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Abstract: Every t-dynamic proper n-coloring of a graph G describes a shadow allocation of any
(n, t + 1)-threshold secret sharing scheme based on G, so that, after just one round of communication,
each participant can either reconstruct the secret, or obtain a different shadow from each one of
his/her neighbors. Thus, for just one round of communication, this scheme is fair if and only if the
threshold is either less than or equal to the minimum degree of G, or greater than or equal to its
maximum degree. Despite that the dynamic coloring problem has widely been dealt with in the
literature, a comprehensive study concerning this implementation in cryptography is still required.
This paper delves into this topic by focusing on the use of extended neighborhood coronas for
modeling communication networks whose average path lengths are small even after an asymptotic
growth of their center and/or outer graphs. Particularly, the dynamic coloring problem is solved
for any extended neighborhood corona with center path or star, for which we establish optimal
shadow allocations of any (fair) threshold secret sharing scheme based on them. Some bounds are
also established for the dynamic chromatic number of any extended neighborhood corona.

Keywords: dynamic coloring; extended neighborhood corona; threshold secret sharing scheme

MSC: 05C15; 94A62

1. Introduction

In 1998, Watts and Strogatz [1] introduced small-world networks as graphs with small
average path length and large clustering coefficient. If both conditions are preserved after a
dynamical growth of their order and size, they may represent complex networks [2]. Some
complex networks such as electrical or biological ones share this property, but they have
small clustering coefficient [3,4].

Products of graphs efficiently model the growth of networks [5]. One may find
examples in this regard concerning Cartesian product [6,7], hierarchical product [8], or
Kronecker product [9,10], amongst others. Of particular interest for the aim of this paper,
is the remarkable recursive use of corona products [11–15] for modeling small-world
networks. This paper delves into this topic by focusing on extended neighborhood coronas
with small average path length on which an (n, t)-threshold secret sharing scheme can
be implemented so that, after just one round of communication, each participant can
either reconstruct the secret, or obtain a different shadow from each neighbor. Introduced
independently by Shamir [16] and Blakley [17], secret sharing schemes consist of two
phases. During the first one, a dealer splits a secret into n pieces of information or shadows.
Copies of these pieces are distributed among a group of participants. Then, there is a
reconstruction phase in which any authorized subgroup sharing at least t distinct shadows
suffices to reconstruct the secret, whereas no subgroup sharing less than t distinct shadows
can perform it. Thus, secret sharing schemes are particularly relevant in online storage and
cloud computing because they enforce data security among the nodes of the network [18].
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A secret sharing scheme is said to be fair if, once the reconstruction phase is finished,
a participant can recover the secret if and only if all other participants can also recover it.
Even if every secret sharing scheme should ensure a fair reconstruction of the secret, it is
difficult in practice. It is mainly due to the possible existence of dishonest participants who
obtain information from the honest ones, but either do not share their own shadows or
share fake ones. Of course, the dealer must also be honest to ensure fairness.

The first fair secret sharing scheme was described by Tompa and Woll [19], who
proposed to hide the secret in a constant sequence of a dummy secret. Multiple rounds
of simultaneous communications among participants are then required to reconstruct the
original secret. Lin and Harn [20] also proposed to hide it, but now the sequence is formed
by random dummy secrets. The one placed just after the original secret is made public at
the beginning of the reconstruction phase. Again, multiple rounds of communications are
required, but now, the simultaneous release of shadows is not necessary. As an alternative
solution, He and Dawnson [21] proposed a slow-information-revealing process by sharing
the secret bit by bit. It was the first time in which formal proofs concerning the behavior of
this reconstruction process were given. Particularly, the rate of revealed information was
estimated at each round of the reconstruction phase.

All the previous solutions yield a Nash equilibrium. Nevertheless, they are difficult
to implement without strong communication channels or supporting procedures. Due
to this, fair secret sharing schemes have also been dealt with in the literature by making
use of probabilistic and game-theoretic techniques. Thus, for example, Laih and Lee [22]
proposed a v-fairness (n, t)-secret sharing scheme in which, even if v < t/2 participants
were dishonest, the remaining ones would have equal probability to obtain the secret
without the requirement of a simultaneous release of their shadows. In their proposal,
the secret is decomposed into three subsecrets so that any two of them give rise to the
secret. Then, the reconstruction phase consists of three rounds, so that even if cheaters
could obtain the secret in the first two rounds, the honest participants could also obtain it in
the third one. The efficiency of this protocol was later improved by Hwang and Chang [23]
and Lee [24].

Furthermore, in order to describe more accurate modelings, Halpern and Teague [25]
proposed to deal not with dishonest participants, but rational ones, who will deviate from
the reconstruction protocol if and only if it is in their interest to do so. Such participants
prefer to obtain the secret over not obtaining it, but they also prefer that as few as possible
of the other participants reconstruct the secret. Thus, in general, these rational participants
have no incentive to share their shadows. It makes it very difficult to obtain fairness, unless
nobody reconstructs the secret. In this context, Ong et al. [26] described a simple protocol
to ensure fairness with a high probability in any secret sharing scheme with a minority
of honest participants and many rational participants. Based on a synchronous release
of shadows, they achieved a trembling hand perfect equilibrium just after two rounds of
communications in the reconstruction phase. Alternative reconstruction protocols with
multiple rounds of synchronous communication have been described by Tian et al. [27],
and Zhang et al. [28]. An asynchronously rational secret sharing scheme was also described
by Harn et al. [29]. Notice also here that, even if multiple rounds of communications are
commonly used to describe fair secret sharing schemes, they give usually rise to large
overheads. Due to this, the description of new fair secret sharing schemes with only one
round of communication constitutes a current area of research [30–32].

From here on, all the communication networks under consideration are assumed to
be finite, simple, and connected undirected graphs. This paper deals with secret sharing
schemes based on these graphs, where each node represents a participant of the scheme, and
two nodes are connected by an edge if and only if there exists some proximity relationship
among them so that they can cooperate to reconstruct the secret. More specifically, one
round of communication among nodes implies that each participant receives the shadows
of her/his adjacent participants. In 1991, Naor and Roth [33] already considered this
type of scheme as a way to split an arbitrary computer file into pieces of information and
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distribute them among a network of processors so that each node constitutes a memory
device. In order to reconstruct the content of the original file, each device can access its
own memory and those ones of its adjacent nodes. The objective is minimizing the total
amount of data stored and ensuring an efficient reconstruction of the original file, even
in the case of network failures or attacks [34,35]. A comprehensive study of the network
topology is, therefore, necessary to design an optimal storage allocation of data among
the nodes [36]. To this end, it can be assumed, without loss of generalization, that no
two neighbors have the same information data. Under these assumptions, any shadow
allocation among the nodes of a graph on which an (n, t)-threshold secret sharing scheme
is based constitutes an n-proper multicoloring of the corresponding graph. Here, each color
represents a shadow of the secret. Thus, for example, Naor and Roth [33] already defined
a multicoloring to minimize the total size of memory in a network of processors. Notice
that a multicoloring becomes an n-proper coloring whenever each participant has exactly
one shadow. In this paper, we assume this last condition by making use of Montgomery’s
dynamic coloring [37,38] in order to describe the corresponding shadow allocation. Let us
detail this fact in the following paragraph.

In 2017, Kim and Ok [39] realized that every t-dynamic proper n-coloring of a graph
G describes a shadow allocation of any (n, t + 1)-threshold secret sharing scheme based on
G. This scheme satisfies that, after just one round of communication among nodes, each
participant can either reconstruct the secret or obtain a different shadow from each one of
his/her neighbors. More specifically, any such coloring c is defined so that the number of
colors or shadows in the neighborhood NG(v) of every vertex v holds that

|c(NG(v))| ≥ min{t, |NG(v)|}. (1)

If all the participants were honest, then this scheme is fair if and only if either t ≤ δ(G)
or t ≥ ∆(G). Here, δ(G) and ∆(G) denote, respectively, the minimum and maximum
degrees of the graph. If t ≤ δ(G), then all the participants would reconstruct the secret in
one round of communication, while none of them could reconstruct it if t ≥ ∆(G). The
following pair of main problems arise here.

Problem 1. Which is the minimum number of rounds of communication that are necessary to
ensure that the secret can be reconstructed by all the participants?

Problem 2. Which is the minimum number of distinct shadows in which the secret has to split to
ensure condition (1)?

Both problems depend clearly on the parameter t and the underlying network topology.
Thus, for instance, the solution of Problem 1 is 1, if t ≤ δ(G), while it is upper-bounded
by the diameter of the graph otherwise. Furthermore, the minimum value referred to in
Problem 2 constitutes, indeed, the t-dynamic chromatic number χt(G). In this way, every
t-dynamic proper χt(G)-coloring of a graph G constitutes an optimal shadow allocation
among the nodes. Computing the t-dynamic chromatic number of a graph constitutes the
t-dynamic coloring problem for G. If t = 1, then it coincides with the classical coloring
problem. Despite that the case t ≥ 2 has widely been dealt with in the literature, there
exists only some partial results concerning corona products [40] and generalized corona
products [41,42]. Particularly, Aparna and Mohanapriya [43] have recently dealt with the
dynamic problem for extended neighborhood coronas whose center is a complete graph.

To the best knowledge of the authors, there is no comprehensive study in the literature
concerning Kim and Ok’s secret sharing schemes. This paper delves into this topic by
solving Problems 1 and 2 for any extended neighborhood corona whose center is either a
path or a star. To this end, we assume the honesty of all the participants. A much deeper
analysis is required for those cases in which one also assumes the existence of dishonest
and/or rational participants. It is established as further work. The choice of extended
neighborhood coronas with a center path or star is due to two main reasons, which are
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comprehensively analyzed throughout the paper. First, they enable one to model complex
networks whose average path lengths remain small even after an asymptotic growth of
their centers and/or outer graphs. The second one is related to Problem 1, because both
types of graphs enable the reconstruction of the secret by all the participants in, at most,
two rounds of communications, whenever, of course, everybody is honest.

The paper is organized as follows. In Section 2, we describe some preliminary concepts
and results on graph theory that are used throughout the manuscript. Then, Section 3
deals with those parameters describing any extended neighborhood corona. Particularly,
their average path length and clustering coefficient are established in Lemma 3. Then,
Proposition 1 shows that the asymptotic behavior of the former is equivalent to that one of
the average path length of the center graph under consideration. Depending on whether
the latter is unbounded or not, the dynamical growth of these graphs differs to keep
their average path length small. In order to illustrate both cases, we focus our study on
extended neighborhood coronas whose centers are either a path or a star. Theorems 1 and 2
in Section 4 solve their respective dynamic coloring problems. Some bounds are also
established for the dynamic chromatic number of any extended neighborhood corona.

2. Preliminaries

This section deals with some preliminary concepts, notations, and results on graph
theory that are used throughout the paper. For more details about this topic, we refer the
reader to the classical manuscript of Harary [44].

A graph G is a pair formed by a set V(G) of vertices and a set E(G) of edges, so that
every edge vw ∈ E(G) contains two adjacent vertices v, w ∈ V(G). If v = w, then the edge
is a loop. A graph is simple if it contains no loops and no two edges join the same pair of
vertices. Further, the cardinalities of V(G) and E(G) are, respectively, the order and the
size of the graph. A graph is finite if both its order and its size are finite. All the graphs in
this paper are simple and finite.

The complete graph Kn is a graph of order n, whose vertices are pairwise adjacent. It
is a triangle if n = 3. A clique of a graph G is any set of vertices of a complete graph within
G. The clique number ω(G) is the largest order of any clique of G. The neighborhood
NG(v) of a vertex v ∈ V(G) is the set of vertices that are adjacent to v. Its degree degG(v)
is the cardinality of this set. A vertex is pendant if it has degree of one. The minimum
and maximum vertex degrees of the graph G are, respectively, denoted by δ(G) and ∆(G).
Further, a path Pn, with n > 2, is any ordered sequence of adjacent and pairwise distinct
vertices 〈 v1, . . . , vn 〉. The star Sn, with n > 2, is a graph formed by n pendant vertices and
a center vertex of degree n.

In 1970, Frucht and Harary [45] introduced the corona product G � H of center G,
with V(G) = {v1, . . . , vn}, and outer graph H as the graph resulting from G and n copies of
H, so that each vertex vi is joined to every vertex in the ith copy of H. Much more recently,
Indulal [46] introduced the neighborhood corona G ? H as the graph resulting from G and
n copies of H, so that every vertex in NG(vi) is joined to every vertex in the ith copy of
H. Five years later, Adiga et al. [47] defined the extended neighborhood corona G ∗ H as
the graph resulting from G ? H after connecting every vertex in the ith copy of H to every
vertex of the jth copy of H, whenever vivj ∈ E(G). Figure 1 illustrates these three products.

Figure 1. Corona, neighborhood corona, and extended neighborhood corona of P3 and K3.
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The distance dG(v, w) between two vertices v, w ∈ V(G) is the size of any shortest
path in G connecting both vertices. The diameter diam(G) of the graph is the maximum
distance between any pair of its vertices. The average path length of the graph G is

`G :=
1

|V(G)| · (|V(G)| − 1)
· ∑

v,w∈V(G)
v 6=w

dG(v, w).

An open triplet in G consists of any three vertices describing a path, but not a triangle.
The clustering coefficient of the graph G is

CG :=
3 · TG

3 · TG + τG
,

where TG and τG denote, respectively, the number of triangles and open triplets in G.
A proper k-coloring of the graph G is any map assigning k distinct colors to the set

V(G) so that no two adjacent vertices share color. Throughout this paper, we consider the
set of colors {0, . . . , k− 1}. The minimum positive integer k for which this coloring exists
is the chromatic number χ(G). Any such coloring is said to be optimal. The following
lemmas refer to the dynamic coloring, which has been defined in the introductory section.

Lemma 1 ([37]). Let G be a simple finite graph and let t be a positive integer. Then, min{t, ∆(G)}+
1 ≤ χt(G) ≤ χt+1(G). Moreover, χt(G) ≤ χ∆(G)(G).

Lemma 2 ([48]). Let n and t be two positive integers. Then,

(a) If n > 2, then χt(Pn) =

{
2, if t = 1,
3, otherwise.

(b) If n > 2, then χt(Sn) = min{n, t}+ 1.

3. Extended Neighborhood Coronas

From now on, we consider an extended neighborhood corona G ∗ H of center G and
outer graph H, where V(G) = {u1, . . . , um} and V(H) = {v1, . . . , vn}. For each pair of
positive integers i ≤ m and j ≤ n, let H(i) denote the ith copy of the graph H, and let vi,j

denote the copy of the vertex vj ∈ V(H) in H(i). In what follows, we describe some basic
parameters concerning the graph G ∗ H. First, the degree of each vertex v ∈ V(G ∗ H) is

degG∗H(v) =

{
(n + 1) · degG(v), if v ∈ V(G),
(n + 1) · degG(ui) + degH(vj), if v = vi,j.

(2)

The distance between two distinct and non-adjacent vertices v, w ∈
(
{ui} ∪V(H(i))

)
×(

{uj} ∪V(H(j))
)

is

dG∗H(v, w) =

{
2, if i = j,
dG(ui, uj), otherwise.

(3)

As a consequence, the next lemma holds.

Lemma 3. The extended neighborhood corona G ∗ H satisfies the following assertions.

1. Its order is mn + m.
2. Its size is (n + 1)2 · |E(G)|+ m · |E(H)|.
3. δ(G ∗ H) = (n + 1) · δ(G).
4. ∆(G ∗ H) = (n + 1) · ∆(G) + ∆(H).
5. diam(G ∗ H) = diam(G).
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6. TG∗H = TG + m · TH + 2 · (n + 1) · |E(G)| · |E(H)|.
7. Its number of open triplets is

τG∗H =τG + m · τH + (n2 + n) · ∑
v∈V(G)

degG(v)
2+

+ (n3 + n2 + n) · ∑
v∈V(G)

(
degG(v)

2

)
+ 2mn · |E(G)| ·

((
n
2

)
+ |E(H)|

)
.

8. Its average path length is

`G∗H =
2 · (n2 − |E(H)|) + `G · (m− 1)(n + 1)2

(n + 1)(mn + m− 1)
.

Proof. The order and size follow readily from the definition of the graph. Its minimum
and maximum degrees hold from (2), while its diameter follows from (3). Concerning the
parameter TG∗H , notice that every triangle in G ∗ H contains either three vertices in G or
two adjacent vertices in H(i), for some i ≤ m. In this last case, the third vertex can be either
in H(i), or in an adjacent copy, or in the graph G. Thus, the value of TG∗H derives from the
existence of

• TH distinct triangles of the first type;
• n · |E(H)| · degG(ui) distinct triangles of the second type;
• |E(H)| · degG(ui) distinct triangles of the third type.

Notice here that ∑v∈V(G) degG(v) = 2 · |E(G)|. Further, the parameter τG∗H derives
from the existence of

• τG open triplets in G;
• n ·∑v∈V(G) degG(v)

2 open triplets containing an edge in G and a third vertex in a copy
of H;

• n ·∑v∈V(G) (
degG(v)

2 ) open triplets containing two non-adjacent vertices in G and the
third one in a copy of H;

• n2 · ∑v∈V(G) degG(v)
2 open triplets containing two vertices in adjacent copies of H

and the third one in G;
• n2 · ∑v∈V(G) (

degG(v)
2 ) open triplets containing one vertex in G and two vertices in

non-adjacent copies of H;
• m · τH open triplets within a same copy of H;
• 2mn · |E(G)| ·

(
(n

2)− |E(H)|
)

open triplets containing two non-adjacent vertices in a
same copy of H and the third one in an adjacent copy;

• 4mn · |E(G)| · |E(H)| open triplets containing an edge in a copy of H and the third
one in an adjacent copy;

• n3 ·∑v∈V(G) (
degG(v)

2 ) open triplets containing three vertices in three adjacent copies
of H.

Finally, the average path length follows from the 2 · |E(H)| ordered pairs of adja-
cent vertices in each E(H(i)), the n pairs of vertices in each {ui} × V(H(i)), and the
2 ·
(
(n

2)− |E(H)|
)

ordered pairs of non-adjacent vertices in each V(H(i)) × V(H(i)), all
of them at distance two in G ∗ H; and the fact that the sum of distances for the remaining
ordered pairs of vertices in G ∗ H is `G ·m(m− 1)(n + 1)2.

Based on the sixth statement of Lemma 3, the following result describes how the
asymptotic behavior of `G∗H is equivalent to that one of `G.

Proposition 1. It is verified that

1. limm→∞ `G∗H = n+1
n · limm→∞ `G.

2. `G ·(m−1)+1
m ≤ limn→∞ `G∗H ≤ `G ·(m−1)+2

m .
3. limm,n→∞ `G∗H = limm→∞ `G.
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Proof. The result holds readily from Lemma 3. In particular, the lower and upper bounds
in the second statement arise from considering, respectively, H = Kn and |E(H)| = 0.

Let us remember our interest in modeling (fair) secret sharing schemes over any
extended neighborhood corona G ∗ H, whose average path length is small even after a
dynamical growth of the graph, and so that every participant obtains the maximum number
of shadows from his/her neighbors to obtain the secret. To this end, we may ensure from
Proposition 1 that, if the asymptotic behavior of `G is unbounded, then only a growth of the
outer graph is feasible. But, if `G has a bounded asymptotic behavior, then an independent
growth of both the center and the outer graphs is feasible. In this paper, we illustrate both
cases by focusing on the study of extended neighborhood coronas with either a center path
graph Pm or a center star graph Sm. Notice here that

`Pm =
m + 1

3
and `Sm =

2m
m + 1

.

Then, for every graph H, Proposition 1 implies that

m2 + 2
3m

≤ lim
n→∞

`Pm∗H ≤
m2 + 5

3m
, lim

m→∞
`Sm∗H =

2n + 2
n

,

2m2 + m + 1
(m + 1)2 ≤ lim

n→∞
`Sm∗H ≤

2m2 + 2m + 2
(m + 1)2 and lim

m,n→∞
`Sm∗H = 2.

Furthermore, concerning the asymptotic behavior of the clustering coefficient CG∗H ,
with G ∈ {Pm, Sm} and m > 2, Lemma 3 implies that

TPm∗H = m · TH + 2 · (m− 1)(n + 1) · |E(H)|,

TSm∗H = (m + 1) · TH + 2 ·m · (n + 1) · |E(H)|,

τPm∗H =m− 2 + m · τH + (4m− 6)(n2 + n) + (m− 2)(n3 + n2 + n)+

+ 2(m2 −m)n ·
((

n
2

)
+ |E(H)|

)
and

τSm∗H =(m + 1) · τH + (m2 + m) · (n2 + n) +
(

m
2

)
· (n3 + n2 + n)+

+ 2m2n ·
((

n
2

)
+ |E(H)|

)
.

Hence, limm→∞ CSm∗H = 0. Moreover, limn→∞ CG∗H = 0, for any G ∈ {Pm, Sm} such
that TG∗H 6∼ O(n3). It is not the case if TG∗H ∼ O(n3). Thus, for instance,

lim
n→∞

CPm∗Kn =
4m− 3

6m2 + 4m− 9
and lim

n→∞
CSm∗Kn =

8m + 2
15m2 − 11m + 8

.

Extended neighborhood coronas with a center path or star may, therefore, be used to
model small-world networks and complex networks with small average path length. As it
has been indicated in the introductory section, solving the dynamic coloring problem for
these networks enables one to describe fair secret sharing schemes based on them. In the
next section, we solve this problem for any graph G ∗ H, with G ∈ {Pm, Sm}, and establish
the asymptotic behavior of the minimum number of distinct shadows that are required for
these secret sharing schemes.
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4. Solving the Dynamic Coloring Problem

Let us start this section by formulating a series of preliminary results that are useful to
solve the dynamic coloring problem for any extended neighborhood corona G ∗ H, with
G ∈ {Pm, Sm}. First, based on the fact that both the path Pm and the star Sm have pendant
vertices, it is interesting to establish a lower bound for the dynamic chromatic number of
any extended neighborhood corona G ∗ H, whose center has a non-empty set of pendant
vertices. We denote this set by P(G).

Lemma 4. If P(G) 6= ∅, then, for every positive integer t, it is

max
u∈P(G)

{
min{t, n + 1}+ min

v∈NG(u)

{
t, degG∗H(v)

}}
≤ χt(G ∗ H).

Proof. Let c be an optimal t-dynamic proper coloring of the graph G ∗ H, and let u ∈ P(G).
The result holds readily from Condition (1). It implies that |c(NG∗H(u))| ≥ min{t, n + 1}.
Moreover, together with the underlying adjacency of the graph G ∗ H, it also implies that
min{t, degG∗H(v)} extra colors are required for every vertex v ∈ NG(u).

In a more general way, we establish a pair of lower and upper bounds for the t-dynamic
chromatic number of any extended neighborhood corona G ∗ H.

Lemma 5. For every positive integer t, let αt = min
{
d t

n+1e, ∆(G)
}

and βt = min{n +
1, max{t, χ(H)}}. Then,

ω(G) · χ(H) ≤ χt(G ∗ H) ≤ βt · χαt(G).

Proof. The lower bound follows readily from the complete adjacency among the adjacent
copies H(i1), . . . , H(iω(G)), where {ui1 , . . . , uiω(G)

} ⊆ V(G) is a maximum clique within
G. Concerning the upper bound, it is enough to define an appropriate t-dynamic proper
coloring c of G ∗H. From Lemma 1, we may assume that t ≤ ∆(G ∗H), and hence Lemma 3
implies that d t

n+1e ≤ ∆(G) + 1.
First, we define c(ui) = βt · cG(ui), for all i ≤ m, where the map cG is an optimal

αt-dynamic proper coloring of G. In addition, let cH be an optimal proper coloring of the
graph H. Then, for every pair of positive integers i ≤ m and j ≤ n, we define

c(vi,j) =

{
c(ui) + cH(vj), if βt = χ(H),
c(ui) + j + 1, if βt = n + 1.

Finally, if χ(H) < t ≤ n, then it is always possible to find t− χ(H) distinct vertices
in H that are not uniquely identified by the map cH . That is, their respective colors are
assigned more than once to V(H). Without loss of generality, we may assume that these
vertices are v1, . . . , vt−χ(H). Then, for each i ≤ m and j ≤ n, we define

c(vi,j) =

{
c(ui) + j− 1, if j ≤ t− χ(H),
c(ui) + t− χ(H) + cH(vj), otherwise.

In all the cases, the map c is a t-dynamic proper coloring of G ∗ H.

The following result holds readily from Lemma 5.

Proposition 2. If ω(G) = χ(G), then χt(G ∗ H) = χ(G) · χ(H), for every t ≤ χ(H).

4.1. Extended Neighborhood Coronas with Center Path Graphs

Based on the previous results, we may solve the dynamic coloring problem for any
extended neighborhood corona Pm ∗ H, where Pm = 〈 u1, . . . , um 〉. Here, m > 2.
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Theorem 1. For every positive integer t,

χt(Pm ∗ H) =


2 ·max{t, χ(H)}, if t ≤ n + 1,
n + t + 1, if n + 1 < t < 2n + 2,
3n + 3, otherwise.

Proof. The case t ≤ χ(H) follows readily from Proposition 2 and the fact that
ω(Pm) = χ(Pm) = 2. In addition, if t > χ(H), then we have from Lemma 4 that

min{t, n + 1}+ min{t, 2n + 2} ≤ χt(Pm ∗ H). (4)

Together with Lemma 2 and the upper bound described in Lemma 5, it implies both
cases χ(H) < t ≤ n + 1 and t ≥ 2n + 2. In order to prove that the lower bound (4) is
also tight for n + 1 < t < 2n + 2, let c be an optimal t-dynamic proper 3-coloring of Pm.
Then, it is enough to consider the t-dynamic proper (n + t + 1)-coloring c′ of Pm ∗ H that
is described so that, for each pair of positive integers i ≤ m and j ≤ n, we have that
c′(ui) = (n + 1) · c(ui) and

c′(vi,j) =

 c′(ui) + j, if

{
i ∈ {1, 2}, or
j ≤ min{t− n− 2, n},

c′(vi−2,j), otherwise.

It is not difficult to check that each one of the dynamic colorings referred to in
the previous proof holds that, for every vertex v ∈ V(Pm ∗ H) and every color i ∈
{0, . . . , χt(Pm ∗ H)− 1}, there exists at least one vertex w ∈ V(Pm ∗ H) that is colored by
the color i and satisfies that dPm∗H(v, w) ≤ 2. As a consequence, every (n, t + 1)-threshold
secret sharing scheme that is based on the graph Pm ∗ H, and associated with any of these
optimal shadow allocations, satisfies that two rounds of communication are enough to
ensure that all the participants can reconstruct the secret, whenever everybody is honest. As
a representative example, Figure 2 illustrates the map c′ described in the proof of Theorem 1
for a 6-dynamic proper coloring of the extended neighborhood corona P4 ∗ P3. It shows
an optimal shadow allocation to obtain a (10, 7)-threshold secret sharing scheme so that,
after just one round of communication, each participant can either reconstruct the secret
or obtain a different shadow from each one of his/her neighbors. Each color or shadow is
indicated between parentheses as a superscript above the corresponding vertex label.

Figure 2. Optimal 6-dynamic proper coloring of P4 ∗ P3.
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From Proposition 1, the unbounded asymptotic behavior of `Pm implies that a small
average path length of Pm ∗ H is only preserved by a dynamical growth of its outer graph.
If H is large enough, then Theorem 1 implies that the minimum number of distinct shadows
in which any secret must split to obtain a fair sharing scheme on Pm ∗ H is

lim
n→∞

χt(Pm ∗ H) = 2 ·max{t, χ(H)}.

4.2. Extended Neighborhood Coronas with Center Star Graphs

Let us finish our study by solving the dynamic coloring problem for any extended
neighborhood corona Sm ∗ H, where the star graph Sm has center u1 and pendant vertices
u2, . . . , um+1.

Theorem 2. Let m > 2 and t be two positive integers. If H is a graph of order n, then

χt(Sm ∗ H) =


2 ·max{t, χ(H)}, if t ≤ n + 1,
n + t + 1, if n + 1 < t < mn + m,
(m + 1) · (n + 1), otherwise.

Proof. The case t ≤ n + 1 follows similarly to the proof of Theorem 1. In addition, if
t > n + 1, then Lemma 4 implies that

n + 1 + min{t, mn + m} ≤ χt(Sm ∗ H). (5)

Hence, the case t ≥ mn + m holds readily from Lemma 2 and the upper bound in
Lemma 5.

In order to prove that the lower bound (5) is also tight for n + 1 < t < mn + m, it is
enough to consider the t-dynamic proper coloring c of Sm ∗ H that is described so that, for
each pair of positive integers i ≤ m and j ≤ n,

c(ui) =

{
(i− 1) · (n + 1), if i ≤ 1 + d t

n+1e,
c(ui−1), otherwise.

and

c(vi,j) =

 c(ui) + j, if

{
i ≤ 1 + b t

n+1c, or
i = 1 + d t

n+1e and j < t mod (n + 1),
c(vi−1,j), otherwise.

Similarly to the case of extended neighborhood coronas of center paths, it is not
difficult to prove that two rounds of communications are enough to ensure that all the
participants of a (n, t + 1)-threshold secret sharing scheme based on Sm ∗ H, and associated
with any of the optimal shadow allocations referred to in the previous proof, can reconstruct
the secret whenever everybody is honest. As a representative example, Figure 3 illustrates
the map c described in the proof of Theorem 2 for a 7-dynamic proper coloring of the
extended neighborhood corona S3 ∗ P3. It shows the distribution of shadows to obtain an
(11, 8)-threshold secret sharing scheme in which, after just one round of communication,
each participant can either reconstruct the secret, or obtain a different shadow from each
one of his/her neighbors. Again, each color or shadow is indicated between parentheses as
a superscript above the corresponding vertex label.
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Figure 3. Optimal 7-dynamic proper coloring of S3 ∗ P3.

From Proposition 1, the bounded asymptotic behavior of `Sm implies that a small
average path length of Sm ∗ H is preserved by an independent dynamical growth of both its
center and outer graphs. If Sm is large enough, then Theorem 1 implies that the minimum
number of distinct shadows in which any secret has to split to obtain a sharing scheme on
Sm ∗ H is

lim
m→∞

χt(Sm ∗ H) =

{
2 ·max{t, χ(H)}, if t ≤ n + 1,
n + t + 1, otherwise.

However, if either the outer graph or both the center and the outer graphs are large
enough, this minimum number of shadows is

lim
n→∞

χt(Sm ∗ H) = lim
m,n→∞

χt(Sm ∗ H) = 2 ·max{t, χ(H)}.

5. Conclusions and Further Works

In this paper, we have studied those conditions under which an extended neighbor-
hood corona may model a small-world network or a complex network, whose average
path length is small even after some dynamical growth of the graph. Depending on the
asymptotic behavior of the average path length of the center, this growth may be considered
either in the outer graph, or, independently, in both the center and the outer graph. In order
to illustrate both cases, our study has focused on those extended neighborhood coronas
whose center is either a path or a star graph.

The dynamic coloring problem has been solved for any of these graphs. It enables
one to establish the minimum number of distinct shadows in which the secret has to split
to ensure that, after just one round of communication among nodes, each participant
can either reconstruct the secret, or obtain a different shadow from each one of his/her
neighbors. Particularly, we have proved that this value is always bounded, whatever the
size of the graph is. In addition, we have proved that, whenever everybody is honest, two
rounds of communications are enough to ensure that all the participants can reconstruct
the secret. A much deeper analysis is required for those cases in which one also assumes
the existence of dishonest and/or rational participants. It is established as further work.

In a similar, but more general, way, the following problem arises naturally for any
given graph on which a threshold secret sharing scheme is based. In a first stage, it may be
dealt with by assuming the honesty of all the involved participants. In a second stage, the
possible existence of dishonest and/or rational participants can be assumed.

Problem 3. Which is the minimum number of distinct shadows into which the secret has to split for
ensuring that the secret can be reconstructed by everybody in, at most, k rounds of communication?
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In order to deal with this problem, it is necessary to study the shadow allocation
within the k-neighborhood of each vertex v of the graph G under consideration. That is,
Nk

G(v) := {w ∈ V(G) : dG(v, w) ≤ k}, where k is a positive integer. As such, a natural
generalization of the concept of dynamic coloring arises. More specifically, we say that a
proper n-coloring c of a graph G is a (t, k)-dynamic proper n-coloring if

|c(Nk
G(v))| ≥ min{t, |Nk

G(v)|}.

In this way, Problem 3 would refer to what we can call the (t, k)-dynamic chromatic number
χt,k(G). If k = 1, then these concepts coincide with the t-dynamic proper n-coloring and
the t-dynamic chromatic number described in the introductory section. A comprehensive
study of these new notions is, therefore, required. It is also established as further work.

Finally, we have described in this paper some general bounds for the dynamic chro-
matic number of any extended neighborhood corona. Nevertheless, a more comprehensive
study is required to completely solve the dynamic coloring problem for any of these graphs.
It is established as further work. The results described in this paper constitute a useful
starting point not only to this end, but also to delve into the description of new, fair sharing
secret schemes based on other products of graphs.
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