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ABSTRACT  

Oligonucleotide conjugates carrying carbohydrates at the 5’-end have been prepared. Glucose, fucose 

and saccharides containing glucose at the non-reducing end were attached to DNA strands using the 

classical phosphoramidite chemistry. Two types of spacers and a dendron scaffold helped to obtain a 

diversity of sugar presentations in the DNA conjugates. Cellular surface adsorption and cellular uptake 

of carbohydrate oligonucleotide antisense sequences were measured using flow cytometric analysis. 

Conjugates with the glucose moiety linked through long spacers (15 to 18 atom distances) were better 

internalized than those with short linkers (4 atom distance) and than DNA control strands without sugar 

modification. Conjugates with tetravalent presentation of glucose did not improve cell uptake. 

KEYWORDS carbohydrate oligonucleotide conjugates, DNA, cellular uptake, cell-surface adsorption, 

multivalency, oligonucleotide synthesis. 
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INTRODUCTION  

In the last two decades new compounds based on the use of small synthetic nucleic acids have shown 

promising results as potential drugs (1, 2). Oligonucleotides have been used for the inhibition of a 

specific gene by blocking gene translation or gene transcription or by stimulating the degradation of a 

particular messenger RNA. Several strategies have been developed for this purpose. In the antisense 

strategy, synthetic oligonucleotides complementary to the messenger RNA of a given gene have been 

used to inhibit translation of messenger RNA to protein (3, 4). In the antigene strategy, triplex-forming 

oligonucleotides may interact with double-stranded DNA inhibiting DNA transcription (5-7). More 

recently, in the siRNA strategy, small RNA duplexes complementary to messenger RNA sequences bind 

a protein complex named RISC. The complex formed by the antisense or guide RNA strand and RISC is 

able to catalyze the efficient degradation of a specific messenger RNA, lowering the amount of target 

protein (8-10). 

Among the problems found during the development of oligonucleotides as drugs are their degradation 

by exonucleases under physiological conditions, and particularly their low cell uptake due to their highly 

polar character and large size. Most of the improvements in the design of nucleic acid derivatives have 

been directed to enhance stability against nucleases and/or to improve cellular uptake without hindering 

the hybridisation properties that are vital for the efficient gene inhibitory properties of the 

oligonucleotides. Conjugation of siRNA to different delivery carriers such as lipids (11), polymers (12, 

13) or peptides (14) has been reported for improved delivery of siRNA. Moreover, cationic carriers are 

among the most efficient strategies for cell uptake although many of them exhibit severe cytotoxicity 

(15). At the same time, covalent conjugation of oligonucleotides to peptides or to hydrophobic moieties 

has been used to facilitate internalization (16, 17). For example, cholesterol-DNA and siRNA conjugates 

have shown improved inhibitory properties (18-20). 

A possible alternative to enhance oligonucleotide uptake is the preparation of carbohydrate 

oligonucleotide conjugates (COCs) that may use sugar binding membrane receptors to mediate cell 

entry. Different COCs have been synthesized up to date (16, 21, 22) but only a few have been 
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experimentally tested. Recently, antisense oligonucleotides conjugated to multivalent hyaluronan 

disaccharide did not show higher or more specific uptake than unconjugated oligonucleotides in a cell 

line expressing the hyaluronan receptor CD44 (23). In contrast, Mahato et al. has utilized mannose 6-

phosphate-bovine serum albumin and galactose polyethyleneglycol conjugated to oligonucleotides for 

site-specific delivery into hepatic cells when injected to rats (24, 25). Also, siRNA carrying lactose 

linked through a polyethylene glycol branch at the 5’-end of the sense strand immersed in a polyionic 

complex micelle has been shown to enhance gene silencing in hepatoma cells (26). 

Glucose is essential for cell survival and its transport is facilitated by members of the GLUT protein 

family. We reasoned that oligonucleotide conjugates carrying glucose moieties could bind to GLUT 

receptors and facilitate internalization via receptor-mediated endocytosis. In the present work we have 

prepared oligonucleotides modified at the 5’-end with glucose or glucose-containing saccharides at the 

non-reducing end (Figure 1). Two types of spacers and a dendron scaffold have been used to probe a 

diversity of sugar presentations. A carbohydrate-oligonucleotide conjugate containing a fucose unit was 

also prepared as a negative control. We have covalently bound the carbohydrate moieties to a single-

stranded oligodeoxynucleotide antisense sequence and finally added a fluorescence tag. The 

corresponding labeled carbohydrate-oligonucleotide conjugates have been used to study their cell-

surface binding and their cellular uptake in HeLa and U87.CD4.CXCR4 cell lines using flow cytometric 

analysis. 

 

EXPERIMENTAL PROCEDURES 

General methods and materials. All chemicals were obtained from chemical suppliers and used 

without further purification, unless otherwise noted. All reactions were monitored by TLC on precoated 

Silica-Gel 60 plates F254, and detected by heating with Mostain (500 ml of 10% H
2
SO

4
, 25g of 

(NH
4
)
6
Mo

7
O

24
•4H

2
O, 1g Ce(SO

4
)
2
•4H

2
O). Products were purified by flash chromatography with silica 

gel 60 (200-400 mesh).  NMR spectra were recorded on either a Bruker AVANCE 300 or ARX 400 

MHz [300 or 400 MHz (1H), 75 or 100 (13C)] spectrometer, at room temperature for solutions in CDCl3. 
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Chemical shifts are referred to the solvent signal and are expressed in ppm. 2D NMR experiments 

(COSY, TOCSY, ROESY, and HMQC) were carried out when necessary to assign the corresponding 

signals of the new compounds. High resolution FAB (+) mass spectral analyses was obtained on a 

Micromass AutoSpec-Q spectrometer. 

2-Hydroxyethyl-2,3,6,2’,3’,4’,6’-hepta-O-acetyl-ββββ-D-maltopyranoside (18). To a solution of hepta-

O-acetyl-maltopyranosyl bromide (17) (0.80 g, 1.146 mmol) and tetraethylene glycol (4.0 mL, 22.92 

mmoL, 20 eq.) previously dried over molecular sieves, under argon atmosphere, in anhydrous THF (30 

mL) Ag2CO3 (3.15 g, 11.46 mmol, 10 eq.) was added and stirring was continued for 22 hours (TLC: 

Hex-EtOAc, 2:3). The mixture was filtered, diluted with CH2Cl2 (100 mL), washed with water (3 x 100 

mL), dried over anh. MgSO4, and the solvent evaporated under reduced pressure. The product was 

purified by silica gel column chromatography using as eluent pure EtOAc to EtOAc with 3% methanol 

to give compound 18 (0.46 g, 50%) as a syrup. 1H NMR (300 MHz, CDCl3): δ= 5.34 (d, 1H, J = 3.5 Hz, 

H-1’), 5.29 (t, 1H, J = 10.0 Hz, H-3’), 5.19 (t, 1H, J= 9.3 Hz, H-3), 4.98 (t, 1H, J= 9.9 Hz, H-4’), 4.81-

4.72 (m, 2H, H-2, H-2’), 4.58 (d, 1H, J = 7.8 Hz, H-1), 4.42 (dd, 1H, J= 2.4 and 12.0 Hz, H-6a), 4.21-

4.13 (m, 2 H, H-6b, H-6’a), 4.00-3.81 (m, 4 H, H-5, H-5’, H-6’b, H-4), 3.71-3.52 (m, 16 H, 

4xOCH2CH2O), 2.64 (br. s, 1 H, OH), 2.10-1.93 (6s, 21H. OCOCH3) ppm; 13C NMR (75 MHz, CDCl3): 

δ=  170.5, 170.4, 170.2, 170.0, 169.7, 169.4 (C=O), 96.6 (C-1), 94.3 (C-1’), 76.7, 74.4, 73.2, 72.4, 71.1, 

70.5, 70.3, 69.0, 69.1, 68.2, 67.0, 62.8, 63.4, 61.5, 21.7, 21.6, 21.4, 21.3, 20.0, 19.9, 19.7, 19.6 ppm; 

[α]D
22 +34.5 (c 1 in CHCl3); MS (ES+) Calcd. for C34H52O22N2Na: 835.3, found; 835.5. 

ββββ-cyanoethoxy-ββββ-(2,3,6,2’,3’,4’,6’-hepta-O-acetyl-ββββ-D-maltopyranosyl)ethoxy diisopropylamine 

phosphine (19). To a solution of 2-hydroxyethyl-2,3,6,2’,3’,4’,6’-hepta-O-acetyl-β-D-maltopyranoside 

(18) (0.30 g, 0.36 mmol) in dry CH2Cl2 (2 mL), DIEA (235 µL, 1.35 mmol) and 2-cyanoethyl-N,N’-

diisopropylamino-chlorophosphoramidite (120 µL, 0.54 mmoL) were added at room temperature under 

argon atmosphere. After 2 h, the solution was diluted with EtOAc (25 mL) and the organic phase was 

washed with brine (3 x 25 mL), dried over anh. MgSO4, filtered and the solvent evaporated to dryness. 
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The product was purified by silica gel column chromathography using as eluent Hex-EtOAc, 1:1 with 

5% of NEt3 to give compound 19 (360 mg, 98%) as a syrup. 1H NMR (300 MHz, CDCl3) (mix of 

isomers): δ = 5.39 (d, 1H, J = 3.5 Hz, H-1’), 5.33 (t, 1H, J = 10.0 Hz, H-3’), 5.23 (t, 1H, J= 9.0 Hz, H-

3), 5.03 (t, 1H, J= 10.0 Hz, H-4’), 4.85-4.78 (m, 2H, H-2, H-2’), 4.59 (d, 1H, J = 8.0 Hz, H-1), 4.46 (m, 

1H, H-6a), 4.25-4.18 (m, 2 H, H-6b, H-6’a), 4.03-3.57 (m, 24 H, 4xOCH2CH2O, H-5, H-5’, H-6’b, H-4, 

OCH2CH2CN, CHisopropyl), 2.65 (m, 2 H, OCH2CH2CN), 2.15-2.00 (6s, 21H, OCOCH3), 1.16 (t, 12 

H, CH3isopropyl) ppm; 13C NMR (75 MHz, CDCl3) (mix of isomers) : δ = 170.5, 170.4, 170.2, 170.0, 

169.7, 169.4 (C=O), 117.7 (CN), 100.0 (C-1), 95.3 (C-1’), 75.3, 72.7, 72.1, 71.2, 70.7, 70.6, 70.5, 70.4, 

70.1, 70.0, 69.3, 69.1, 68.5, 68.0, 62.8, 62.6, 62.5, 61.5, 58.6, 58.4, 43.1, 42.9, 24.6, 24.5, 20.9, 20.8, 

20.7, 20.6, 20.3, 20.2 ppm;  31P NMR (101 MHz, CDCl3): δ= 149.8, 149.7; MS (ES+) Calcd. for 

C43H69O23N2PNa: 1035.4, found; 1035.0.  

2-Hydroxyethyl-O-(2,3,4, 6-tetra-O-acetyl-αααα-D-glucopyranosyl-(1→→→→4)-O-(2,3,6-tri-O-acetyl-αααα-D-

glucopyranosyl)-(1→→→→4)-2,3,6-tri-O-acetyl-ββββ-D-glucopyranoside (21). To a solution of the deca-O-

acetyl-maltotriopyranosyl bromide (20) (1.69 g, 1.75 mmol) and ethylene glycol (0.98 mL, 17.5 mmoL, 

10 eq.) previously dried over molecular sieves, under argon atmosphere, in anhydrous CH2Cl2 (20 mL) 

was added Ag2CO3 (965 mg, 3.5 mmol, 2.1 eq.). The reaction was then stirred for 24 h. The mixture was 

then filtered over celite and washed with CH2Cl2. The solvent were then removed and the crude was 

purified by flash column chromatography (hexane: ethyl acetate from 1:3 to 0:1) to afford 21 (1.16 g, 

68%) as a glassy solid. 1H NMR (500 MHz, CDCl3): δ= 5.34-5.32 (m, 3H, H1C, H1B, H3A), 5.30-5.26 (m, 

2H, H3B, H4B), 5.08 (t, 1H, J= 10.0 Hz, H4C), 4.88-4.82 (m, 2H, H2A, H2C), 4.75 (dd, 1H, J=4.0 & 10.0 

Hz, H2B), 4.59 (d, 1H, J= 8.0 Hz, H1A), 4.55 (dd, 1H, J= 2.4 & 12.1 Hz, H6A), 4.49-4.46 (m, 1H, H6B), 

4.29-4.24 (m, 2H, H6’A, H6’B), 4.21 (dd, 1H, J= 3.4 & 12.3 Hz, H6C), 4.06 (m, 1H, H6’C), 4.00-3.92 (m, 

4H, H5A, H4A, H5B, H5C), 3.85-3.72 (m, 5H, CH2O-, CH2OH, OH), 2.18, 2.16, 2.11, 2.06, 2.04, 2.03, 2.02, 

2.015, 2.01, 2.00 (10s, 30H. OCOCH3) ppm; 13C NMR (125 MHz, CDCl3): δ= 170.7, 170.6, 170.55, 

170.5, 170.4, 170.1, 169.9, 169.8, 169.7, 169.4 (C=O), 100.9 (C1B), 95.8 (C1A), 95.7 (C1C), 75.1 (C4A) , 

73.8, 72.5, 72.3, 72.2, 71.7, 70.4, 70.0, 69.4, 69.0, 68.5, 67.9 (CH), 65.8, 62.8, 62.3, 61.9, 61.8 ( C6A, 
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C6B, C6C, OCH2CH2OH), 20.9, 20.85, 20.8, 20.7, 20.6, 20.5 (OCOCH3) PPM; [α]D
22 +39.0 (c 1 in 

CHCl3); HRMS (ES+) Calcd. for C37H57O20N2Na: 903.3140, found; 903.3146. 

ββββ-Cyanoethoxy-ββββ-[(2,3,4, 6-tetra-O-acetyl-αααα-D-glucopyranosyl-(1→→→→4)-O-(2,3,6-tri-O-acetyl-αααα-D-

glucopyranosyl)-(1→→→→4)-2,3,6-tri-O-acetyl-ββββ-D-glucopyranosyl)]ethoxy-diisopropylamine phosphine 

(22). DIEA (132 µL, 0.75 mmol) and 2-cyanoethyl-N,N’-diisopropylamino-chlorophosphoramidite (70 

µL, 0.31 mmoL) were added to a solution of compound 21 (200 mg, 0.20 mmol) in anhydrous CH2Cl2 

(4 mL) at room temperature under an argon atmosphere. After 2.0 h no starting material was observed. 

Solvents were then removed and the crude was purified by silica gel column chromatography by using 

Hex/EtOAc (1:3 with 5% of NEt3) to give compound 22 (197 mg, 84%) as a syrup. 1H NMR (500 MHz, 

CDCl3): δ=  5.39-5.17 (m, 5H, H1C, H1B, H3A,H3B, H4B), 5.03 (t, 1H, J= 9.9 Hz, H4C), 4.84-4.74 (m, 2H, 

H2A, H2C), 4.70 (dd, 1H, J=3.9 & 10.5 Hz, H2B), 4.59 (m, 1H, H1A), 4.44-4.40 (m, 1H, H6A, H6B), 4.30-

3.44 (m, 16H, H6’A, H6’B, H6C, H6’C, H5A, H4A, H5B, H5C, CH2O-, CH2CH2CN, CH2OH, CHisopropyl), 2.60 

(m, 2 H, OCH2CH2CN), 2.14, 2.12, 2.06, 2.01, 1.99, 1.98, 1.96, 1.94 (8s, 30H. OCOCH3), 1.20-1.14 (m, 

12 H, CH3isopropyl) ppm; 13C NMR (125 MHz, CDCl3): δ= 170.5, 170.5, 170.4, 170.3, 170.1, 169.8, 

169.7, 169.4 (C=O), 117.7 (CN), 100.2 (C1B), 95.7 (C1A), 95.6 (C1C), 75.3 (C4A) , 73.8, 72.4, 72.0, 71.7, 

70.4, 70.0, 69.4, 69.3, 68.8, 68.4, 67.8 (CH), 63.0, 62.3, 61.3, 58.6, 58.3 (C6A, C6B, C6C, OCH2CH2OH), 

45.1, 45.0, 43.1, 42.9, 24.7, 24.6, 24.5, 22.9, 20.9, 20.8, 20.7, 20.6 (OCOCH3) PPM; 31P NMR (101 

MHz, CDCl3): δ= 149.8, 149.6; HRMS (ES+) Calcd. for C49H74N2O28P (M+H): 1169.4166, found; 

1169.4188. 

Synthesis of carbohydrate oligonucleotide conjugates. Oligodeoxynucleotides carrying 

carbohydrates at the 5’-end were prepared in a DNA synthesizer (Applied Biosystems 3400) using 

standard 2-cyanoethyl phosphoramidites and the appropriate carbohydrate phosphoramidites (Schemes 1 

and 2). The syntheses were carried out on controlled-pore-glass (CPG) supports carrying the 2-(N-[9H-

fluoren-9-yl-methoxycarbonyl]-4-aminobutyl)propane-1,3-diol linker (Glen Research) to yield 

oligonucleotides carrying an aliphatic amino group a the 3’-end (27). The following sequences were 

prepared: Sequence 1: CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2; sequence 2: Glucose-C2-5’-
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CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2, (C2 stands for -CH2CH2-OPO2
--); sequence 3: 

Fucose-C2-5’-CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2; sequence 4: (Glucose-C2)2-DB- 

CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2; DB stands for the symmetric doubler phosphoramidite 

obtained from commercial sources (Glen Research); sequence 5: (Glucose-C2)4-DB-DB-

CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2; sequence 6: Maltose-PEG4-5’-

CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2, (PEG4 stands for -(OCH2CH2)4-OPO2
--); sequence 7: 

Maltotriose-C2-5’-CTCTCGCACCCATCTCTCTCCTTCT-3’-NH2. After ammonia deprotection 

(overnight, 55 ºC) the resulting oligodeoxynucleotides were purified by HPLC (see conditions below).  

The purified products were analyzed by MALDI-TOF mass spectrometry. Sequence 1 [M] = 7603.6 

(expected M= 7600.0). Yield (1 µmol scale synthesis) was 118 OD units at 260 nm (580 nmol, 58%). 

Sequence 2 [M] = 7888.4 (expected M= 7886.2). Yield (1 µmol scale synthesis) was 83 OD units at 260 

nm (410 nmol, 41%). Sequence 3 [M] = 7870.7 [(expected M= 7870.7). Yield (1 µmol scale synthesis) 

was 98 OD units at 260 nm (480 nmol, 48%). Sequence 4 [M] = 8484.5 (expected M= 8522.9). Yield 

(0.5 µmol scale synthesis) was 31 OD units at 260 nm (155 nmol, 31%). Sequence 5 [M] = 9755.1 [ 

(expected M= 9795.8). Yield (0.5 µmol scale synthesis) was 23 OD units at 260 nm (115 nmol, 23%). 

Sequence 6 [M] = 8180.7 [(expected M= 8182.7). Yield (0.5 µmol scale synthesis) was 22.5 OD units at 

260 nm (110 nmol, 22%). Sequence 7 [M] = 8210.7 [(expected M= 8210.7). Yield (0.5 µmol scale 

synthesis) was 28 OD units at 260 nm (140 nmol, 28%). 

Synthesis of carbohydrate oligonucleotide conjugates carrying fluorescent label. The following 

sequences were prepared: sequence 8: CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; 

sequence 9: Glucose-C2-5’-CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; sequence 10: 

Fucose-C2-5’-CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; sequence 11: (Glucose-

C2)2-DB-CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; sequence 12: (Glucose-C2)4-

DB-DB-CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; sequence 13: Maltose-PEG4-5’-

CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488; sequence 14: Maltotriose-C2-5’-
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CTCTCGCACCCATCTCTCTCCTTCT-3’-NHCO-Alexa488. Carbohydrate oligonucleotide conjugates 

carrying the fluorescent label at the 3’-end were prepared by reaction of the corresponding 3-amino 

oligonucleotides (1-7) with Alexa Fluor® 488 tetrafluorophenyl (5-TPF) ester obtained from 

commercial sources (Invitrogen). The corresponding 3’amino-oligonucleotide was dissolved with 50 µL 

of an aqueous solution of 0.2M NaHCO3 (pH=9). Then, 1.1 equivalents of Alexa Fluor® 488 5-TPF 

dissolved in 30 µL DMF were added to the solution and left to react overnight at room temperature. The 

mixture was concentrated to dryness, and the residue was dissolved in H2O. The residue was dissolved 

with 1 mL H2O and was purified with Sephadex G-25 (NAP-10 Column) and the oligonucleotide 

fraction was analyzed by HPLC (see conditions below). The purified products were analyzed by 

MALDI-TOF mass spectrometry. Sequence 8 [M] = 8117.4 (expected M= 8166.5). Yield (0.23 µmol 

scale) was 43 OD units at 260 nm (93%). Sequence 9 [M] = 8400.0 (expected M= 8402.7). Yield (0.21 

µmol scale) was 42 OD units at 260 nm (93%). Sequence 10 [M] = 8378.6 (expected M= 8386.7). Yield 

(0.25 µmol scale) was 44 OD units at 260 nm (86%). Sequence 11 [M] = 9037.9 (expected M= 9009.5). 

Yield (0.07 µmol scale synthesis) was 15 OD units at 260 nm (67%). Sequence 12 [M] = 10280.3 

(expected M= 10310.8). Yield (0.07 µmol scale) was 23 OD units at 260 nm (87%). Sequence 13 [M] = 

8664.3 (expected M= 8695.7). Yield (0.06 µmol scale) was 13 OD units at 260 nm (61%). Sequence 14 

[M] = 8698.4 (expected M= 8695.7). Yield (0.1 µmol scale) was 19 OD units at 260 nm (90%).  

HPLC purification conditions. Column: Nucleosil 120C18 (10µm, 200x10 mm). Flow rate: 3 

mL/min. Conditions: 20 min. linear gradient from 0-50% B. The purity of the resulting oligonucleotides 

was analyzed as follows: Column: X-Bridge TMOST C18 (2.5 µm 4.6x50 mm). Flow rate: 1 mL/min. 

Conditions: 10 min. linear gradient from 0-30% B). In both cases, solvent A: 5% acetonitrile in 100 mM 

triethylammonium acetate (pH=7) and solvent B: 70% acetonitrile in 100 mM triethylammonium acetate 

(pH=7).  

Mass spectrometry. MALDI-TOF spectra were performed using a Perseptive Voyager DETMRP 

mass spectrometer, equipped with nitrogen laser at 337 nm using a 3ns pulse. The matrix used contained 
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2,4,6-trihydroxyacetophenone (THAP, 10 mg/ml in ACN/ water 1:1) and ammonium citrate (50 mg/ ml 

in water).  

Cell cultures. HeLa (cervical carcinoma) and U87.CD4.CXCR4 cells lines were kindly provided by 

Prof. Alfredo Berzal (Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, Granada, Spain). 

Cells were cultured as exponentially growing subconfluent monolayers and maintained in Dulbecco´s 

modified Eagle’s medium (DMEM, PAA Laboratories GMBH) supplemented with 10 % Fetal Bovine 

Serum (FBS, Invitrogen), 4 mM L-Glutamine (Sigma), Mycokill AB (PAA Laboratories GMBH) and 

penicillin/streptomycin (100 units/ml and 100 µg/ml, respectively) (Invitrogen) in a humidified 

atmosphere consisting of 5% CO2 and 95% air. Human astroglioma U87.CD4.CXCR4 cells were also 

supplemented with 1 µg/ml puromicine (Sigma) and 300 µg/ml geneticin (G-418 sulphate) (Invitrogen). 

Cell-surface adsorption studies by flow cytometric analysis. Cells were seeded into 24-well plates 48 

hours prior to treatment in DMEM supplemented with 10% FBS, in the absence or presence of glucose 

(5.5 mM glucose). Then, cells were incubated on ice serum-free DMEM containing 5 µM of different 

Alexa 488-labelled oligonucleotides, in the absence or presence (5.5 mM) of glucose for 1 h, washed 

twice with ice-cold phosphate-buffered saline (PBS), harvested and resuspended in ice-cold PBS, 

followed by a flow cytometry analysis (FACSCalibur, Beckton Dickinson). 

Cellular uptake studies by flow cytometric analysis. Cells were seeded into 24-well plate prior to 

treatment in DMEM supplemented with 10% FBS and 5.5 mM glucose. Then, cells were incubated with 

2 µM of different Alexa 488-labelled oligonucleotides at 37ºC in the presence or absence of glucose for 

2, 6 and 24 h. After incubation, cells were completely dissociated in 0.5% Trypsin-EDTA (Invitrogen). 

Trypsin treated cells were washed by centrifugation at 520xg for 10 min and then resuspended into ice-

cold 1X PBS, followed by a flow cytometry analysis. The fluorescence of Alexa-labelled 

oligonucleotides remaining at the cellular surface was quenched with 0.2% Trypan Blue (final 

concentration) and subsequently, the fluorescence corresponding to the internalized oligonucleotides 

was measured.  
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RESULTS AND DISCUSSION 

Synthesis of carbohydrate phosphoramidites (15, 16, 19, 22). Among the different approaches 

described to prepare carbohydrate oligonucleotide conjugates (COCs) (21), we selected one of the most 

straightforward methodologies based on the coupling of a sugar phophoramidite to oligonucleotides on a 

solid support. This approach has been previously used to introduce sugars linked through the primary 

alcohol (28, 29) where the anomeric position was methylated. Our group (30) and others (31) have used 

this methodology to introduce sugars linked through the anomeric position. We have extended this 

approach to prepare COCs that possess a glucose moiety with different presentations. With this purpose 

we have attached sugars to DNA strands through two types of spacers (ethylene glycol, C2 or 

tetraethyleneglycol, PEG4) and a commercially available symmetric dendrimer (symmetric doubler 

phosphoramidite). Glucose and fucose phosphoramidites (15 and 16, respectively) carrying the short 

spacers were recently synthesized in two steps (30): classical glycosylation from their corresponding 

bromo peracetylated sugars and ethylene glycol and subsequent standard phosphoramidite chemistry 

(Scheme 1). Following the same strategy maltose and maltotriose phosphoramidites have been prepared 

carrying tetraethylene glycol and ethylene glycol spacers, respectively (compounds 19 and 22, Scheme 

2). Glycosylation was carried out using silver carbonate as the promoter to obtain moderate yields of 

intermediates 18 and 21 (50 and 68%, respectively). The resulting alcohols were reacted with 2-

cyanoethyl N,N-diisopropylchlorophosphoramidite and N-diisopropylethylamine to yield the 

carbohydrate phosphoramidite derivatives 19 and 22 (84 and 98%, respectively). 

Synthesis of carbohydrate oligonucleotide conjugates (2-7). Oligodeoxynucleotides carrying 

carbohydrates at the 5’-end were prepared using the appropriate carbohydrate phosphoramidites 

(Schemes 1 and 2) and the commercial dendrimer symmetric doubler phosphoramidite. We selected the 

well-known antisense oligonucleotide sequence GEM91 (5’-CTCTCGCACCCATCTCTCTCCTTCT) 

that was targeted to the translational initiation site of the Gag mRNA of HIV (32). We designed 

oligonucleotide sequences that carried an amino group at the 3’-end so that a carboxyl-activated 
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fluorescent label could be attached at a subsequent step. We selected the commercially available 3'-

amino-modifier C7 CPG for the amino modification of the COC’s. The oligonucleotide glycoconjugates 

(2-7) contained the following carbohydrates covalently linked to the GEM91 oligonucleotide with 

different spacers: glucose-ethylene glycol, fucose-ethylene glycol as control, maltose-tetraethylene 

glycol, maltotriose-ethylene glycol, di-glucose-doubler dendrimer and tetra-glucose-doubler-doubler 

dendrimer, respectively. Additionally, a non-conjugated 3-amino oligonucleotide (1) was synthesized for 

reference. Oligonucleotides 1, 2 and 3 show a single peak (Figure 2) that had the expected mass and they 

were used in the next reaction without further purification (41-58% yield). Oligonucleotides 4-7 

presented a major peak with some impurities (Figure 2) that were easily separated by HPLC obtaining 

the desired conjugates in a 22-31% yield after HPLC purification. The side products from the synthesis 

of the branched oligonucleotides 4 and 5 were collected and analyzed by MS and gel electrophoresis 

showing that these side products lack one or two glucose residues. This confirms that phosphoramidite 

couplings after branching are somehow less efficient according to literature (33, 34) but this fact did not 

prevent obtaining pure oligonucleotide conjugates with two and four glucose units. 

Synthesis of carbohydrate oligonucleotide conjugates carrying a fluorescent label (9-14). For the 

cellular uptake studies, six 3’-end fluorescently labelled oligonucleotide glycoconjugates (9-14) were 

prepared. We selected Alexa 488 as the fluorescent tag due to its brightness compared to other common 

fluorescent labels, its fluorescent life time and the hydrolytic stability of the corresponding amine-

reactive Alexa 488 derivative. These compounds contained the same carbohydrate moieties presented 

above. Carbohydrate oligonucleotide conjugates (2-7) dissolved in 0.1–0.2 M sodium bicarbonate buffer 

(pH 8.3) were reacted with Alexa Fluor® 488 tetrafluorophenyl ester dissolved in DMF for 1 h at room 

temperature. In all cases a major peak was obtained (Figure 3) and the desired fluorescently labeled 

oligonucleotides were isolated in good yields (67-93%). Finally, a control labelled DNA oligonucleotide 

(8) was prepared using the same conditions described above. 
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Cell-surface adsorption and uptake by flow cytometric analysis. We measured cell-surface 

adsorption of the carbohydrate oligonucleotide conjugates (9-14, Fig. 1) and the control labeled DNA 

oligonucleotide (8, Fig. 1) both in the presence and absence of glucose in the medium. HeLa cells and 

U87.CD4.CXCR4 cells were seeded on 24-well culture plates, in the presence (5.5 mM) or absence of 

glucose for 48 h until preconfluency at 37 ºC. Then, the medium was replaced and cells were incubated 

with 5 µM bioconjugate for 1 h at 4 ºC in the presence or absence of glucose. Note that incubation at 4 

ºC allows oligonucleotide adsorption onto the cell-surface but not endocytosis-dependent cellular 

internalization (35). After incubation cells were washed and resuspended in ice-cold PBS and analyzed 

by flow cytometry (Figure 4). In the absence of glucose, an overall increase in fluorescence intensity is 

observed for all the oligonucleotides analyzed in comparison to the data observed when glucose was 

present in the medium. This behavior was similar for both HeLa and U87.CD4.CXCR4 cells and it 

could be due to the starving conditions suffered by the cells during long periods of time (i.e., 48 h). In 

general, although there are only small differences among all the oligonucleotides analyzed, a slight 

increment in fluorescence could be observed for oligonucleotides 11 and 13, for both cell types in the 

presence or absence of glucose. 

To determine the influence of glucose units in the oligonucleotide and the relevance of the different 

spatial presentation in the cellular uptake, the carbohydrate oligonucleotide conjugates labeled with 

Alexa 488 (9-14, Fig. 1) and the control labeled DNA oligonucleotide (8, Fig. 1) were incubated with 

HeLa cells and U87.CD4.CXCR4 cells. The incubation was performed under standard conditions with 2 

µM oligonucleotide for 2 h at 37 ºC, both in the absence and in the presence of glucose (5.5 mM). After 

washing the fluorescence intensity was determined by flow cytometry (Figure 5). Flow cytometry 

revealed that the fluorescence intensity of the cells was higher for DNA glycoconjugates 11 and 13 than 

for glycoconjugates 9, 10, 12, 14 and the control labeled DNA oligonucleotide without sugar 

modification 8. This behavior was observed both in HeLa and U87.CD4.CXCR4 cells (Fig. 5, A and B), 

in the absence or presence of glucose, these differences being much smaller when glucose was present in 

the medium.  It seems that oligonucleotides with the glucose moiety linked through longer spacers (15 
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and 18 atom distance in COC’s 11 and 13, respectively) showed better incorporation into the target cell 

than those with glucose linked through shorter spacers (4 atom distance in COC 9). Moreover, high 

multivalency of glucose, as in glycoconjugate 14, seems to hinder cell uptake maybe due to its high 

structural volume. 

 

CONCLUSIONS 

We have efficiently synthesized carbohydrate oligonucleotide conjugates with sugar moieties bound at 

the 5’-end of the DNA strand obtaining good yields and purities. Two types of spacers, ethylene glycol 

and tetraethylene glycol, and a doubler dendrimer were used to construct DNA glycoconjugates with 

different glucose presentations. Cellular uptake of oligonucleotides containing a terminal glucose unit 

linked through a long tetraethyleneglycol spacer or just one doubler dendrimer was more efficient than 

the other glycoconjugates and the unconjugated control. In contrast, the conjugate containing four 

glucose units showed lower cell uptake, both in HeLa and U87.CD4.CXCR4 cells. These results 

indicate that keeping a certain distance (15 to 18 atoms) between DNA and sugar modification could be 

important for a better incorporation of the oligonucleotide conjugate into the target cell. In fact, this 

strategy seems promising for further DNA conjugate design. 
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Figure Captions 

 

 

Figure 1. Carbohydrate oligonucleotide conjugates prepared (2-7 and 9-14). 3’-NH2-DNA strands 

corresponds to -OPO2
--GEM91-3’-NH2 sequence (GEM91= CTCTCGCACCCATCTCTCTCCTTCT); 

the corresponding DNA control 1 is the sequence GEM91-3’-NH2. Labelled DNA corresponds to 

GEM91 strands with Alexa 488 coupled at the 3’-end; the corresponding labelled DNA control 8 is the 

sequence GEM91-3’-NHCO-Alexa 488. 
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Scheme 1. Carbohydrate phosphoramidites 15 and 16. 

 

 

 

Scheme 2. Synthetic route used to prepare the carbohydrate phosphoramidite derivatives 19 and 22. (a) 

tetraethylene glycol, Ag2CO3, THF, r.t., 22h, 50%; (b) 2-cyanoethyl-N,N’-diisopropylamino-

chlorophosphoramidite, DIEA, CH2Cl2, r.t., 2h, 84-98%; (c) ethylene glycol, Ag2CO3, CH2Cl2, r.t., 18h, 

68%. 
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Figure 2. HPLC profiles of 3’-amino 5’-carbohydrate oligonucleotide conjugates: A) glucose conjugate 

2, B) fucose conjugate 3,C) diglucose conjugate 4 and D) tetraglucose conjugate 5. Insets in C) and D) 

correspond to the analytical HPLC profiles of purified conjugates using X-Bridge TMOST C18 

columns.  
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Figure 3. HPLC profiles of glucose conjugate 2 (below), and reaction mixture of 2 with Alexa 488 

(above) showing the formation of the 3’-Alexa 5’-glucose conjugate 9. The asterisk indicates the 

position of the starting amino oligonucleotide 2. Column: X-Bridge TMOST C18 (2.5 mm 4.6x50 mm). 

Flow rate: 1 mL/min. Conditions: 10 min. linear gradient from 0-30%. 
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Figure 4. Cell-surface adsorption of Alexa 488-labeled carbohydrate oligonucleotide conjugates (9-14) 

and control Alexa 488-labeled DNA oligonucleotide 8. (A) HeLa cells and (B) U87.CD4.CXCR4 cells 

were cultured in the absence or presence of glucose for 48 h at 37 ºC. Then, the medium was replaced 

and cells were incubated with 5 µM bioconjugate for 1 h at 4 ºC in the absence or presence of glucose. 

After incubation, cells were washed three times, resuspended in ice-cold PBS and analyzed by flow 

cytometry. C represents cell basal fluorescence intensity. GMFI corresponds to Geometric Mean of 

Fluorescence Intensity. Measurements from two independent experiments were averaged. Error bars 

indicate S.D. 
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Figure 5. Cellular uptake of Alexa 488-labeled carbohydrate oligonucleotide conjugates (9-14) and 

control Alexa 488-labeled DNA oligonucleotide 8. (A) HeLa cells and (B) U87.CD4.CXCR4 cells were 

cultured until preconfluency at 37 ºC. Then, the medium was replaced and cells were incubated with 2 

µM bioconjugate for 2 h at 37 ºC in the absence or presence of glucose. After incubation, cells were 

washed three times, resuspended in ice cold PBS and analyzed by flow cytometry. C represents cell 

basal fluorescence intensity. GMFI corresponds to Geometric Mean of Fluorescence Intensity. 

Measurements from three independent experiments were averaged. Error bars indicate S.D. 
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1H-NMR and 13C-NMR spectra 

Compound 18 
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1H-NMR and 13C-NMR spectra 

Compound 19 
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1H-NMR and 13C-NMR spectra 

Compound 21 
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1H-NMR and 13C-NMR spectra 

Compound 22 
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