
A Practical Approach of Web System Testing

Javier Jesus Gutierrez, Maria Jose Escalona, Manuel Mejias and
Jesus Torres

Department of Computer Languages and Systems. University of Seville,
Spain. (javierj, escalona, risoto, jtorres)@lsi.us.es

Introduction

The process of testing software system is gaining more importance every
day [6]. Software applications are growing in size and complexity quickly.
It makes more necessary to dispose techniques to assure quality of the sys­
tems and that the result satisfied initial specifications [l].

Assure the quality of the system is very important in web engineering.
First web systems, at the beginning of nineties, had a simple design based
on static HTML pages. Nowadays, web systems are built applying hetero­
geneous technologies like client-side scripting languages included into
HTML, client-side components like Java applets, server-side scripting lan­
guages like PHP or PERL, server-side components like Java Servlets, web
services, databases servers, etc. All these heterogeneous technologies have
to work together, in order to obtain a multi-user and multi-platform appli­
cation. The design, maintenance and test of the modem web applications
have many challenges to developers and software engineers [7][13].

Internet and web systems also bring to developers a new and innovative
way to build software. Internet allows millions of users to access to an ap­
plication [7]. Thus, problems in a web application can affect to millions of
users, cause many costs to the business [13] and destroy a commercial im­
age. For all these reasons, quality assurance and software testing acquire a
vital importance in the web system development.

This work introduces theory and practice about the generation and im­
plementation of system test cases in web applications. This work presents
a complete vision of system testing showing how to put in practice the
ideas exposed. Section 2 defines the process of software testing and studies
in depth system testing process and how it can be applied to web develop­
ment. Section 3 shows a practical case of generation and implementation
of system test cases. Finally, section 4 resumes conclusions and future
works.

System Testing over Web Systems

This section describes the process of software testing, studies the process
of system testing in depth, from the point of view of web engineering and,
finally, describes briefly a proposal to generate system test cases in a sys­
tematic way. This approach will be applied in the practica! case described
in section 3.

An Overview of Software Testing Process

The process of software testing cannot be done at the end of the construc­
tion of the system, neither expecting to test the whole system ant one time
[2]. The process of software testing has to be divided into sub-process.
Every sub-process indicates which elements must be tested and the mo­
ment to perform every test. The sub-process might be applied when first
elements under test are available. One possible division in sub-process
widely accepted is showed in figure 1 [9].

System
requlrements

Verlfles
Acceptance

testlng

Verifles

1 1 �
re
-

q!
_

r!

_

t
=

_

n

_

ts
�

••----------1 System testlng
/

¡

Components
lnteractlon

Components
In lsolatlon

Verlfles
q

-;;
lntegratlon �

testlng

Unlt testlng

Fig. 1. Software testing process

Unit testing is done during building of software system [8]. Their objec­
tives are the verification of the design and the functionality of every com­
ponent in the system. Integration testing is done during the building of
software system. Their objectives are the verification of the union among
system components through their interfaces and their functionality. System
testing is done after building of software system. System testing answer

the question: is the entire system working to deliver the user goals? [17].
Acceptance testing is done after software system implantation. Their ob­
jectives are the verification that system covers all requirements expected
and satisfies the needs of the users.

In figure 1 another kind of testing, regression testing, is lost. It was not
included because they are not perf ormed during the development of the
system. Regression testing are applied during the maintenance of the sys­
tem to accurate that the changes <loes not introduces unexpected errors in
unmodified elements.

Testing process described in figure 1 might be applied to all types of
software system: desktop applications, client-server applications, mobile
applications, etc. In the specific case of web systems, it is needed to ar­
range specific techniques, like separate client-side and server-side compo­
nents, and specific tools, like HTML validation tool, to web applications
that allows to apply this process.

Next section describes in depth the process of the software system test­
ing and how it must be applied in web projects.

System Test Process

Unit and integration testing guarantees an error-free code, or, at least, that
the code has not the most important or common errors, due of the fact that
it is impossible to test the whole code in depth [2]. However, unit and inte­
gration testing are not enough to assure the quality of the system. It is pos­
sible to have an error-free code that <loes not satisfy the expectative or the
needed of the system final users. This one makes necessary a system test
phase. This phase will be performed after unit and integration test phases,
and when first system requirements are completely implemented.

An important rule that can be applied in all phases of software testing
process is that testing must begin as soon as possible [12]. Due the cost of
time and resources needed to correct an error increases at same time than
time between the apparition and the detection of that error, it is vital to de­
tect all errors as soon as possible. In system test cases, system is verified
like a black box. Thus, system tester have to wait until the system is built,
or, at least, until sorne requirements are fully implemented. An imple­
mented requirement means that all elements needed to perf orm that re­
quirements from the user point of view, like user interfaces, persistent lay­
ers, databases, etc, are implemented. However it is possible to advance
definition and design of system test cases to early development phases.

In [4] a group of representative proposals of early testing are described,
analyzed and compared.

The process of generation of system test cases from functional require­
ments consists in build a use model of the system from its requirements,
and, later, to generate a set of input values, a set of events or interactions
among system and users or actors, and the expected results [5]. The evolu­
tion of methodological proposals to drive this process has been focused in
how to build and represent the use model.

There are works, like [11], that propose new kinds of requirements spe­
cific for web development, like actors' requirements, adaptability require­
ments or navigational requirements. However, functional requirements are
still playing a very important role in web systems, but must be comple­
mented with other types of requirements like navigational or information
requirements.

Functional requirements should be independent ofthe implemented plat­
form or the architecture of the system in early development phases. Thus
functional requirements must not include any reference to any platform,
like web or standalone platform. Due this fact, methodologies to generate
system test cases from requirements are also applied in web systems. An
example of integration of a process to generate system cases into a web
development methodology can be found in [9]. Test cases are, also, inde­
pendence of the complexity ofweb interfaces.

Next section describes a possible approach to generate automatically
system test cases. This process is applied in the practica! example in sec­
tion 3.

A Proposal to Generate System Test Cases from Requirements

Descriptions of functional requirements are the main artifact to the design
of system test cases [5]. N owadays, there are a big number of proposals to
systematize this process. A complete survey about these proposals is pre­
sented in [4].

This section introduces briefly the fundaments of a systematic proposal
to generation of system test cases from use cases. This proposal has been
development from the conclusions of comparative studios and analyzes of
several existing proposals, like [4]. The generation of test cases is showed
in figure 2 with an activity diagram [14]. It starts with the enumeration and
the description of the observable results. An observable result is anything
that can be automatically or manual checked, like a system screen, a new
stored, modified or deleted record, a received message by other computer
or server, etc. In conclusion,

In second step, all possible execution paths are identified. An execu­
tion path is a description ofthe interactions among system and one or more
actors to obtain one of the results identified in previous activity.

After identifying all the execution paths, all needed values for each path
must be identified. A valid value is a data or precondition that applied to
an execution path allows obtaining the expected result.

In the last step, all redundant execution paths must be removed. An
execution path is redundant when there is other equal path or when it is in­
cluded into other path, with the same values, and the same results are ob­
tained.

ldentify observable results

ldentify execution paths

Assign a set of values to each path

Erase redundan! paths

Fig. 2. Activity diagram to generate system test cases

This proposal can be applied in parallel with identification and defini­
tion of requirements. In the next section, we are going to put in practise
this proposal in order to generate a set of system test cases for a simple ex­
ample.

A Case Study

In order to explain in a detail way the approach presented in the previous
section, in this section we are going to apply it in a real project.

System Description

This section describes a simplified web application that we use like a sim­
ple example in next sections to apply the presented approach. The objec­
tive of this web system is to manage the information about customers in a
business. Concretely, the selected example is the functional requirement:
''System must allow that one registered user inserts new customers into
customers database". It indicates that the system has to allow to add new
costumers.

This requirement is too basic and ambiguous to be directly imple­
mented. Thus, the requirement has been refined and splitters in two use
cases. The first use case describes the process to access into the system and
the second one offers the way to insert a new customer. Both use cases are
graphically showed in the UML use case diagram [14) in figure 3 and de­
scribed textually in table 2 and 3.

Customer management

Fig. 3. Use cases to insert new customers

In order to describe deeply each requirements. We will use a pattems,
that is a special template, described by the proposals NDT (Navigational
Development Techniques) [11]. NDT is a methodological proposal to
drive the requirements and analysis phases in a web system development.
NDT also includes a support tool called NDT-Tool [10]. For instance, the
pattem for the firs use cases is presented in table 2.

Using a similar pattem for the other use case, the requirements can be
implemented in a web application. In our wor, Technologies used in the
implementation were HTML and JavaScript, to define the user interfaces,
and PHP to define the business logic and data access. This web application
is composed of two main forms: the first one controls the access to the sys­
tem, and the other one inserts new customers. Figures 4 shows the first
one.

Table l. Textual description for the use case "Access to the system"

FR-0 I Access to the system
Description The system has to manage the access to the system and

verify the identity of each doctor. For that, it has to play
like it is describe in this use case.

Normal execution Step Action

Post-condition
Exceptions

User login screen

I An user tries to access to the system
2 System asks for identifier and password.
3 User gives the system this information.
4 If this information is correct, the system allows the

user the access, and its continue with use case FR-
02.

None
Step Action
3 If identifies does not exist and the number of

attempts is less than 3, system shows a message
telling that user name does not exists and asks it
again.

3 If password does not match with the user password
and the number of attempts is less than 3, system
shows a message telling that password is invalid and
asks it again.

3 If identifier does not exist or password does not
match and the number of attempts is 3 or bigger,
system shows a message and denied aecess to the
s stem.

Valid user name
and password

Fig. 4. Access to system screens

Unit and integration testing have already been successfully performed.
Next section shows how to generate a set of test cases from the require­
ments of this application.

System Test Cases Generation

Previous section has showed a proposal to generate system test case from
functional requirements expressed like use cases. In this section, that pro­
posal will be applied to generate test cases from use cases described. These
test cases will verify the success implementation of the requirement de­
scribed in table 1 into the web application.

··-·- , __ Attemp) 1 I.Attempt_2_JAttemptJ.__
[1] +

A , [11 A ¡ A -Access anowed.

A �--�=�5s��:��
d

.;_,ith invalid name
IN IN 121 IN -D message.

[31 IP _ 0 IP -Login screen with invalid

1
d

A
password message.

IP
\.LÁ IN - D [1] - Valid name and

f ¡1¡ IP -D password.
A -Ei1¡ [2] - !nvalid name. 131 A [3] - [nvalid password.

IP IN 21 IN-O

11P�::�:

j
�IP-D

Fig. 5. Execution paths from "Access to system" use case

The simplest way to find execution paths is to explore all combinations
among steps described in a use case. Figures 5, for instance, shows execu­
tion paths that cover all combinations of steps. They include the normal
execution sequence and the altemative execution sequences. From the
"Access to system" use case, twenty-one execution paths are generated.

It is more difficult to study the number of possible combinations in the
"Insert customer" use case. In theory, an infinite number of executions
paths are possible, for instance, "do not writing a mandatory field". In our
cxample, we are going to suppose that this scenario can appear just one
time, in order words, a mandatory field could be empty just the first time.
Applying this supposition, from the "Insert customer" use case, , seven
execution paths are generated.

Calculating all possible combinations between both use cases, 21 x 7 =
147 execution paths are generated. This number is too high in order to im­
plement one test from each possible execution path. We will choose a rep­
resentative subset of paths only to be implemented as system test cases. lt
is out of the scope ofthis work to show the criterions to select the adequate
paths to be implemented as test cases. Several algorithms for select paths
can be found in [15] and [16]. Sorne heuristics and guides can be applied
in order to sure the quality of the election. Next paragraphs describe the
chosen paths.

The objective of system test cases is to verify the success insertion of a
new customer. The only way to access to insertion customer form is from
user login screen. So, the entire test includes a valid login, in other words,
a success path through the use case in table 2.

Table 3. Executions paths

Execution path description
Write a valid name and password.
Write a valid customer.

Observable result.
Customer inserted
screen.

2 Write a valid name and password. Customer inserted
screen. Write a valid customer without a mandatory field.

Write the mandatory field.
3 Write a valid name and password. Customer error

screen. Write an existing customer.

Path
l 2, 3

1, 3

2

Values set
Valid login.

Valid customer.

Valid customer
without a
mandatory field.

Table 4. Test values

Concrete values.
Name: validname
Password: validpassword.
Customer : customer name
Activity : customer _ activity
Address : customer address
City : customer _ city
Postal code : customer _postalcode
T elephone : customer _ telephone
Customer : customer name
Activity : customer _ activity
Address : <empty>
City: customer_city
Postal code : customer _postalcode
Telephone : customer telephone

Database server is an extemal component to web system, but it is also
need to perform the requirement. Thus, to accurate that any error is pro­
voked just only into the system and not into extemal components, all test
cases assume that database server components is always running and al­
ways process successfully the operations requested.

Execution paths selected to be implemented as system test cases are
showed and described in table 3 and table 4.

To study in depth all possible combinations of every use case separately
from other uses cases is useful in order to verify the implementation of
cvery use case in isolation. However, at the time to verify a requirement
composed of several use cases, it is better to choose a subset that verifies
the whole functionality of that requirement.

Test Case lmplementation

This section shows how to implement the test generated in section 3.2. to
be executed over the example web application. We have searched for an
open-source tool that facilities the implementation task. The characteristics
searched in the tool were: possibility to describe the operations performed
in every test case and possibility to compare the results with the expected
results.

There are two kind of testing tools. Tools that record and replay a se­
quence of actions and tools that offers an API to write code that simulates
a user interaction.

API tools are more flexible, rninimize the maintenance of test cases and
allow easily testing web system that retums big, dynamic or complex web
pages. We have chosen HttpUnit [3] from all available tools. lt is out of
the scope of this work to explain how to implement a test with HttpUnit.

The code implements the first execution path in table 4 will have the
next steps: l . Connect to web server, 2. Ask for login page. 3. Verify that
received page is login page. 4. Write a valid user and password and press
submit button. 5. Verify that received page is customer forro. 6. Write a
new valid customer and press submit button. 7. Verify that received page
is ok page.

Conclusions

This work has described the process of software testing, applying over web
applications. This work has also showed the needs that become necessary
to perform system testing. A methodological proposal to generate system
test cases from functional requirements has been briefly described.

System test cases are written from functional requirements. Thus, sys­
tem test cases are independent of the type of system or architecture under
developmcnt. Ali proposals to generate system test cases from require­
ments might be applied to web systems. Design of software testing can
also start as soon as first requirements are available. Planning and design
of software test cases in early development phases performs and additional
validation over the system requirements, allowing to detect errors, omis­
sions, incongruences and even overspecification or, in other words, too
much requirements. Correcting errors detected in early development
phases are easy and economic because the cost of correct errors increases
in the same way that time between apparition and detecting increases [4].

All the ideas exposed in first sections of this work, have been applied in
a practica! case of study. In this case of study, a set of system test cases
have been generated and implemented from a real web application. This
example also shows how is possible to use different technologies and lan­
guages in the development of web applications without integration prob­
lems. Concretely, languages used in web application example have been:
JavaScript, HTML and PHP, and language of the tool to test the applica­
tion has been Java.

System testing can be completed with another types of tests, like per­
formance, reliability [17) and navigability [18] tests.

An investigation line open is to study the integration of the generation of
system test cases into a web development process. First ideas can be found
in [9]. Another line of investigation is to automate the generation process
and integrate it into a CASE tool like [10). Construction of web system in­
volves many types of non-functional requirements very important, like
navigation requirements [11]. Another line of investigation open is to de­
velop another generation process to be applied over non-functional re­
quirements.

References

[1] Ash L (2003) The Web Testing Companion: The Insider's Guide to Efficient
and Effective Tests. John Wiley & Sons, Hoboken, USA

[2] Binder Rober V (1999) Testing Object-Oriented Systems. Addison Wesley
[3] HttpUnit. http://httpunit.sourceforge.net/
[4] Gutiérrez, JJ, Escalona MJ et-al. (2004) Comparative Analysis OfMethodo­

logical Proposes to Systematic Generation Of System Test Cases From Sys­
tem Requisites. SE'04 Workshop, Paris France

[5] Jacobs F (2004) Automatic Generation of Test Cases From Use Cases.
ICSTEST'04. Bilbao Spain

[6] Pankaj J (2002) Software Project Management in Practice. Addison Wesley
USA

[7] Offutt J et-al. (2004) Web Application Bypass Testing. 15th IEEE Interna­
tional Symposium on Software Reliability Engineering ISSRE. Saint-Malo
France

[8] Link J, Frohlich P (2003) Testing in Java: How Tests Orive the Code. Mor­
gan Kaufmann Publishers USA

[9] Escalona MJ et-al. (2004) Testing Methods Applied In Web Requirement
Engineering with NDT. IADIS WWW/Internet 2.004. 353-360

[10] Escalona MJ et-al. (2003) NDT-Tool: A Case Tool to Deal with Require­
ments in Web Information Systems. ICWE'03. Oviedo Spain

[11] Escalona MJ (2004) Models and Techniques to Specify and Analyze Naviga­
tion in Software Systems. Ph. European Thesis. Department of Computer
Languages and Systems. University of Seville. Seville Spain
www.lsi.us.es/-escalona/files/reports /tesis. rar

[12] Magro B, Garbajosa J et-al. (2004) Automated Support for Requirements and
Validation Tests as Development Drivers. Proc of the 3rd workshop on Sys­
tem Testing and Validation. pp 9-18. Paris France

[13] Wu Y, Offutt J, Du X (2004) Modelling and Testing of Dynamic Aspects of
Web Applications. Submitted for journal publication

114] 2003. OMG Unified Modelling Language Specification 2.0
[15] Nebut C et-al. (2003) Requirements by Contract Allow Automated System

Testing. Proc of the 14th International symposium of Software Reliability
Engineering (ISSRE'03). Denver Colorado EEUU

[16] Nebut C et-al. (2004) A Requirement-Based Approach to Test Product Fami­
lies. LNCS. pp 198-210

[17] Cohen F (2004) Java Testing and Design. Prentice Hall USA
[18] Ricca F, Tonella P (2001) Analysis and Testing of Web Applications. 23rd

lnternational Conference on Software Engineering. Toronto Canada

	A Practical Approach of Web System Testing
	Introduction
	System Testing over Web Systems
	An Overview of Software Testing Process
	System Test Process
	A Proposal to Generate System Test Cases from Requirements

	A Case Study
	System Description

	System Test Cases Generation
	Test Case Implementation

	Conclusions
	References

