
Information Systems 99 (2021) 101731

J
a

b

c

c
t
d
i
r
p
i
h
i

r

(
j
(

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Empowering conformance checking using Big Data through horizontal
decomposition
Álvaro Valencia-Parra a, Ángel Jesús Varela-Vaca a,∗, María Teresa Gómez-López a,
osep Carmona b, Robin Bergenthum c

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Spain1

Department of Computer Science, Universitat Politècnica de Catalunya, Spain2

Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany3

a r t i c l e i n f o

Article history:
Received 1 March 2020
Received in revised form 17November 2020
Accepted 24 January 2021
Available online 18 February 2021
Recommended by Gottfried Vossen

Keywords:
Conformance checking
Decompositional techniques
Big Data
MapReduce

a b s t r a c t

Conformance checking unleashes the full power of process mining: techniques from this discipline
enable the analysis of the quality of a process model through the discovery of event data, the
identification of potential deviations, and the projection of real traces onto process models. In this
way, the insights gained from the available event data can be transferred to a richer conceptual
level, amenable for human interpretation. Unfortunately, most of the aforementioned functionalities
are grounded in an extremely difficult fundamental problem: given an observed trace and a process
model, find the model trace that most closely resembles to the trace observed. This paper presents
an architecture that supports the creation and distribution of alignment subproblems based on
an innovative horizontal acyclic model decomposition, disengaged from the conformance checking
algorithm applied for their solution. This is supported by a Big Data infrastructure that facilitates
the customised distribution of a gross amount of data. Experiments are provided that testify to the
enormous potential of the architecture proposed, thereby opening the door to further research in
several directions.

© 2021 Elsevier Ltd. All rights reserved.
c
t
e
A
m
r

1. Introduction

By means of conceptual models, organisations tend to define
omplex business processes that must be followed to achieve
heir objectives [1]. Sometimes the corresponding processes are
istributed across various systems, in which the majority of cases
nclude human tasks, thereby inadvertently enabling the occur-
ence of unexpected deviations with respect to the (normative)
rocess model. This is aggravated by the appearance of increas-
ngly complex processes, where the observations are provided by
eterogeneous sources, such as Internet-of-Things (IoT) devices
nvolved in Cyber–physical Systems [2].

Conformance checking [3] techniques provide mechanisms to
elate modelled and observed behaviour, so that the deviations

∗ Corresponding author.
E-mail addresses: avalencia@us.es (Á. Valencia-Parra), ajvarela@us.es

Á.J. Varela-Vaca), maytegomez@us.es (M.T. Gómez-López),
carmona@cs.upc.edu (J. Carmona), robin.bergenthum@fernuni-hagen.de
R. Bergenthum).
1 http://www.idea.us.es.
2 https://www.cs.upc.edu.
3 https://www.fernuni-hagen.de.
ttps://doi.org/10.1016/j.is.2021.101731
306-4379/© 2021 Elsevier Ltd. All rights reserved.
between the footprints left by process executions and the process
models that formalise the expected behaviour can be revealed.

One of the major challenges in conformance checking is the
alignment problem: given an observed trace σ , compute an end-
to-end model run that more closely resembles σ . Computing
alignments is an extremely difficult problem, with a complexity
exponential in the size of the model or the trace [4]. Intuitively,
computing an alignment requires a search through the state
space of the model which, in certain cases implies an exten-
sive exploration when the process model is large and/or highly
concurrent.

In order to face the challenge of computing alignments, the
conformance checking community has proposed widely differing
alternatives. Among these, we highlight decompositional tech-
niques, which break the alignment problem into segments, whose
solutions can be composed to reconstruct the final alignment [5–
8]. All these decompositional approaches feature a common strat-
egy which involves decomposing the problem by means of verti-
al cuts of the process model, and then projecting the traces in
he log accordingly in order to derive subtraces that only contain
vents of the alphabet corresponding to each model fragment.
lthough, in very particular cases (e.g., well-structured process
odels), the aforementioned decompositional approaches rep-

esent a significant alleviation of the alignment problem, they

https://doi.org/10.1016/j.is.2021.101731
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101731&domain=pdf
mailto:avalencia@us.es
mailto:ajvarela@us.es
mailto:maytegomez@us.es
mailto:jcarmona@cs.upc.edu
mailto:robin.bergenthum@fernuni-hagen.de
http://www.idea.us.es
https://www.cs.upc.edu
https://www.fernuni-hagen.de
https://doi.org/10.1016/j.is.2021.101731

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

p
l
i
h
a
p
e
a
F
s
p
T
t
d
t
m
n

m

Fig. 1. Functional description of the Big Data architecture to compute
alignments.

rely on very stringent conditions (e.g., model fragments should
agree on the alphabet at the frontiers), and provide weak guaran-
tees (e.g., necessary conditions for deriving an alignment), which
hamper them from being applied in general.

In this paper, we step back from the decompositional ap-
roach, and focus on working at a more abstract, architectural
evel. As earlier mentioned, normally the complexity of comput-
ng the alignment problem has been addressed by means of the
orizontal and vertical decomposition techniques [9]. We propose
Big Data infrastructure focused on a specific horizontal decom-
osition, which involves the unfolding of process models, and
mploying the MapReduce paradigm [10] for the decomposition
nd aggregation. At first sight, our functional strategy (depicted in
ig. 1) will not bring any new ideas to the landscape of decompo-
itional techniques: the process model is decomposed into a set of
artial models, and traces in the log are projected into subtraces.
hese two types of elements are then distributed and their par-
ial solutions are composed to aggregate a final alignment. This
istribution of the problem may facilitate the simplification of
he problem, by splitting the conformance analysis into partial
odels (with smaller search spaces) and subtraces across several
odes (Map), and combining the partial alignments4 obtained

from different algorithms in the nodes (Reduce). The general idea
of applying MapReduce for conformance checking is not new, as is
analysed in the related work section. However, the Big Data [11]
framework proposed in this paper is innovative for the following
reasons:

• A new decomposition is proposed, which differs from the
aforementioned approaches in one important feature: in-
stead of a vertical cut, it is based on horizontal, end-to-end
cuts that can be obtained by what we call acyclic cover,
which originates from a partial order representation of the
initial process model. The horizontal decomposition of the
model limits the search space dividing the model into its
possible execution models, and analysing the alignment
with every trace. However, in the vertical decomposition,
both traces and the model are fragmented, thereby reducing
the search space for each part of the model and each trace
fragment.

• The framework enables the construction, distribution, and
parallelisation of the computing alignment between dif-
ferent nodes in a Big Data environment to be tuned in

4 Partial alignment means the computation of the alignment for a partial
odel and a subtrace.
2

accordance with the features of the problem and the avail-
able requirements. Moreover, the application of heuristics is
proposed to optimise the resolution of the subproblems.

• It enables us to choose and customise the conformance
checking algorithm, by making it possible to compute the
alignment with different techniques. In this case, we have
used the A* algorithm as a classic solution, and the Con-
straint Programming Paradigm [12] as a new solution, in
order to show how different types of alignment algorithms
can be applied in the distributed paradigm.

• The development of a practicable infrastructure based on
Big Data represents a leap forward in the resolution of
conformance checking problems of a more complex nature,
and reduces the resource limitations of the current solutions
evaluated locally.

The paper is organised as follows: Section 2 analyses the
related work. Section 3 includes the necessary foundations to
understand the state of the art and the proposal. Section 4 deter-
mines how the use of Big Data techniques provides mechanisms
for the partitioning and distribution of the computation of the
conformance checking analysis. Section 5 describes how the A*
algorithm and Constraint Programming can be applied to traces
that represent the acyclic horizontal partial models. Section 6
depicts the experiments carried out to evaluate our proposal, and
finally, Section 7 presents the conclusions.

2. Related work

The seminal work in [4] proposed the notion of alignment
and developed a technique based on A∗ to compute optimal
alignments for a particular class of process models. Improve-
ments of this approach have been presented recently in various
papers [13,14]. These approaches represent the state-of-the-art
technique for computing alignments, and can be adapted (at the
expense of a significant increase in the memory footprint) to
provide all optimal alignments. Alternatives to A∗ have appeared
in recent years: in the approach presented in [15], the align-
ment problem is mapped as an instance of automated planning.
Automata-based techniques have also appeared [16,17]. The tech-
niques in [16] (and recently extended in [18]) rely on state-space
exploration and determination of the automata corresponding to
both the event log and the process model, whilst the technique
in [17] is based on computing several subsets of activities and
projecting the alignment instances accordingly. In spite of the
significant progress made, the aforementioned techniques still
have problems in dealing with large inputs.

The work in [19] presents the notion of approximate alignment
to alleviate computational demands by proposing a recursive
paradigm on the basis of the structural theory of Petri nets. In
spite of its resource efficiency, the solution is not guaranteed
to be executable. Alternatively, the technique in [20] presents a
framework to reduce a process model and the event log accord-
ingly, with the goal of alleviating the computation of alignments.
The obtained alignment, calledmacro-alignment since some of the
positions are high-level elements, is expanded based on the infor-
mation gathered during the initial reduction. Techniques using
a local search have also recently been proposed [21]. Although
the approximate techniques can provide solutions where ex-
act/optimal techniques fail, they only provide certain guarantees
for very restricted classes of models.

Against this background, the process mining community has
focused on dividing and conquering the problem of computing
alignments as a valid alternative to this problem, with the aim
of alleviating its complexity without degrading the quality of
the solutions found. Our focus now turns to decompositional

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

a
m

i

pproaches towards the computation of alignments, which are
ore closely related to the research of this paper.
Decompositional techniques have been presented [5–7] which,

nstead of computing optimal alignments, focus on the crucial
problem of whether a given trace fits a process model. These
techniques vertically decompose the process model into pieces
that satisfy certain conditions. Therefore, only valid decomposi-
tions [5], which satisfy restrictive conditions on the labels and
connections forming a decomposition, guarantee the derivation
of a real alignment. The notion of recomposition has since been
proposed on top of decompositional techniques, in order to obtain
optimal alignments whenever possible by modifying the decom-
position (typically by merging sets) when the required conditions
are not met [8]. In contrast to the aforementioned vertical de-
composition techniques, our methodology does not require this
last modification of partial solutions, and therefore can provide
a fast alternative to these methods at the expense of losing the
guarantee of optimality.

There has also been related work on the use of partial order
representations of process models for the computation of align-
ments. In [22], unfoldings are employed to capture all possible
transition relations of a model so that they can be used for online
conformance checking. In contrast, unfoldings were used recently
in a series of papers [23,24] to significantly accelerate the compu-
tation of alignments. We believe that these approaches, especially
the latter two, can easily be integrated into our framework.

The work of [18] can also be considered a decompositional
approach since it proposes decomposing the model into sequen-
tial elements (S-components) so that the state-space explosion of
having concurrent activities is significantly alleviated. This work
is compatible with the framework suggested in this paper since
the model restrictions assumed in [18] are satisfied by the partial
models arising from our horizontal decomposition.

Finally, the MapReduce distributed programming model has
previously been considered for process mining. For instance, Ev-
ermann applies it to process discovery [25], whilst [26] applies it
for monitoring declarative business processes.

3. Foundations

We denote ⊥ as the empty set. Let A be a set of elements, and
we denote A∗ as the set of all sequences over elements of A. Let
a, b ∈ (A∪{⊥})∗ be two sequences. We denote a̸⊥ as the sequence
a, but omit all elements ⊥ from a. We write a =̂ b if a̸⊥

= b̸⊥

holds.

3.1. Process models

In this paper, we describe process models and partial models
by means of labelled Petri nets.

Definition 1 (Labelled Petri Net). A labelled Petri net is a tuple
(P, T , F , Σ, ℓ) where P and T are finite disjoint sets of places and
transitions, respectively, F : (P × T) ∪ (T × P) → {0, 1} is the
flow-relation, Σ is the alphabet, and ℓ : T → Σ ∪ {⊥} is the
labelling function.

Fig. 2 depicts a labelled Petri net. Places are represented by
circles and transitions by rectangles. Every transition has a unique
name and a label on top. Places and transitions are connected in
accordance with the flow-relation.

In Petri nets, there is the so-called firing rule. Transitions of a
Petri net can be fired, thereby changing the state of the net.
3

Fig. 2. A labelled Petri net.

Definition 2 (Firing Rule). Let N = (P, T , F , Σ, ℓ) be a labelled
Petri net. A function m : P → N0 is a marking of N . We define,
•t : P → {0, 1} as •t(p) := F (p, t), and t• : P → {0, 1} as
t • (p) := F (t, p). A transition t ∈ T is enabled at marking m if
m ≥ •t holds. If transition t is enabled, then transition t can be
fired. In this case, we write m [t⟩. Firing t changes the marking m
to m′

:= m − •t + t•. In this case, we write m [t⟩m′.

We depict a marking by putting black dots, called tokens, in
the places of the marking. For example, Fig. 2 depicts the initial
state of the labelled Petri net. The initial marking only contains
place i once. In this marking, only transition t1, labelled as A, is
enabled. Firing t1 leads to the marking where i does not carry a
token, and both places in the post-set of t1 each carry a token.

Starting at the initial marking, sequentially enabled sequences
of transitions are words of the language of the Petri net. The
related traces of labels are the so-called trace-language.

Definition 3 (Language of a Petri Net). Let N = (P, T , F , Σ, ℓ) be a
labelled Petri net. A marked Petri net is a tuple (N,m0,mf) where
m0 is the initial marking and mf is the final marking. A sequence
⟨t1, . . . , tn⟩ ∈ T ∗ is a firing sequence. If there is a sequence
of markings ⟨m1, . . . ,mn+1⟩ such that m1 [t1⟩m2, m2 [t2⟩m3, . . .,
mn [tn⟩mn+1 holds, we can write m1 [t1, . . . , tn⟩mn+1.

L(N) := {⟨t1, . . . , tn⟩ ∈ T ∗
|m0 [t1, . . . , tn⟩mf }

T (N) := {σ ∈ Σ∗
| ⟨t1, . . . , tn⟩ ∈ L(N) ∧ σ =̂ ⟨ℓ(t1), . . . , ℓ(tn)⟩}

L(N) is the language of N; T (N) is the trace-language of N .

In Fig. 2, if we assume the final marking where only place f
carries one token, for example ⟨t1, t2, t3, t6, t7⟩ and ⟨t1, t2, t3, t5,
t4, t2, t3, t7⟩ are words of the language, and ⟨A, B, C, F ,G⟩ and
⟨A, B, C, E,D, B, C,G⟩ are the related traces.

3.2. Conformance checking

Event logs record the behaviour observed from the execution
of a business process.

Definition 4 (Trace, Event Log). Let Σ be an alphabet. A sequence
σ ∈ Σ∗ is a trace. A multi-set of traces L : Σ∗

→ N0 is an event
log.

The classic notion of aligning an event log and a process model
was introduced by [4]. An alignment maps a trace of an event
log to a firing sequence of the model. An alignment replays the
trace and the firing sequence simultaneously, where either the
trace, the firing sequence, or both move. Trace and sequence are
allowed to move synchronously only if the label of the transition
matches the event.

We consider the Petri net depicted in Fig. 2 with initial state i
and final state f . By aligning the Petri net to the trace ⟨A, A, B, C,

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

w
a

m
τ

M

i
i
=

E
m

D
P
h
f

λ

m
o
p
a
a

4

4

a
k

t

D, B, C,G⟩ for instance, we obtain numerous possible alignments,
here moves of the trace are at the top, and moves of the model
re at the bottom of a table.

A A B C D B C ⊥ G
t1 ⊥ t2 t3 t4 t2 t3 t5 t7
A A B C D B ⊥ C G
t1 ⊥ t2 t3 t4 t2 t5 t3 t7
A A B C D B ⊥ C G
⊥ t1 t2 t3 t4 t2 t6 t3 t7

. . .

Definition 5 (Alignment). Let N = (P, T , F , Σ, ℓ,m0,mf) be a
arked Petri net, σ be a trace of an event log L : Σ∗

→ N0, and
∈ L(N) be a firing sequence. The set

:= {(a, t) ∈ (Σ × T)|ℓ(t) = a} ∪ (Σ × {⊥}) ∪ ({⊥} × T)

s the set of legal moves. An element ⟨(a1, t1), . . . , (an, tn)⟩ ∈ M∗

s an alignment of σ and τ iff ⟨a1, . . . , an⟩ =̂ σ and ⟨t1, . . . , tn⟩ˆ τ holds.

We define a cost-function to attain a cost for every alignment.
very move of an alignment adds to its cost, where asynchronous
oves add greater cost than synchronous moves [4].

efinition 6 (Cost-Function). Let N = (P, T , F , Σ, ℓ) be a labelled
etri net and let L : Σ∗

→ N0 be an event log. Let 0 ≤ δ1 < δ2, δ3
old. We define the cost-function λδ1,δ2,δ3 : M∗

→ N0 as follows:
or every alignment α = ⟨(a1, t1), . . . , (an, tn)⟩ ∈ M∗, we define

(α)δ1,δ2,δ3 := δ1 · |{(a, t) ∈ α | a = ℓ(t)}|
+ δ2 · |{(a, ⊥) ∈ α}|

+ δ3 · |{(⊥, t) ∈ α}|

We fix a cost-function to calculate a so-called optimal align-
ent between a trace of an event log and a process model. An
ptimal alignment is an alignment with a lowest cost. In the
revious example, if we define the cost of an asynchronous move
s 1 and the cost of a synchronous move as 0, then the depicted
lignments have a cost of 2.

. Computing conformance checking with big data

.1. Overview of the approach

The fundamental problem in conformance checking involves
ligning a trace concerning a process model [3]. This problem,
nown as the alignment problem, is a search (which can be highly

time-consuming) to find a model trace similar (according to a
cost-function) to the observed trace. Please refer to Section 2 for
a complete overview of the current approaches for computing
alignments.

Derived from the complexity of the alignment problem, we
present a solution based on the creation of simpler problems that
can be distributed on a Big Data architecture that aims to facilitate
the computation of alignments on a grand scale. In this paper,
we assume both process models and logs can be decomposed
so that we can take advantage of a Big Data infrastructure, and
therefore the fundamental problem of computing an alignment
can be distributed over the infrastructure in a MapReduce fash-
ion [10]. As will be observed see in Section 5, to instantiate
the architecture for a real situation, we build upon our previous
work [12] and the case of a partial order decomposition of a
process model (see Section 4.2). However, while the architecture
 p

4

presented in this section is not tied to any particular confor-
mance checking algorithm, the decomposition technique must be
based on the extraction of subtraces and the unfolding of a pro-
cess model into partial models through horizontal decomposition.
Other decompositional approaches available in the literature [5–
7] might be employed, but lead to changes in the way in which
the Generate partitions of Problems, Map, and Reduce activities
are implemented. Furthermore, it should be borne in mind that
other decompositional approaches must be capable of forming
partitions so that these can be distributed among the nodes of
the cluster.

In order to determine each of these parameters that describe
how the subproblems are created, distributed, solved, and com-
bined, Fig. 3 summarises the workflow followed in our approach.
Since our proposal is not hooked to a specific alignment al-
gorithm, it has been tested with two very different algorithms
to analyse how the type of conformance technique algorithms
can affect the Map and Reduce stages. In the first phase, the
alignment algorithm is determined, as are the subtraces5 and
partial models. These are obtained through the unfolding process,
which applies a horizontal decomposition technique. Once these
aspects are defined, a subtrace and partial model pre-processing
are needed (see Pre-process traces and partial models) to deter-
mine certain features used in the heuristics for the subsequent
problem distribution. The system is then set up (see Setting pa-
rameters and heuristics) in terms of the number of partitions
(set of alignment subproblems) to be distributed in each node,
the subproblem assignations to each node according to the pa-
rameters obtained from the previous activity, the thresholds of
time used for solving each subproblem, and the threshold of
memory in the nodes of each cluster. When the parameters are
configured, the MapReduce paradigm can be applied following
the following three activities: Generate partitions of problems, Map
— Distribution and compute partitions, and Reduce — Combine
results. These are given in detail in Sections 4.2, 4.3, and 4.4,
respectively. The framework follows the idea of the MapReduce
paradigm as depicted in Fig. 4. The input of the problem is the set
of alignment problems formed of a combination of a subtrace and
a partial model. These alignment problems will be distributed in
different divisions solved in each node, where the Map function is
applied obtaining a map ⟨key, value⟩ whose key is the trace and
the value is the alignment found for the set of traces involved
in this subproblem. All the partial solutions represented by maps
are then combined.

Our framework provides a mechanism to set up the parame-
ters to perform the alignment analysis in a more efficient way.
Therefore, after a solution is found, the parameters (i.e., timeout
and number of partitions) can be adjusted to re-execute the
alignment analysis, thereby reducing the time.

4.2. Generate partitions of problems

As indicated in Section 1, we aim to alleviate the complexity
of a conformance checking problem by dividing a model into a set
of partial models. A partial model covers a part of the behaviour
of the original model. Furthermore, a partial model needs to be
acyclic and conflict-free. Finally, it should be borne in mind that
the approach assumes that partial models are generated through
horizontal decomposition.

5 As the reader will identify later, in this paper we use the term subtrace
o stress the fact that the methodology proposed is general, although, in our
articular explanations, subtraces will be full traces.

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

D

n

T

t

Fig. 3. Workflow of the approach.
Fig. 4. MapReduce for alignment analysis.
o
u
t
b
a
t

efinition 7 (Partial Model, Cover). Let N = (P, T , F , Σ, ℓ,

m0,mf) and N ′
= (P ′, T ′, F ′, Σ ′, ℓ′,m′

0,m
′

f) be two marked Petri
ets. N ′ is conflict-free iff (m [t1⟩m′

∧ m [t2⟩) H⇒ m′ [t2⟩ holds.
We call N ′ a partial model of N iff N ′ is conflict-free, acyclic, and
(N ′) ⊆ T (N) holds. We call a set of partial models {N1, . . . ,Nn}

a cover of N iff
⋃

i T (Ni) = T (N) holds.

In this respect, a partial alignment is the computation of the
alignment of a partial model.

Fig. 5 depicts a partial model of Fig. 2. The depicted marked
Petri net is conflict-free, acyclic, and its trace-language is {⟨A, B,
C, E,G⟩, ⟨A, B, E, C,G⟩, ⟨A, E, B, C,G⟩}. Obviously, this trace-
language is a sub-set of the trace-language of Fig. 2. Fig. 6 depicts
another partial model. In this example, transitions t2 and t5 carry
he label B, while transitions t3 and t6 carry the label C . Thus, the
loop of Fig. 2 is unfolded.

One straightforward approach to splitting a Petri net into a
cover is to calculate its branching process [27]. It is well-known
that the set of so-called process nets of a branching process is
a cover. It should be borne in mind that the branching process
itself can be infinite, but given the maximal length of a trace of
the log, we can always determine a sufficient depth to calculate
an appropriate prefix of a cover for the alignment problem at
hand. In the literature, there is a rich body of approaches to
calculating finite representations of an infinite branching process
in a reasonable time [28].
5

Fig. 5. A partial model of Fig. 2.

Fig. 7 depicts a prefix of the branching process of the model
f Fig. 2. This acyclic labelled net is able to execute all traces
p to length seven of the original model. It is a prefix because
he looping behaviour of transitions B, C , and D generate infinite
ehaviour. In a branching process, a model is unfolded so that
ll places have at most one preceding transition, for instance, the
wo places (see p5 and p10) behind transitions labelled by E and
F . In Fig. 2, this pair is only one place (see p5). The same holds
for all places before transitions labelled by B and places behind
transitions labelled by D. In the original model, they are just one
place (see p1 in Fig. 2). Thus, conflicts and cycles are unfolded. Ev-
ery connected subnet of a branching process, whereby all places
have at most one subsequent transition, is called an occurrence
net. For example, the set of transitions {t1, t2, t3, t5, t7}, with all
connected places, form the partial model of Fig. 5. Transitions
{t , t , t , t , t , t , t , t } are the partial model of Fig. 6.
1 2 3 4 6 8 10 13

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

o
a
i
s
g

m
r
F

a
c
m
a
b

b
n
p

t
W
W
A

Fig. 6. Another partial model of Fig. 2.
Fig. 7. A prefix of the branching process of Fig. 2.
The use of occurrence nets of branching processes constitutes
nly one of many possibilities for the horizontal decomposition of
model. Log-based unfolding [29] and token flow-based unfold-

ng [28] can generate similar decompositions. In the more general
etting of the paper, the set of partial models is required to be
iven as a set of acyclic, conflict-free marked Petri nets.
Every trace of a partial model can be replayed by its original

odel. Thus, for every alignment of the partial model, there is a
elated alignment in the original model that incurs the same cost.
or example, the firing sequence ⟨t1, t2, t3, t4, t5, t7, t6, t8⟩ of the

partial model depicted in Fig. 6 can be replayed by the original
model depicted in Fig. 2 by ⟨t1, t2, t3, t4, t2, t6, t3, t7⟩. Obviously,
related (replayed) alignments have the same cost:

A A B C D B ⊥ C G
⊥ t1 t2 t3 t4 t5 t7 t6 t8
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

⊥ t1 t2 t3 t4 t2 t6 t3 t7

If a set of partial models covers a Petri net, then, for every
lignment of the original model, there exists a partial model
overing each alignment. This holds true since the set of partial
odels can replay every trace of the original model. An optimal
lignment can be therefore be calculated for the original model
y calculating an optimal alignment for the set of partial models.

The division of the problem into smaller partitions forms the
ase of the application of the MapReduce paradigm. It is therefore
ecessary to tackle the problem of partitioning an alignment
roblem (AP) into a set of subproblems by distributing the set

of traces of an event log and the set of partial models extracted
from a process model. Firstly, and Fig. 3, the process model and
log are decomposed into subtraces and partial models that can
be analysed independently, thereby obtaining the alignment in a
more efficient way.

Definition 8 (Decomposition, Alignment Subproblem). Let AP be an
alignment problem aligning a set of traces Tr = {tr1, tr2, . . . , trn}
o a model M . Let Pm = {pm1, pm2, . . . , pmm} be a cover of M .
e call every element pr ∈ (Tr × Pm) an alignment subproblem.
e write AP = (Tr × Pm) and call (Tr × Pm) a decomposition of
P into n · m subproblems.
6

Fig. 8. Partitions and sets of subproblems.

In an ideal scenario with unlimited resources, each alignment
subproblem could be solved independently and in parallel. In
this case, the total run-time needed to solve AP would be the
time spent on the most complex subproblem plus the time spent
combining the partial alignments. Here, we would need as many
nodes as subproblems to process all subproblems in parallel.

In real-life applications, the number of subproblems is much
too high to simply generate a node for every problem. Thus,
subproblems need to share nodes. To control the distribution of
subproblems to nodes, the set of all possible subproblems is par-
titioned into groups of subproblems that share the same features.
Features are made up of the involved trace and partial alignments

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

c
t
b

D
s

c
a
p
p

Fig. 9. Activity diagram to describe the Map algorithm.
alculated in other subproblems. How to properly group and dis-
ribute subproblems to calculate solutions efficiently is analysed
elow.

efinition 9 (Partitions). Let Tr be a set of traces. We call a
et of disjoint sets of traces {Tr1, Tr2, . . . , Trn} a partition of Tr
if Tr =

⋃n
i=1 Tri holds. Let Pm be a set of partial models. We

all a set of disjoint sets of partial models {Pm1, Pm2, . . . , Pmm}
partition of Pm if Pm =

⋃m
i=1 Pmi holds. Let Tri be a set of the

artition of Tr and let Pmj be a set of the partition of Pm. We call
r(i,j) := (Tri × Pmj) a partition of the alignment subproblems.

Partitions pr(i,j) define sets of alignment subproblems. When
each alignment subproblem (Tri × Pmj) is solved, a partial align-
ment is obtained. Figure schematically 8 depicts partitions of Tr
and Pm and the resulting sets of alignment subproblems.

In the next subsection, we will discuss the distribution of
every partition of alignment problems following the MapReduce
strategy [10], which is a programming model to support parallel
computing for large collections of data.
7

4.3. Map - Distribute and compute alignment problem partitions

The Map function is based on solving smaller problems,
thereby obtaining partial solutions for their subsequent combi-
nation. The algorithm used in the map function is represented
in Fig. 9. It receives a partition of subproblems and creates
a dictionary of partial solutions with default values. For each
subproblem, it then makes a lower-bound estimation for the
possible alignment that can be taken before it is solved. This
estimation is employed to sort the subproblems to solve in the
same partition (sequentially solved). The estimation is obtained
by comparing model and trace: (1) checking the size of the trace
w.r.t. the maximum number of events that can be extracted from
the submodel (e.g., if the trace has 100 events and the longest
trace generated by the submodel is 90, then the alignment (see
Definitions 5 and 6) must be at least 10); (2) the events that
occur in the trace but not in the model and vice versa; and (3)
considering the number of occurrences of events with regard to
the submodel (e.g., if the event A is repeated three times in the

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

t
m
t
c
t
e
T
a
e
e
o
F
a
i
t
w
a
n
t
i
t

race but only twice in the submodel, then the alignment cost
ust be at least 1). These values are calculated and aggregated

o generate an estimation as the lowest value that the alignment
an take. If an alignment subproblem discovers better alignment
han the estimation for the same trace, then it is illogical to
valuate the remaining subproblems with an inferior estimation.
he partition of subproblems is then sorted by estimation in
scending order. Sorting is crucial for the optimisation of the
xecution time since it prevents the alignment process from ex-
cuting subproblems that would fail to provide an improvement
f the best alignment found up to that moment (see Note 1 in
ig. 9). If a new alignment is obtained, then the partial solution
ssociated with that trace is updated if the new alignment value
s better than the previous value (see Note 2 in Fig. 9). Note
hat the partial solutions have an attribute called isOptimal. This
ill be true when it is possible to guarantee that the solution
ssociated with this trace is the optimal solution (note that the
otion of non-optimality is introduced due to the existence of a
imeout, which prevents the search space from being searched in
ts entirety). If the isOptimal attribute of any of the subproblems
hat were executed is marked as false due to the timeout being
reached, then we cannot guarantee that the solution to any
other subproblem associated to that trace is the optimal solution,
because any other subproblem with a better previously executed
estimation value could have returned a better alignment value if
the timeout had not been reached.

In order to illustrate the algorithm, Fig. 10 presents the iter-
ation of the partition presented in Fig. 9. At this point, it should
be borne in mind that the partitions are already sorted by estima-
tion. There are four elements to process, and hence, there are four
iterations. In Iteration 1, the subproblem ⟨tr1, pm2⟩ is processed.
The alignment process is then executed because the estimation
yields a value of 2, which could improve the partial solution found
until the moment (∞). Once the alignment value (6) has been
computed, the partial solution for tr1 ⟨tr1, pm2, 6, true⟩ is stored.
In Iteration 2, we have a similar situation with ⟨tr2, pm1⟩, where
the partial solution is also updated after obtaining an alignment
of 5. However, the timeout was fired, and therefore the align-
ment cannot be guaranteed to be optimal (⟨tr2, pm1, 5, false⟩).
However Iteration 3 does not execute the alignment process nor
update the partial solution previously obtained for tr1, since the
estimation for the subproblem ⟨tr1, pm1⟩ is greater than the best
optimal computed alignment.

In Iteration 4, the same situation arises, and hence the partial
solution formerly found for tr2 is not updated.

4.4. Reduce - Combining alignment problem result

The Reduce phase is responsible for combining the partial
solutions that are generated during the Map phase. Each partition
yielded a set of partial solutions, with the following information:
trace, partial model, alignment value, and an indicator pointing
out whether the solution is optimal or if it is impossible to
ensure that the alignment obtained is the optimal solution. In this
phase, all the partial solutions corresponding to the same trace
are combined, and that with the best alignment value is selected
as the best solution for such a trace.

Fig. 11 depicts the Reduce process, and includes some partial
solutions to show the execution. The proposal is based on the
function known as reduceByKey, which groups data in terms of
the key of the data provided by the map function, and then
applies a function in order to combine the values associated
with each key. For the alignment problem, the Reduce phase
groups the partial solutions with the same key (i.e., with the same
trace), and combines every partial solution in the same group,
thereby obtaining another partial solution. Following the example
8

of Fig. 11, the tuples of Partial Solutions 1 and 2 are grouped
according to their trace (tr1 and tr2). The tuples in each of these
groups are combined returning a single tuple in each case. The
new obtained partial solution follows the form:

• trace: the trace that was employed to create the groups and
is shared by every tuple in the group.

• partial model: the partial model whose alignment is mini-
mal for that trace.

• alignment: the minimal alignment of every tuple.
• isOptimal: the ∧ combination of the isOptimal values of

every tuple. This means that if it is false for a tuple, then the
other tuples related to the same trace will also be marked
as false, since it is impossible to ensure that the found
alignment is optimal because the problem has not been fully
analysed.

5. Interchangeable solutions for encoding alignment

The MapReduce algorithm presented in the previous section
can be applied to various types of alignment techniques, sub-
traces, and partial models. Several algorithms that have tackled
the conformance checking problem in the context of business
processes (see Section 2 for a full description). In this section, two
such algorithms are included: the A* algorithm as an example
of a classic algorithm developed by other authors [4]; and a
new implemented solution based on the Constraint Programming
Paradigm. These two algorithms have the same objective (i.e., to
discover the alignment). However, we have included the Con-
straint Programming Paradigm since it enables certain special
features to be incorporated, such as restricting the domain of the
possible value where the alignment can be found, and determin-
ing a maximum time of resolution per subproblem that returns
the best solution found up until the timeout.

5.1. Alignment based on the A* algorithm

One of the most relevant solutions to computing alignments
found in the literature is the A* algorithm [4]. It has been suc-
cessfully employed as a feasible approximation to discover the
optimal alignment between the process model and traces [3].
Essentially, the model and trace are combined into a synchronous
product. Fig. 12 illustrates the synchronous product, and presents
the partial model, obtained from a cover (see Definition 7) given
in Fig. 6, and the log trace: ⟨A, B, E,D, C, B, C, F ,G⟩.

The simplest way to compute alignment is to build the reacha-
bility graph (see Definition 7, [3]) from the synchronous product,
and then to deduce the shortest path from the initial mark-
ing to the final marking. However, the construction of the full
reachability graph is not always possible due to the state space
explosion problem. To overcome this problem, the reachability
graph is built in pieces. The A* algorithm is efficiently used (see
Chapter 7.3, Procedure 2 [3]) to compute the shortest path. The
core of the A* algorithm relies on a heuristic function, f (m) =

g(m) + h(m), which guides the search, where g(m) is the cost
of the path from the initial marking to m. For instance, for any
reachable state m, A* must determine h(m) ≤ h∗(m), where h∗(m)
is the shortest path from m to the final marking. There are cases
in which A* fails to compute the alignments since it is highly
complex and time-consuming (e.g., in models with a very high
levels of parallelism [18]).

Our approach integrates the implementation of the A* algo-
rithm provided by the Python library PM4Py.6

6 PM4Py: https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731
Fig. 10. Execution trace of the Map function.
Fig. 11. Execution trace of the Reduce function.
Fig. 12. Example of synchronous product of model and trace.
5.2. Alignment based on constraint programming

The Constraint Programming paradigm is a general-purpose
technique that can be applied to optimise problems. Since the
alignment problem is an optimisation problem that can be dis-
tributed, the incorporation of this new solution in our framework
is considered to be relevant as an evolution of a previous pro-
posal [12]. Moreover, since the alignment computation can be
modelled as a variable and restrictions whose domain can be
bounded, and thanks to the decomposition of the model into
submodels, we consider it relevant to analyse how the former
resolution of subproblems can be used to tighten the possible
domain for the analysis in further resolutions. The partial model,
obtained from a cover (see Definition 7) given in Fig. 6, and the
9

log trace: ⟨A, B, E,D, C, B, C, F ,G⟩, are used as a running example
to illustrate the encoding based on Constraint Programming. The
partial model can contain concurrent paths, that is, there would
be and-splits that divide the execution into various branches that
can be executed in parallel.

In our approach, the computation of the alignment problem
of a log trace and a partial model is encoded as a Constraint
Problem for the reduction in running time and resources of the
proposal presented in [12]. Thus, the information extracted from
the partial model and the trace, such as the name of transitions,
events, the execution, order and their possible positions, are
translated into variables, constraints, and an objective function
of a Constraint Optimisation Problem (COP). The horizontal de-
composition can ensure that the resulting partial models contain

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

o
r
a

5

a
3
t

D

n
o
t
a
l
f
f

e
t
i
p
c
c
c
t
a
n

F
t

r-splits. In fact, this helps reduce the complexity of the COP
egarding the number of restrictions and the number of variables
nd the domain of the variables.

.2.1. Constraint and optimisation problems in a nutshell
Constraint Programming is a paradigm that permits the declar-

tive description of the constraints that determine a problem [30,
1]. Constraint Programming brings together a set of algorithms
o determine the solutions of a problem described.

efinition 10 (The Constraint Satisfaction Problem). (CSP) is de-
fined by a 3-tuple ⟨X , D, C⟩, where X = {x1, . . ., xn} is a finite
set of variables, D = {d(x1), . . ., d(xn)} is a set of domains of the
values of the variables, and C = {C1, . . ., Cm} is a set of constraints.
Each constraint Ci determines relations R between a subset of the
variables V = {xi, xj, . . ., xl}.

A constraint Ci = (Vi, Ri) simultaneously specifies the possible
values of the variables in V that satisfy R. Let Vk = {xk1 , . . ., xkl}
be a subset of X , and an l-tuple (xk1 , . . ., xkl) from d(xk1), . . ., d(xkl)
can therefore be called an instantiation of the variables in Vk. An
instantiation is a solution iff it satisfies the constraints C. The CSP
solvers enable one tuple of instantiation of one, multiple, or all
these values to be sought in accordance with the requirement of
the problem.

An example of its applicability in the alignment context is
given by its representation of the order relation existing in the
models and the traces, as found in Fig. 6. By using a set of
variables to represent the order of the events, and by satisfying
the relative constraints of the activities that appear in the partial
model, the alignment can be encoded in the following CSP.

// Variables
positionA , positionB , positionC . . . in the domain {0..trace.length-1}
// Constraints of the log trace
positionA == 0
positionC == 1
positionB == 2
positionAD == 3
. . .

positionAZ == 14
// Constraints of the partial model
positionA < positionC
positionC < positionAC
positionC < positionAF
positionAC < positionAD
. . .

If the model and the event cannot be aligned, this CSP will
ot be satisfied. However, no more feedback regarding the level
f misalignment is provided by the resolution of the CSP. In
his case, a Constraint Optimisation Problem (COP) is able to
scertain the minimal distance between the partial model and the
og observed since a COP is a CSP that includes an optimisation
unction. Only the solution of the CSP that satisfies the optimal
unction can be the solution of the COP.

Constraint Optimisation Problems (COPs) have already been
mployed to detect the alignment between the expected and
he observed behaviour in model-based diagnosis [32,33], specif-
cally when the behaviour is described by means of business
rocess models [34–36]. These studies used the concept of reified
onstraints as a mechanism to assign a Boolean value to the
onstraints included in the model [34], whereby a constraint that
annot be satisfied during the CSP resolution can be relaxed. Since
he idea is to determine the minimal distance between the model
nd the log, these relaxed constraints must be the minimum

umber, defined as the objective of the function to be optimised.

10
ollowing the previous example, the COP below is created where
he Ref variables relate to the reified constraints.

// Variables
RefA , RefC , RefC . . . in the domain {0..1}
positionA , positionB , positionC . . . in the domain {0..trace.lenght-1}
// Constraints of trace
positionA == 0
positionC == 1
positionB == 2
positionAD == 3
. . .

positionA == 14
// Constraints of the model
RefA ∧ RefC H⇒ (positionA < positionC)
RefC ∧ RefAC H⇒ (positionC < positionAC)
RefC ∧ RefAF H⇒ (positionC < positionAF)
RefAC ∧ RefAD H⇒ (positionAC < positionAD)
. . .

maximize(RefA + RefC + . . . + RefAF)

Although the idea of the COP modelling follows the previous
COP, in the following subsection, we approach the definition
included in Section 3 in relation with a COP to determine the
alignment between a partial model and a log trace.

5.2.2. Constraint optimisation problem for solving an alignment sub-
problem

Our proposal builds the COP from the perspective of the place-
ment of the events in a positional order that satisfies both the log
trace order and that of the partial model. However if this is not
possible, then a number of the constraints are ignored from the
COP firing reified constraints. The structure of the COP is as shown
in Fig. 13.

As defined above, a COP is composed of a set of variables, a
set of constraints, and an objective function. It is important to
take into account the possibility that an event can appear more
than once in a log trace derived, for example, from an unfolding
process. In this case, a relabelling of the events is necessary
to differentiate the variables that represent one or another ,
although some constraints must be included to express that they
can represent the same transition. In detail, a COP is formed of:

• Variables for the Log Events: for each event in the log trace,
two variables are created:

– Position (pos): Integer variable with a domain between
0 and the number of events, that is, all the different
locations of the events. This domain represents all the
possible positions with respect to the partial model. In
the running example, all the variables receive a domain
from 0 to 8 since 9 is the total number of events,
although the event E is not in the partial model and
the transition H in the partial model is not included in
the events.

– Deviation (dev): Boolean variable which represents the
correct or incorrect order of the event according to the
model. Thus, semantically the false value indicates that
the event is aligned with the partial model, and the true
value indicates otherwise. These variables are the key
to obtain the log and model moves in the alignment
calculation as will be seen in the objective function.
These variables are also used to enable/disable the
firing of the reified constraints of the COP.

• Constraints to enforce Log Traces: According to the log-
relation of the events in the trace, the events are enforced
to take those positions. Thus, a set of reified constraints are

built to represent conditions of the position of the events

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731
Fig. 13. COP for the example of Fig. 6.
m

with respect to the log trace. For instance, event A occurs
first:

¬A.dev H⇒ A.pos == 0 (1)

In the case where the event does not occur in the partial
model, it is a deviation, and therefore a constraint is in-
cluded to force the establishment of a true value for the dev
variable of the event, as occurs with event E:

E.dev == true (2)

In the case of the repeated events, the COP must evaluate all
the possibilities of occurrence, as in the case of B1 and B2.
The reified constraint must consider the two possibilities, as
follows:

¬B1.dev H⇒ B1.pos == 1 ∨ B1.pos == 5 (3)

• Constraints to Enforce Partial Model Run: These reified con-
straints represent conditions of the position (pos) of the
events with regard to the partial model. The reified con-
straint describes whether an event can be aligned according
to the partial model. According to the flow-relation of the
partial model, we build reified constraints to represent the
related ‘later than’-relations between the occurrences of
transitions. It should be taken into account that, in the par-
tial models used in our proposal, the XORs are eliminated,
and every transition of the model participates in any correct
event log. Therefore, the next constraint is an example of
this type of reified constraint:

¬A.dev ∧ ¬B1.dev H⇒ A.pos < B1.pos (4)

The reified constraint means that if events A and B1 are
aligned with the model, then the value assigned to pos of
event A has to be lower than the values of pos of event B1.
In the case of repeated events (e.g., B1 and B2), extra con-
straints have to be included in order to prevent their occur-
rence at the same position:

B1.pos ̸= B2.pos (5)

When a transition in the model is not supported by the

execution of an event (taking into account that in the partial

11
model supported by the proposal every transition must be
involved in a correct trace since only and-branches are in-
cluded), constraints related to this transition are not added,
although a misalignment will be included (a model move).
See below for a description of how this is computed.

• Optimisation function: The objective function strives to find
a solution that minimises the number of deviations. The
Boolean variables are considered as Integer, that is, false is
the 0 value and true is the 1 value. As shown in Fig. 13,
the objective function is the minimisation of the sum of all
deviation variables of our problem. Thus, finding a solution
(an assignment) where all the dev variables are fixed as false,
means that every event of the log trace is aligned with the
partial model. In the case where any dev variable is fixed to
true, the alignment will be, at least, the number of dev true
values.

This COP enables the possible deviations between the partial
odels and the events to be detected:

• Log moves: The log moves are determined by consulting the
false values fixed in the deviation (dev). If the dev variable
of an event reach a false value, then this event does not
produce a log move. When an event does not occur in the
partial model, this situation is a log move, and therefore this
situation is controlled by forcing the true value in the dev
variable of the event.

• Model moves: Model moves occur when there exists a
transition in the partial model that does not occur in the
log trace. This situation is easy to identify since a partial
model is conflict-free (see Definition 7), meaning that all the
transitions must occur in a partial model run. Hence, this
situation is penalised as a model move by adding one to the
alignment cost function.

Subsequent to the COP resolution, the log and model moves
are known, and therefore the alignment cost function can be
determined as follows:

alignment =

i∑
ei∈Tr

ei.dev  
+

i∑
ei∈Pm∧ei /∈Tr

1

   (6)
log moves model moves

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

t
a
e
t
t

g
e
a
n
c

6

o
p
a
a
C
s

6

i
t
a

a

For the example, the COP reached two optimal solutions where
he alignment is equal to 3: one value for the E.dev = true, and
nother value due to the C1.dev = true (D.dev = true in the other
quivalent solution) since it is impossible to locate it according
o the log trace, and another value because H does not occur in
he log trace.

The inclusion of the time limit is crucial in Constraint Pro-
ramming since the solvers return partial solutions during its
xecution. If the solver is stopped by the time limit, then we have,
t least, the best option found up to that moment, although it may
ot be the global optimal since the search space has not been
ompletely solved.

. Experiments and evaluation

In order to evaluate our proposal, we have performed vari-
us tests to compare the distributed approach proposed in this
aper with the classic standalone A* algorithm for computing
lignments. Regarding the distributed approach, two algorithms
re employed for encoding alignments: the A* algorithm and the
OP-based approach presented in this paper (see Section 5). This
ection is structured as follows:

• Design of the architecture and the technology stack to sup-
port our framework (see Section 6.1).

• Selection of a set of representative datasets (see Section 6.2)
that includes examples which work better with the dis-
tributed approach proposed in this paper, and examples
which work better with the classic standalone approach. The
configuration of the parameters is also studied.

• Analysis of the approach proposed in this paper, by solv-
ing the alignment subproblems derived from the previously
selected datasets. The distributed approach is compared to
the classic standalone approach (see Section 6.3). For the
evaluation and comparison, the performance is considered
in terms of the Elapsed Real Time (ERT)7 related to the
computation of the alignments.

.1. Architecture

We propose the use of a three-layer architecture, as shown
n Fig. 14. Additionally, we include information regarding the
echnological stack that has been employed to instantiate this
rchitecture and to perform the experiments.

• Storage Layer. The role of this layer is to store the log and
process model so that these can be accessed by the nodes
that comprise the system. In our particular implementation,
it is based on Hadoop HDFS,8 which is a distributed storage
system.

• Persistence Layer. This layer is intended to store the results
of the alignments. Our implementation relies on the NoSQL
database MongoDB.9

• Computing layer. It is intended to perform the computing
operations related to the generation and distribution of par-
titions and computing alignments. Our implementation is
based on Apache Spark,10 which is a distributed computing
framework that enables users to implement applications for
the distribution of tasks and Big Data processing.

7 The Elapsed Real Time (ERT) is the time from the start of the execution of
program to its completion.
8 HDFS: https://hadoop.apache.org/.
9 MongoDB: https://www.mongodb.com/.

10 Apache Spark: https://spark.apache.org/.
12
The mechanism for the generation and distribution of parti-
tions explained in Section 4.2 has been implemented in Apache
Spark. As mentioned earlier, we have integrated the PM4Py11
platform for the computation of alignments using the A* algo-
rithm. On the other hand, the COPs have been implemented with
ILOG CPLEX12 although other solvers can be applied. Regarding
the architecture of the Apache Spark cluster (i.e., the architecture
of the Computing layer), it is composed of five nodes. Each node
is configured with 16GB of RAM and 4 CPUs. This cluster is
composed of three types of nodes:

• Cluster manager. This is responsible for monitoring and as-
signing resources among the nodes of the cluster. There is
one node entirely dedicated to this task.

• Driver program. This node is responsible for distributing the
tasks among the Executor nodes. Regarding our implemen-
tation, it will schedule the partitioning process by assigning
the partitions and their related tasks to the executor nodes.
In our case, the driver program is configured to use 8 GB of
RAM and 1 CPU by default, and it is run on one of the five
nodes of the cluster.

• Executor nodes. These nodes execute the tasks assigned by
the driver program. They receive the partitions and exe-
cute their corresponding tasks. We configured each executor
node with 8 GB of RAM and 4 CPUs by default. Each of the
four nodes of the cluster hosts one executor.

Both the source code with the implementation of the frame-
work and the datasets used for the experimentation are available
at http://www.idea.us.es/confcheckingbigdata/.

6.2. Setting experiments

Five benchmark datasets have been used for the experiments.
These are composed of a set of files in XES format as event
logs and a set of partial models in Labelled partial order (LPO)
format [37]. For a better understanding, the LPO format is a
simplification but remains compatible with the PNML format. An
LPO represents a run of a place/transition Petri net if it is enabled
w.r.t the net. The events of the LPO modelling transition occur-
rences can fire in the net in accordance with the concurrency and
dependency relations given by the LPO.

The event logs and Petri nets employed to illustrate how our
proposal works with problems of different sizes are extracted
from [20,38,39], whereas the partial models are obtained from
the unfolding of Petri nets. Table 1 summarises the dimensions
of the datasets employed for this evaluation in terms of: (1) the
event logs (number of cases, events, variants, and size); (2) Petri
net (number of places, transitions, arcs, and the Cardoso metric
(CFC) [40]); and (3) partial models (number of unfolded partial
models, number of problems to compute to solve the alignment
problem and size, regarding the number of problems to tackle).

Once traces and partial models are combined, the total number
of subproblems (see Num. of Problems of Table 1) is derived
from the application of the Cartesian product and their required
theoretical storage space. The objective of this table involves
obtaining an estimate of the complexity involved in the solution
of all the problems of each dataset, especially M5 and prGm6,
in which more than five and forty million subproblems must be
solved, respectively. Approximately, the approach must manage
a total of 96 GB and 2.5 TB of data volume, as appear for M5 and
prGm6 in the table. The distribution of the alignment computation

11 PM4Py: https://pm4py.fit.fraunhofer.de/.
12 IBM-ILOG CPLEX: https://www.ibm.com/products/ilog-cplex-optimization-
studio.

https://hadoop.apache.org/
https://www.mongodb.com/
https://spark.apache.org/
http://www.idea.us.es/confcheckingbigdata/
https://pm4py.fit.fraunhofer.de/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

c
e
F
c

a
o
f
s
t
b

Fig. 14. Cluster architecture.
f
e

6

l
p
p
S
a

a

an imply the transfer of a vast amount of data between the ex-
cutors, thereby producing a negative impact on the performance.
or this reason, the access to traces and partial models has been
entralised and they are each accessed by a unique identifier.
The main aspects that might influence the performance of our

pproach include the setup configuration in terms of the number
f partitions for the set of traces (n), and the number of partitions
or a set of partial models (m). It is crucial to ascertain out the best
etup in terms of the timeout, n, and m, albeit dependent on the
ype of problem. These parameters are configured as explained
elow:

• Grouping the subproblems from the same trace in a par-
tition helps to reduce the number of subproblems to
solve. The approach is optimised in order to prevent the
execution of subproblems for two reasons: (a) a subprob-
lem is executed iff its estimation of the alignment is lower
than the best alignment value obtained for the subproblem
related to the same trace in the same partition; and (b) the
subproblems are sorted by estimation in ascending order.
In consequence, when any subproblem is not executed for
the aforementioned reason, the execution of the remaining
subproblems related to the same trace are skipped since the
estimation will always be worse. For this reason, a good
setup should concentrate all the problems related to the
same trace in the fewest number of partitions as possible,
but without over-reducing the parallelisation. By setting n
equal to the number of cases in the log, we can assure that
each partition will contain subproblems related to the same
trace. Hence, this parameter is set to: 500 for M2, M5 and
M8; 1265 for CCC20d, and 1200 for prGm6.

• Balancing the number of partitions of alignment sub-
problems. Some alignment subproblems are too complex
and may lead to the formation of bottlenecks in the resolu-
tion of the whole alignment problem. A proper partitioning
might help in preventing such bottlenecks. For instance,
if there is a low number of partitions, it is possible to
take advantage of the factor explained above (i.e., avoid-
ing mixing subproblems generated from different traces).
The drawback of a low number of partitions is that there
could be one or several partitions with a group of complex
subproblems which would disproportionately increase the

workload of certain executors, while simultaneously leaving a

13
other executors idle. The other extreme involves having a
high number of partitions. In such a case, the number of
subproblems to be solved would increase, since it would
not take advantage of the factor previously explained. In
this situation, we assume the rule of thumb to be that the
higher the number of partitions is, the more subproblems
are solved. However, the lower the number of partitions is,
the fewer subproblems are solved, although this situation
may trigger the creation of bottlenecks. Since it is not pos-
sible to know what is the best number of partitions for each
dataset, we will test the following values for m in the tests:
1, 2, 4, 5, 6, 8, 12, and 16.

In addition, for each configuration, 10 executions will be per-
ormed, and all the results depicted are the average of those
xecutions.

.3. Results of the experiments

This section is organised as follows. First, Section 6.3.1 high-
ights the results obtained from the distributed approach pro-
osed in Section 4. Two algorithms are compared with this ap-
roach: the A* algorithm, and the COP-based approach. Secondly,
ection 6.3.2 compares those results with the classic standalone
pproach with the A* algorithm.
The metric we employ in order to measure and compare each

pproach is the Elapsed Real Time (ERT)13 for each scenario and
dataset. Each ERT shown in this section comprises the average of
ten executions.

The evaluation is performed by means of an analytic study.
This study includes: (i) graphics which depict how the ERT
evolves as the number of partitions increases; and (ii) an analysis
of the trendline of each dataset. By analysing the slope of each
trendline, we can quantitatively observe how the ERT scales as
the number of partitions increases. For each dataset, if the slope
is positive, it means that the creation of more partitions (i.e., a
better distribution) is not beneficial for that dataset, and the
greater the slope is, the worse it scales. If the slope is negative,
it means that the approach does scale well for that dataset (and
the less steep the slope is, the better it scales). The slope also
enables a comparison between several datasets with the same
configuration.

13 The Elapsed Real Time (ERT) is the time from the start of the execution of
program to the end of it.

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

T
D

t
d
h
s
t
p
p

m
t
0
a
T
o

o

able 1
atasets used for the experimentation.
Dataset Event log Petri net Partial models

Cases Events Variants Size (MB) Places Transitions Arcs CFC Num. of models Num. of problems Size (MB)

M2 [20] 500 8,809 500 2.20 34 34 160 36 102 51,000 509.4
M5 [20] 500 17,028 500 4.2 35 33 156 35 10,545 5,272,500 96,989
M8 [20] 500 8,246 432 2.1 17 15 72 18 4,1590 2,079.5 31,408.733
CCC20d [38] 1265 28,440 732 13.3 45 44 94 47 26 32,890 346.619
prGm6 [39] 1200 171,685 335 41.8 714 335 1644 383 33,457 40,148,400 2,488,254.81
6.3.1. Results obtained from the distributed approach
The chart in Fig. 15a shows the evolution of the ERT increasing

he number of partitions of the set of partial models (m) for the
atasets M2, M5, M8, and CCC20d. For these tests, no timeout
as been established since the A* algorithm can solve all the
ubproblems in a reasonable time. Therefore, all the alignments
hat have been obtained are optimal. Note that the results for
rGm6 are not in the chart because of the complexity in that
articular case, and it is therefore analysed separately.
In detail, the best ERTs forM5 andM8 have been obtained with
= 2. From there, the ERTs tend to worsen. If the slopes of their

rendlines are analysed, that for M5 is 0.08, while that for M8 is
.16. For M2 and CCC20d, the best ERT is obtained with m = 1,
nd the slopes of their trendlines are 0.22 and 0.57, respectively.
his means that M5 benefits more from the distribution than the
ther three datasets.
As aforementioned, the results obtained for the dataset prGm6

are depicted in Fig. 15b. Due to memory issues arising from the
size of the partitions, it has not been possible to employ values
for m from 1 to 6. For this reason, we have used the following
values for m in this benchmark: 8, 10, 12, 13, 14, 16, 20, and 24.
The best ERT value is obtained for m = 24, with the slope of
the trendline at −1.28. It means that this dataset benefits from a
better distribution, since the ERT tends to decrease as the number
of partitions increases.

From these results, we can conclude that the datasets that
produce a larger number of subproblems more benefit are from a
larger distribution. It is especially noticeable in the prGm6 dataset,
as it has a clear tendency to decrease the ERT when the number
of partitions increases. It should be noted that M5, which also
produces a large number of alignment subproblems, has a slope
of 0.08, which shows better scalability than M8, M2, and CCC20d.

Next, we present the results obtained from the distributed
approach with the COP-based approach. Fig. 15c shows the evo-
lution of the ERT increasing the number of partitions of the set
of partial models (m). Once again, the larger m becomes, the
smaller are the distributed partitions. For these tests, a timeout of
500 ms per subproblem has been established, since the COP is not
capable of solving all the subproblems in a reasonable time if it
is unbounded (note that the datasets which have a large number
of subproblems might contain a high number thereof producing
bottlenecks). Therefore, certain alignments might not achieve the
optimal. In the next section, the percentage of traces per dataset
for which an optimal alignment value is found will be shown
and analysed. Due to the excessive memory consumption by the
COPs, it has been impossible to successfully complete any of the
executions for the prGm6 dataset; hence no results are shown.

Analysing the results for M5 and M8, the best ERT is obtained
for m = 6. The slopes of the trendline for the two datasets are
−3.13 and −1.44, respectively. This shows that the distribution
of the alignment subproblems improve the resolution in terms
of ERT . This is observed when ERT is compared to the previous
results with the A* algorithm, where the slopes for M5 and M8
are 0.08 and 0.16, respectively. However, in absolute terms, the
ERT tends to be higher with the COP solver.

On the other hand, for M2 and CCC20d, the best ERT value is

btained for m = 1. The slopes of both datasets are 0.02, and

14
0.06, respectively, which also shows a better scaling than in the
previous case with the A* algorithm. For these datasets, the ERTs
are similar to those obtained with the A* algorithm.

6.3.2. Comparing the A* algorithm in standalone with the distributed
approaches

Fig. 16a presents a comparison between the ERT of the A*
algorithm in standalone, and the best results obtained from the
distributed approach.14 ,15

Fig. 16b depicts the percentage of optimal alignments found
over the set of traces for each dataset. Note that the only dataset
for which the COP-based approach is able to find an optimal value
for all the traces is CCC20d.

In summary, the distributed approach attains better results for
M2, M5, and prGm6 with the A* algorithm, and for CCC20d with
the COP-based approach. The datasets which produce a larger
number of subproblems, in general, gain greater benefits from
a larger distribution (note that the trendlines of M5 and M8
have a negative slope when solved with the COP-based approach,
and a slightly positive tendency when solved with A*). Note also
that datasets with extremely complex models might be solved
in a reasonable time with the distributed approach, as can be
seen with prGm6. However, in certain cases, the application of
decomposition and the distribution of the subproblems fails to
produce the best results. For example, the best results of M8 were
obtained from the standalone A* algorithm. This is due to the
characteristics of the model. An in-depth study into the factors
which make a decomposition worthwhile in terms of ERT could
be performed in the future.

By comparing the distributed approach with A* and the COP-
based approach, we can conclude that the more complex the
algorithm for computing alignments is, the more benefits the
execution attains from a larger distribution. This is justified by the
fact that the slopes of the trendlines tend to be closer to zero or
negative as the time spent by the subproblems increases. It is es-
pecially noticeable in the case of the COP-based approach, which
takes more time per subproblem than does the A* algorithm.

In the light of the results, we can conclude that our approach
to decomposing the alignment problem into subproblems and
their subsequent distribution, in general, achieves better results
in terms of ERT in comparison with the standalone approach.
Finally, we remark that the complexity of the conformance check-
ing algorithm exerts a heavy influence both on the ERT and on the
number of optimal alignments (e.g., the COP-based approach).

7. Conclusion

In this paper, a Big Data framework is provided for the paral-
lelisation and distribution of the conformance checking analysis
disengaged from the algorithm applied. The creation of subprob-
lems that can be solved distributed makes it possible to tackle

14 There are no results for the COP-based approach in standalone since the
COP implementation proposed in this paper was only conceived to be performed
in distributed scenarios.
15 There are no results for the prGm6 and the A* algorithm in standalone
because the PM4Py execution took more than 24 h without yielding any result.

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

s
p

i
c
T
h
p
p

Fig. 15. Results in terms of ERT for the distributed algorithm (logarithmic scale).
Fig. 16. Comparison between the standalone A* and the distributed A* and the COP-based approach in terms of ERT and percentage of optimal traces.
problems whose complexity could not be approached with local
algorithms. For the decomposition, we have proposed an innova-
tive horizontal technique to build subproblems whose resolution
is based on a map function, and combined by a reduceByKey
trategy, with the improvement of an estimation metric that
revents the resolution of unpromising subproblems.
The proposed framework includes the capacity of customis-

ng the distribution of models and traces to determine the best
onfiguration for the distribution of the alignment resolution.
o demonstrate the applicability of our proposal, the framework
as been tested by two alignment techniques: the classic A* ap-
roach and a new approach based on the Constraint Optimisation
aradigm. The analysis of these two options is derived from the
15
interest in comparing a classic solution with others, such as Con-
straint Optimisation Problems, which enables the domain to be
enclosed and the amount of time available for finding an optimal
alignment value to be limited. Five different datasets have been
used for testing our framework to compare local (standalone)
and distributed solutions, the distributed solution among them,
and the effects of the configuration of the distribution on the
performance. In summary, the framework provides a high degree
of flexibility, since it facilitates the tuning of the parameters that
determine the level of distribution of the subproblems, the appli-
cation of different alignment algorithms, and the applicability of
an estimation of the alignment, before it is computed, in order to
prevent the analysis of unpromising subproblems.

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731

e
e
t
n
a
w
o
t
t

D

c
t

A

e
p
M
S
(

D

t
p
o

R

From this analysis of the experiments, it is possible to find
xamples where a local solver is more efficient, but for other
xamples, the distribution of the problem is more efficient than
he local. By comparing the two algorithms in distributed sce-
arios, it is possible to pinpoint the problem areas where each
lgorithm can find a better solution or take a shorter time. This is
hy we plan to carry out a more in-depth analysis of the features
f the models and logs in order to characterise the problems in
erms of ascertaining which performs better before computing
he alignments.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work has been partially funded by the Ministry of Sci-
nce and Technology of Spain ECLIPSE (RTI2018-094283-B-C33)
roject, the European Regional Development Fund (ERDF/FEDER),
INECO, Spain (TIN2017-86727-C2-1-R), and by the University of
eville, Spain with VI Plan Propio de Investigación y Transferencia
VI PPIT-US).

isclosure

All the authors are responsible for the concept of the paper,
he results presented and the writing. All the authors have ap-
roved the final content of the manuscript. No potential conflict
f interest was reported by the authors.

eferences

[1] M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, Process-Aware
Information Systems: Bridging People and Software Through Process
Technology, Wiley, 2005, URL: http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0471663069.html.

[2] H. Roehm, J. Oehlerking, M. Woehrle, M. Althoff, Model conformance
for cyber-physical systems: A survey, TCPS 3 (2019) 30:1–30:26, http:
//dx.doi.org/10.1145/3306157.

[3] J. Carmona, B.F. van Dongen, A. Solti, M. Weidlich, Conformance Checking
- Relating Processes and Models, Springer, 2018, http://dx.doi.org/10.1007/
978-3-319-99414-7.

[4] A. Adriansyah, Aligning Observed and Modeled Behavior (Ph.D. thesis),
Technische Universiteit Eindhoven, 2014.

[5] W.M.P. van der Aalst, Decomposing Petri nets for process mining: A generic
approach, Distrib. Parallel Databases 31 (2013) 471–507, http://dx.doi.org/
10.1007/s10619-013-7127-5.

[6] J. Munoz-Gama, J. Carmona, W.M.P. van der Aalst, Single-entry single-
exit decomposed conformance checking, Inf. Syst. 46 (2014) 102–122,
http://dx.doi.org/10.1016/j.is.2014.04.003.

[7] H.M.W. Verbeek, W.M.P. van der Aalst, Merging alignments for decom-
posed replay, in: F. Kordon, D. Moldt (Eds.), Application and Theory of
Petri Nets and Concurrency: 37th International Conference, PETRI NETS
2016, Toruń, Poland, June 19-24, 2016;
Proceedings, Springer International Publishing, Cham, 2016, pp. 219–239,
http://dx.doi.org/10.1007/978-3-319-39086-4_14.

[8] W.L.J. Lee, H.M.W. Verbeek, J. Munoz-Gama, W.M.P. van der Aalst, M.
Sepúlveda, Recomposing conformance: Closing the circle on decomposed
alignment-based conformance checking in process mining, Inform. Sci. 466
(2018) 55–91, http://dx.doi.org/10.1016/j.ins.2018.07.026.

[9] W.M.P. van der Aalst, Distributed process discovery and conformance
checking, in: J. de Lara, A. Zisman (Eds.), Fundamental Approaches to
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 1–25.

[10] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: E.A. Brewer, P. Chen (Eds.), 6th Symposium on Operating
System Design and Implementation (OSDI 2004), USENIX Association, San
Francisco, 2004, pp. 137–150, URL: https://ai.google/research/pubs/pub62.
16
[11] S. Sakr, Z. Maamar, A. Awad, B. Benatallah, W.M.P. van der Aalst, Business
process analytics and big data systems: A roadmap to bridge the gap,
IEEE Access 6 (2018) 77308–77320, http://dx.doi.org/10.1109/ACCESS.2018.
2881759.

[12] M.T. Gómez-López, D. Borrego, J. Carmona, R.M. Gasca, Computing align-
ments with constraint programming: The acyclic case, in: Proceedings of
the International Workshop on Algorithms & Theories for the Analysis of
Event Data 2016 Satellite event of the conferences (ATAED) 2016, Torun,
Poland, June 20-21, 2016, 2016, pp. 96–110. URL: http://ceur-ws.org/Vol-
1592/paper07.pdf.

[13] B.F. van Dongen, J. Carmona, T. Chatain, F. Taymouri, Aligning modeled and
observed behavior: A compromise between computation complexity and
quality, in: Advanced Information Systems Engineering - 29th International
Conference, Essen, Germany, June 12-16, 2017, 2017, pp. 94–109.

[14] B.F. van Dongen, Efficiently computing alignments - using the extended
marking equation, in: Business Process Management - 16th International
Conference, BPM 2018, Sydney, NSW, Australia, September 9-14, 2018,
Proceedings, 2018, pp. 197–214.

[15] M. de Leoni, A. Marrella, Aligning real process executions and prescriptive
process models through automated planning, Expert Syst. Appl. 82 (2017)
162–183.

[16] D. Reißner, R. Conforti, M. Dumas, M.L. Rosa, A. Armas-Cervantes, Scalable
conformance checking of business processes, in: OTM CoopIS, Rhodes,
Greece, 2017, pp. 607–627.

[17] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Scalable process discovery
and conformance checking, Softw. Syst. Model. 17 (2018) 599–631, http:
//dx.doi.org/10.1007/s10270-016-0545-x.

[18] D. Reißner, A. Armas-Cervantes, R. Conforti, M. Dumas, D. Fahland, M. La
Rosa, Scalable alignment of process models and event logs: An approach
based on automata and s-components, Inf. Syst. 94 (2020) 101561, http:
//dx.doi.org/10.1016/j.is.2020.101561, URL: http://www.sciencedirect.com/
science/article/pii/S0306437920300545.

[19] F. Taymouri, J. Carmona, A recursive paradigm for aligning observed behav-
ior of large structured process models, in: 14th International Conference
of Business Process Management (BPM), Rio de Janeiro, Brazil, September
18-22, 2016, pp. 197–214.

[20] F. Taymouri, J. Carmona, Model and event log reductions to boost the
computation of alignments, in: P. Ceravolo, C. Guetl, S. Rinderle-Ma
(Eds.), Data-Driven Process Discovery and Analysis, Springer International
Publishing, 2018, pp. 1–21.

[21] F. Taymouri, J. Carmona, Computing alignments of well-formed process
models using local search, ACM Trans. Softw. Eng. Methodol. 29 (2020)
15:1–15:41, http://dx.doi.org/10.1145/3394056.

[22] A. Burattin, S.J. van Zelst, A. Armas-Cervantes, B.F. van Dongen, J. Carmona,
Online conformance checking using behavioural patterns, in: Business
Process Management - 16th International Conference, BPM 2018, Sydney,
NSW, Australia, September 9-14, 2018, Proceedings, 2018, pp. 250–267.

[23] F. Taymouri, J. Carmona, Structural computation of alignments of business
processes over partial orders, in: 19th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2019, Aachen, Germany,
June 23-28, 2019, 2019, pp. 73–81.

[24] L. Padró, J. Carmona, Approximate computation of alignments of business
processes through relaxation labelling, in: Business Process Management -
17th International Conference, BPM 2019, Vienna, Austria, September 1-6,
2019, Proceedings, 2019, pp. 250–267.

[25] J. Evermann, Scalable process discovery using map-reduce, IEEE Trans. Serv.
Comput. 9 (2016) 469–481, http://dx.doi.org/10.1109/TSC.2014.2367525.

[26] F. Chesani, A. Ciampolini, D. Loreti, P. Mello, Map reduce autoscaling over
the cloud with process mining monitoring, in: M. Helfert, D. Ferguson, V.
Méndez Muñoz, J. Cardoso (Eds.), Cloud Computing and Services Science,
Springer International Publishing, Cham, 2017, pp. 109–130.

[27] J. Engelfriet, Branching processes of petri nets, Acta Inf. 28 (1991) 575–591,
http://dx.doi.org/10.1007/BF01463946.

[28] R. Bergenthum, S. Mauser, R. Lorenz, G. Juhás, Unfolding semantics of
petri nets based on token flows, Fund. Inform. 94 (2009) 331–360, http:
//dx.doi.org/10.3233/FI-2009-134.

[29] D. Fahland, W.M.P. van der Aalst, Simplifying discovered process models
in a controlled manner, Inf. Syst. 38 (2013) 585–605, http://dx.doi.org/10.
1016/j.is.2012.07.004.

[30] R. Dechter, Constraint Processing (The Morgan Kaufmann Series in Artificial
Intelligence), Morgan Kaufmann, 2003.

[31] K. Apt, Principles of Constraint Programming, Cambridge University Press,
New York, NY, USA, 2003.

[32] M.T. Gómez-López, R. Ceballos, R.M. Gasca, C.D. Valle, Developing a la-
belled object-relational constraint database architecture for the projection
operator, Data Knowl. Eng. 68 (2009) 146–172, http://dx.doi.org/10.1016/
j.datak.2008.09.002.

[33] A.J. Varela-Vaca, L. Parody, R.M. Gasca, M.T. Gómez-López, Automatic
verification and diagnosis of security risk assessments in business process
models, IEEE Access 7 (2019) 26448–26465, http://dx.doi.org/10.1109/
ACCESS.2019.2901408.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471663069.html
http://dx.doi.org/10.1145/3306157
http://dx.doi.org/10.1145/3306157
http://dx.doi.org/10.1145/3306157
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb4
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb4
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb4
http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1007/s10619-013-7127-5
http://dx.doi.org/10.1016/j.is.2014.04.003
http://dx.doi.org/10.1007/978-3-319-39086-4_14
http://dx.doi.org/10.1016/j.ins.2018.07.026
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb9
https://ai.google/research/pubs/pub62
http://dx.doi.org/10.1109/ACCESS.2018.2881759
http://dx.doi.org/10.1109/ACCESS.2018.2881759
http://dx.doi.org/10.1109/ACCESS.2018.2881759
http://ceur-ws.org/Vol-1592/paper07.pdf
http://ceur-ws.org/Vol-1592/paper07.pdf
http://ceur-ws.org/Vol-1592/paper07.pdf
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb15
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb15
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb15
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb15
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb15
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1016/j.is.2020.101561
http://dx.doi.org/10.1016/j.is.2020.101561
http://dx.doi.org/10.1016/j.is.2020.101561
http://www.sciencedirect.com/science/article/pii/S0306437920300545
http://www.sciencedirect.com/science/article/pii/S0306437920300545
http://www.sciencedirect.com/science/article/pii/S0306437920300545
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb20
http://dx.doi.org/10.1145/3394056
http://dx.doi.org/10.1109/TSC.2014.2367525
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb26
http://dx.doi.org/10.1007/BF01463946
http://dx.doi.org/10.3233/FI-2009-134
http://dx.doi.org/10.3233/FI-2009-134
http://dx.doi.org/10.3233/FI-2009-134
http://dx.doi.org/10.1016/j.is.2012.07.004
http://dx.doi.org/10.1016/j.is.2012.07.004
http://dx.doi.org/10.1016/j.is.2012.07.004
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb30
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb30
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb30
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb31
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb31
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb31
http://dx.doi.org/10.1016/j.datak.2008.09.002
http://dx.doi.org/10.1016/j.datak.2008.09.002
http://dx.doi.org/10.1016/j.datak.2008.09.002
http://dx.doi.org/10.1109/ACCESS.2019.2901408
http://dx.doi.org/10.1109/ACCESS.2019.2901408
http://dx.doi.org/10.1109/ACCESS.2019.2901408

Á. Valencia-Parra, Á.J. Varela-Vaca, M.T. Gómez-López et al. Information Systems 99 (2021) 101731
[34] M.T. Gómez-López, R.M. Gasca, J.M. Pérez-Álvarez, Compliance validation
and diagnosis of business data constraints in business processes at runtime,
Inf. Syst. 48 (2015) 26–43, http://dx.doi.org/10.1016/j.is.2014.07.007.

[35] M.T. Gómez-López, L. Parody, R.M. Gasca, S. Rinderle-Ma, Prognosing the
compliance of declarative business processes using event trace robustness,
in: On the Move to Meaningful Internet Systems: OTM 2014 Conferences
- Confederated International Conferences: CoopIS, and ODBASE 2014,
Amantea, Italy, October 27-31, 2014, Proceedings, 2014, pp. 327–344.

[36] D. Borrego, R. Eshuis, M.T. Gómez-López, R.M. Gasca, Diagnosing cor-
rectness of semantic workflow models, Data Knowl. Eng. 87 (2013)
167–184.

[37] R. Bergenthum, S. Mauser, Synthesis of petri nets from infinite partial
languages with viptool, in: 15th German Workshop on Algorithms and
Tools for Petri Nets, Algorithmen und Werkzeuge für Petrinetze, AWPN
2008, Rostock, Germany, September 26-27, 2008, Proceedings, 2008, pp.
81–86. URL: http://ceur-ws.org/Vol-380/paper13.pdf.
17
[38] J. Buijs, Environmental permit application process (‘wabo’), in: CoSeLoG
Project, 2014, http://dx.doi.org/10.4121/UUID:26ABA40D-8B2D-435B-
B5AF-6D4BFBD7A270, URL: https://data.4tu.nl/collections/Environmental_
permit_application_process_WABO_CoSeLoG_project/5065529.

[39] J. Munoz-Gama, J. Carmona, W.M.P. van der Aalst, Conformance checking
in the large: Partitioning and topology, in: F. Daniel, J. Wang, B. Weber
(Eds.), Business Process Management, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 130–145.

[40] J. Cardoso, Business process control-flow complexity: Metric, evaluation,
and validation, Int. J. Web Serv. Res. 5 (2008) 49–76, URL: http://www.igi-
global.com/bookstore/titledetails.aspx?titleid=1079.

http://dx.doi.org/10.1016/j.is.2014.07.007
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb36
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb36
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb36
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb36
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb36
http://ceur-ws.org/Vol-380/paper13.pdf
http://dx.doi.org/10.4121/UUID:26ABA40D-8B2D-435B-B5AF-6D4BFBD7A270
http://dx.doi.org/10.4121/UUID:26ABA40D-8B2D-435B-B5AF-6D4BFBD7A270
http://dx.doi.org/10.4121/UUID:26ABA40D-8B2D-435B-B5AF-6D4BFBD7A270
https://data.4tu.nl/collections/Environmental_permit_application_process_WABO_CoSeLoG_project/5065529
https://data.4tu.nl/collections/Environmental_permit_application_process_WABO_CoSeLoG_project/5065529
https://data.4tu.nl/collections/Environmental_permit_application_process_WABO_CoSeLoG_project/5065529
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://refhub.elsevier.com/S0306-4379(21)00007-7/sb39
http://www.igi-global.com/bookstore/titledetails.aspx?titleid=1079
http://www.igi-global.com/bookstore/titledetails.aspx?titleid=1079
http://www.igi-global.com/bookstore/titledetails.aspx?titleid=1079

	Empowering conformance checking using Big Data through horizontal decomposition
	Introduction
	Related work
	Foundations
	Process models
	Conformance checking

	Computing conformance checking with big data
	Overview of the approach
	Generate partitions of problems
	Map - Distribute and compute alignment problem partitions
	Reduce - Combining alignment problem result

	Interchangeable solutions for encoding alignment
	Alignment based on the A* algorithm
	Alignment based on constraint programming
	Constraint and optimisation problems in a nutshell
	Constraint optimisation problem for solving an alignment subproblem

	Experiments and evaluation
	Architecture
	Setting experiments
	Results of the experiments
	Results obtained from the distributed approach
	Comparing the A* algorithm in standalone with the distributed approaches

	Conclusion
	Declaration of competing interest
	Acknowledgements
	Disclosure

	References

