techniques in untargeted 37 

approach. In particular, these spectroscopic techniques share the advantage of requiring 38 

minimal sample preparation, moreover IR is non-destructive and chip, while NMR may 39 

allow quantification of a wide range of compounds. Good results were obtained by 40 

spectroscopic analysis of the three Spanish PDO wine vinegars in terms of assessing 41 

their aging and sweet categories or characterizing each PDO separately [6,7,12]. 42 

However, the possibility of discriminating these three wine vinegars PDOs, regardless 43 

of the presence of different ageing or sweetness features, within each distinct PDO, has 44 

been less considered in the literature [7,9,11].  45 

In order to gather more detailed knowledge about the specificity of each PDOs and 46 

aiming at improving their quality assessment and differentiation, the combination and 47 

fusion of the data acquired by several analytical platforms could be useful [2,13,14]. 48 

Data fusion methodologies have demonstrated to be a powerful tools for obtaining more 49 

reliable authentication models with respect to the results obtained by each technique 50 

separately [2,13,15–17]. In fact, the fusion of the different information obtained can 51 

enhance the quantity and quality of knowledge about the distinctive features among 52 

samples/categories. Moreover, the integration of the different data types into a single 53 

model also allows assessing the correlation and the similar/different information content 54 

among the different techniques. 55 

Data fusion may be accomplished at different levels (i.e. low-, mid- and high-level 56 

data fusion), depending on the objective, number and type of data sets to combine 57 

[2,18–20]. The low-level fusion is a conceptually simple method: raw data from more 58 

than one source are directly fused (concatenated) after preprocessing issues are 59 

addressed. This level of data fusion has been widely applied for the authentication and 60 

quality control of many food and beverages [2]. The main limitations are a high data 61 

volume and the possible predominance of one data source over the others and possible 62 

discontinuities regions when spectral data are fused. This is partially overcome by the 63 

mid-level fusion, in which a previous extraction of some relevant features from each 64 

single data source is performed and then, these features are concatenated into a single 65 
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array. Moreover, this type of fusion enables an easy interpretation of the results, since 66 

the contribution of each individual block can be visualized. The main parameters to take 67 

into account are the number of features to retain from each model, the method to be 68 

used for data reduction, and the type of scaling to apply, however this last issue is less 69 

severe than in low-level data fusion, considering that data reduction has already been 70 

applied. Mid-level data fusion has been also applied in authentication and quality 71 

control of food and beverages [2,17]. 72 

On the other hand, other approaches based on multiblock analysis are also suitable in 73 

data fusion context, such as the Common Components and Specific Weights Analysis 74 

(CCSWA, also referred to as ComDim, which is as well the name of the algorithmic 75 

implementation) [21–23], which has been recently revised and extended to the 76 

supervised context (P-ComDim) [24], i.e. to deal with the case where one of the blocks 77 

(Y block) holds responses that are to be predicted on the basis of the information 78 

provided by the other blocks. The main purpose of the ComDim algorithm is to provide 79 

the common sources of information shared by each data block, i.e. the common 80 

components, at the same time assigning to each single block a specific weight (or 81 

salience) associated to each dimension of the common space [24,25]. This method has 82 

been recently applied to the analysis of several food products in order to differentiate 83 

e.g. an organically or conventional production [26,27], or cheese products obtained by 84 

different manufacturing or ripening [28] as well as it has been applied to predict sensory 85 

attributes [21]. 86 

A major general advantage of ComDim approach, compared to the low and mid-level 87 

data fusion approaches, is that it provides information about the relation between 88 

individual data blocks (i.e. common variables) and their contribution to each common 89 

component. Thus, ComDim can be applied in order to study the complementarity, and 90 

also the differences, of the various spectroscopic techniques. In particular, the study of 91 

the saliences (weights of each data block in the common model) could be particularly 92 

interesting due to the fact that if a dimension has close saliences for two or more 93 

techniques, this may be due to a physical phenomenon that is described in a similar way 94 

for both methods. On the other hand, if there is an important difference between the 95 

saliences for a given dimension, it could mean that this dimension reveals a 96 

phenomenon only visible by one technique and not by the others. This could be used for 97 

focusing the selectivity of the spectroscopic techniques studied in this work.  98 
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Moreover, used in the predictive context, i.e. P-ComDim, we could infer and assess 99 

which information in the different data blocks is relevant for the discrimination of the 100 

different categories, which is shared and which is peculiar to each of them [24,28,29] 101 

Taking this background into consideration, the aim of this work was to perform a 102 

multiplatform characterization and develop classification models for the different 103 

Spanish wine vinegar PDOs by assessing different data fusion approaches, as well as to 104 

study the synergy/complementarity among the techniques considered for that purpose. 105 

To this aim, the same wine vinegar samples were measured by four spectroscopic 106 

techniques: Fourier-transform infrared spectroscopy (i.e. mid infrared, MIR), near 107 

infrared spectroscopy (NIR), multidimensional fluorescence spectroscopy (EEM) and 108 

proton nuclear magnetic resonance (1H-NMR). These techniques were selected due to 109 

the individual efficacy in the characterization of PDO wine vinegars as previously 110 

reported [6,7,12] , as well as because they have gained wide acceptance in foods 111 

characterization, authenticity and classification purposes [15, 30–34]. 112 

The main contribution of this study is to comparatively discuss the different data 113 

fusion strategies, in term of capability to improve discrimination of the three PDO’s 114 

vinegars and to highlight the role of each spectroscopic technique. In fact, although they 115 

can share some repeated pieces of information, they are mostly complementary.  116 

 117 

2. MATERIALS AND METHODS 118 

2.1. Samples 119 

Sixty-five PDO wine vinegar samples were provided by several local wineries 120 

through the Council Regulation of each PDO. Twenty-one samples belonging to the 121 

PDO “Vinagre de Condado de Huelva”, twenty-eight to “Vinagre de Jerez” PDO and 122 

sixteen to the most recently designed PDO “Vinagre de Montilla-Moriles” were 123 

analyzed by the four analytical techniques which are described below. Furthermore, 124 

within each PDO, samples from the different commercialized categories (aged and 125 

sweet) were included in the analysis. Samples were analyzed in duplicate. More 126 

information about the samples is presented in Table 1.  127 

2.2. Instrumental analysis 128 

2.1.1. Mid-infrared spectroscopy (MIR) 129 

Samples were analyzed, according to the method reported in [6], by using a Bruker 130 

Vertex 70 FTIR spectrometer equipped with a DGTS detector (Bruker Optics, Ettlingen, 131 
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Germany) and a multi-reflection attenuated total reflectance accessory (ATR, six 132 

bounces, Specac, Orpington, U.K.). Samples were directly analyzed without sample 133 

pre-treatment, recording the spectra at the same temperature (22 ± 0.05 ˚C) in the region 134 

of 4000-600 cm-1 (by an average of 50 scans at a resolution of 4 cm-1) and were 135 

examined using OPUS version 7.0 (Bruker Optics, Ettlingen, Germany) and 136 

manipulated with OMNIC software. The raw MIR spectra are shown in Fig.I. 137 

Supplementary Material. 138 

2.1.2. Near-infrared spectroscopy (NIR) 139 

NIR spectra were collected following the method published in [12], by using an ABB 140 

Bomen IR spectrometer (Q-interline, X, Denmark), equipped with a 1 mm path length 141 

cuvette. Spectral data were collected in the range of 12000–4000 cm-1, resolution of 8 142 

cm-1, and 64 scans for both backgrounds and samples. Samples were directly analyzed 143 

without sample pre-treatment in a random sequence at room temperature (21± 2 °C) by 144 

pipetting them into 1 mL shell vial, 40x80 mm transparent (Skandinaviska Genetec AB, 145 

Lund, Sweden) before measurement. The spectrometer was interfaced to a computer 146 

with GRAMS/AI™ Spectroscopy Software (Thermo Fisher Scientific software) for 147 

spectral acquisition and exportation. The raw NIR spectra are shown in Fig.I. 148 

Supplementary Material. 149 

2.1.3. Excitation-Emission Multidimensional Fluorescence (EFM) 150 

Wine vinegar samples were directly analyzed without sample pre-treatment an at the 151 

same temperature (25.00 ± 0.05 ˚C) by a Varian Cary-Eclipse fluorescence 152 

spectrophotometer (Varian Iberica, Madrid, Spain), equipped with two Czerny-Turner 153 

monochromators, and a Xenon discharge lamp pulsed at 80 Hz with a half peak height 154 

of ≈2 µs, according to the method reported in [7]. Cary-Eclipse software was used for 155 

spectral acquisition and exportation.  The fluorescence Excitation-Emission Matrices 156 

(EEMs) were obtained by varying the excitation wavelength (λex) between 250 and 700 157 

nm (every 5 nm) and recording the emission spectra (λem) from 300 to 800 nm (every 2 158 

nm), with excitation and emission slits set at 5 nm and the scan rate fixed to 1200 nm 159 

min-1. EEMs were preprocessed in order to avoid noisy and non-informative areas by 160 

selecting shorter spectral ranges (λex from 250 to 680 nm, and λem from 310 to 800 161 

nm). The EEM landscape of a vinegar is shown in Fig.I. Supplementary Material as an 162 

example. 163 

2.1.4. 1H-Nuclear Magnetic Resonance (1H-NMR) 164 
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 Samples were prepared by adding 100 μL of 0.16% of 3-(Trimethylsilyl) 165 

propionic-2,2,3,3-d4 acid sodium salt (TMSP-2,2,3,3-d4) in D2O (99.97%) dissolution, 166 

to 600 μL of each wine vinegar. TMSP was used as both a chemical shift reference 167 

(δ=0) and internal standard. 1H-NMR spectra have been acquired at 300 K of 168 

temperature on a Bruker AVIII 700 spectrometer (Bruker Biospin GmbH Rheinstetten, 169 

Karlsruhe, Germany) operating at 700.25 MHz. The 1H-NMR data were acquired using 170 

the Bruker spin−echo sequence “cpmgpr.fb” (Carr–Purcell–Meiboom–Gill, Bruker 171 

Library) with water presaturation, applied to suppress broad resonance signals. FIDs’ 172 

have been recorded as the sum of 64 scans of 7.4 s each covering a spectral width of 173 

11.0 ppm with 1s between each consecutive scan. Data acquisition was carried out using 174 

the "baseopt" Bruker sequence to optimize the baseline after Fourier Transform. The 175 

raw 1H-NMR spectra are shown in Fig.I. Supplementary Material. 176 

2.3. Data analysis 177 

Since four different instrumental fingerprints were recorded for each sample, each 178 

one with different data structures, several chemometric algorithms were employed in 179 

order to extract and merge the information presents in each data set. 180 

The data analysis workflow included: i) building separate models: both exploratory 181 

analysis and classification were performed on the data obtained from the individual 182 

analytical techniques; ii) in order to take advantage of the multiplatform 183 

characterization of the samples, the data of different sources were processed by means 184 

of different data fusion (DF) strategies. The objectives were to assess common and 185 

specific information pertaining to each analytical platform and obtaining improved 186 

classification results. A schematization of the global data analysis flow is presented in 187 

Fig.1. 188 

Figure 1 to be inserted about here 189 

2.3.1. Data sets 190 

In total sixty-five samples were analyzed by each spectroscopic technique. In order 191 

to validate the models, the samples were split in a training set of forty-seven samples 192 

(fifteen “Vinagre de Condado de Huelva”, twenty “Vinagre de Jerez” and twelve 193 

“Vinagre de Montilla-Moriles” PDO samples) and a test set of eighteen samples (six 194 

“Vinagre de Condado de Huelva”, eight “Vinagre de Jerez” and four “Vinagre de 195 

Montilla-Moriles” PDO samples) using the Duplex algorithm [35]. This algorithm 196 

ensures a representative spanning of the whole data domain for both calibration and 197 
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validation sets, we also checked for a balanced representation of each category in both 198 

sets. Moreover, since the number of samples is rather limited, the splitting was repeated 199 

five times (always checking by exploratory data analysis, that both sets spanned the 200 

whole variability domain and balanced category representation was achieved) hence 201 

five classification models were calculated for each analyzed data set (NIR+MIR, NMR, 202 

EEM, mid-level Data Fused, P-Comdim raw data and P-Comdim extracted features). In 203 

the results the average classification errors are reported. 204 

2.3.2. Decomposition methods 205 

As summarized in Fig. 1, different decomposition methods were applied, according 206 

to the type of dataset, for exploratory data analysis as well as for data reduction to 207 

obtain the features which were then used for the data fusion models, i.e. mid-level DF 208 

and features-based P-ComDim. 209 

MIR and NIR individual data sets, as detailed in Section 2.3.5.1, were concatenated 210 

at low-level DF and the obtained dataset was compressed by principal component 211 

analysis (PCA). 212 

The EEM data array, after Rayleigh and Raman scattering correction [7], was 213 

decomposed by PARAllel FACtor analysis (PARAFAC) [36,37] in order to extract the 214 

relevant features (fluorophores).  215 

Finally, for 1H-NMR dataset, after proper alignment and baseline correction, 216 

multivariate curve resolution (MCR) [38,39] was used to resolve the chemical 217 

components. The peak areas of the resolved components were then used as features. 218 

PARAFAC and MCR decomposition methods have been widely described in the 219 

literature. Applied constrains and preprocessing details for each data block are reported 220 

in Section 2.3.4. 221 

2.3.3. Classification Analysis. 222 

 Partial least squares-discriminant analysis (PLS-DA) is a classification technique 223 

based on partial least squares (PLS) algorithm with a so-called dummy matrix reporting 224 

class membership as Y block [40]. In our study, three different Spanish PDO were 225 

considered, therefore, the size of the Y dummy matrix was n° samples × 3 (one column 226 

for each one of the classes) and codification was 1/0 (belonging/not belonging to the 227 

category). 228 

In the case of EEM data set, which is a three-way array, N-way Partial least squares-229 

discriminant analysis (NPLS-DA) [41] based on multilinear PLS (NPLS) [42] has been 230 

used and codification of the Y block is the same as for PLS-DA. 231 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 
 

 In both cases, classification was achieved by applying linear discriminant 232 

analysis (LDA) on the X-scores calculated by PLS-DA/NPLS-DA [43]. The minimum 233 

classification error rate in cross-validation (venetian blind, seven splits) was used to 234 

assess the number of latent variables, i.e. components of the PLS-DA/NPLS-DA 235 

models. 236 

2.3.4. Preprocessing and analysis of individual data blocks 237 

2.3.4.1. MIR and NIR datasets  238 

 Concerning the MIR data, as is described in our previous work [6], no 239 

preprocessing was needed and the raw spectra were just mean centered. Moreover, only 240 

the region between 1500 and 900 cm-1 was included in the analysis [6] in order to 241 

discard the uninformative variables with excessive noise. 242 

 With regards to NIR data, different preprocessing methods were evaluated prior 243 

to data analysis as was contemplated in a previous work [12] The best pre-processing 244 

approach resulted to be smoothing (Savitzky-Golay filter, 7 points window and second 245 

order polynomial degree) to reduce random noise, followed by standard normal variate 246 

(SNV) [44] to correct additive scattering. In addition, the spectra were always mean 247 

centered prior to any analysis. As mentioned before, based on previous expertise or 248 

literature [12,45,46], two segments of the spectrum were removed from the whole 249 

acquired wavenumber range: the first one (4000-5430 cm-1) because of low signal/noise 250 

ratio and the second one due to the strong combination band of O-H from water (7200-251 

6400 cm-1). 252 

2.3.4.2. EEM dataset 253 

 EEM data were preprocessed in order to avoid noisy and non-informative areas 254 

by selecting shorter spectral ranges, according to the preprocessing steps described in 255 

[7]. Thus, the emission over 680 nm and the excitation below 310 nm were cut. Then, 256 

EEM data were corrected for Rayleigh and Raman scattering [47], removing and 257 

replacing the scattering areas with interpolated values [47]. After this correction, EEM 258 

data was decomposed by PARAFAC [37]. A model based on five factors, constrained 259 

for non-negativity in all modes (both concentration and spectral profiles), was built. The 260 

proper number of factors was determined by taking into account the CORe 261 

CONsistency DIAgnostic test (COR- CONDIA) [48], the explained variance and the 262 

visual inspection of the recovered spectral profiles and residuals. The PARAFAC scores 263 

(first mode loadings) for these factors were used as features to build the mid-level fused 264 

dataset.  265 
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2.3.4.3. 1H-NMR dataset 266 

Prior to data analysis, several preprocessing steps were applied to NMR spectra. The 267 

regions below 0.84 ppm and over 9.8 ppm were discarded because they were 268 

uninformative. Also the region between 4.75 and 5 ppm was removed since it contained 269 

the residual water signal not completely removed by the instrumental presaturation step. 270 

To correct for the inhomogeneous pH-dependent chemical shifts, all spectra were 271 

aligned by means of icoshift [49] whereas weighted least squares (WLS) [50] was used 272 

for baseline correction. 273 

Then, MCR was applied. The whole 1H-NMR data was divided into 52 intervals of 274 

different size in order to avoid splitting the single NMR signals. This task was 275 

performed manually by making use of the previous knowledge of NMR chemical shifts 276 

of the main wine and vinegar compounds [33,51,52]. These intervals are shown in Fig. 277 

II. Supplementary Material. The MCR settings were the same for each interval: the 278 

number of components was determined by inspection of PCA explained variance and 279 

SIMPLISMA [53] was used to obtain the initial estimation of the pure spectral profile. 280 

The peak areas of the resolved concentration profiles (chemical components) within 281 

each interval were calculated by integration and used as features for the subsequent 282 

fused data set. 283 

In order to achieve a tentative assignment of the 1H-NMR resolved components, both 284 

Chenomx NMR Suite 7.0 (Chenomx, Edmonton, Canada), as well as assignments 285 

reported in literature [33,51,52,54,55] were used. Sixty-two components were resolved 286 

and integrated; thirty-five of these were tentatively assigned. Those components that 287 

were not possible to assign, are named as “X” plus a number. The fact that several 288 

regions of the NMR spectra could not be associated to a single signal is due to the many 289 

overlapped multiplets present, which impair certain identification. On the other hand, 290 

they could be attributed to overall contribution of a class of compounds, such as sugars 291 

(between 3-4 ppm). In our case, in this region, only glucose and fructose could be 292 

separately assessed. 293 

2.3.5. Data fusion strategies 294 

2.3.5.1. Low-level fusion of MIR and NIR data 295 

In the low-level strategy, fusion occurs by concatenating the original data matrices, 296 

opportunely pretreated and then analyzing the resulting array as a single data block.  297 
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The MIR and NIR spectra were single preprocessed as described in Sections 2.3.4.1. 298 

Then, the matrices describing the individual blocks were concatenated to obtain a single 299 

one, having as many rows as samples analyzed and as many columns as spectral 300 

wavelengths selected for each data set. This new matrix was additionally normalized in 301 

order to compensate for the different measuring scales and variability of each technique 302 

in order to prevent one block from being dominant in the subsequent data analysis [2]. 303 

Thus, block-scaling, to equalize variance, and mean centering were applied. Doing so, 304 

each block presented variance equal to one, but the ratio of the variance between any 305 

two variables inside a single block was preserved.  306 

After preprocessing, a PCA model based on 8 principal components, accordingly to 307 

Scree plot and explaining 99.87% of total variance, was selected and the extracted score 308 

vectors were used as MIR/NIR features to build the fused dataset. 309 

A possible alternative approach consists of applying PCA to the separate MIR and 310 

NIR spectral data and then using the extracted features (distinct set of PCs) in mid-level 311 

DF; this approach was also considered and gave very similar results. 312 

2.3.5.2. Mid-level data fusion 313 

In the mid-level strategy, fusion occurs at the level of features extracted from the 314 

different data blocks. In this study, as Fig.1 shows, the final fused array was assembled 315 

using the 8 PCA scores from MIR and NIR, the 5 factors from the PARAFAC model of 316 

EEM data, and the peak areas of the 62 resolved components by MCR of 1H-NMR data.  317 

As in the case of low-level fusion, since the extracted features in mid-level data 318 

fusion can have different numerical characteristics, scaling of the fused matrix [2,15,17] 319 

was performed. Different preprocessing tools were assessed: autoscaling and block-320 

autoscaling (each data set corresponding to an analytical technique was considered as a 321 

block). In block-autoscaling, each variable is first scaled to unit variance (autoscaling), 322 

and then each block is scaled to equal variance. As a result, each block presented unit 323 

variance and each variable inside a block had its variance equal to 1/nblock, where nblock 324 

is the number of variables in a given block.  325 

2.3.5.3. P-ComDim  326 

The recently proposed P-ComDim (i.e., Predictive ComDim) method [24], which is 327 

the extension of the multiblock method ComDim to the supervised context, has also 328 

been evaluated as a different data fusion strategy. For details on P-ComDim algorithm 329 

the reader is referred to literature [24,25]. Briefly we recall the main feature of the 330 

method. P-ComDim can be applied to any number of data blocks, of which the 331 
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dependent one is denoted by Y and the independent ones by Xk. The first step in P-332 

ComDim algorithm is calculating the kernel matrices: 333 

Sk=XkXk
TYYT          (1) 334 

 Then a “common singular value decomposition” is conducted, by minimizing the 335 

criterion: 336 

             
      (2) 337 

obtaining a first common component for the X-blocks, i.e. t1, as well as a component 338 

in Y-space, i.e. u1. Further components are then calculated sequentially after deflation 339 

of both X-blocks and Y-block. As for standard ComDim, each single X-block (Xk) 340 

contributes to a common component according to its salience,    [29]. It is also possible 341 

to associate to each block Xk a local component by calculating: 342 

         
    (3) 343 

i.e. eq. (3) maps   into a latent variable which lies in the space spanned by the 344 

variables in   . This latent variable      is used to recover and interpret the specific 345 

contribution of the   -block variables to the global latent variable  . 346 

To accomplish classification, the Y-block holds the class membership information, 347 

as described in section 2.3.3. and a classification model can be built by applying PLS-348 

DA to the u-scores obtained by P-ComDim. Prediction is accomplished by first 349 

estimating, in prediction, the u-scores for the test samples (u-test) in P-ComDim, then 350 

using the u-test in PLS-DA as prediction set. In our case, the number of PLS-DA 351 

components was estimated according to minimum classification error in CV using the 352 

same splits and classification rule as described in Section 2.3.3. Also the subdivision in 353 

training and test sets was the same as described in Section 2.3.1. 354 

Moreover, in P-ComDim methodology, two different strategies were performed and 355 

compared. In the first, ComDim was developed using the raw spectra of MIR, NIR, 356 

EEM and 1H-NMR as X-blocks after applying the same spectral preprocessing as 357 

described in Section 2.3.4. MIR and NIR data were mean centered, the 1H-NMR data 358 

was block-scaled by dividing the spectra into six regions (0.84-1.15, 1.15-1.5, 1.5-2.0, 359 

2.0-2.25, 2.25-3.2, 3.2-9.8 ppm) to compensate for major differences in spectral region 360 

signal intensities and the EEM data array of dimensions I-samples × J-excitation × L-361 

emission wavelengths, was unfolded to a matrix of dimensions I × JL.  362 
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In the second, the extracted features of each data block (PCA scores from MIR/NIR, 363 

MCR peaks areas of resolved components, and PARAFAC factors) were used as X-364 

blocks.  365 

Both in the first and second cases, each data table Xk was normalized in order to 366 

obtain the data tables having the same inertia as usually done in ComDim algorithm 367 

[56].  368 

The interpretation of each model and comparison of two approaches (i.e. with raw 369 

spectra and with the features) was performed by studying the saliences, global and local 370 

scores/loadings [28,29], and the classification performance.  371 

2.3.6. Software 372 

Preprocessing, PARAFAC, PCA, PLS-DA and NPLS-DA models were calculated by 373 

using routines of PLS Toolbox 6.5 (Eigenvector Research Inc.,WA, USA) working 374 

under MATLAB environment v.2016a (Mathworks, MA, USA). LDA was calculated 375 

by using the Statistics and Machine Learning Toolbox v. 10.1. Multivariate curve 376 

resolution was carried out by using the MCR-ALS GUI (http://www.mcrals.info) and a 377 

MATLAB routine implemented to automatically work on spectral intervals, courtesy 378 

from Prof. R. Bro’s group. 1H-NMR data acquisition, Fourier transformation and 379 

spectral preprocessing were carried out using Bruker TopSpin 3.0 and Chenomx NMR 380 

Suite 7.0 (Chenomx, Edmonton, Canada) was used to obtain a tentative assignment of 381 

the 1H-NMR resolved components.  382 

P-ComDim models were obtained by using routines developed by Prof. D. Rutledge 383 

and the SAISIR package for MATLAB [57,58].  384 

 385 

3. RESULTS AND DISCUSSION 386 

 This section is articulated in three main parts. In the first one, the description of 387 

exploratory analysis results for the individual data sets, as well as the feature extraction 388 

step (Sections 3.1), and the respective classification models (Section 3.2) are reported. 389 

In the second part (Section 3.3), the fused dataset is considered and the application of 390 

the mid-level approach is described in detail. The third part (Section 3.4) presents the 391 

results obtained by P-ComDim in order to study the complementarity of the techniques.  392 

3.1. Exploratory analysis of individual data matrices 393 

 MIR and NIR data were preprocessed and fused as described in Section 2.3.5.1, 394 

the results of exploratory PCA analysis (8 PCs, accounting for 99.8% of the total 395 

variance) are reported in Figure III of the Supplementary Material. The three categories 396 
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strongly overlap and a partial trend of separation was only observed on the scores plot 397 

of the PC1, PC3 and PC8 (Fig. III.A), inspecting the corresponding loading plots (Fig. 398 

III.B) it can be observed that PC1 mainly distinguishes the sweet Pedro Ximenez sub-399 

category which is present in both “Vinagre de Jerez” and “Vinagre de Montilla-400 

Moriles” PDOs (the contributing spectral regions have been associated with the 401 

presence of grape sugars, furfural and Maillard compounds [6,12,46,59]).  “Vinagre de 402 

Montilla-Moriles” PDO samples are partially separated from “Vinagre de Jerez” PDO 403 

along PC3 to which are contributing peaks (Fig. III.B) that have been assigned to 404 

chemical compounds that change during aging, e.g. some alcohol, aldehydes, esters, 405 

ethers and acids [6, 12,46,60].  406 

The EEM data array was preprocessed and decomposed by PARAFAC as described 407 

in Section 2.3.4.2 obtaining a five factors model (explained variance 99%), which is in 408 

good agreement with the three individual PARAFAC models obtained in our previous 409 

work [7]  for each one of the three PDOs. Fig. 2.A and B includes the PARAFAC 410 

loadings for mode 2 and 3 (excitation and emission spectra) of the extracted factors. The 411 

excitation and emission maxima of these extracted factors, as well as their possible 412 

matching fluorophores according to the literature and our previous knowledge [7,62], 413 

are listed in Table 2.  414 

Figure 3 to be inserted about here 415 

Fig. 3.C shows the average value of the scores (first mode loadings) for samples 416 

belonging to each PDO vs. the number of PARAFAC factors. The “Vinagre de 417 

Montilla-Moriles” PDO presents higher values on the first and the second factors, with 418 

respect to the other two PDOs. Hence, higher presence of components coming from raw 419 

materials, which is indicative of less aging, as well as more amount of caramel and 5-420 

Hydroxymethylfurfural (Table 2). However, it is difficult to highlight a clear separation 421 

of samples belonging to each class in any of the scatter plots of PARAFAC scores (plots 422 

not shown for sake of brevity).  423 

 424 

The NMR data set built with the integrated areas of the sixty-two resolved 425 

components (Table 3), obtained by MCR analysis of the 1H-NMR spectra (as is detailed 426 

in Section 2.3.3.4) was preprocessed by autoscaling prior to PCA analysis (six 427 

components, explained variance 90.3%). The score and loading plots of the PCs that 428 

better highlighted the separation between the three PDOs are shown on Figure IV 429 

Supplementary Material. Also in this case a strong overlap is present and only a partial 430 
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separation trend of  “Vinagre de Montilla-Moriles” PDO samples from “Vinagre de 431 

Condado de Huelva” can be observed. The loadings plot (Fig. IVB) highlight, similar to 432 

MIR-NIR PCA results, that: i) the first component distinguishes the Pedro Ximenez 433 

sweet samples from the rest (contribution from the sugar spectral region, compounds 434 

labeled from 34 to 43 in Table 3) and ii) samples from “Vinagre de Condado de 435 

Huelva” PDO seem to have higher amount of acetic acid (feature named 18 in Table 3) 436 

and ethanol (features 8 and 37, Table 3 with respect to the other two PDOs (separation 437 

on PC5).  438 

 439 

3.2. Classification results of individual datasets. 440 

In a first stage, separate classification models (PLS-DA for MIR+NIR and 1H-NMR 441 

data sets and NPLS-DA as described in previous sections for EEM data) were built on 442 

the data coming from the different instrumental techniques. The distinct datasets were 443 

split in the same training and test sets of 47 and 19 samples as described in Section 2.3. 444 

The classification results obtained by the application of PLS-DA and NPLS-DA on 445 

each separate data set, according to the classification criterion described in Section 446 

2.3.3, are reported in Table 4, which reports for each spectroscopic technique the data 447 

preprocessing, the model dimensionality (assessed by cross-validation) and the 448 

classification performance. PLS-DA was built on the PCA scores (8 PCs) for the MIR-449 

NIR data set, and on the sixty-two peak areas of MCR resolved components for the 450 

NMR data set, respectively. While for EEM data set, NPLS-DA was directly built on 451 

the spectral data array (samples x excitation wavelengths x emission wavelengths). 452 

The classification results, in calibration, are promising for 1H-NMR models (correct 453 

classification rates higher than 90% for all categories). The model dimensionality, i.e. 7 454 

components, is lower with respect to MIR+NIR, i.e. 10, and EEM, i.e. 12, probably 455 

because in this case peak areas of resolved spectral components are used instead of the 456 

spectroscopic signal itself. In contrast, the models built on MIR+NIR data and EEM 457 

show quite good classification rates, only for one of the category, namely “Condado” 458 

and “Jerez” for MIR+NIR and EEM, respectively. These results agree with what 459 

already observed in our previous studies [6,7], in which it was shown that these 460 

techniques had a better ability to distinguish between categories (aging and sweet) than 461 

among the different PDOs.  462 

It can also be observed, that NPLS-DA requires an higher number of latent variables, 463 

with respect to the number of PARAFAC factors obtained for EEM data (i.e. five), this 464 
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could be explained by the fact that NPLS-DA (as PLS usually does) modulates the main 465 

fluorophores present in the matrix as well as the environment effects ant the 466 

interferences. 467 

On the other hand, the predictive capability (external validation) was almost similar 468 

for all the techniques. In general, the results could be considered fairly good, taking into 469 

account that, due to the limited number of test samples, for example, in the case of 1H-470 

NMR, 75% correct prediction rates for the classes “Vinagre de Jerez” and “Vinagre de 471 

Montilla-Moriles” PDO correspond to 2 and 1 misclassified samples, respectively. In all 472 

the prediction models, the same sample of “Vinagre de Jerez” PDO sample was 473 

misclassified; also one sample of “Vinagre de Montilla-Moriles” PDO was always 474 

misclassified.  475 

Furthermore, it can be observed that prediction rates were higher for “Vinagre de 476 

Condado de Huelva” (MIR-NIR and 1H-NMR models) and “Vinagre de Jerez” (EEM 477 

model) with respect to “Vinagre de Montilla-Moriles”. This fact could be mainly 478 

explained by the relative new recognition of this PDO (included in the European 479 

Register of Protected Geographical Indications and Protected Designation (PGI) in 480 

2015), in comparison with the other two PDOs, “Vinagre de Condado de Huelva” and 481 

“Vinagre de Jerez” PDOs, and specially the last one that was the first wine vinegar PDO 482 

of Spain [3]. Furthermore, this is in agreement with our previous studies [7].  483 

To summarize, even though the results are quite promising, the quality of each model 484 

was not enough good for the characterization and classification purpose and it varied 485 

significantly from one technique to another. 486 

3.3. Mid-level data fusion 487 

The results described in Sections 3.1.4 showed that classification models built on 488 

each of the individual data matrices are not accurate enough, indicating that a single 489 

instrumental fingerprint is not completely able to correctly predict the high-complex 490 

samples under study. For this reason, the possibility of combining the information from 491 

the different instruments by means of mid-level data fusion strategy was investigated.  492 

The features obtained from the decomposition of the single data blocks (i.e. the eight 493 

MIR+NIR PCA scores, the five factors EEM PARAFAC scores and the peak areas of 494 

the sixty-two resolved 1H-NMR MCR components) were merged in a unique block as 495 

described in Section 2.3.4 (Fig. 1). Since scaling is a critical issue both block-496 

autoscaling and autoscaling (Section 2.3.4.) were compared. 497 
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Explorative PCA models were built with the fused data preprocessed by both 498 

scaling’s methods and results shown in Fig. 3.  The autoscaled data (Fig. 3.A) showed a 499 

similar clustering of the three PDOs as the one observed in the score plot of 1H-NMR 500 

PCA reported in Fig. IV.A Supplementary Material. In particular, PC1 distinguish the 501 

samples belonging to the sweet category at positive values of PC1. “Vinagre de 502 

Montilla-Moriles” PDO showed positive scores values on PC5, whereas “Vinagre de 503 

Condado de Huelva” PDO samples showed negative scores values for this component 504 

and samples of “Vinagre de Jerez” PDO are placed again in the middle. Fig. 3.B shows 505 

the loading plot of the same principal components, in which the contribution of several 506 

of the features, both from 1H-NMR and MIR-NIR was observed.  PC5, PC2 and PC8 507 

from MIR-NIR PCA, as well as several of the NMR features, seem to be the main 508 

responsible features for the improvement in the separation of “Vinagre de Condado de 509 

Huelva” and “Vinagre de Montilla-Moriles” samples. In fact, they have high negative 510 

loadings values on the fifth component of the PCA on fused data, while at positive 511 

loadings values there are PC4 and PC6 from MIR-NIR PCA and F1-F3 from 512 

PARAFAC. PC1 from MIR-NIR PCA seems of relevance in the Pedro Ximenez 513 

samples separation from the rest, since its high positive loadings on the first component 514 

of the PCA on fused data. 515 

Figure 3 to be inserted about here 516 

Even if few minor differences were noticed with respect to 1H-NMR data analysis, 517 

some improvements in the separation of PDOs occurred. The similarity between the 518 

fused autoscaled data and the 1H-NMR data block is explained by the fact that using 519 

autoscaling as merging strategy, a higher importance is given to the block of variables 520 

more numerous, hence, the 1H-NMR data.  521 

Regarding the block-autoscaling PCA results (Fig. 3B), the principal components 522 

that better shows a separation were PC1, PC2 and PC5. In this scores plot, the 523 

separation of PDOs seems to be worse than with autoscaling procedure. Thus, a higher 524 

overlapping between “Vinagre de Jerez” and “Vinagre de Condado de Huelva” samples 525 

was observed. In spite of this, “Vinagre de Jerez” PDO seems to be mainly placed in the 526 

negative side of PC1 while “Vinagre de Condado de Huelva” in the positive side of PC1 527 

and PC5, and “Vinagre de Montilla-Moriles” PDO in the positive side of PC2. The 528 

loadings plot (Fig. 3.D) shows in this particular scaling procedure that 1H-NMR 529 

components had lower relevance and the MIR-NIR and EEM variables became more 530 

influential. Thus, PC3 (MIR-NIR) and F5 (EEM) showed the most negative 531 
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contribution of PC1, while F4, F1 and PC1 the most positive, as well as PC2 and PC8 of 532 

MIR-NIR data had the most positive values of PC5, relevant for the separation of 533 

“Vinagre de Condado de Huelva” PDO.  534 

Then, PLS-DA models were built using six and seven latent variables for autoscaling 535 

and block-autoscaling procedures, respectively (chosen accordingly to minimum cross 536 

validation classification errors). The results obtained are reported in Table 5. They 537 

confirmed the improvement with respect to the classification models obtained for the 538 

separate data blocks. In fact, 100% of correct classification was obtained for the 539 

predicted samples (test set) of all the PDOs, as well as 100% of “Vinagre de Condado 540 

de Huelva” PDO samples were correctly classified in both fit and the prediction. The 541 

two scaling procedures give very similar PLS-DA classification rates, only the number 542 

of latent variables were different.  543 

In order to identify the most effective variables in discriminating the PDO samples, 544 

the values of the PLS-DA regression vectors and the variable importance in projection 545 

(VIP) index were studied; for interpretative purposes all the predictors having a VIP>1 546 

are considered to be relevant [69]. Despite the different scaling procedure, the variables 547 

with VIP higher than one quite matched in both PLS-DA models and are reported in 548 

Table 6 together with the sign of the corresponding regression coefficients. 549 

Accordingly, the most relevant variables for the discrimination of the “Vinagre de 550 

Condado de Huelva” PDO were mainly MIR-NIR PC2, PC3, PC5 and PC8 previously 551 

described as the spectral regions related to the presence of acetic acid and ethanol 552 

(~1410 and ~1290 cm-1 and 1045 cm-1 in MIR spectra) as well as alcohol compounds, 553 

aldehydes, and some esters and ethers that matched with PC3 loadings. Other important 554 

variables were EFM F1 and F4 that matched with the presence of phenolic compounds 555 

and NMR7, NMR11, NMR16, NMR18 and NMR27 that were interpreted as 556 

isopropanol, acetic acid, acetoin and some other compounds such as 6-acetylglucose, 557 

beta-alanine and succinates.  558 

Regarding “Vinagre de Jerez” PDO, this PDO was described mostly by the variables 559 

PC3 and PC8 of MIR-NIR PCA, related to alcohol compounds, aldehydes, esters, ethers 560 

and acids and commonly presented in grapes, wine and vinegar; EEM F5 related to 561 

grape sugars, furfural and Maillard compounds more presented the Pedro Ximenez 562 

category included in this PDO, together with F1 and F4 again; and NMR16, NMR26 563 

and NMR59 identified as 6-acetylglucose, aminoacids as malate, glutarate or n-564 

acetylglutamate and formic acid, respectively.  565 
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Finally, the variables that seems to give a relevant contribution for the classification 566 

of “Vinagre de Montilla-Moriles” PDO were mainly: MIR-NIR PC5 and PC8 whose 567 

loadings mainly showed a peak at 1045 cm-1 and PC1 again related to the Pedro 568 

Ximenez samples of this PDO; EFM F1 and F5, which brings mainly the information of 569 

the compounds commonly presented in grapes and wine such as cumarins, tannins, 570 

phenols, flavonols, and moreover, compounds related to the sweet category such as 571 

HMF and sugars also related to the NMR most relevant variables according to the VIPs 572 

(i.e. compounds from NMR32 to NMR52). These results agree with those obtained in 573 

the loadings plot of the PCA model previously described (Fig. 3). 574 

3.4. P-ComDim.   575 

P-ComDim was carried out with the raw spectral data (Fig. 4a and Fig. 5a) and the 576 

data of the extracted features (Fig. 4b and Fig. 5b) in order to study the best approach 577 

that show the complementarity of the techniques and therefore also their differences. 578 

Fig. 4 and Fig. 5 shows the saliences and the global loadings obtained [28,70] for each 579 

technique, respectively.    580 

Figure 4 to be inserted about here 581 

In Fig. 4 on the top is shown the percentage of variance extracted by each common 582 

component (graph on top left), the sum of saliences of all data tables for each common 583 

component (graph on top middle) and the sum of saliences for each data table over all 584 

the calculated common components (graph on top right). Taking into account the 585 

normalization of the single data table, the sum of saliences in the latter plot can be at 586 

maximum equal to 1, when no residual variance is left, for that data table after 587 

extracting the common components. In the bottom part of Fig. 4 are shown the saliences 588 

of each data table on each common component. The sum of the saliences reported on 589 

top of each graph corresponds to the values reported on the top middle graph. The first 590 

two components explain most of the data variance but taking into account eight 591 

components allows describing all data tables. 592 

The analysis of salience for the raw spectral data (Fig. 4.A) show that MIR and NIR 593 

share mainly one common component, i.e. CC1, while EEM and 1H-NMR data seem to 594 

capture most distinctive information, contributing to different components, namely CC2 595 

for EEM and CC3, CC4, CC5 and CC6 for 1H-NMR. Despite with lower weights, CC8 596 

is common to MIR, NIR and 1H-NMR data blocks and CC7 to all of them. Regarding 597 

the loadings vectors associated to each block (Fig. 5.A), CC1 seemed to be related to 598 
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the Pedro Ximenez category due to the intense band showed in MIR and NIR loadings 599 

plot (between 1000-1150 cm-1 and 5200 and 6500 cm-1, respectively) and in 1H-NMR 600 

data point to a higher intensity in the sugar region of the spectra (from 3.22-4.12 ppm); 601 

CC2, considering the excitation and emission wavelengths of the EEM reshaped 602 

landscapes, resemble the first PARAFAC factor (Fig. 2), while CC3 was related to the 603 

first region of the 1H-NMR spectra were acids (e.g. acetic acid), alcohols (e.g. ethanol) 604 

and some esters (isobutyrate) appear. Finally, CC7 seemed to be associated to the 605 

presence of acetic acid and ethanol that could be observed by NIR, MIR and 1H-NMR 606 

techniques and, as far as EEM loadings are concerned, the profile resembles those of the 607 

fourth PARAFAC factor which was associated to phenols compounds.  608 

Figure 5 to be inserted about here 609 

In the case of P-ComDim model, obtained with the extracted features of each data 610 

block (Fig. 4.B), EEM (data table numbered as 2 in the figure) has again little in 611 

common with the other data tables and mainly contribute to CC1 and CC4, which by 612 

inspection of loadings are related to the first four PARAFAC factors (CC1) and second, 613 

third and fifth factors (CC3), respectively. 1H-NMR data contribute mainly to CC5 and 614 

CC6 together with MIR and NIR data, i.e. these global components are shared by these 615 

data tables and, hence, should reflect the samples trends common to 1H-NMR and MIR-616 

NIR. CC2 is mainly contributing the NMR data table and the respective loadings (Fig. 617 

5B) show high influence of the first region of the 1H-NMR spectra (alcohols and acids). 618 

CC3, CC7 and CC8 are mainly contributing the MIR-NIR data table, in particular, 619 

according to the loadings plot (Fig. 5B), the PC6 and PC8 scores of PCA decomposition 620 

of NIR-MIR spectra. 621 

Fig. 6 illustrates the global scores scatter plot obtained by P-ComDim analysis (the 622 

bottom plot in Fig. 6A and the bottom right one in Fig. 6B). In comparison to PCA 623 

analysis of individual spectral data sets (Fig. II and Fig. IV Supplementary Material), 624 

ComDim clearly shows an increased separation trend according to the PDO, even 625 

though this separation was slightly worse than in the PCA obtained on the mid-level 626 

fused data (Fig. 3). These results are consistent with the fact that the global scores 627 

scatter plot of P-ComDim obtained on the extracted features data tables, i.e. 628 

corresponding to the data used for the mid-level data fusion, show a better separation 629 

among PDOs than the ComDim performed on the raw spectral data. These results could 630 

be better observed by the scores plot of the PLS-DA models obtained for each approach 631 
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(Fig. 6). Thus, this latter figure showed that more overlapping occurs when PLS-DA is 632 

carried out with raw data than by using the extracted features of each data set (i.e. six 633 

samples were not correctly predicted by the raw data model with respect to the two 634 

samples wrongly predicted by the model with extracted features). Nonetheless, one 635 

advantage of performing P-ComDim directly on the raw spectra is the interpretation of 636 

the spectral regions contribution by visualization of the corresponding local loadings. 637 

Figure 6 to be inserted about here 638 

The classification results expressed as percentage of corrected classified by means of 639 

PLS-DA model carried out with P-ComDim results are reported in Table 5 together 640 

with the classification results obtained by the mid-level data fusion models. Looking at 641 

the table it can be noticed once more that the results obtained by the PLSDA performed 642 

on the P-ComDim scores from the extracted features were better than the PLS-DA 643 

results obtained by each data set individually studied, only comparable to the 1H-NMR 644 

results, as well as they were better than the P-ComDim classification model developed 645 

with raw data. However, in spite the promising classification rates obtained by the P-646 

ComDim with the extracted features, the classification results were inferior to the 647 

results obtained by Mid-level data fusion.  648 

4. CONCLUSIONS 649 

This study demonstrates the potential of the combination of four spectroscopic 650 

analytical methods (MIR, NIR, EFM and 1H-NMR) when they were combined. The 651 

application of data fusion methods improved the characterization and authentication of 652 

PDO wine vinegars, providing a more efficient differentiation than the models based on 653 

single methods. The obtained results support the approach of combining these methods 654 

to achieve synergies for an optimized differentiation of the PDO of wine vinegars. With 655 

regard to single analytical methods, especially the classification results of 1H-NMR 656 

models were promising. On the other hand, the application of P-ComDim method was 657 

useful for describing, in a simple and synthetic manner, the overall spectral information 658 

collected and reveal the complementarity and differences of the spectroscopic 659 

techniques, assessing the importance of each technique to each of the common 660 

variables. However, for a PDO classification objective, the results of the present work 661 

showed that Mid-level data fusion can be the better option in comparison to the 662 

classification models obtained by P-ComDim. In spite of this fact, this study presents 663 
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promising results related to the development of efficient classification models by P-664 

ComDim carried out with the extracted features of spectroscopic data.  665 
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FIGURE CAPTIONS 

Fig. 1. Graphical representation of the data sets, data analysis flow and data fusion 

process. 

Fig. 2. Emission and Excitation spectra (PARAFAC loadings) of the main fluorophores 

present in the PDO wine vinegars (A and B). Mean PARAFAC scores of each PDO for 

the five resolved components (C). The acronyms for the different vinegar PDOs are 

defined in Table 1. 

Fig. 3. 3-D plot of PCA scores and loadings obtained for both data fusion strategies 

(with autoscaling and block-autoscaling preprocessing). The acronyms for the different 

vinegar PDOs are defined in Table 1. 

Fig. 4. Graph of saliences and sum of saliences obtained by the P-ComDim method 

developed with the raw data (A) and with the extracted features (B).  

Fig 5. Global loadings for each data block and global scores plot obtained by P-

ComDim method carried out by using the raw spectral data of MIR, NIR, 1H-NMR and 

EFM scores (A) and the data of extracted features obtained by MIR-NIR PCA, EFM 

PARAFAC and 1H-NMR MCR compounds (B).  

Fig. 6. Scores for the first two latent variables of the PLS-DA classification model 

obtained by P-ComDim with the raw data (A) and extracted features (B). The acronyms 

for the different vinegar PDOs are defined in Table 1. Test samples are represented by 

filled symbols. The labels (letter indicate the category predicted by the model) highlight 

misclassified samples. 

 

 

 



Table 1. Samples included in the study. 

PDO Category Ageing n 

“Vinagre de 
Jerez” (J) 

Crianza ≥6 months 11 

Reserva ≥2 years 13 

Pedro Ximenez - 4 

Total 28 

“Vinagre de 
Condado de 
Huelva” (C) 

Without ageing 0 months 5 

Solera ≥6 months 5 

Reserva ≥2 years 8 

Añada ≥3 years (static 
system) 

3 

Total 21 

“Vinagre de 
Montilla-

Moriles” (M) 

Crianza ≥6 months 8 

Reserva ≥2 years 3 

Pedro Ximenez - 5 

Total 16 

  

Table 1



 



Table 2. Emission and Excitation maxima of the 5 factor PARAFAC model and their possible matching 
fluorophores.  

 
 F1 F2 F3 F4 F5 

Ex/Em (nm) 380/450 425/520 475/565 380/425 550/630 

Fluorophores 

Cumarins, 
tannins, phenols, 
flavonols from 

wine 

5-
Hydroxmet
hylfurfural 

caramel 

Vitamin 
B2 and its 
principal 

forms 

Phenolic 
compounds, 

Maillard 
products, 
oxidation 
products 

Unknown 
related to 

Pedro 
Ximenez 
vinegars 

Table 2



Table 3. MCR resolved, integrated and interpreted components for 1H-NMR data. 
RT Type* Code Interpretation 

0.86-0.9 t NMR1 2-Hydorxy-3-methylvalerate 

0.9-0.97 d + m NMR2 X1 

0.98-1.02 
t+q NMR3 X3 

- NMR4 X4 

1.03-1.06 d NMR5 Isobutyrate 

1.06-1.11 t NMR6 Propionate 

1.11-1.16 d NMR7 Isopropanol 

1.17-1.20 t NMR8 Ethanol 

1.22-1.29 q NMR9 X5 

1.30-1.34 d+q NMR10 X6 

1.35-1.38 d NMR11 Acetoin 

1.39-1.43 d NMR12 Lactate/2-Phenylpropionate 

1.48-1.53 
s+t NMR13 X7 

- NMR14,NMR15 X8, X9 

1.77-1.81 q NMR16 6-Acetylglucose 

1.97-2.00 s NMR17 Acetamide 

2.02-2.12 s NMR18 Acetic Acid 

2.12-2.14 s/d NMR19 X10 

2.13-2.16 s/d NMR20 X11 

2.16-2.19 s NMR21 Acetoin 

2.21-2.25 
s+d NMR22 Acetone 

dd NMR23 Acetone 

2.28-2.30 s NMR24 Acetoacetate,Acetylsalicilate 

2.32-2.34 d NMR25 X12 

2.37-2.40 s+t NMR26 Malate, Glutarate, N-Acetylglutamate… 

2.59-2.62 t NMR27 Beta-Alanine, Succinate… 

2.64-2.67 s NMR28 Succinic Acid 

2.81-2.85 d NMR29 X13 

2.96-3.01 d NMR30 X14 

3.18-3.21 s NMR31 Acetylcholine 

3.22-3.31 m NMR32 Glucose 

3.30-3.36 d NMR33 Methanol 

3.37-3.51 m+m NMR34 Glucose 

3.51-3.58 m NMR35 Glucose 

Table 3



3.57-3.65 d NMR36 Glucose+Fructose 

3.63-3.67 q NMR37 Ethanol 

3.67-3.74 m NMR38 Fructose+Glucose 

3.74-3.78 dd NMR39 Glucose 

3.78-3.84 m NMR40 Fructose 

3.84-3.86 d NMR41 X15 

3.87-3.91 dd NMR42 Fructose+Glucose 

3.98-4.03 d+s NMR43 Frcutose 

4.09-4.12 t NMR44 Frcutose 

4.11-4.15 q NMR45 X17 

4.51-4.54 d+s NMR46 X20 

4.56-4.60 d NMR47 X21 

4.62-4.68 d NMR48 Glucose 

4.68-4.71 s NMR49,NMR50,NMR51 5-HMF 

5.21-5.26 d NMR52 Glucose 

5.35-5.39 
d NMR53 X22 

- NMR54 X23 

6.67-6.70 
d NMR55 X24 

- NMR56 X25 

7.52-7.55 d NMR57 X26 

8.25-8.28 s NMR58, NMR59 Formic Acid 

9.43-9.47 s NMR60, NMR61 5-HMF 

9.65-9.68 q NMR62 X27 

* Peak multiplicities: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; q, quadruplet; m, multiplet.   



 



Table 4. Classification results for each individual data block. 

DATA CLASSIFICATIO
N METHOD 

PRETREATMEN
T LV a 

% CORRECTED CLASIFIED 

Trainb Testb 

C J M C J M 

MIR+NIR PLS-DA 
Block Scaling + 
Mean Centering 10 90.0 85.0 79.2 100 87.5 62.5 

EEM NPLS-DA Mean centering 12 66.7 95.0 75.0 50.0 100 83.3 
1H-NMR peak 
areas PLS-DA Autoscaling 7 100 97.5 91.7 100 75.0 75.0 

 

a LVs number determined on the basis of minimum classification error in CV (Venetian blind 7 splits, keeping 
replicates in the same set). b Independent train and test sets, average correct classification rate for 5 random 
training/ test splitting is reported. 

 

Table 4



Table 5. PLS-DA RESULTS OBTAINED BY MID-LEVEL FUSED DATASET WITH TWO DIFFERENT 
SCALING PROCEDURES 

 a LVs number determined on the basis of minimum RMSECV with Venetian blind cross validation (7    
splits, 2 samples per split). b Independent test set, average correct classification rate for 5 random 
training/ test splitting is reported. 

 

DATASET CLASSIFICATION 
METHOD PRETREATMENT LVsa 

% CORRECTED CLASSIFIED 

Trainb Test b 

C J M C J M 

Mid-Level 
Data Fusion 

PLSDA 

Autoscaling 6 100 100 91.7 100 100 100 

Block-Autoscaling 7 100 97.5 91.7 100 100 100 

P-Comdim 
Raw Autoscaling 2 90.0 97.5 75.0 50.0 75.0 75.0 

P-Comdim 
Extracted 
Features 

Autoscaling 2 96.7 100 87.5 91.7 87.5 87.5 

Table 5



Table 6. Salient variables for discrimination for each PDO category according to PLS-DA VIP values, 
which were concordant in both DF PLS-DA models, i.e. autoscaling and block-autoscaling. In 
parenthesis, the sign of the corresponding regression coefficients is reported. 

PDOs NIR-MIR 1H-NMR EEM 

“Vinagre de Condado 
de Huelva” 

PC2(+), PC3(-), 
PC5(+), PC8 (+) 

NMR7(-), NMR11(-), 
NMR16(+), NMR17(+), 
NMR18(+), NMR24(-), 
NMR26(-), NMR27(+), 
NMR29(+), NMR30(+), 
NMR31(-) 

 F1(-),F4(+), F5(+) 

“Vinagre de Jerez” PC1(-), PC2(-), PC3 
(+), PC4(-), PC7(-), 
PC8(-) 

NMR14(+), NMR16(-), 
NMR26(+), NMR27(-), 
NMR29(-), NMR31(+), 
NMR59(-) 

F1(-), F4(-), F5(+) 

“Vinagre de Montilla-
Moriles” 

PC1(+), PC5(-), 
PC8(-) 

NMR16(-), NMR26(-), 
NMR27(-), NMR32(+), 
NMR35(+), NMR36(+), 
NMR39(+), NMR44(+), 
NMR48(+), NMR49(+), 
NMR51(+), NMR59(+),  
NMR61(+) 

F1(+), F5(-) 

 

Table 6
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