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ABSTRACT Autonomous surfaces vehicles (ASVs) excel at monitoring and measuring aquatic nutrients
due to their autonomy, mobility, and relatively low cost. When planning paths for such vehicles, the task
of patrolling with multiple agents is usually addressed with heuristics approaches, such as Reinforcement
Learning (RL), because of the complexity and high dimensionality of the problem. Not only do efficient paths
have to be designed, but addressing disturbances in movement or the battery’s performance is mandatory.
For this multiagent patrolling task, the proposed approach is based on a centralized Convolutional Deep
Q-Network, designed with a final independent dense layer for every agent to deal with scalability, with the
hypothesis/assumption that every agent has the same properties and capabilities. For this purpose, a tailored
reward function is created which penalizes illegal actions (such as collisions) and rewards visiting idle
cells (cells that remains unvisited for a long time). A comparison with various multiagent Reinforcement
Learning (MARL) algorithms has been done (Independent Q-Learning, Dueling Q-Network and multiagent
Double Deep Q-Learning) in a case-study scenario like the Ypacaraí lake in Asunción (Paraguay). The
training results in multiagent policy leads to an average improvement of 15% compared to lawn mower
trajectories and a 6% improvement over the IDQL for the case-study considered. When evaluating the
training speed, the proposed approach runs three times faster than the independent algorithm.

INDEX TERMS Deep reinforcement learning, multiagent learning, monitoring, path planning, autonomous
surface vehicle, patrolling.

I. INTRODUCTION
Ypacaraí Lake is the largest body of water in Paraguay
with more than 60 km2 of navigable surface. It is located
between the cities of San Bernardino (eastwards), Areguá
(westwards), and Ypacaraí (southwards). It is the main source
of water in the area. Recently, it has become a tourist attrac-
tion for swimming and other water sports. The lake’s health
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is also important for the ecosystem in the wetlands of the
surrounding basin. However, in the past 40 years, the contin-
uous expansion of the agriculture around the lake, the lack of
sewerage systems in the neighboring cities, and the disposals
of wastes from industries located at the shore, among other
factors, have caused eutrophication to occur in the lake. This
unnatural process caused a green-blue algae (cyanobacteria)
bloom, resulting in both heightened levels of toxins, harm-
ful for both humans and fauna, and repulsive odor in the
area [1].
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Among the many actions carried out to improve the lake’s
situation, it is vital to monitor efficiently its environmental
state in order to have an updated image of the biological status
of algae blooms. This contamination map allows to analyze
the performance of the environmental measures taken by the
authorities and researchers. However, the manual monitoring
task takes a lot of effort and human resources since it requires
constant travels from the shore to the main blooms with
motor boats and manual sampling of waters. In [2] the use
of autonomous surface vehicles (ASVs) equipped with water
quality sensors is proposed to substitute the manual sampling
since they allow an automated sampling and surveillance of
the water quality at a relative low cost. Most ASVs have the
ability to operate via remote control (RC) or autonomously
by travelling along a path of waypoints without any human
crew. This means the energy consumption of the ASV could
be decreased by using small electric vehicles. For a better
efficiency, it is convenient to deploy a fleet of these ASVs so
that each individual agent explores different zones and mea-
sures the quality of the water. This task requires coordination
between the unmanned boats to avoid collisions and share
the exploration zones according to some efficiency criteria.
Depending on the size of the fleet, the problem could easily
became too complex to handle. In this kind of problems,
usually NP-hard, it is mandatory to look for Artificial Intelli-
gence approaches that can handle both the scalability and the
high dimension of this challenge [3].

The surveillance and patrolling task is focused in the useful
redundancy of the information acquired along the path. Since
there are several important magnitudes to monitor related to
water quality (pH level, dissolved oxygen, etc) and these can
change with time of the day and the year, the resulting paths
generated by any suitable approachmust take in consideration
not only the different zones (with different levels of impor-
tance) but also the revisiting of those unsampled for a long
time [4]. This problem, described later as the Patrolling Prob-
lem, requires a reactive, adaptive and coordinated approach
especially in the multiagent case, due to the many possible
solutions.

This work will address this challenge by using the trend-
ing Deep Reinforcement Learning techniques within a Fully
ObservableMarkovDecision Problem framework (FOMDP).
This mathematical formulation, in addition to parametric
function approximators (such as Deep Neural Networks
(DNN) for the Action-State function Q(s, a) estimation),
allows for an improvement without any previous model of
the problem (off-model algorithms) [5]. For this particular
multiagent case, it is relevant to consider also the scalability
issue, since this particular scenario has a big extension, and
multiple ASVs will be needed to monitor the whole area
in a feasible amount of time. The multiagent case implies
a much higher complexity in the planification, because it
needs a path planning optimization and consideration of the
possible interaction between the vehicles, as in [6], where the
collisions of the vehicles are acknowledged. In addition to the

interactions, the action space of the problem is significant and
the number of different possibilities and the computational
complexity to obtain the optimal result could easily become
impossible to handle [7].

This problem, known as the dimensionality curse [8],
is currently addressed by optimization algorithms, such as
Evolutionary Computation (EC) or Reinforcement Learn-
ing (RL), due to its well-known capacity of solving
high-dimensional problems [9], [10]. In this paper, the scala-
bility in the learning is achieved, combined with a centralized
Convolutional Neural Network, and an independent execu-
tion layer for every agent. This approach not only brings
a method for the ASVs to learn from others experiences
(as the agents capacities are equivalent), but also provides a
reactive algorithm able to improve its own policy in response
to possible on-line learning and reactivity to changes in the
environment (changes in the fleet size, for example). As the
EC algorithm uses a black-box formulation and learns only
from the final episodic reward [11], DRL stands as a very
convenient approach to generalize an optimal policy using
only a RGB scenario representation [12].

As a matter of fact, this visual way of learning with a
tailored reward function to evaluate every action taken by
the ASVs allows for easier formulation of the objectives by
imposing the rewards in terms of what is considered accept-
able behavior and what is not. This work also proposes a state
definition, which includes graphically temporally-dependent
situations, such as how long it has been since any agent
visited a particular zone as a method to keep the Markovian
assumption true. Another novel proposal of this work is in
the common-experience based optimization sustained in the
homogeneous agents feature to address the training efficiency
and scalability of the fleet. As the observation of every agents
are interchangeable, every agent can take advantage of others
experiences.

The main contributions of this paper are:
• A novel method for a multiagent path planner based
on Deep Reinforcement Learning that faces the scala-
bility issue in the context of the Ypacaraí Lake non-
homogeneous patrolling.

• A comparison between commonly-used multiagent
DRL (MADRL) approaches and a learning performance
analysis (learning time).

This paper is structured as follows: Section II contains
a brief analysis of the state of the art in Deep Reinforce-
ment Learning (DRL) and multiagent Reinforcement Learn-
ing (MARL), where the advantages and drawbacks of the
recently published methods are analyzed in the context of the
problem. Section III formally describes the Ypacaraí moni-
toring problem, the scenario assumption (movement, simula-
tion, batteries, etc), and the two proposed DRL approaches.
In Section IV, the results of the proposed methods are dis-
cussed, and a comparison between our approach and others
is done. Finally, Section V details the conclusion of the
paper.
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FIGURE 1. Prototype of ASV for the monitoring ask of Ypacaraí Lake.

II. RELATED WORK
The use of ASVs for monitoring endangered water resources
is trending nowadays [3], [20] and is an efficient solu-
tion for automated coverage missions. In [2], an ASV is
designed and proposed for monitoring the Ypacaraí Lake
(see Fig. 1) using a set of water quality sensors such as
PH-meter, Oxide-Potential Reduction sensor, thermometer,
etc. The use of ASVs entails the need of motion planifica-
tion and efficient control, since the limitation of the vehicle
batteries requires finding the best trajectories to accomplish
the monitoring task. This divides the motion planning into
two main tasks [21]: local planification and global plani-
fication. In [22], a comparison between local planification
algorithms has been done in the Ypacaraí environment and
constitutes the lower level of planification which every ASV
has, i.e., the local trajectory generator and obstacle avoidance
with A* or RRT techniques. The other challenge is the global
path planning: generating a set of waypoints the ASV must
visit in order to complete the monitoring. These waypoints
must follow an efficiency criteria like in [23], where the focus
is on minimizing the uncertainty within a surrogate model in
order to find the maximum value.

The high dimensionality of the state-action domain from
the many possible trajectories the ASVs can take is a compu-
tational and optimization challenge. The Evolutionary Com-
putation algorithms provide a black-box approach to solve
this problem, nonetheless they are non-reactive solutions of
a poor sample efficiency [5], [11] and every change of the
constraints requires a whole recalculation of the optimal
trajectory. On the contrary, Deep Reinforcement Learning
approaches usually can generalize the policy from the state
thanks to the multiple previous experiences [24].

Path planningwith RL tabular methods such as Q-Learning
or Policy Iteration [5], suffers from dimensionality prob-
lems and a lack of generalization. Thus, Deep Reinforce-
ment Learning (DRL) has become the most common way
to deal with the function approximation (neural networks
as non-linear parametric approximators). As a matter of
fact, DRL has been recently one of the most common
approaches for reactive path planning and collision avoid-
ance with autonomous surface and underwater devices.
In [25], for example, it is proposed a method for optimizing

the movement planner of an underwater vehicle using a
Q-Learning methodology as a successful application of RL
in control of this kind of vehicles. In [26] there is another
example of RL-based local planner for local planning.
This approach focuses also in a static-obstacle environment,
the most common solved problemwith RL algorithms for this
vehicles.

Recent works have extended the aforementioned single
DRL problems to multiagent deep reinforcement learning
(MADRL) scenarios [16], [27], [28] to avoid the previously
mentioned dimensionality curse. Initial results report suc-
cesses in complex multiagent scenarios. However, there are
several challenges to be addressed [7], like multiagent credit
assignment, global exploration, relative over-generalization,
and scalability. It is remarkable, in the context of optimization
of ASVs fleets, the contributions of [17], where a fleet meta-
agent of three boat-like autonomous vehicles is trained using
Deep Q-Learning (DQL) to perform swarm-cooperative tra-
jectories. The multi agent local trajectory optimization is
addressed also in [18], where the DRL goal is to optimize the
policies of 3-5 agents to reach several final positions trough
static obstacles.

Two main approaches can be observed in the recent lit-
erature: distributed learning [16], [29], [30] such as Inde-
pendent Q-Learning (IQL), where every agent tries its best
based only on its own experience, and centralized learning:
a centralized network which tries to optimize the behavior
of all agents. In the first approach, the scalability is feasible
because every agent deals with its own behavior, but the envi-
ronment becomes non-stationary [31] because every agent
observes the others as a part of the environment. As each
agent changes its policy over time, the learning stability is
compromised, since the target optimal policy of every agent
changes from one episode to another. In [16], a multiagent
deep reinforcement learning (MDRL) approach is proposed
with a focus on the scalability and learning stability: IQL
is implemented with an inter-agent shared fingerprint in the
buffer replay to avoid learning instabilities. In the centralized
approach, the agents are modelled as a meta-agent with an
action setA′.WithAi as the action set for an agent i andwithN
as the number of agents, the action joint dimension becomes
|A′| = |

∏N
i=1(Ai)| = |{a1, a2, . . . , aN }|. This dimension

problem becomes unfeasible with a large number of agents,
limiting the scalability of such methods as they are unable to
deal with changes in the fleet size. This dimension problem
becomes unfeasible with a large number of agents, limiting
the scalability of such methods as they are unable to deal with
changes in the fleet size. This is the case in [17], where the
fleet size is fixed and the action space is small (|A′| = 27)
and more vehicles will explode the scale of the problem.

Some researches try to deal with the drawbacks of
both methodologies by designing combined methodologies
between the pure independent approach and a centralized
learning like [14], [15]. In [15], a centralized action-value
function Q(s, a) will serve the purpose of the critic and a
distributed policy π (s) will model agents’ behavior as the
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TABLE 1. Different MARL approaches in the literature.

actor in a multiagent Actors-Critic novel approach. This kind
of method tends to avoid the local-minima problem generated
by the Nash equilibrium observed in fully-independent and
competitive agents [32] but are usually less sample efficient.
In our approach, a different objective is pursued because the
agents work in a full cooperative environment. In Table 1 are
presented the most interesting approaches for the multiagent
case of the recent literature. Note each one addresses a very
different problem.

In the DRL path planning literature, in both multi agent
and single agent case, it is common to find that the task
to complete is the position tracking one like in [18]. This
particular work put the effort in the multi agent task of
reaching goal positions without collisions between agents and
obstacles in a static environment. Our proposed method is
able to deal not only with multiple agents but also with a
dynamic environment with different interest zones and, in a
further test, deal with the battery issues. Those characteristics
are not usually addressed in the literature and, when they
do [33], [34], is it infrequent to find those applied at the
same time. Regarding deep network architectures of related
works, the same goal-point tracking is addressed in [35] using
convolutional neural networks (CNN) as it is presented in
this approach. Nevertheless, a higher state-space domain is
required to prove the method is scalable to bigger maps and
more agents, as it is done in the with this proposal. In this
regard, the proposed method finds a way to code all the infor-
mation available in the environment, i.e., agent’s positions,
the physical boundaries of the environment and, as a novel
proposal, the temporal dependencies in order to enhance the

stability of the learning and avoiding the need of recurrent
neural networks, like in [36].

When addressing the information availability and agent
abilities, some multi agent approaches have focused mainly
on pure distributed learning [16], [29], [30] because the
agents are different between them, they pursue different
objectives or are not always in communication. On the con-
trary, our approach puts the attention on the performance for
equal, identical cooperative agents since every ASV expe-
rience is interchangeable. In this way, the efficiency of the
learning is improved with a shared memory replay, and scal-
ability is addressed, while other researchers are interested in
an fully-independent execution like [15], [18], where the
experiences are not shared and the gradient-descent steps are
higher. This work uses also Value Iteration methods (DDQL),
which are generally more sample efficient than Policy Itera-
tion methods [4], [37] like in [28]. This work also uses an
implementation where the actions are always computed with
all the available shared information about the environment,
differently from [15], where the centralized Q-function only
is used in the training as the critic. Therefore, the novelty
of this approach focuses also in obtaining good policies effi-
ciently within the training, without too much computational
complexity. This objective is not always pursued in the liter-
ature and the sample efficiency in the learning is neglected.

Furthermore, this novel methodology is able to work with
a Dueling variation of the classic DDQL algorithm for this
particular multi agent case. The Dueling architecture has
resulted in splendid learning behaviors for the single agent
case in learning agents for the ATARI games [12] but its
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FIGURE 2. Example of graph for the patrolling problem.

advantages have not been sufficiently explored in the DRL
path planning literature and, more specifically, in a multi
agent dynamic scenario.

III. PRELIMINARIES
A. THE PATROLLING PROBLEM
The patrolling problem can be described in terms of an
undirected graph G(E,V ,W ) (see Fig. 2) [38], where every
geographical zone of the lake worth of visiting V constitutes
a node from M total nodes, and can be reached by an agent
bymoving along the edges E (following ametric assumption)
once every timestep. Every node also has an idleness, noted
by W , that counts the timesteps since the node’s last visit.
The patrolling problem consists of finding a policy πi for
every agent i that minimizes the average W given a number
of timesteps:

G(E,V ,W )→ {π1(E1), . . . , πn(En)}|min
1
M

M∑
k=1

Wk (1)

In the case of Ypacarai Lake, it is well-known that there are
highly-concentrated contamination areas (e.g. algae blooms)
with special interest for researchers [2], [11]. These areas
match with recreational port areas or industrial zones near
the shore, such as Puerto de San Blas, in the south of the
lake. Therefore, these relevant areas should be revisited with
a higher frequency depending on the importance given to
each zone. This implies that the idleness must be weighted
relative to the importance of this node I. This will be known
as the non-homogeneous patrolling problem, and it is more
suitable for the Ypacarai scenario as is explained in [4]:

G(E,V ,W )→ {π1(E1), . . . , πn(En)}|min
1
M

M∑
k=1

Wk × Ik

(2)

Finally, an importance matrix I (see Fig. 3) is created to
weight the idleness of every cell (node). It was generated with
the sum of two Gaussian density distributions and a minimum

FIGURE 3. Importance map (left) and discretized importance map I
(right).

FIGURE 4. Discretized gridmap (left) and a satellite image of the Ypacaraí
Lake (right). In red, the initial deploy position for the ASVs.

interest of 0.5 centered in three main focus of contamination
using the information available in the International Hydroin-
formatics Center of Paraguay1 as guideline.

B. SCENARIO AND ASSUMPTIONS
In order to train the agents for a real environment, a simulator
has to be designedwhichmust consider real constraints. In the
following list, the many assumptions of this approach have
been enumerated:
• The scenario has been discretized in a homogeneous
grid. This discretization results in a 14 × 10 cell map,
therefore each cell is 1100m× 1100m. A higher resolu-
tion will result in a more precise scenario, but slower
and harder training because of the increased problem
dimension. There are 5 possible zones for the deploy of
the ASVs (red dots in Fig. 4).

• As all ASVs have the same capabilities, it is assumed
they move synchronously: every ASV samples a cell (its
current location) and, after that, performs a movement to
the next cell at the same speed: with full battery, every
ASV can travel through 30 cells (approx. 4 hours of
battery at full speed).

• ASVs can perform 8 different movements: perpendicu-
lars (N, S, E,W) and diagonals (NE, SE, SW,NW). They
will work under a metric assumption, so the diagonal

1https://hidroinformatica.itaipu.gov.py/
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FIGURE 5. Examples of illegal movements. (a) and (b) are considered a
collision. (c) is considered a non-possible movement.

movements will be punished proportionally to a perpen-
dicular movement.

• There are different types of cells: occupied (by some
agent), obstacle (a non-navigable cell), and free (a nav-
igable cell, already visited or not). An obstacle cell
cannot be a target of a movement (a penalization will
be granted) and occupied cells can be a waypoint if the
agent will free it in the following time step (Fig. 5b).

• Agents cannot occupy the same cell (because of the
risk of collision). Furthermore, swapping positions is
considered a risk of collision in travelling and will be
penalized (Fig. 5a-b).

• It is assumed (for a better realism) that drifts and control
fails could happen due poor path tracking or a distur-
bance rejection of the control loop. There will be a
constant probability of 5% for a movement failure as a
maximum expected value. The failure leads to a random
movement if it occurs.

• Once the next waypoint is decided (the next movement
for every ASV), a low-level control loop is in charge
of the actuators’ dynamics, i.e., it guides every ASV to
the next physical point and rejects all possible distur-
bances. This will be referred to as the local path planner
loop [22].

• As the battery duration for every ASV is an important
limitation to consider, in a second round of training,
a different battery level for every agent is assumed.
Initial battery levels are chosen randomly from 100%
to a minimum of 70%. It is reasonable to think that the
initial charge of the ASVs could vary from one agent
to other. With every movement, a 1/30 fraction of the
battery is subtracted. When the battery reaches zero,
the ASV is considered dead and will not perform any
movement.

IV. METHODOLOGY
In this section, the methodology is presented on the math-
ematical framework of a Markov Decision Process (MDP).
Every MDP is defined by a state of the environment s,
an action taken by the agent/agents a ∈ A, a reward r resulting
from this action, and a transition probability T of taking
this certain action in the given state (Fig. 6). Reinforcement
Learning can address the solution of an MDP to find the
optimal policy π∗(s) that maps the state of the environment

FIGURE 6. Fundamental reinforcement learning scheme. The
agent/agents perform an action at using its policy π(s) resulting in a
reward rt and a new state st+1.

into the action that will return the maximum reward on the
long term. In this work, two different approaches are pro-
posed, based on different improvements of the same Deep
Q-Learning foundations: i) a Double Deep Q-Network and
ii) a Dueling Architecture for Q-values optimization. In both
algorithms, the Q-function is optimized by taking a descend-
ing gradient step in the loss function with respect to each
parameter of the given deep network. The main difference
rests in how the Q-values are computed: whereas in the
DDQL the Q-values are estimated directly, with the dueling
network, they are computed with an estimated advantage
function A(s, a) and the value function V (s).

A. SINGLE AGENT DEEP Q-LEARNING
Deep Q-Learning (DQL) and its variation, Double Deep
Q-Learning (DDQL) [12], are the most common algorithms
for model-free reinforcement learning. Both algorithms are
based off of collecting experiences and estimating the Q func-
tion (modelled with a DNN) to maximize the expected total
return without any need of an environment model. In the sin-
gle agent case, an action is usually selected with an ε-greedy
policy given a state s. This action a makes the environment
return a reward r , and a new state s′ is processed. An experi-
ence (s, a, r, s′) is generated and stored in a replay memory of
size M for a future mini-batch training. With every episode
(an episode is defined with many timesteps as the duration
of a mission), some experiences are sampled in a mini-batch
of size B and the neural network is trained by the time-
difference (TD) method, taking a gradient descent step from
the error of the calculated Q function (behavioral function)
and the target Q function, which is the maximum expected
discounted reward.

Q(s, a)t+1=Q(s, a)t+α×
(
r+γ max

a′
Q(s′, a′)t−Q(s, a)t

)
(3)

The discount factor γ decreases the effect of the rewards far
in the future, to prioritize the rewards at the beginning of the
episode and decrease the importance of future rewards. As it
is modeled in subsection IV-E, rewards in the last timesteps
are less significant than in the early moments of the episode.

Generally, DQL is able to train a single agent in a stable
way for many scenarios and assumptions, but for a better
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FIGURE 7. Proposed centralised-distributed deep Q-Learning network.

convergence, a modification of the vanilla DQL is proposed
in [12]. The authors of the paper solve the overestimation of
the Q-values with a single Deep Q-Network by cloning the
aforementioned Q(s, a; θ ) to be the target or objective func-
tion Q∗(s, a; θ ′), with a transferring of the weights (θ → θ ′)
only every few episodes. This results in a much better con-
vergence and stability at almost zero cost.

B. MULTIAGENT DEEP Q-LEARNING
Therefore, in this work a Double Deep Q-Learning network
(with some modifications) is proposed for the learning pro-
cess (see Fig. 7). First, convolutional and fully-connected
layers are designed to capture the features of the scenario (the
positions of the agents, obstacles and already visited cells).
The final layers as seen in Fig. 7 are designed in a distributed
form: due to the scalability problem, modeling the multiagent
case as a meta-agent, as mentioned in Section II, will result
in an |A|N fully-connected layer with |A| possible actions and
N agents. This calculation is obviously unfeasible, even with
a low value of N . Consequently, this paper proposes a decou-
pled final layer with an individual |A| fully-connected layer
for every agent (see Fig. 7). Since every agent has the same
action set and is ruled under the same constraints, the expe-
riences (s, a, r, s) of each agent must contribute equally to
the learning process. In this way, the single-agent DDQL
algorithm is extended to themultiagent paradigmwith |A|×N
neurons in the last layer. Additionally, the common central-
ized convolutional resolves possible sub-optimal actions from
Nash Equilibrium by jointly deciding the next move: because
two independent agents, only provided with their observation
of the environment, could choose to visit the same zone in
a greedy decision resulting in a collision penalization (as it
happens in the well-known Prisoner’s Dilemma [24]). When
acting in a full competitive case, the optimal behavior will
be to choose a zero reward instead of the greedy reward.
This policy is discouraged when the decision is not purely
individual like in cooperative games [37].

C. MULTIAGENT DUELING Q-LEARNING
Following the aforementioned design for the Q-Network,
a modification of the Q-Network is proposed, as in [39].
In this paper, two different estimators for the Q-function
optimization are presented: the State-Value FunctionV (s) and
the Advantage Function A(s, a). The former returns the value
of the current state s in terms of the future expected reward,
and the latter evaluates the expected reward for an individual

FIGURE 8. Proposed centralized-distributed dueling Q-Learning network.

action a in a state s with respect to the other possible actions.
Thus:

Q(s, a; θ ) = V (s; θ ′)+ A(s, a; θ ′′) (4)

It is stated that, to address the identifiability issue (in the
sense that given Q we cannot recover V and A uniquely),
modifying 4 ismandatory to add a baseline ofA. This baseline
is chosen to be the average value of A for every possible a in
the given state:

Q(s, a; θ ) = V (s; θ ′)+

(
A(s, a; θ ′′)−

1
|A|

∑
a′
A(s, a′; θ ′′)

)
(5)

In our approach, the use of the common centralized net-
work to estimate the state-value function is intuitive, as it
takes the whole scenario of the many agents into account. The
individual output layers estimate the advantage function for
every agent as they estimated Q values before. (see Fig. 8)
This variant has two positive aspects: i) the DQN remains the
same except for the V (s) estimator (only an additional neuron
and the aggregate layer) so the DDQL algorithm can be recy-
cled and ii) the formulation of the learning problem suggests
that this architecture can focus in collaborative actions which
allows agents to use the estimated value function to improve
their policies as suggested in [39]. In Algorithm 1 is presented
the pseudo-code for both approaches. Note in the case of
the Dueling architecture, the algorithm remains the same
as the adversarial calculus of Q(s, a) from A(s, a) and V (s)
function is considered embedded into the function itself as
stated in [12].

D. STATE REPRESENTATION
As mentioned before, the state is the representation of the
information available for training. From the state, the scenario
model must be inferred and processed to optimize the action-
value function. A MDP framework is used based on the
Markovian assumption: the probability of transition for the
environment from the actual state to the next one only depends
on the actual [5]. This requires the environment to be memo-
ryless, which is not suitable for every real case. For the pro-
posed Reinforcement Learning methods, it is intended to deal
with the Markovian assumption with a complete information
state, i.e., the state contains all the information from the previ-
ous timesteps so that the state groups the information of past
actions without any time-dependencies left. In the proposed
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Algorithm 1 Proposed DDQL Centralized Learning
Algorithm
Initialize replay memory M; Initialize action-value
function Q(s, a; θ ) with random weights θ ;
Clone Q(s, a; θ) function into target function
Q∗(s, a; θ ′);
epoch← 0;
while e ≤ epochs do

step← 0;
Reset the environment;
Get the initial state s;
while step ≤ Nsteps do

With probability ε select a random action joint a
otherwise select a = argmaxaQ(s, a; θ ) Execute
action joint a and observe reward joint r and
next state s′ Store transition (s, a, r, s′) inM
if M ≥ B then

Sample random Batch Size (s, a, r, s′)
experiences fromM ;
for every (s, a, r, s′) sampled do

for every agent i do
q∗i ≈ ri + γ maxa′ Q∗(s′, a′; θ ′);
Acumulate the Loss by
backpropagating
L ← L + Loss(q∗i − Qi(s, ai))

end
Perform gradient descent step:
θ ← θ + α ∂L

∂θ

end
end
step← step+ 1;

end
epoch← epoch+ 1;
Every T epochs, updates Q∗ weights θ−← θ ;

end

approach, the state will be a 3-channel (RGB) image. This
state representation allows time-dependent information with
the inclusion of a gray-scale tone representing the idleness of
every visited zone, as was proposed and tested successfully
in [4]. In different vivid colors, the agents are represented and,
in brown, the non-visitable cells (see Fig. 9).

E. REWARD FUNCTION
The reward function models the objective of the agents. This
function will consider the interactions between agents and
also the individual returns of every moment an agent per-
forms. A tailored reward function is designed with the aim
of reducing the mean of idleness in the map (as mentioned
in subsection III-A). Therefore, a positive reward must be
awarded when an agent performs an action that results in
a visitation of a cell with high idleness W . Depending on
the importance of the cell and the idleness, the reward must
be modulated in consequence. Bad behaviors, like collisions

FIGURE 9. RGB state with 3 agents. In gray, the visitable. In brown,
the land cells. In red, green and blue, the three agents.

between agents and movements outside the navigable zones,
shall be punished. Given (x, y) the position result of the
action a, the reward function r is defined in 6. This reward
function was tested with successful results in [4].

ri(s, a, (x, y))

=


−5 if a causes collision.
−5 if a causes a move out lake.
Ix,y if (x,y) is not visited yet.
Ix,y

max W
×Wx,y if (x,y) is already visited.

(6)

The aforementioned matrix I, which symbolizes the rela-
tive importance of the given (x, y) visited cell, will weight
the idleness of the zone. In the end, the maximum reward
for a high-importance high-idleness cell will be 1. Finally,
for a better coverage and in order to avoid trivial solutions
around a certain zone, every position of I will be decreased
a 20% in every visit, which means a cell (x, y) of I(x,y) = 1
will return a reward 5 times at most before its I(x,y) becomes
zero. For the quality measurement process this is a realistic
assumption since sampling a certain zonemore than 5 times is
unnecessarily redundant. Finally, to adapt the reward function
to the metric assumption (in diagonals movements we travel
more distance), every diagonal movements will be penalized
with −0.1.

V. RESULTS
This section contains the metrics to evaluate the performance
of the algorithms, along with the results of the learning in
both proposed approaches are depicted with its respective
accumulated reward curves. Finally, a comparison between
all the algorithms with IDQL and lawn mower included is
presented. The battery-constrained case and a learning-time
analysis of the proposed approach is also presented.

For the training, a simulator coded in Python2 is designed
and for the neural network optimization PyTorch3 library is
used. The code is available in a Github repository.4 All sim-
ulations were executed in an AMD Ryzen 9 3900 (3.8 GHz)

2https://www.python.org/
3https://pytorch.org/
4https://github.com/derpberk/MARLYpacarai

VOLUME 9, 2021 17091



S. Yanes Luis et al.: Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles

with anNvidia RTX 2080Super-8GBGPU and a 16GBRAM
memory module.

A. METRICS
For the evaluation of the performance in every case, some
metrics are used:
• Accumulated reward R: The accumulated reward
shows performance with respect to the reward function.
The higher the reward, the more the problem fits its
designed objective. Also, the deviation of the reward
gives an idea of the robustness of the inferred policy
from one start condition to another. With N as the num-
ber of agents and t the timestep (from 0 to T possible
timesteps):

R =
(N ,T )∑
(i,t)

ri(st , at ) (7)

• Mean weighted idleness µ: For an alternative eval-
uation metric of the Patrolling Problem solutions,
the mean weighted idleness across the navigable cells is
computed. This is:

µ =
1
M

M∑
k

Wk × Ik where k ∈ Visitables (8)

B. PROPOSED APPROACHES COMPARISON
For the hyperparametrization of the network, some values
were tested based on previous published researches [4]: the
learning rate α is fixed to 1e-4, as a higher value did not guar-
antee convergence in some cases. The ε-decay rate is chosen
to be 4e-5 (In 24.000 episodes ε decreases from 0.99 to 0.01,
i.e., almost full explotative behavior). With higher values,
both networks (DDQL and Dueling) tend to explore too little
for good performance. Finally, the net size (total number of
convolutional filters and dense layer sizes) was selected based
on the successful results in [4]. The number of convolutional
filters were expanded (from 8 to 16) to enable the network to
process multiple agents and the kernel size is reduced (from
5 × 5 to 3 × 3) to conform the new resolution. The final
hyperparameters used are:

The trained policies of both approaches will be compared
with the Independent Deep Q-Learning (IDQL) equivalent
and with a non-reactive and trivial solution, such as the lawn
mower trajectory (LMT) [40]. The IDQL will use the same
hyperparameters for training and the same network of the
DDQL as a heuristic decision for comparison since both have
been proven valid for the independent learning case. Every
agent will optimize its own network independently based
on its perception of the state: an independent agent state is
formed by a RGB image of the scenario (similarly to the
proposed approach), but only its own position is distinguished
from the others agents’ positions (see Fig. 10). In the LMT,
the strategy tends to cover the maximum possible area in a
cyclic movement. From one agent to four agents (the whole
fleet), the LMT approach will share the same sized lake

FIGURE 10. RGB state for an independent agent in IDQL.

FIGURE 11. Lawn mower trajectories for one, two, three and four ASVs.

FIGURE 12. Result of the 30.000 episodes training from one to four
agents for DDQL and Dueling.

areas for a homogeneous covering, ignoring any importance
criteria. Fig. 11 presents the cyclic lawn mower trajectories.
Those trajectories were selected arbitrarily, with the only
criteria of starting in a deploy cell and covering the same
number of cells as the other agents.

1) TRAINING RESULTS
In Fig. 12 are presented the results for different num-
bers of agents. These results show that both DDQL and
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TABLE 2. Hyperparameters selected.

Dueling-DQL algorithms can successfully train the agents
to pursue the maximization of the total reward. It is under-
standable that the more agents are involved in the problem,
the higher the variation that is observed in the reward because
of the exponential growth of the state-space domain with the
number N of agents S × |A|N . Also, with the epsilon-greedy
policy, there is always a possibility of a random movement
(5% according to Table 2). Notice that, in the four agents
scenario, a random movement or a failed movement which is
stated in the assumptions as a possibility, could cause a very
high penalization because of the high probability of multiple
collisions.

For this analysis, it is also necessary to observe that this
environment has a limitation in themaximum reward possible
since every cell decreases its interest with every visit. In other
words, the total interest available for reward will be the result
of visiting each cell five times with a 20% less reward every
time, and as a result, the maximum available reward is not
proportional to the number of agents.

Nevertheless, the algorithms show that the agents learn
a policy based on collision-avoidance and revisiting high-
interest cells: from an average reward of -100 at the beginning
of the training with a fully random policy in the three-agent
case, to a 35 average reward with the Dueling. Both DDQL
and Dueling-DQL approaches have similar average rewards.
With the Dueling architecture, the average reward from one
episode to another for one and two agents is slightly better
(a 11.5% and 5.5% better respectively). This suggests that the
Dueling architecture is more sample efficient [39], because
of the good estimation of V(s). It also converges in a more
robust policy for a lower dimension of the problem but its
convergence is worse when the dimension increases (see
Table 3 for the complete result metrics). Although the two
proposed algorithms achieve solid solutions, due to the high
dimensionality of the problem, more episodes of learning are
needed to achieve an optimal solution. Nonetheless, for a fair
efficiency and performance comparison only 30,000 episodes
were simulated.

2) COMPARISON WITH OTHER APPROACHES
For the comparison, both DDQL and Dueling policies are
changed to be full greedy (ε = 0) to measure their

FIGURE 13. Average rewards of 100 simulations with the trained
networks.

best decisions. Table 3 contains the results for the different
number of agents and different approaches. Note that for the
single agent case, IDQL and DDQL have the same results
because in this case they are actually the same algorithm.

It is remarkable how the three Deep Reinforcement Learn-
ing approaches have a much better performance than the
classic lawnmower trajectory. TheDDQL improves in a 12%,
20%, 15%, and 13% with the best solution for every number
of agents respectively. The Dueling Network improves in a
24%, 21%, 12%, and 11%, whereas the improvement in the
IDQL case is 12%, 15%, 12%, and 12% respectively. It is
easily understandable that, when the lawn mower trajectory
is specified, there is no criterion related to the inherent interest
of the lake cells. The Reinforcement Learning approaches
take the trajectory calculation into account, resulting in bet-
ter minimization of the mean weighted idleness across the
scenario.

Comparing now between Deep RL methods, the proposed
DDQL approach shows a slight improvement with respect
to the maximum reward achieved by the other algorithms
(an average improvement in every multiagent scenario of
the 6% and 2% respectively for IDQL and Dueling). IDQL
has proved to also be a suitable algorithm for the multiagent
case. In this particular scenario, the inferred policy for the
individuals has also shown robustness in avoiding collisions
and illegal movements. Nevertheless, the DDQL approach
achieves better record trajectories, although the averages are
very similar compared to IDQL (see Figs. 13 and 14 for
the two aforementioned metrics with the trained policies in
each case). If we observe the particular episode of the best-
achieved solution for every agent, it is possible to visualize
the effect of DDQL algorithm in the speed of importance-
weighted coverage (see Fig. 15). As the reward and redun-
dancy criteria determined by the reward function (6) is the
same nomatter the size of the fleet, themarginal improvement
of a new agent decreases. The improvement of reward in the
best DDQL trajectories from 1 to 2 agents is about 78%.
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TABLE 3. Comparative table with the rewards and average weighted idleness of the Ypacaraí Lake.

FIGURE 14. Average weighted idleness of 100 simulations with the
trained networks.

Increasing from 2 agents to 3 improves the reward by 19%.
Increasing from 3 agents to 4 returns only a 7% improvement.
This figure (Fig. 15) allows a pre-planification on the desired
coverage given a number of steps and a number of agents.
If the mission time is lower, more agents could be chosen and
vice versa.

Fig. 16 shows the resulting idle maps of the optimized
trajectories learned by each number of agents in the best case.
The optimized policies force the agents to share the interest
space. In the single agent case, as the number of steps is insuf-
ficient to cover the whole map, the ASV focuses on the most
important areas and visits the maximums at least once (occa-
sionally twice). In the multiagent experiments, the ASVs
first visit the nearest maximum-interest areas and proceed to

FIGURE 15. Accumulated reward with DDQL for each fleet size. The
higher the number of agents, the more reward is achieved. As the
available reward is limited to 5 visits, the increment of the possible
maximum reward is not proportional to N.

explore the other ones, tending to avoid very long travels to
revisit those important zones once the idleness goes up. These
results indicate a well-coordinated and cooperative behavior,
since the completemap is explored and the zones are explored
proportionally to their interests. proportionally to its interest.

C. TRAINING PERFORMANCE
While it is true that the IDQL algorithm achieves simi-
lar results to the proposed DDQL and Dueling Algorithm,
it faces a scalability problem relative to the number of opti-
mization steps needed for convergence. On the one hand,
the IDQL approach provides every agent with an individual
convolutional neural network so, during training, every agent
must train its own mini-batch and take as much optimization
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FIGURE 16. Map of idleness (up) and frequency of visits (down) in the DDQL best trajectories for every number of
agents. Note that, as the trajectories are optimized, the interesting zones receive much more attention and visits. With
N = 3 and N = 4, as there is not sufficient interest for all agents, the complete coverage of the map is achieved.

FIGURE 17. Time of training for the three DRL approaches. Note that the
growth of the learning time is almost three times higher in the IDQL
approach.

steps as the number of agents. On the other hand, the decou-
pled approach allows for more efficient learning by sharing
a bigger part of the network. This will reduce the time of
training which is in this application an important metric to
consider. The need of retraining the network for a transfer
learning process or because the importance map changes
has to be feasible in terms of scalability. The much higher
times for training do not compensate for the nearly identical
performance of the other approaches. Fig. 17 shows the hours
needed to train the scenarios previously mentioned with the
computer workstation available for the agents learning. It can

be observed that the proposed DDQL approach is three times
faster than the independent approach.

Regarding the Dueling architecture, it has been observed
that the operations related to the Advantage function com-
putation slows considerably the network optimization result-
ing in a not-so-fast training. Besides that, this algorithm is
also two times faster than the IDQL and is a candidate for
train with more episodes. In the end, the DDQL approach
result in a suitable, efficient and robust methodology for
the Ypacaraí non-homogeneous patrolling case and more
importantly, dimensionally feasible for standard computation
resources.

D. BATTERY SIMULATION
Considering the battery, the agents have to face the fact
that, occasionally, the battery will fail. This makes the policy
more difficult to optimize, because the required cooperation
changes when a ASV disappears in order to sample the
important zones. When an agent is disabled, it will remain
static, it will not accumulate any further reward and this
area will be considered an obstacle for the other agents.
To test the proposed algorithm for this task, a typical three
agent scenario is simulated with different initial battery levels
as stated in Subsection III-B. Only a modification to the
previous algorithm is done: the agents colour in the state
changes to pale green when its battery is 0 to infer its status
(see Fig. 18)

In Fig. 19 is illustrated the result of an experiment with
the batteries enabled. The agents start with battery levels
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FIGURE 18. State with two agents without battery (pale green) and an
active agent (red).

FIGURE 19. Accumulated rewards for every ASV with the batteries
enabled. When vehicles 2 and 3 stop, vehicle 1 keep travelling through
interesting areas avoiding collisions.

of 100%, 85% and 70%, which means the battery will fault
in step 30, 25 and 20, respectively. It can be seen how the
vehicle 1, after the faults of the other ones, continuously
increases its reward. It has been observed, since the disabled
agents does not move across the map anymore, the remain
agent tends to move to the new uncovered zones.

This suggests that the proposed algorithm is able to work
with a variable number of agents and is fairly robust to
agents faults, a very desirable in this particular application.
The average reward for 100 episodes in this new battery-
simulated scenario with three agents is similar but slightly
lower (obviously because of the battery faults) than the pre-
vious experiment. The results are compared in table 4. As the
DDQL is trained with the new battery situation, it overcomes
the results of a DDQL non trained for this situation and
achieves better maximum and average rewards than the non-
trained algorithm.

VI. IMPLEMENTATION OVERVIEW
In the real case scenario, a fleet of three ASVs will be
available for the patrolling task. Every agent knows its posi-
tion thanks to a differential GNSS system5 which provides

5https://emlid.com/reachrs/

TABLE 4. Results after 100 experiments: (Situation A) Batteries enabled
with DDQL trained for this situation, (Situation B) Batteries enabled with
DDQL not trained for this situation, (Situation C) Batteries disables with
DDQL. The Rloss is calculated as the relative difference between every
enabled-battery case and the ideal non-battery situation.

sufficient accuracy to control the agent with a 10 cm error
in position. The ASVs communicate with a central beacon in
one of the landing points with a LoRa WAN communication
technology.6 For the processing of the state and the comput-
ing of the desired action for every agent, they connect to a
server deployed in a Amazon Web Service (AWS) using a
4G module. This server receives continuously the position of
the fleet and synthesises the state. The server can be requested
from every agent the next optimal position and it will respond
with the computed Q-values using the trained network (see
Fig. 20 for a connection scheme). The water quality sensor
data is also sent to the base station via the web server.

FIGURE 20. Implementation diagram for every agent. This diagram is the
same for every agent available all connected to the same Web Server
through 4G.

Once the next action is selected for every agent, the Rasp-
berry Pi 4 sends the next waypoint to the Navio autopilot.7

The autopilot is in charge of generate a local path from the
actual position to the next reference position by interpolat-
ing and acting on the motors. The Raspberry Pi 4 is also
used for the different sensors: LIDAR, Camera, water quality
sensors. . .The LIDAR and Camera will serve the purpose of
avoiding minor obstacles for the local path planning (buoys,
etc). In case a movement to the desired cell is not possible

6https://lora-alliance.org/
7https://navio2.emlid.com/
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(restricted access due to possible constructions works or sim-
ilar), the network will provide also the Q-values for a sub-
optimal selection (the second highest Q-value).

A. DISCUSSION OF THE RESULTS
Given the previous results, it is possible to discuss the follow-
ing considerations:

1) The Deep Reinforcement Learning proposed approa-
ches are able to learn the dynamics of the environment
and solve the Patrolling Problem with higher rewards
than the LMT. The learning process results in policies
that overcome the LMT solutions on average rewards
for every fleet size by a 15%with DDQL and 17%with
Dueling. This shows not only the DRL approach is able
to optimize the performance in this problem but also to
adapt to different scenario dynamics.

2) Our proposed approach is more efficient than the com-
pared IDQL because it takes advantage of the agents
experiences being equivalent. As the agents experi-
ences can be shared, the individual layers can use only
one memory replay based on the common experiences.
This results in a training 3 times faster in the DDQL
case and 2 times faster in the Dueling case respect to
the IDQL method. The trajectories of IDQL, in spite
of being also acceptable in terms of the metrics, are
slightly worse with N = 1 and N = 2 respect the
Dueling architecture (by 18% and 5% on average for
each case). For N = 3 and N = 4, the proposed DDQL
algorithm overcomes the IDQL on average by a 3% and
2% respectively.

3) The slightly improvement respect to IDQL is achieved
with N less gradient steps as our approach centralize
the learning. In an online learning or in an retraining,
our approach is very convenient because of the learning
efficiency.

4) In the enabled-battery situation, the DDQL approach
has also proven to be convenient for inferring a good
policy in case one or more ASVs are unavailable for
the patrolling task. After the training, the new policy is
able to adapt the previous behavior in order to cover the
available areas reducing the reward loss on average by
a 33% respect the non-trained case.

VII. CONCLUSION
Deep Reinforcement Learning algorithms are powerful
methodologies for the resolution of stochastic and high-
complex scenarios. The Ypacaraí Lake monitoring task has
been proven challenging because the enormous dimensions
and the need of an effective and non-homogeneous coverage.
When addressing the multiagent case, the high number of
different possible paths makes the problem unfeasible for the
conventional methodologies and DRL brings the possibility
to deal with the scenario only with an RGB representation of
it. The Value Iteration methods like Double Deep Q-Learning
and Dueling Deep Learning has been proven very efficient

in the resolution of such problems: there is no need of a
previous model of the environment since it can adapt robustly
to different dynamics and interactions.

The multiagent case with these methods is approached by
a centralized convolutional neural network to extract the fea-
tures for the agents to choose their actions. As every agent has
its own independent neural network in parallel and because
they are equivalents in their actions, the proposed architecture
achieves higher rewards in most of the cases respect to the
Independent Q-Learning counterpart. Besides, it has been
demonstrated that the proposed Dueling architecture achieves
better results in the single agent case. Furthermore, the pro-
posed DDQL architecture is 3 times faster in learning as it
uses a common experience replay and takes less optimization
steps and the proposed Dueling architecture achieves better
results with less agents

The achieved results overcomes the common approaches
for path planning such as lawn mower trajectories since
the optimized policy learned effectively to move to the
high idle zones with high importance. This behavior can be
also achieved when the battery is simulated: after training,
the agents can generalize the policy and overcome a situation
in which several agents fault. The results show an improve-
ment of the achieved reward respect to the agents not trained
for this kind of situation.

For future works, it is planned to explore other Reinforce-
ment Learning methodologies as Policy Iteration to address
a particular case of the multiagent exploration task: the par-
tially observable scenario. The Partially Observable Markov
Decision Process will be studied using recurrent networks
like Long Short Term Memory (LSTM) for the temporal
dependencies in the state inferring. In this regard, a further
analysis of wireless connectivity fault-tolerant methods will
be interesting, as the proposedmethod only focused in battery
faults and not in communication errors. This is a particular
and interesting case because the assumption of an always
available connection can be violated in a real implementation.
Thus, mechanisms for estimating the movement of other
agents based on the previously mentioned RNN could serve
this purpose.

Other interesting direction is the use of Bayesian Neural
Networks not to minimize the idleness of the zones but
also to include uncertainties in the optimization process, like
possible obstacles or non-modeled algae-blooms. With this
approach, it is considered also interesting to enhance the
speed of learning by developing a model-based methodology.
As the scenario can be modeled easily with a sufficiently
accurate simulator, a further research with this kind of meth-
ods could be very interesting. Finally, it will be studied how
the different resolutions of the state domain affects the per-
formance by conducting a comparison between Deep Rein-
forcement Learning and Genetic Algorithms.
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