
fevo-09-629756 May 21, 2021 Time: 11:59 # 1

REVIEW
published: 26 May 2021

doi: 10.3389/fevo.2021.629756

Edited by:
Ana Novoa,

Institute of Botany (ASCR), Czechia

Reviewed by:
Jonathan Tempesti,

University of Pisa, Italy
Giuseppe Suaria,

National Research Council (CNR), Italy

*Correspondence:
José Carlos García-Gómez

jcgarcia@us.es
Marta Garrigós

mgarlopb@gmail.com
Javier Garrigós

fjavgarlop@gmail.com

Specialty section:
This article was submitted to

Biogeography and Macroecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 15 November 2020
Accepted: 18 March 2021

Published: 26 May 2021

Citation:
García-Gómez JC, Garrigós M

and Garrigós J (2021) Plastic as
a Vector of Dispersion for Marine
Species With Invasive Potential.

A Review.
Front. Ecol. Evol. 9:629756.

doi: 10.3389/fevo.2021.629756

Plastic as a Vector of Dispersion for
Marine Species With Invasive
Potential. A Review
José Carlos García-Gómez1,2,3* , Marta Garrigós2* and Javier Garrigós2*

1 Laboratorio de Biología Marina, Facultad de Biología, Universidad de Sevilla, Seville, Spain, 2 Área de Investigación I+D+i
del Acuario de Sevilla, Seville, Spain, 3 Estación de Biología Marina del Estrecho, Ceuta, Spain

Plastic debris constitutes up to 87% of marine litter and represents one of the most
frequently studied vectors for marine alien species with invasive potential in the last
15 years. This review addresses an integrated analysis of the different factors involved
in the impact of plastic as a vector for the dispersal of marine species. The sources
of entry of plastic materials into the ocean are identified as well as how they move
between different habitats affecting each trophic level and producing hot spots of plastic
accumulation in the ocean. The characterization of plastic as a dispersal vector for
marine species has provided information about the inherent properties of plastics which
have led to its impact on the ocean: persistence, buoyancy, and variety in terms of
chemical composition, all of which facilitate colonization by macro and microscopic
species along with its dispersion throughout different oceans and ecosystems. The
study of the differences in the biocolonization of plastic debris according to its chemical
composition provided fundamental information regarding the invasion process mediated
by plastic, and highlighted gaps of knowledge about this process. A wide range of
species attached to plastic materials has been documented and the most recurrent
phyla found on plastic have been identified from potentially invasive macrofauna to toxic
microorganisms, which are capable of causing great damage in places far away from
their origin. Plastic seems to be more efficient than the natural oceanic rafts carrying
taxa such as Arthropoda, Annelida, and Mollusca. Although the differential colonization
of different plastic polymers is not clear, the chemical composition might determine the
community of microorganisms, where we can find both pathogens and virulent and
antibiotic resistance genes. The properties of plastic allow it to be widely dispersed in
practically all ocean compartments, making this material an effective means of transport
for many species that could become invasive.

Keywords: plastic debris, alien species, marine exotic species, plastic dispersion, marine ecosystem, non-
indigenous species

INTRODUCTION

Marine ecosystems around the world are threatened by several factors related to human activity
(Ibabe et al., 2020), such as biological invasions (Ojaveer et al., 2015). Invasive species generally have
a strong influence on the invaded environment, altering the structure of the community and the
functions of the ecosystem, through competition with native species (Bertness, 1984), introduction
of pathogens (Rilov and Crooks, 2009b), or indirect changes in habitat conditions (Crooks, 2002).
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The exponential increase in the rate of invasive alien species
(IAS) over the last decades has stimulated the study of biological
invasions (Seebens et al., 2017), especially in the marine
environment, which has received less attention compared to
the terrestrial one (Davis, 2000; Katsanevakis et al., 2014). In
addition to traditional marine vectors (biofouling and ballast
water), which gained importance with the development of
commercial shipping (Carlton, 1987; Clarke Murray et al., 2014),
new challenges were added to the study of dispersion factors,
such as plastic materials (see Audrézet et al., 2020; previous
and complementary article of this review, mainly focused on
the biosecurity of marine plastic debris and the knowledge
gaps and research priorities that exist on this topic), other
materials derived from aquaculture or aquarium hobbies (Rilov
and Crooks, 2009b; Walters et al., 2011).

Plastic is a potential dispersal vector of marine species (Rech
et al., 2016). It is the most common marine debris, constituting
61–87% of all types of marine debris (Eriksen et al., 2014;
Serra-Gonçalves et al., 2019), and is considered as one of the
major threats to marine biodiversity (Avio et al., 2017). Plastic
production has increased exponentially in the last 60 years,
from 0.5 million tons in 1960, to almost 300 million tons
in 2013 (PlasticsEurope, 2014) and 360 million tons in 2018
(PlasticsEurope, 2018). About 10% of plastic production has been
introduced into marine ecosystems (Thompson, 2006) through
land-based sources such as rivers, storm drains (Moore et al.,
2011), urban runoff, sewage discharge, effluents from plastic
manufacturing factories (Eerkes-Medrano et al., 2015), landfills
or recycling points (Alomar et al., 2016), coastal areas due to the
action of the wind, illegal dumping, fishing, and other human
activities (Derraik, 2002). van Sebille et al. (2015) estimated that
microplastics (MPs) in the oceans have reached 52.2 × 1012

particles, 236,000 metric tons, mainly distributed in the centers
of the subtropical gyres.

The global distribution, buoyancy, and high levels of
colonization of plastic debris greatly facilitate the transport of
microbial communities (Carson et al., 2013), algae, invertebrates,
and fish (Goldstein et al., 2014) to non-native regions (Barnes,
2002). Marine plastic debris is not only a threat to marine
wildlife, but also causes significant economic and ecological
damage (Keswani et al., 2016) acting both as a vector for the
primary introduction of alien species into remote regions, and as
a secondary vector for the regional expansion of marine species
(Rech et al., 2016; Audrézet et al., 2020).

Several gaps remain to be filled regarding the potential of
plastic as a species vector. For example, the harmonization
of methodological approaches to study marine litter in
different environmental compartments (Galgani et al., 2019)
or the impact caused by the secondary propagation, which
is not yet sufficiently documented (National Oceanic and
Atmospheric Administration Marine Debris Program, 2017).
Also, understanding the biosecurity implications associated
with plastics could be a vital step toward understanding,
monitoring, and eventually mitigating its impacts on a global
scale (Audrézet et al., 2020).

This work aims to identify the dispersal potential of plastic as
a vector for alien species introductions and to compare it with

other vectors, as well as to expose the qualitative composition
of the communities that inhabit plastic debris. On the other
hand, we attempt to synthesize the methodological aspects of
the detection of AIS introduced through plastic debris and the
prevention of their negative impacts.

METHODOLOGY

Scientific literature published in the last 30 years (1990–2020)
was collected from Science Direct, Scopus, Web of Science,
and Google Scholar scientific databases, and the most widely
consulted publishers and/or scientific internet networks were
Elsevier, Springer, ResearchGate, Wiley Online Library, Dialnet,
and Academia. The keywords related to invasive species in
the ocean, especially those carried by plastic debris, were
used in the title and keywords field: “Alien Species,” “Ballast
Water,” “Biofouling,” ”Ecology,” ”Ecosystem,” “Impact,” “Invasive
Species,” “Marine,” “Management,” “Microplastics,” “Ocean,”
“Plastic Debris,” “Rafting,” “Sea,” “Threat,” “Transport,” “Vector,”
and “Waste.” The searches were conducted mostly in March 2020
on the full range of articles or reviews available at that time. The
last search was made on April 20, 2020.This initial search yielded
a total of 447 articles which included information on invasive and
potentially invasive species in the ocean and different dispersal
vectors. In this preliminary library, a pre-selection step was
carried out according to the presence of at least one of three
criteria: (1) articles focused on the impact caused by one or more
invasive marine species; (2) articles focused on the management
of the invasion of one or more marine species; or (3) articles that
include both concepts. After applying these selection criteria, 228
articles were obtained, of which 48 were discarded after analysis
because they were not directly related to the topic with respect
to the sections considered in the manuscript. Therefore, most of
the information presented in this paper was extracted from 180
scientific publications. In addition, other articles named in the
literature and previously known to the authors due to their high
topic relevance were used for the review.

Selected articles were classified according to the dispersion
vector(s) (Plastic Debris, Boat hulls (biofouling), Climatic Events,
Ballast Water, Aquaculture, or General), their publication date
(1990–2005 or 2006–2020), and the aspect addressed: Impact
(I), Management (M) or Impact+Management (I+M). Impacts
included articles focused on describing the impacts produced by
alien species, and Management included articles focused on the
management of these impacts. We separated the last 30 years
into two bands to appreciate the differences in the efforts made
by scientists regarding different topics in the near past and at
present. On the other hand, the label “General” was included for
those papers that covered more than one vector.

For the invasive or potentially invasive species listed in
Table 1, it was specified whether they were sessile or no
sessile, in order to draw conclusions about the biology of the
species inhabiting plastic. Also, it was specified the transport
vector for which they were identified (Plastic Debris, Boat
hulls (biofouling), Climatic Events, Ballast Water, Aquaculture,
Aquariums, or Transoceanic Channels/Swimming). The native
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FIGURE 1 | Percentage of alien marine species introduced by different dispersal vectors on a global scale (see Table 1 for details).

and non-native locations of the invasive and potentially invasive
species were indicated.

Moreover, other relevant information was extracted from
the selected and related articles such as plastic as a vector,
different types of plastic and how their characteristics affect the
colonization of macro and microscopic marine species, recurrent
species transported by plastics, associated microorganisms
dispersion and species and dispersal patterns of plastic
in the ocean and how they can influence horizontal and
vertical transport.

PLASTIC DEBRIS COMPARED TO
OTHER DISPERSAL VECTORS

With respect to the total number of articles, the labels that
yielded the highest number of selected articles were “Boat
hulls (biofouling) and Ballast Water” including I, M, and
I + M, with 40 and 31 papers, respectively, followed by
“Plastic Debris, Aquaculture and Climate Events” (21, 21, 15,
respectively) (Figure 1).

In the last 15 years, the most frequent labels were “Plastic
Debris-Impact,” and “Biofouling – Management” with 19 articles
each. No articles were selected between 1990 and 2005 for
the labels “Plastic Debris” and “Aquaculture.” There was also
a great difference in the number of research papers on the
management of invasive species from the dispersal vectors “Boat
hulls (biofouling)” and “Ballast Water,” and the vectors “Plastic
Debris,” “Aquaculture,” and “Climatic Events.”

Of the 216 exotic species identified in the present study
(Table 1), 68% were considered to have been introduced through
maritime transport, divided into the categories “Boat hulls
(biofouling)” and “Ballast Water,” followed by dispersal as a
consequence of the “Aquaculture” (16%), and “Plastic debris”
(5%) (Figure 2).

This result is to be expected, as commercial shipping as a
cause of IAS dispersal has been cited long before other vectors
such as plastic (e.g., Carlton, 1987). Although it is a more recent

problem, we consider that the studies on plastics as an IAS vector
were quite important between 2005 and 2020. Furthermore, it
is expected that the number of papers on plastic as a vector
of species will increase in the coming years, as its production
increases every year and it is currently an emergent topic.

CHARACTERIZATION OF PLASTIC AS A
VECTOR

Plastic debris abundance (Winston et al., 1997), artificial origin
(Glasby et al., 2007; Pinochet et al., 2020), and properties can
affect its potential to act as a vector of IAS: durability, buoyancy
(Schoener and Rowe, 1970), size, and structural complexity
of the surface determine colonization by marine organisms
and the succession of the community associated with plastic
debris, with differences in the sessile and mobile organisms
(Kiessling et al., 2015).

The increasing introduction of plastic pollution into the
ocean increases the chances for alien species to become invasive.
For example, the bryozoan Electra tenella [Hickins, 1880; this
name is currently not accepted and it is Arbopercula tenella
(Hickins, 1880)] previously identified on natural rafts, may be
increasing in abundance and distribution due to the increasing
amounts of plastic entering the Caribbean currents and the
Gulf Stream (Winston et al., 1997). Natural rafts (eg, wood,
pumice, and marine vegetation) are generally characterized by
low or patchy abundance, limited longevity, and relatively high
habitability, due to high surface roughness, structural complexity,
and biodegradability (Gil and Pfaller, 2016). Compared to
natural rafts, the abundance of plastic debris is increasing
(Ebbesmeyer and Ingraham, 1992), and its longevity generally
exceeds that of natural debris, taking decades or even centuries
to be degraded (Gregory, 1999). The durability of plastic
along with its buoyancy in comparison to organic materials
(Schoener and Rowe, 1970) allows a greater dispersal potential
for organisms that colonize plastic debris (Barnes, 2002; Barnes
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TABLE 1 | Compilation of invasive and non-native species which have been introduced or transported into areas far from their origin by the following dispersal vectors: Plastic, boat hulls (biofouling), ballast water,
aquaculture, aquarium, and transoceanic channel/swimming.

INVASIVE and Boat Climate Ballast Transoceanic Native Non-native or

potential hulls events water channels/ location invaded

invasive species Plastics (biofouling) Aquaculture Aquariums swimming location References

Algae (34)

Acrothamnion preissii
E.M.Wollaston, 1968

X X X Indo-Pacific (Australia) Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Agardhiella subulata
(C.Agardh) Kraft and M.J.
Wynne, 1979

X Atlantic North America United Kingdom Eno et al., 1997

Anotrichium yagii
(Okamura) Baldock, 1976

X Japan Argentina Horta and Oliveira, 2000

Antithamnionella
spirographidis
(Schiffner) E.M. Wollaston,
1968

X Mediterranean Sea United Kingdom Eno et al., 1997

Antithamnionella
ternifolia
(J.D.Hooker and Harvey)
Lyle, 1922

X Australia United Kingdom Eno et al., 1997

Asparagopsis armata
Harvey, 1855

X Western Australia New
Zealand

European coasts Northeast
Atlantic Mediterranean Sea
South Africa Middle East
Indo-Pacific

Pinteus et al., 2018

Bonnemaisonia hamifera
Hariot, 1891

X Northwest Pacific Europe Katsanevakis et al., 2014

Caulerpa cylindracea
Sonder, 1845

X X Indo Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Caulerpa ollivieri Dostál,
1929

X X Mediterranean Sea Bahamas Williams, 2007

Caulerpa taxifolia
(M.Vahl) C.Agardh, 1817

X X Pacific Ocean Mediterranean Sea Occhipinti-Ambrogi and
Savini, 2003

Codium fragile
tomentosoides (1)
(van Goor) P.C.Silva, 1955

X X X Japan Northwest Atlantic Williams, 2007

Codium fragile
atlanticum
(A.D.Cotton) P.C.Silva,
1955

X Pacific coast of Japan United Kingdom Eno et al., 1997

Colpomenia peregrina
(2)
(Sauvageau) Hamel, 1937

X Pacific coast of North
America

United Kingdom Eno et al., 1997

Durvillaea antarctica
(Chamisso) Hariot, 1892

X Chile Southern New
Zealand South Atlantic

King George Island
(Antarctica)

Fraser et al., 2018
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TABLE 1 | Continued

INVASIVE and Boat Climate Ballast Transoceanic Native Non-native or

potential hulls events water channels/ location invaded

invasive species Plastics (biofouling) Aquaculture Aquariums swimming location References

Eucheuma denticulatum
(N.L.Burman) Collins and
Hervey, 1917

X Sulu Sea Indian Ocean Williams, 2007

Grateloupia doryphora
(Montagne) M.Howe, 1914

X Pacific North America United Kingdom Eno et al., 1997

Grateloupia filicina var.
luxurians (3)
A.Gepp and E.S.Gepp,
1906

X Japan United Kingdom Eno et al., 1997

Grateloupia imbricata
Holmes, 1896

X Japan Korea Portugal Chainho et al., 2015

Grateloupia lanceolata
(4)
(Okamura) Kawaguchi,
1997

X East of Asia Portugal Chainho et al., 2015

Grateloupia turuturu
Yamada, 1941

X Pacific ocean Portugal Chainho et al., 2015

Halophila stipulacea
(Forsskål) Ascherson, 1867

X Indo-Pacific Mediterranean Sea Hernández-Delgado et al.,
2020

Kappaphycus alvarezii
(Doty) Doty ex P.C.Silva,
1996

X Sulu Sea (Philippines) Southwest Pacific Indian
Ocean

Williams, 2007

Lomentaria clavellosa
(Lightfoot ex Turner) Gaillon,
1828

X Northeast Atlantic North America Mathieson et al., 2008

Lophocladia lallemandii
(Montagne) F.Schmitz,
1893

X Indo-Pacific Northern Coast Ibiza García-Gómez et al., 2020b

Mastocarpus papillatus
(C.Agardh) Kützing, 1843

X X North Pacific Chile Castilla and Neill, 2009

Monostroma
oxyspermum (5)
(Kützing) Doty, 1947

X Northeast Atlantic
Northwest Pacific

West coast of India Anil et al., 2002

Neosiphonia harveyi (6)
(Bailey) M.-S.Kim,
H.-G.Choi, Guiry and
G.W. Saunders, 2001
Polysiphonia harveyi
(6)Bailey, 1848

X X X Japan North-Pacific Pacific
coast of Japan

Argentina United Kingdom Eno et al., 1997; Schwindt
et al., 2014

Pikea californica Harvey,
1853

X North America United Kingdom Eno et al., 1997
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TABLE 1 | Continued

INVASIVE and Boat Climate Ballast Transoceanic Native Non-native or

potential hulls events water channels/ location invaded

invasive species Plastics (biofouling) Aquaculture Aquariums swimming location References

Polysiphonia morrowii
Harvey, 1857

X X Northeast Asia Chile Castilla and Neill, 2009

Rugulopteryx okamurae*
(E.Y.Dawson) I.K.Hwang,
W.J.Lee and H.S.Kim, 2009

X X X Pacífico noroccidental Strait of Gibraltar (Cádiz,
Spain) Thau Lagoon
(France) Western
Mediterranean

Huang, 1994; Verlaque
et al., 2009; García-Gómez
et al., 2018

Sargassum filicinum (7)
Harvey, 1860

X Japan and Korea California (UNITED STATES) Miller et al., 2006

Solieria chordalis
(C.Agardh) J. Agardh, 1842

X X Northern France United Kingdom Eno et al., 1997

Undaria pinnatifida
(Harvey) Suringar, 1873

X X Northwest Pacific Spain France Unites
Kingdom Belgium The
Netherlands New Zealand
Australia Argentina

Epstein and Smale, 2017

Womersleyella setacea
(Hollenberg) R.E.Norris,
1992

X X Pacific Mediterranean Sea Williams, 2007

Porifera (4)

Crambe crambe
(Schmidt, 1862)

X X Mediterranean Sea Portugal Chainho et al., 2015

Gelliodes fibrosa (8)
(Wilson, 1925)

X Philippines Pearl Harbor (Oahu, Hawai) Godwin, 2003; Therriault
et al., 2018

Paraleucilla magna
Klautau, Monteiro and
Borojevic, 2004

X Brazil Portugal Chainho et al., 2015

Stelletta clarella de
Laubenfels, 1930

X X North Pacific Chile Castilla and Neill, 2009

Cnidaria (16)

Aiptasia diaphana (9)
(Rapp, 1829)

X Eastern Atlantic
Mediterranean Sea

Portugal Chainho et al., 2015

Amelia aurita (Linnaeus,
1758)

X Black Sea Norest Atlantic
Chile

Caspian Sea Korsun et al., 2012

Blackfordia virginica
Mayer, 1910

X X Baltic Sea Portugal Chainho et al., 2015

Cladonema radiatum
Dujardin, 1843

X X West Pacific Northeast Pacific Williams, 2007

Clavularia viridis
Quoy and Gaimard, 1833

X Indo-Pacific Ilha Grande Bay (Brazil) Mantelatto et al., 2018
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TABLE 1 | Continued

INVASIVE and Boat Climate Ballast Transoceanic Native Non-native or

potential hulls events water channels/ location invaded

invasive species Plastics (biofouling) Aquaculture Aquariums swimming location References

Cordylophora caspia
(Pallas, 1771)

X Caspian Sea Black Sea Portugal Chainho et al., 2015

Diadumene lineata
(Verrill, 1869)

X X X X Northwest Pacific (Japan) Northwest Atlantic
Northwestern Hawaii

Williams, 2007; Gregory,
2009; Miller et al., 2018

Garveia franciscana (10)
(Torrey, 1902)

X Indo-Pacific Mediterranean Sea Marchini et al., 2015b

Gonionemus vertens A.
Agassiz, 1862

X X X North Pacific Portugal Northwest Atlantic United
Kingdom

Eno et al., 1997; Williams,
2007

Haliplanella lineata (11)
(Verrill, 1869)

X Pacific Japan United Kingdom Eno et al., 1997

Oculina patagonica de
Angelis, 1908

X South West Atlantic Mediterranean Sea Fine et al., 2001

Rhizostoma pulmo
(Macri, 1778)

X Southern North Sea Black Sea Boran, 2017

Rhopilema nomadica
Galil, Spanier and
Ferguson, 1990

X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Sansibia spp. X Indo-Pacific Ilha Grande Bay (Brazil) Mantelatto et al., 2018

Tubastraea coccinea
(Ehrenberg, 1834)

X Unknown (widespread
distribution)

Southwest Atlantic Creed et al., 2017

Tubastraea tagusensis
Wells, 1982

X Galapagos archipelago Southwest Atlantic Creed et al., 2017

Ctenophora (2)

Beroe ovato Bruguière,
1789

X East Atlantic (North and
South America)

Black Sea Denmark Shiganova et al., 2014

Mnemiopsis leidyi A.
Agassiz, 1865

X West Atlantic Black Sea Shiganova et al., 2019

Platyhelminthes (1)

Koinostylochus
ostreophagus
(Hyman, 1955)

X Northwest Pacific Strait of Georgia (Canada) Gartner et al., 2016

Nematoda (1)

Anguillicola crassus (12)
Kuwahara, Niimi and
Itagaki, 1974

X Taiwan United Kingdom Eno, 1996

Mollusca (44)

Arcuatula senhousia
(Benson, 1842)

X X X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Batillaria attramentaria
(G. B. Sowerby II, 1855)

X Asia California (UNITED STATES) Grosholz et al., 2015
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TABLE 1 | Continued

INVASIVE and Boat Climate Ballast Transoceanic Native Non-native or

potential hulls events water channels/ location invaded

invasive species Plastics (biofouling) Aquaculture Aquariums swimming location References

Chaetopleura angulata
(Spengler, 1797)

X X X Brazil Portugal Chainho et al., 2015

Chama macerophylla
Gmelin, 1791

X West Indies Pearl Harbor (Oahu, Hawaii) Godwin, 2003; Therriault
et al., 2018

Crassostrea gigas
(Thunberg, 1793)

X X Asian Pacific Ocean New Zealand Chainho et al., 2015

Crassostrea virginica
(Gmelin, 1791)

X X Northeast America North Sea Gollasch, 2002

Crepidula fornicata
(Linnaeus, 1758)

X X Atlantic coast of North
America

Norway Minchin and Gollasch, 2005

Crepidula onyx G. B.
Sowerby I, 1824

X Northwest Pacific Northeast Pacific Miller et al., 2018

Dreissena polymorpha
(Pallas, 1771)

X Caspian Sea Black Sea St Clair lake (North
America)

Hebert et al., 1991

Ensis americanus (13)
(Gould, 1870)

X Atlantic North America United Kingdom Eno et al., 1997

Haliotis rufescens
Swainson, 1822

X North Pacific Chile Peru Castilla and Neill, 2009

Hexaplex trunculus
(Linnaeus, 1758)

X X Mediterranean Sea Portugal Chainho et al., 2015

Lopha cristagalli
(Linnaeus, 1758)

X Indo-Pacific Southwestern New Zealand Gregory, 2009

Lyrodus medilobata
(Edmonson, 1942)

X Indo-Pacific Ocean West coast of India Anil et al., 2002

Lyrodus
takanoshimensis (Roch,
1929)

X Northwest Pacific Northeast Pacific Miller et al., 2018

Mactra discors (14) J.E.
Gray, 1837

X Pacific Ocean (New
Zealand)

North Sea Gollasch, 2002

Magallana angulata
(Lamarck, 1819)

X Pacific Ocean Southern Portuguese coast Rech et al., 2018b

Magallana gigas
(Thunberg, 1793)

X X Indo-Pacific Ocean Mediterranean Sea
Cantabrian Coast

Miralles et al., 2018;
Bonanno and
Orlando-Bonaca, 2019

Mercenaria mercenaria
(Linnaeus, 1758)

X West Atlantic Great Britain Williams, 2007
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Musculista senhousia
(15)
(Benson, 1842)

X X West Pacific California Williams, 2007

Mya arenaria Linnaeus,
1758

X Northern Atlantic Black Sea, Sea of Azov Occhipinti-Ambrogi and
Savini, 2003

Mytella cnarruana (16)
(d’Orbigny, 1846)

X Atlantic South America
Pacific Central South
America

South-east North America Spinuzzi et al., 2013

Mytilopsis sallei (Récluz,
1849)

X Central and South America Australia Minchin and Gollasch, 2005

Mydlus galloprovincialis
Lamarck, 1819

X Japan Pearl Harbour (Hawaii) Therriault et al., 2018

Mydlus trossulus Gould,
1850

X North Atlantic North Pacific
Baltic Sea

Cantabrian Coast Miralles et al., 2018

Nassarius costellifera
(17)
(A. Adams, 1853)

X Atlantic Ocean North Sea Gollasch, 2002

Nausitora dunlopei E. P.
Wright, 1864

X Cochin (India) Goa (India) Anil et al., 2002

Ocenebra inornata (18)
(Récluz, 1851)

X Japan Korea Portugal Chainho et al., 2015

Ostrea lurida Carpenter,
1864

X Pacific North America North Sea Gollasch, 2002

Perna viridis (Linnaeus,
1758)

X X X Tropical Indo-Pacific Florida Colombian
Caribbean

Spinuzzi et al., 2013;
Gracia and
Rangel-Buitrago, 2020

Philine auriformis Suter,
1909

X X New Zealand California Williams, 2007

Potamocorbula
amurensis
(Schrenck, 1861)

X Asia San Francisco (UNITED
STATES)

Godwin, 2003; Therriault
et al., 2018

Potamopyrgus
antipodarum
(Gray, 1843)

X X New Zealand Portugal Baltic Sea Leppäkoski and Olenin,
2000; Chainho et al., 2015

Rapana venosa
(Valenciennes, 1846)

X Sea of Japan Black Sea Adriatic Sea Occhipinti-Ambrogi and
Savini, 2003

Ruditapes philippinarum
(A. Adams and Reeve,
1850)

X Indo-Pacific Portugal Braga et al., 2017

Saccostrea cuccullata
(Born, 1778)

X X X Indo-Pacific South Brazilian coast do Amaral et al., 2020
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Scapharca inaequivalvis
(19)
(Bruguière, 1789)

X Indo-Pacific Black Sea Adriatic Sea Occhipinti-Ambrogi and
Savini, 2003

Senilia senilis (Linnaeus,
1758)

X North east Atlantic North Sea Gollasch, 2002

Teredo fulleri Clapp, 1924 X Gulf of Mannar (Southeast
India)

Okha (West India) Anil et al., 2002

Teredo navalis Linnaeus,
1758

X Northeast Atlantic Florida (UNITED STATES) Miller et al., 2018

Theora lubrica Gould,
1861

X Inland Sea (Qatar) San Francisco Bay
(UNITED STATES)

Carlton, 1996

Tonicia atrata (20) Hutton,
1880

X X X Europe Portugal Chainho et al., 2015

Urosalpinx cinerea (Say,
1822)

X North America United Kingdom Eno, 1996

Xenostrobus securis
(Lamarck, 1819)

X Western Australia New
Zealand

North Sea Gollasch, 2002

Annelida (21)

Branchiomma bairdi
(McIntosh, 1885)

X Caribbean Sea Portugal Chainho et al., 2015

Clymenella torquata
(Leidy, 1855)

X Western Atlantic United Kingdom Eno et al., 1997

Eulalia viridis (Linnaeus,
1767)

X North Atlantic Strait of Georgia (Canada) Gartner et al., 2016

Eumida sanguinea
(Örsted, 1843)

X Northeast Atlantic Strait of Georgia (Canada) Gartner et al., 2016

Ficopomatus
enigmaticus
(Fauvel, 1923)

X X Indian Ocean Black Sea Occhipinti-Ambrogi and
Savini, 2003

Goniadella gracilis (Verrill,
1873)

X North America United Kingdom Eno et al., 1997

Hydroides dianthus
(Verrill, 1873)

X X Atlantic North America United Kingdom Eno et al., 1997;
Katsanevakis et al., 2014

Hydroides elegans
(Haswell, 1883) [nomen
protectum]

X Indo-Pacific Northwest
Pacific

Australia Bryan et al., 2004

Hydroides ezoensis
Okuda, 1934

X X Japan United Kingdom Tropical
Northeast Pacific

Eno et al., 1997

Hydroides sanctaecrucis
Krøyer in Mörch, 1863

X Caribbean Sea Northern Australia Lewis et al., 2006

Janua brasiliensis (21)
(Grube, 1872)

X Tropical areas (e.g., Brazil) United Kingdom Eno et al., 1997
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Marenzelleria viridis
(Verrill, 1873)

X X North America Baltic Sea Leppäkoski and Olenin,
2000

Mercierella enigmatica
(22)
Fauvel, 1923

X Australia Indian Ocean Anil et al., 2002

Neodexiospira
brasiliensis
(Grube, 1872)

X South America Northwest Atlantic Great
Britain

Williams, 2007

Parougia caeca
(Webster and Benedict,
1884)

X North America Johnstone Strait (Canada) Gartner et al., 2016

Pileolaria berkeleyana
(Rioja, 1942)

X Japan United Kingdom Eno et al., 1997

Polydora cornuta Bosc,
1802

X X X Unknown Black Sea Radashevsky and
Selifonova, 2013

Pseudopolydora kempi
japonica
Imajima and Hartman, 1964

X Japan Northwest Pacific Williams, 2007

Sabaco elongatus (Verrill,
1873)

X West Atlantic Northwest Pacific Williams, 2007

Sabella spallanzanii
(Gmelin, 1791)

X X Mediterranean Sea New Zealand Campbell et al., 2017

Streblospio benedicti
Webster, 1879

X West Atlantic Northwest Pacific Williams, 2007

Arthropoda (51)

Acaria (Acartiura) omori
Bradford, 1976

X North Pacific Chile Castilla and Neill, 2009

Acaria (Acanthacartia)
tonsa
Dana, 1849

X Indo-Pacific Portugal Sobral, 1985

Ammothea hilgendorf
(Böhm, 1879)

X Japan United Kingdom Eno et al., 1997

Amphibalanus
amphitrite
(Darwin, 1854)

X Unknown Cantabrian Coast Miralles et al., 2018

Amphibalanus
improvisus
(Darwin, 1854)

X Western Atlantic Strait of Georgia (Canada,
Northwest Pacific)

Gartner et al., 2016
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Amphibalanus
reticulatus
(Utinomi, 1967)

X Japan Southern Brazil Kauano et al., 2016

Ampithoe valida Smith,
1873

X X X Japan Strait of Georgia (Canada) Williams, 2007

Austrominius modestus
(Darwin, 1854)

X Australia New Zealand North Spain Coast
(Cantabria, Asturias,
Biscay)

Miralles et al., 2018; Rech
et al., 2018b

Balanus amphitrite (23)
Darwin, 1854

X Japan Korea North Sea Gollasch, 2002

Balanus campbelli (24)
Filhol, 1886

X New Zealand North Sea Gollasch, 2002

Balanus eburneus (25)
Gould, 1841

X North America North Sea Gollasch, 2002

Balanus perforatus (26)
Bruguière, 1789

X Northeast Atlantic North Sea Gollasch, 2002

Balanus variegatus (27)
Darwin, 1854

X Fare East Australia India North Sea Gollasch, 2002

Callinectes sapidus
Rathbun, 1896

X Western Atlantic Ocean Portugal Chainho et al., 2015

Caprella drepanochir
Mayer, 1890

X North Pacific Strait of Juan de Fuca
(Canada)
Strait of Georgia (Canada)

Gartner et al., 2016

Caprella mutica Schurin,
1935

X X X Northwestern Pacific
Ocean (Japan)

Strait of Georgia (Canada) Cook et al., 2007; Gartner
et al., 2016

Caprella scaura
Templeton, 1836

X X X Indo Pacific Girona (Spain) Martínez and Adarraga,
2008

Carcinus maenas
(Linnaeus, 1758)

X Northeast Atlantic North America South Africa Grosholz and Ruiz, 1995

Centropages
abdominalis Sato, 1913

X X North Pacific Chile Castilla and Neill, 2009

Cercopagis pengoi
(Ostroumov, 1891)

X Caspian Sea Baltic Sea Leppäkoski and Olenin,
2000

X Japan Korea New Zealand Brine et al., 2013

Cilicaea latreillei Leach,
1818

X X Indonesia Philippines Sri
Lanka South Africa Red
Sea Australia

Arabian Sea Anil et al., 2002

Diamysis lagunaris
Ariani and Wittmann, 2000

X Mediterranean Sea Black
Sea

Portugal Chainho et al., 2015
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Dynamene bidentata
(Adams, 1800)

X Northeast Atlantic North Sea Gollasch, 2002

Elminius kingii Gray, 1831 X South America North Sea East cost of
Canada

Gollasch, 2002

Elminius modestus (28)
Darwin, 1854

X X X New Zealand United Kingdom Shetland
Islands

Eno et al., 1997; Barnes
and Milner, 2004

Elminius simplex Linzey
(1942)

X Indian Ocean Australia
South America

North Sea East cost of
Canada

Gollasch, 2002

Endeis nodosa Hilton,
1942

X Northwest Pacific Tropical Eastern Atlantic Miller et al., 2018

Eriocheir sinensis
H. Milne Edwards, 1853

X X Japan China United Kingdom Eno et al., 1997

Hemigrapsus
penicillatus (De Haan,
1835 [in De Haan,
1833-1850])

X Fare East (Japan, China,
Korea)

North Sea French Atlantic
coast

Gollasch, 2002

Hemigrapsus
sanguineus (De Haan,
1835 [in De Haan,
1833-1850])

X Japan Hawaii Northeast Pacific Therriault et al., 2018

Hesperibalanus fallax
(Broch, 1927)

X X Atlantic Coast of tropical
Africa

South Portugal Rech et al., 2018b

Hyas araneus (Linnaeus,
1758)

X X North Atlantic Arctic Ocean Antarctic Peninsula Tavares and De Melo, 2004

Ianiropsis serricaudis
Gurjanova, 1936

X Northwest Pacific North America Miller et al., 2018

Incisocalliope derzhavini
(Gurjanova, 1938)

X Northeast Pacific Strait of Juan de Fuca
(Canada) Strait of Georgia
(Canada)

Gartner et al., 2016

Ligia oceanica (Linnaeus,
1767)

X X Northeast Atlantic Portugal Chainho et al., 2015

Liocarcinus navigator
(Herbst, 1794)

X Eastern Atlantic
Mediterranean Sea

Adriatic Sea Tutman et al., 2017
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Megabalanus
coccopoma
(Darwin, 1854)

X X Pacific Central South
America

San Diego (California) Spinuzzi et al., 2013

Melita nitida S.I. Smith in
Verrill, 1873

X North America Strait of Georgia (Canada) Gartner et al., 2016

Metapenaeus
monoceros
(Fabricius, 1798)

X Indo-Pacific Ocean Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Monocorophium
acherusicum
(Costa, 1853)

X Eastern Atlantic Strait of Juan de Fuca
(Canada) Strait of Georgia
(Canada)

Gartner et al., 2016

Monocorophium
insidiosum
(Crawford, 1937)

X Eastern Atlantic Strait of Juan de Fuca
(Canada) Strait of Georgia
(Canada)

Gartner et al., 2016

Oithona davisae
Ferrari F.D. and Orsi, 1984

X North Pacific Chile Castilla and Neill, 2009

Paracaprella pusilla
Mayer, 1890

X Western Atlantic Panama Mediterranean Sea Ros et al., 2013

Paracaprella tenuis
Mayer, 1903

X Pacific North America Gulf
of Mexico

North Sea Gollasch, 2002

Penaeus japonicus
Spence Bate, 1888

X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Planes minutus
(Linnaeus, 1758)

X Indian ocean Atlantic ocean Adriatic Sea Tutman et al., 2017

Pyromaia tuberculata
(Lockington, 1877)

X Southern California
(UNITED STATES)

San Francisco (UNITED
STATES) Japan Korea New
Zealand

Carlton, 1996

Rhithropanopeus harrisii
(Gould, 1841)

X X X West Atlantic Portugal Chainho et al., 2015

Sphaeroma walkeri
Stebbing, 1905

X Indian Ocean Hong Kong Lewis and Coutts, 2010

Striatobalanus amaryllis
(Darwin, 1854)

X Indian Ocean West Pacific West Africa Kerckhof et al., 2010

Temora turbinata (Dana,
1849)

X Indian Ocean Southwest Atlantic Soares et al., 2018

Bryozoa (15)

Bowerbankia gracilis (16)
Leidy, 1855

X X X West Atlantic California (UNITED STATES) Williams, 2007

Bugula flabellata (17)
(Thompson in Gray, 1848)

X X South Pacific South Atlantic Chile Castilla and Neill, 2009
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Bugula neritina (Linnaeus,
1758)

X X X Pacific Ocean Chile Castilla and Neill, 2009

Cryptosula pallasiana
(Moll, 1803)

X Northwest Pacific Northeast Pacific Miller et al., 2018

Disporella
novaehollandiae
(d’Orbigny, 1853)

X Northwest Pacific Hawaiian Island McCuller and Carlton, 2018

Jellyella eburnea (Hincks,
1891)

X Western Pacific Central Pacific Eastern
Pacific

McCuller and Carlton, 2018

Jellyella tuberculata
(Bosc, 1802)

X X Western Pacific Central Pacific Eastern
Pacific

McCuller and Carlton, 2018

Membranipora
membranacea
(Linnaeus, 1767)

X Atlantic Ocean Pacific
Ocean

Artic Ocean Barnes and Milner, 2004

Savignyella lafontii
(Audouin, 1826)

X Mediterranean Sea North Sea Gollasch, 2002

Schizoporella japonica
Ortmann, 1890

X X X X Japan California (UNITED STATES)
Columbia (Canada)
Northeast Pacific

Williams, 2007; Gartner
et al., 2016; Miller et al.,
2018

Thalamoporella evelinae
Marcus, 1939

X Brazil Florida (UNITED STATES) Winston et al., 1997

Tricellaria inopinata
d’Hondt and Occhipinti
Ambrogi, 1985

X Pacific ocean Portugal Chainho et al., 2015

Watersipora cucullata
(Busk, 1854)

X Northeast Pacific New Zealand Lewis and Coutts, 2010

Watersipora subtorquata
(d’Orbigny, 1852)

X Unknown Portugal Chainho et al., 2015

Zoobotryon verticillatum
(18)
(Delle Chiaje, 1822)

X X Caribbean Sea California (UNITED STATES)
Portugal

Williams, 2007; Chainho
et al., 2015

Entoprocta (2)

Barentsia benedeni
(Foettinger, 1887)

X Northeast Atlantic Black Sea Rilov and Crooks, 2009a

Barentsia ramosa
(Robertson, 1900)

X California (UNITED STATES)
Belgium

Indian Ocean Anil et al., 2002

Echinodermata (2)

Asterias amurensis
Lutken, 1871

X X Northern Pacific (Japan) South Australia Godwin, 2003; Therriault
et al., 2018
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Ophiothela mirabilis
Verrill, 1867

X X Indo-Pacific Ilha Grande Bay (Brazil) Mantelatto et al., 2018

S. Tunicata (16)

Ascidiella aspersa (Müller,
1776)

X X X Northeastern Atlantic Atlantic coast of North
America New Zealand
Southern Australia India

Lynch et al., 2016

Asterocarpa humilis
(Heller, 1878)

X X South Pacific Chile Pinochet et al., 2017

Botrylloides violaceus
Oka, 1927

X X West Pacific Northwest Atlantic
Columbia (Canada)

Williams, 2007; Gartner
et al., 2016

Botryllus schlosseri
(Pallas, 1766)

X X Northeast Atlantic East Atlantic Columbia
(Canada)

Williams, 2007; Gartner
et al., 2016

Ciona intestinalis
(Linnaeus, 1767)

X X X North Atlantic Chile Iceland Castilla and Neill, 2009;
Micael et al., 2020

Oavelina dellavalle
(Zirpolo, 1925)

X X Northeast Atlantic Portugal Chainho et al., 2015

Corella eumyota
Traustedt, 1882

X X Southern Ocean Portugal Chainho et al., 2015

Didemnum vexillum Kott,
2002

X Japan Northwest Pacific Ocean
Hawaii

Therriault et al., 2018

Distaplia corolla Monniot
F, 1974

X X West Atlantic Ocean Portugal Chainho et al., 2015

Herdmania momus
(Savigny, 1816)

X X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Molgula ficus
(Macdonald, 1859)

X South Pacific Chile Castilla and Neill, 2009

Molgula manhattensis
(De Kay, 1843)

X North America Strait of Juan de Fuca
(Canada) Strait of Georgia
(Canada)

Gartner et al., 2016

Perophora viridis Verrill,
1871

X X Western-Atlantic Portugal Chainho et al., 2015

Pycnoclavella
taureanensis
Brunetti, 1991

X Mediterranean Sea Portugal Chainho et al., 2015

Styela canopus (Savigny,
1816)

X X West Pacific Northwest Atlantic Williams, 2007
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Styela clava Herdman,
1881

X Asian Pacific Ocean Great Britain Davis and Davis, 2007

Vertebrates (7)

Lagocephalus sceleratus
(Gmelin, 1789)

X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Mugil soiuy (32)
Basilewsky, 1855

X Amur river Sea of Japan Sea of Azov Occhipinti-Ambrogi and
Savini, 2003

Neogobius
melanostomus
(Pallas, 1814)

X Caspian Sea Baltic Sea Holmes et al., 2019

Pterois miles (Bennett,
1828)

X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Pterois volitans
(Linnaeus, 1758)

X X X Indian West Pacific East coast of North
America Caribbean

Padilla and Williams, 2004

Sargocentron rubrum
(Forsskål, 1775)

X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Siganus rivulatus
Forsskål and Niebuhr, 1775

X X Indo-Pacific Mediterranean Sea Bonanno and
Orlando-Bonaca, 2019

Total: 216 17 128 18 84 50 9 6

Sessile species 112

Mobile species 104

Plastic and boat hulls are highlighted because of their importance in our study. 216 species were included, classified as sessile (pink cells) and no sessile species (blue cells) and sorted mainly by phylum (except the
group Algae, subphylum Tunicata and the group Vertebrates). Next to each group, the number of species in the group is indicated in parentheses. The species name coincides with the name used in the citation. Species
whose currently accepted name has changed are indicated by numbers in parentheses, and the currently accepted name is clarified at the end of the table. Accepted names: (1) Codium fragile subsp. fragile (Suringar)
Hariot, 1889 (2) Colpomenia sinuosa var. peregrina Sauvageau, 1927 (3) Grateloupia subpectinata Holmes, 1912 (4) Pachymeniopsis lanceolata (K.Okamura) Y.Yamada ex S.Kawabata, 1954 (5) Gayralia oxysperma
(Kützing) K.L.Vinogradova ex Scagel et al., 1989 (6) Melanothamnus harveyi (Bailey) Díaz-Tapia and Maggs, 2017 (7) Sargassum horneri (Turner) C.Agardh, 1820 (8) Gelliodes wilsoni Carballo, Aquilar-Camacho, Knapp
and Bell, 2013 (9) Exaiptasia diaphana (Rapp, 1829) (10) Calyptospadix cerulea Clarke, 1882 (11) Diadumene lineata (Verrill, 1869) (12) Anguillicola (Anguillicoloides) crassus Kuwahara, Niimi and Itagaki, 1974 (13)
Ensis leei M. Huber, 2015 (14) Spisula discors (Gray, 1837) (15) Arcuatula senhousia (Benson, 1842) (16) Mytella strigata (Hanley, 1843) (17) Nassarius margaritifer (Dunker, 1847) (18) Ocinebrellus inornatus (Récluz,
1851) (19) Anadara inaequivalvis (Bruguière, 1789) (20) Plaxiphora (Plaxiphora) aurata (Spalowsky, 1795) (21) Neodexiospira brasiliensis (Grube, 1872) (22) Ficopomatus enigmaticus (Fauvel, 1923) (23) Amphibalanus
amphitrite (Darwin, 1854) (24) Notomegabalanus campbelli (Filhol, 1885) (25) Amphibalanus eburneus (Gould, 1841) (26) Perforatus perforatus (Bruguière, 1789) (27) Amphibalanus variegatus (Darwin, 1854) (28)
Austrominius modestus (Darwin, 1854) (29) Amathia gracilis (Leidy, 1855) (30) Bugulina flabellata (Thompson in Gray, 1848) (31) Amathia verticillata (delle Chiaje, 1822) (32) Planiliza haematocheila (Temminck and
Schlegel, 1845). ∗García-Gómez et al. (2018) cite and photograph the species on nets, and these nets are made of nylon, like the piece illustrated in Figure 3D of this work. After 2018, the species have been observed
(pers. obs.) on sunken plastic bags and bottles.
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FIGURE 2 | Scientific publications on the vectors for the introduction of alien
marine species (plastic, rafting, biofouling aquaculture, ballast water and
general) over the last 30 years (1990-2020) and classified by Impact (I),
Management (M) and Impact and Management (I+M).

and Milner, 2004), by increasing their potential travel distance
(Thiel and Gutow, 2005).

Wasson et al. (2005) suggested that alien species preferred
hard artificial materials (rip rap, gravel bars, pilings, and docks),
while native species were found mainly on soft substrates.
Pinochet et al. (2020) affirmed that native species are more
commonly found on natural surfaces; for example, native algae
such as Sargassum sp. and Corallina sp. are prevalent on natural
reefs but not on artificial structures (Glasby et al., 2007). Pinochet
et al. (2020) found that the settlement of the larvae of two invasive
species of the genus Bugula on plastic surfaces was 70% higher
than in cement or wood. Furthermore, settlement on plastic
substrates was extremely rapid, with 50% of the larvae settling
only after 5 min. For some species of invasive bryozoans, it
has been suggested that their prevalence in artificial structures
and settlement on plastic panels is explained by their ecology,
since they are early successional species (Vail and Tranter, 1981),
they show a faster growth, an early initiation of reproductive
stages and have higher metabolic rates, allowing them to
outgrow their competitors in the early successional stages of the
developing community (Pettersen et al., 2016; Lagos et al., 2017).
Astudillo et al. (2009) reported that approximately 60% of the
fauna found on plastic buoys in Coquimbo Bay, a temperate zone
of the Southeast Pacific Ocean, had direct development or short
larval durations, so they were capable of maintaining persistent
populations in floating elements, suggesting a high potential for
long-distance dispersal of fauna on buoys.

Recent data suggest that larger pieces of plastic debris support
greater biological diversity, which is consistent with the classic
species-area relationships inherent in the biogeography of islands
(Simberloff, 1976; Gil and Pfaller, 2016; Garcia-Vazquez et al.,
2018). Debroas et al. (2017) observed a higher bacterial and
eukaryotic richness in polyethylene (PE) of mesoplastic size
(5 mm–20 cm) compared to MPs of 300 µm–5 mm, mainly
PE. However, it is necessary to consider the complexity of the
debris materials, since those with greater structural complexity
(for example, groups of tangled ropes) support greater diversity
(Goldstein et al., 2014). Plastic debris of all sizes often has
limited structural complexity and smooth, rigid surfaces (e.g.,

buoys, containers, balls, liners). These characteristics can limit the
habitability of plastic waste for many species, since a wide variety
of organisms require shelter to persist (Gil and Pfaller, 2016).
Even floating harbor pontoons, which carry well-established
biofouling communities, can be an important vector for the
massive expansion of native species in the face of extreme
events that destroy them, such as tsunamis (Wang et al., 2016),
displacing them thousands of kilometers away (Figures 3A–D).

Gil and Pfaller (2016) studied the relationship between the
area and the structural complexity of marine plastic debris
and the colonization of species. The study revealed contrasting
patterns for the richness of sessile and mobile taxa. Regarding
the number of sessile taxa on debris, the increase in surface had
a significant positive effect, while the cover of barnacles of the
genus Lepas had a significant negative effect. However, regarding
the number of mobile taxa on the debris, the increase in surface
area had a trivial positive effect, while the number of barnacles
had a significant positive effect. These results suggest that
barnacles of the genus Lepas act as base species in communities
on plastic debris, providing a complex structural habitat on
otherwise structurally limited plastic debris. In agreement with
these data, Astudillo et al. (2009) carried out a study on biota
inhabiting buoys in the sea and observed that the number of
mobile species on buoys was positively related to the number and
biomass of sessile species. Thus, benthic species which colonize
plastic surfaces are considered eco-engineers, since they provide
a habitat for mobile species that otherwise would not be able to
colonize these surfaces (Astudillo et al., 2009).

Differential Colonization in the Different
Types of Plastic Polymers
The five main classes of plastic polymers, which comprise
about 90% of polymer production, are polyethylene (PE),
polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS),
and polyethylene terephthalate (PET), with the latter being the
most abundant in the ocean (Andrady and Neal, 2009).

While many authors have observed no evidence that the type
of polymer is relevant for the composition of the macrobiota
associated with plastics, Gündoǧdu (2017) have found that
the type of plastic (PE, PET, and PP) shows significant
differences with respect to the diversity and abundance of
species. On the other hand, it is commonly accepted that the
difference in structural and/or chemical properties (plasticizers
and colorants) observed among polymer families influences
bacterial communities and dynamics (De Tender et al., 2015).
Pinochet et al. (2020) observed that the bryozoan larvae of
two invasive species of the genus Bugula showed preferences
for colonizing PS and polycarbonate (PC) substrates within the
polymer possibilities (PP, PVC, PET, and PC). Furthermore,
antifouling treatments applied to different plastic materials,
such as nylon fishing nets, could influence the community of
organisms adhering to them (Núñez et al., 2006).

Although the reason for association with certain polymers
is not clear, some authors have indicated that it might be due
to the biofilm that develops on each polymer (Shin et al.,
2013; Lagos et al., 2016; Morohoshi et al., 2018). According to
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FIGURE 3 | Plastic fouling examples: (A) in floating boxes of polystyrene docks covered with pvc carrying fauna such us the invasive species Amathia verticillata
(their breakage, due to a storm or tsunami (see text) can lead to their dispersion in the sea over great distances); (B,C) plastic bottle and plastic bag taken from the
bottom of a port, with incipient cauloids of the possible fine morphotype of the Asian invasive algae, Rugulopteryx okamurae; (D) loose end nylon net, extracted from
the bottom of a port, completely covered with biofouling. Pictures were taken at Leisure port La Alcaidesa (La Línea), Bay of Algeciras.

Oberbeckmann et al. (2014) the composition of the polymer not
only influences the abundance of microorganisms associated with
polymers, but also shapes the structure of the biofilm community,
which could play a role in the establishment of other species
associated with the biofilm (Shin et al., 2013; Lagos et al., 2016;
Morohoshi et al., 2018).

Macrobiota Transported by Plastics
Barnes (2002) highlighted the importance of marine debris
as a distribution vector for marine species and estimated
that it doubled the probability of transport of the species.
After analyzing more than 200 pieces of debris from 30
different islands, he concluded that the most abundant groups
were bryozoans, barnacles, polychaetes, hydroids and molluscs.
Astudillo et al. (2009) found in the Southeastern Pacific 134
species in a total of 40 sampled buoys, mostly belonging to the
Arthropoda, Annelida, and Mollusca phyla, 4 of them classified
as invasive on the Chilean coast (Castilla et al., 2005): Ciona
intestinalis (Linnaeus, 1767), Bugula neritina (Linnaeus, 1758),
B. flabellata [Thompson in Gray, 1848; this name is currently
not accepted and it is Bugulina flabellata (Thompson in Gray,
1848)] and the macroalgae Codium fragile (Suringar) Hariot, 1889

(frequencies of 73, 82, 59 and 9%, respectively). Later, in 2014,
Goldstein et al. (2014) found 95 taxa in 242 pieces of plastic
debris, most of them from the phylum Arthropoda, followed by
Mollusca and Cnidaria. These data are consistent with the results
obtained in our study (Table 1), as the phylum observed on
plastic were Arthropoda (6), Bryozoa (4), Mollusca (4), Annelida
(1) and Cnidaria (1), and the group Algae (1).

Some recurrent characteristics have been noted in the
biology and ecology of species associated with plastic debris
in the sea, such as cosmopolitan distributions, suspensivorous
feeding (Astudillo et al., 2009) and sessile with short-lived
larval development without natural potential means of dispersal
(Barnes, 2002).

Kiessling et al. (2015) found 335 taxa associated with plastic
garbage items in the ocean and stranded on the coast. In
a study in the Atlantic Ocean, Barnes and Milner (2004)
found several species of barnacles with a high incidence; the
balanomorph Semibalanus balanoides (Linnaeus, 1767) were
present in marine debris at all arctic and subarctic study
sites; the invasive species Elminius modestus Darwin, 1854
[this name is currently not accepted and it is Austrominius
modestus (Darwin, 1854)] was also found on plastic items
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in the Shetland Islands. The genus Lepas (one of the most
common colonizers of plastic litter) (Miralles et al., 2018) shows
a wide distribution associated with debris: from high latitudes
in the Shetland Islands [Lepas (Anatifa) anatifera Linnaeus,
1758] to the Malvinas Islands [L. (Anatifa) australis Linnaeus,
1758], including locations closer to the equator such as the
Ligurian Sea [L. (Anatifa) pectinata Spengler, 1793] (Aliani
and Molcard, 2003). Other plastic colonizers include several
species of hydroids and bryozoans (Aliani and Molcard, 2003;
Barnes and Milner, 2004). The suspensivorous bivalve family
Mytilidae form dense aggregations (Mikkelsen and Bieler, 2008)
in specific vectors (e.g., marine debris, artificial substrates, ship
hulls, and ballast water). This family includes invasive species
carried by plastic debris such as Perna viridis (Linnaeus, 1758)
(Gracia and Rangel-Buitrago, 2020).

Nikula et al. (2013) documented the transport of algae in
debris, mostly plastic, between islands separated by more than
500 km. After a 30-year examination of the impact of the invasion
of Undaria pinnatifida (Harvey) Suringar, 1873 in Australasia,
South et al. (2017) indicated that its ability to settle and develop
on any hard substrate until it reaches reproductive maturity,
among those who frequented plastic products such as buoys,
could be a key factor toin the initial success of its invasion.
Recently, a study of the distribution and impact of Rugulopteryx
okamurae in the Strait of Gibraltar also showed the highly
competitive capacity of the algae to settle onto hard substrates,
describing its ability to adhere to nets and ropes (made of nylon),
and hooks of nets, constituting a problem for the fishing sector,
and showing the potential of polyamides for the dispersal of
species (García-Gómez et al., 2018).

Plastic as a Vector for the Dispersal of
Microorganisms and Associated
Diseases
Plastics, including MPs and NPs, adsorb organic and inorganic
nutrients from water (Frère et al., 2018), which, along with
its physical properties and widespread distribution provides a
unique and stable habitat (Zettler et al., 2013; Oberbeckmann
et al., 2015; Keswani et al., 2016), thus attracting bacteria,
viruses, plankton, and other microorganisms which adhere to
its surface (Frère et al., 2018), and enhancing their dispersion
to different oceanic regions (Zettler et al., 2013; Oberbeckmann
et al., 2015; Keswani et al., 2016). This adhesion is facilitated by
the complexity of plastic surfaces, such as roughness and braiding
(Núñez et al., 2006).

Zettler et al. (2013) introduced the term “plastisphere” to
define a community of microorganisms associated with marine
plastic debris found on the surface of seawater. “Plastisphere”
differs from the bacterial populations found in other marine
ecosystems, both in the water column and in other natural
substrates (Zettler et al., 2013; Harrison et al., 2014; Dussud et al.,
2018; Curren and Leong, 2019) and host a diverse community,
including heterotrophs, autotrophs, predators, and symbionts,
which generally begin with microbial colonization and biofilm
conformation, which at the same time facilitate the settlement
of other species, for example bryozoans (Bryant et al., 2016).

Oberbeckmann et al. (2014) show that microbial communities
in plastic change in structure and composition with respect to
geographic location, season and type of polymer, but that there
are also similarities between these plastic communities, such as
the predominance of the phyla Proteobacteria and Bacteroidetes
(Zettler et al., 2013; Oberbeckmann et al., 2014; Frère et al., 2018;
Curren and Leong, 2019) and some microalgal species such as
diatoms and dinoflagellates (Carson et al., 2013).

Different cases of dissemination of potentially toxic species
have been documented, including pathogens and invasive algae,
which can invade new habitats and modify their structure,
becoming a threat to the ecosystem (Zettler et al., 2013;
Kirstein et al., 2016). The toxic bacterial genus Vibrio has
been commonly detected in MPs (Zettler et al., 2013; Frère
et al., 2018; Curren and Leong, 2019); Kirstein et al. (2016)
confirmed the presence of Vibrio spp. in 13% of all MP particles
collected in the sea, identifying the potentially pathogenic species
V. parahaemolyticus (Fujino et al., 1974) Sakazaki et al., 1963 and
V. fluvialis Lee et al., 1981. Masó et al. (2003) detected members
of the potentially harmful dinoflagellate genera Ostreopsis, Coolia,
and Alexandrium in plastic debris floating in Mediterranean
coastal waters. These infectious organisms can reach their
hosts through the ingestion of plastic (Harrison et al., 2011;
Zettler et al., 2013).

Several authors found antibiotic resistance genes (ARG; Miller
et al., 2009; Laganà et al., 2019), metal resistance genes (MRG;
Yang et al., 2019) and virulence genes (Radisic et al., 2020) in
different species of bacteria in marine environments. Radisic et al.
(2020) findings of virulence genes and new ARG variants in the
fish pathogen Aeromonas salmonicida (Lehmann and Neumann,
1896; Griffin et al. 1953) isolated from plastic debris in Norway
showed their potential for causing infections.

Audrézet et al. (2020) highlight the importance of the study
of the succession of plastiphere communities and the different
factors that influence the transmission of microorganisms
mediated by plastic through the combination of molecular and
microscopic approaches, and the use of genetic markers.

Therefore, there is concern that MP pollution, which is
increasing in the marine environment, may cause serious marine
ecological effects, influence the dynamics of its population and,
ultimately, the emergence of pathogens (Frère et al., 2018; Shen
et al., 2019). The introduction of MPs colonized by non-native
microbial communities is likely to alter microbial communities
and genetic exchange in natural water and consequently
affect the ecological function of microbial communities
(Miao et al., 2019).

SPATIOTEMPORAL DISPERSION
PATTERNS OF PLASTIC DEBRIS IN THE
MARINE ENVIRONMENT AND
VULNERABLE AREAS

Plastic horizontal dispersion in the ocean is driven by different
large-scale processes, such as the action of ocean currents, wind,
tides (Figure 4; Law et al., 2010; Kim et al., 2015) and extreme
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meteorological events, such as hurricanes (Wang et al., 2019;
Lo et al., 2020) and tsunamis (Wang et al., 2016). Sea state,
wind (Astudillo et al., 2009; Thiel et al., 2011), and particle
size and type (Reisser et al., 2015) influence the duration
of transport. A Plastic particle from the east coast of the
United States may reach the subtropical gyre of the Atlantic
North in less than 60 days (Law et al., 2010). Six years after
the 2011 tsunami in Japan, Carlton et al. (2017) documented
289 living species on the coasts of North America and Hawaii
in marine debris originating after the catastrophe, among which
plastic debris was abundant. On the ocean surface, downwind
and slow current habitats are potential sinks for plastic debris
(Browne et al., 2010). Currently, 5 ocean gyres have been
identified, located in the North Atlantic, South Atlantic, South
Indian, South Pacific, and North Pacific (Eriksen et al., 2014),
which accumulate on their surfaces at least 79 thousand tons
of plastic (Lebreton et al., 2018). Moreover, the appearance
of another patch in the Barents Sea has been predicted (van
Sebille et al., 2012). These areas can accommodate quantities
of up to 21,290 tons of plastic in the North Pacific gyre (Law
et al., 2010). In addition, in the convergence regions, surface
water is pumped down to depths of a few hundred meters
(van Sebille et al., 2020).

The vertical transport of plastic is both size- and density-
dependent. MPs are more abundant than larger plastic debris,
both on the sea’s surface and in the water column (Kooi et al.,
2017). On the other hand, plastic materials with a density lower
than water (LD) (1.02 g/cm3) are usually found on the surface and
in neustonic environment (Moore et al., 2011), while those with
a higher density (HD) reach the marine benthic environments
(Moret-Ferguson et al., 2010; Ballent et al., 2012).

During plastic debris stay in the marine environment,
their density can change over time due to the
physical/chemical/biological degradation or biofouling
attachment Figure 4) (Moret-Ferguson et al., 2010) of suspended
matter, contamination by epiphytes or the formation of
microbial biofilms (Lobelle and Cunliffe, 2011; Collignon
et al., 2014; Bagaev et al., 2017). Increased density could cause
the debris to sink, to be transported by underlying currents
(Engler, 2012), trapped by turbulent currents of the benthic
boundary layer, resuspended by deep currents, or finally to
settle onto the seafloor (Bagaev et al., 2017; Figure 4). In many
cases, sedimentation is facilitated by oceanographic processes
(Wang et al., 2016) such as dense shelf water cascading (Canals
et al., 2006), severe coastal storms (Sanchez-Vidal et al., 2012),
offshore convection (Durrieu de Madron et al., 2013), and
saline subduction (Talley, 2002). Predicting this vertical mixing
could be essential, as it affects the horizontal drifting patterns
and ecological impacts of plastic pollution (Reisser et al., 2015).
Plastic concentrations have been shown to decrease exponentially
with depth (Reisser et al., 2015). However, Woodall et al. (2014)
reported an abundance of MPs on the seafloor four orders of
magnitude greater than in surface water gyres, while Peng et al.
(2018) reported abundant MP particles in the Mariana Trench,
the deepest part of the world’s ocean.

Plastic debris is widely distributed throughout our oceans and
colonize from latitudes near the equator to the poles (Obbard

et al., 2014), with the tropical regions being the areas where it is
most frequent and predominant (Barboza et al., 2019). Regardless
of the geographical region, the most vulnerable areas with respect
to the colonization of exotic species transported by this debris
are those where endemisms abound and endangered species are
present (Gregory, 2009; Thevenon et al., 2014).

Therefore, given the spatial “cosmopolitanism” of plastic
materials and their increasing abundance in the marine
environment, generalist invasive species (or with invasive
potential) in the surface waters of all oceans which can be
transported by this vector, constitute an increasing threat—
within the bathymetric range to which they are adaptive—
especially to pristine and highly biodiverse ecosystems, with
particular relevance to Marine Protected Areas.

EARLY DETECTION AND
SURVEILLANCE OF AIS IN MARINE
PLASTIC DEBRIS

Rech et al. (2018a) found that the frequency of a specific taxon
attached to plastic litter in a coastal area can be predicted based
on the characteristics of biological communities associated with
each litter material and the composition of beach litter. This
approach, after being tested in other regions, may contribute as
a simple and cost-effective tool for risk assessment in the future
(Rech et al., 2018a). On the other hand, Fazey and Ryan (2016a,b)
showed that small samples of plastic litter lost buoyancy due
to biofouling much faster than larger ones, providing the first
estimates of the longevity of different sizes of plastic debris at the
surface of the ocean. This finding could be used to improve model
predictions of the distribution and abundance of floating plastic
debris globally.

Ports are often export areas for native generalist species
and entry areas for alien species (Mineur et al., 2006; Keller
et al., 2010; Airoldi et al., 2015; López-Legentil et al., 2015;
Ferrario et al., 2017). A sport or recreational vessel whose
hull is made of fiberglass-reinforced polyester can import or
export native and alien species. But also, by accumulation and
subsequent sinking, ports and marinas can import and export
plastic trash with alien species. In many cases the plastic sinks
(especially bags), because of the weight of the biofouling, remain
at shallow depths (especially in ports and marinas, which tend
to accumulate plastic garbage on their bottoms). For their
control and environmental monitoring, a modification of the
SBPQ (Sessile Bioindicators Permanent Quadrats) method could
be applied, as recently proposed by García-Gómez (2015) and
García-Gómez et al. (2020a) for the early detection of alien
species and environmental impacts of a local nature (e.g., urban
discharges) or global (climate change) in rocky natural habitats.
It is a non-invasive method focuses on the monitoring of
preselected sensitive (indicators) sessile target species associated
with rocky coralligenous habitats using permanent quadrats
in underwater sentinel stations. It could be adapted to plastic
panels (completed with other types of non-plastic panels) which
are susceptible to colonization by opportunistic sessile species
that could become invasive, and act as “traps” for the early
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FIGURE 4 | Debris made of high-density polyethylene (HDPE), such as plastic bottles which could be transported through large areas and be vectors for potentially
invasive marine species (1) or result in micro and nanoplastic material through physical degradation, photodegradation, or biodegradation (2). Plastic bags
composed of low-density polyethylene (LDPE) which usually settle in the water column, while plastic fishing nets, in many cases constituted by nylon, tend to sink
and settle on the seabed. Both plastic bags and fishing nets are susceptible to physical degradation and biodegradation. Plastic particles which could succumb to
bioturbation (5), describe vertical movements (3,4) and be simultaneously ingested by animals from all oceanic stratum being dispersed by them (6), as well as sink
and stay at the seafloor due to their original density or to increase by processes such as biofouling (7). Steps 1, 2, and 3 of “Horizontal Dispersion,” which are the
most frequently involved in biological invasions. To a lesser degree, steps 3 and 4 involve “Vertical Dispersion.”

detection of alien species. In this regard, the installation of
underwater sentinel stations should be tested at various inland
points of ports, with plastic panels of at least five panels per
point, of 25 cm × 25 cm, with different roughness and nature
(e.g., polyamide or nylon, polyester, polyethylene, high density
polyethylene and polypropylene), which serve to recognize the
species which establish easily on this type of material and those
which are more frequent and with a structural and adaptive
profile of higher risk for invasion. This method could contribute
to the early detection of alien species with invasive potential,
and to the implementation of immediate mitigation and/or
eradication measures.

ADDITIONAL CONSIDERATIONS

From the foregoing, it can be deduced that plastic debris
represents a ubiquitous vector with great potential for
transporting both sessile and mobile species associated with

it, capable of traveling long distances because plastic, due
to its composition, is not biodegradable and, therefore, very
durable over time.

We could ask ourselves which species of those transported
by plastic (or that could be transported by this type of
substrata) may have a greater risk of invasion. They would be
sessile generalist arborescent species (e.g., seaweeds, hydrozoans,
bryozoans) that, according to Bradshaw et al. (2003), are
common components of fouling communities. So, they can
provide food, shelter or hiding conditions for other mobile
species that can travel with them (both non-native and
native). About this, Marchini et al. (2015a) reported three
mobile NIS associated with the introduced sessile species
Amathia verticillata ( = Zoobotrion verticillatum) (Bryozoa)
and suggested this species as substrate for transport between
ports, facilitating its distribution. Also, Gavira-O’Neill et al.
(2018) found 19 species associated with the invasive bryozoan
Tricellaria inopinata—in list of “100 Worst Invasives” in the
Mediterranean (Streftaris and Zenetos, 2006)—between them the
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three mobile introduced species Caprella scaura, Monocorophium
sextonae (Amphipoda), and the Paracerceis sculpta, adding that
these species represented over half of the quantified individuals
and discussing the possibility of a potential case of “invasional
meltdown”—expression by Simberloff and Von Holle (1999)—
during which introduced species provide suitable habitat for
other non-native species, favoring their establishment. Other
studies also support this hypothesis for T. inopinata as a host for
other mobile species introduced from other zoological groups,
such as isopods and nudibranchs (Keppel et al., 2012; Hobbs et al.,
2015). So, such arborescent sessile species (hosts of mobile fauna)
are those that need to occupy the substrate surfaces of the bottom
(even as epibionts) and, therefore, those that can generate the
greatest environmental impact on the native sessile biota.

In order to improve biosecurity, the best mechanism is
prevention and, in this sense, it is important to start acting against
this ongoing problem; for example, through protocols for the
sighting (from small boats and large ships) of accumulations of
plastic adrift within 20 miles off the coasts, where the presence
of accumulations of floating with well-established biofouling is
detected. In the same way, ports and marinas must be involved in
environmental surveillance for the early detection of alien species
before they can become widespread.

Actions to manage the problem should be put into place,
such as the collection of floating plastic by cleaning boats
employed in coastal areas at risk of the entry of plastic
accumulations due to winds and/or currents. International
regulations or legal provisions must be implemented in this
regard. Collaboration on the part of society must also be
encouraged. Environmental education and the emerging “Citizen
Science” movement (Wiggins and Crowston, 2011) should be
stimulated and coordinated from public administrations, as
well as large industries, companies or institutions that have
large coastal infrastructures. In addition, large industries and
companies should also participate in mitigating the problem
under the influence of the emerging philosophy of “Working with
nature” (PIANC, 2014; Martin et al., 2017; Nebot et al., 2017).
which has generated an awareness of respect for nature, by which
it is intended to act with it and not against it, collaborating in
environmental monitoring and surveillance studies of threatened
species naturally established in port breakwaters (García-Gómez
et al., 2010, 2014) and, in the present case, for the early detection
of alien species with invasive potential.

CONCLUSION

1. The number of articles published of plastic debris as a
vector for the introduction of alien species has increased
enormously in recent years. This increase could be related

to the increase in annual plastic production, which
results in a greater threat, in addition to a growing
interest in the problem on the part of the scientific
community and, therefore, the greater number of research
papers related to it.

2. Several of the biological characteristics of marine species
commonly associated with plastic, such as the short life
cycle and larval development, are also characteristics of a
large portion of the known invasive species; so these species
that travel on plastic debris across the ocean could generally
be perceived as a major threat to their destination.

3. A wide variety of organisms colonize plastic materials,
both microorganisms (e.g., species of the genus Vibrio or
different species carrying virulent and antibiotic resistance
genes) and macrofauna species (e.g., algae or bryozoan
species). This fact increases the threat to ocean life caused
by plastic and turns it into a means for spreading disease.

4. There are large gaps in knowledge about the functioning
of plastic objects as vectors and the lack of studies on
colonization processes on different plastic polymers by
marine species generate contradictions between different
authors. Despite the great advances produced today in the
knowledge of plastic debris in the ocean, greater research
are necessary to mitigate the threat of biological invasions
linked to this type of pollutant.
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