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A computational code based on a semianalytic procedure for the determination of the characteristic exponents
and the singular stress and displacement fields in multi-material corners is developed. Linear elastic anisotropic
materials under generalized plane strain state are considered. This code is a universal computational tool able
to analyze both open and closed (periodic) corners, composed of one or multiple materials with isotropic,
transversely isotropic or orthotropic constitutive laws, covering both mathematically non-degenerate and
degenerate materials in the framework of Stroh formalism. In multi-material corners, material junctions with
perfectly bonded or frictionless sliding interfaces can be studied. The considered homogeneous boundary
conditions cover stress free and fixed faces, or faces with some restricted or allowed direction of displacements,
defined either in the reference frame aligned with the cylindrical coordinate system or in an inclined
reference frame. The code is developed in MATLAB and it is based on the Stroh matrix formalism for
anisotropic elasticity, the concept of transfer matrix for single material wedges, and on the matrix formalism
for homogeneous (orthogonal) boundary conditions. The comparison of the characteristic exponents obtained
by the present code and by the solution of closed-form eigenequations available in the literature, has a two-
fold objective, first to exhaustively check the general computational implementation of the matrix formalism
presented, and second to check the closed-form expressions of eigenequations for relevant specific cases
published in the literature.

1. Introduction many analytical, semi-analytical and numerical approaches have been
proposed for the study of stress singularities in multi-material corners.
Numerical approaches, such as those developed in [4,5], are more
general, as they can solve some stress singularity problems that cannot
be solved by analytical or semi-analytical approaches. However, ana-
lytical or semi-analytical approaches, such as those developed in [6] for
isotropic materials and in [7,8] for anisotropic materials, which provide
an explicit closed-form expression of the characteristic corner equation
(eigenequation), usually lead to higher accuracy of results. Thus, in
the present study, a novel semi-analytical approach is developed and
implemented in a computational code. For the sake of brevity, we will
often refer to single-material wedge as a material and to multi-material

Stress singularities, also referred to as singular stresses, i.e. un-
bounded stresses, take place in linear elastic structures due to some dis-
continuities, such as non-smooth geometry (e.g., cracks or V-notches),
jumps in kind or in values of boundary or interface conditions, and
jumps in material properties (e.g., joints of dissimilar materials, inter-
face cracks). Points (or edges in 3D view) where such discontinuities
originate singular stresses are called singular points (or singular edges,
e.g. crack fronts). These points are prone to failure initiation due to
high stress values in their neighborhood, which is generally referred
to as a corner. The singular point itself is called a corner tip. A
configuration where several materials meet at a singular point is called

a multi-material corner.

The most relevant early studies of stress singularities in isotropic
and single-material corners, with free or fixed boundaries, by
Wieghardt [1] and Williams [2], see Vasilopoulos [3] for a careful
review, were generalized in a large number of later works. In particular,
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wedge with perfectly bonded materials simply as a wedge.

For isotropic bi-material and tri-material corners, basic eigenequa-
tions were deduced, e.g., in [9-11]. A semi-analytic procedure for
isotropic multi-material corners was introduced by Dempsey and Sin-
clair [6]. One of the earliest studies of corner singularities in anisotropic
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materials were those by Bogy [12,13], analyzing singular stresses in
anisotropic single and bi-material corners, and by Ting and Chou [14],
paying attention to configurations with multiple (repeated) roots of the
characteristic equation of an anisotropic material (so-called mathemat-
ically degenerate materials) and also with multiple roots of the corner
eigenequation.

In the last 20 years, many authors have focused their studies on
anisotropic multi-material corners. Costabel et al. [7] developed a semi-
analytic code for the computation of stress singularities for elastic
multi-material corner problems with perfectly bonded interfaces and
with single roots of the material characteristic equation (so-called
mathematically non-degenerate materials). Wu [15] used the Stroh
formalism to deduce eigenequations for non-homogeneous anisotropic
corners with a wide range of boundary conditions, but not including
frictional contact. In 2003, several related approaches for singularity
analysis of anisotropic multi-material corners with perfectly bonded in-
terfaces were developed, using the Stroh formalism [16,17], by Hwu et
al. [18] for mathematically non-degenerate materials, and by Yin [19]
and Barroso et al. [20] for both mathematically non-degenerate and
degenerate materials. In particular, the code implemented in [20]
by using the computer algebra software Mathematica [21] was able
to calculate characteristic exponents for any multi-material open or
closed (periodic) corner in generalized plane strain, considering per-
fectly bonded interfaces, with free or clamped boundary faces. The
great novelty of this code was that for the first time it was possible
to analyze corners with mathematically non-degenerate, degenerate
(e.g., isotropic) and extraordinarily degenerate materials. The proce-
dure presented in [20] was further developed by Manti¢ et al. [8], who
introduced a general matrix formalism able to analyze multi-material
corners problems with many different boundary conditions, including
also frictional contact for boundary and interface conditions, and with
any kind of linear elastic materials.

The present paper applies and further develops the general matrix
formalism for singularity analysis of multi-material corners introduced
in [8]. The description of this formalism in [8] was very concise,
which in view of its generality and complexity could make difficult its
comprehension by readers. Furthermore this matrix formalism has not
been verified so far by its full computational implementation, except
by ad hoc implementations for some specific cases studied in [8].

Therefore, the aim of the present paper is to present this matrix
formalism in a comprehensive way for the case of homogeneous and
orthogonal boundary and interface conditions (i.e. omitting friction
contact, which makes its presentation much simpler), revise this matrix
formalism and provide complementary and clarifying explanations.
However, the most relevant contribution of this paper is the first
fully general implementation of the formalism introduced in [8], and
a comprehensive checking of this implementation by comparing its
results with the numerous analytical and numerical results of corner
singularity analysis available in the literature. In a forthcoming paper,
boundary and interface conditions with frictional sliding contact will
be included in the present matrix formalism, and its computational
implementation will be described together with some examples of its
successful testing.

Although some corner problems lead to eigenequations with multi-
ple (repeated) roots, and such configurations were studied by Dempsey
and Sinclair [6] for isotropic materials, and by Ting and Chou [14],
Wu [15] and Steigemann [22] for anisotropic materials, the present
paper is limited to single roots of the corner eigenequation, for the sake
of simplicity.

The present paper presents a new code developed in Matlab [23],
which is based on the previous one [20]. The possibility to consider
interfaces between the materials in the corner with frictionless sliding,
and several boundary conditions with allowed or restricted displace-
ment directions have been added to this code, see Fig. 1 for the notation
used to describe a multi-material corner. The possibility of sliding
between materials implies that the size of the matrix to be solved is not
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always 3 x 3 or 6 x 6, but 6W x6W, where W is the number of wedges
formed by angular sectors of materials perfectly bonded together.

The following ingredients are key in the development of the present
matrix formalism:

- Stroh formalism for anisotropic elasticity [16,17]

- Transfer matrix for a single-material wedge proposed by Ting [24]

- Matrix formalism for homogeneous orthogonal boundary and
interface conditions proposed by Manti¢ et al. [8].

We speak about homogeneous orthogonal boundary conditions when
the stress and displacement vectors are orthogonal to each other. This
happens when there is a coordinate system in which always one of
the components of one of these vectors is null. This means, when the
displacement in one direction is restricted (equal to zero), the stress
is allowed, and when the displacement is allowed in one direction,
the stress will vanish in that direction. For example, in the symmetry
boundary condition the displacement in the normal direction is zero
u, = 0, but the normal stress component is in general non zero o, # 0.

The content of this paper is divided into sections according to the
steps that the implemented computer code follows: Material character-
ization by applying first the Stroh formalism in Section 2, and then
computing the transfer matrix in Section 3. In the next step we obtain
the boundary and interface matrices employing the matrix formalism
for homogeneous orthogonal boundary and interface conditions pre-
sented in Section 4. In Section 5, all these matrices are assembled
to form the characteristic matrix of the corner defining a nonlinear
eigensystem. The numerical solution of this eigensystem gives the
characteristic exponents. For some special cases such as single-material
and bi-material corners, reduced eigensystems are deduced. The charac-
teristic angular functions of stresses and displacements are calculated
individually for each characteristic exponent in Section 6. The entire
implementation is summarized in Section 7. Finally, in Section 8, many
numerical examples are shown in order to check our own code and
also the closed-form eigenequations presented by other authors. These
examples include several relevant cases such as V-notches, interface
cracks, cracks meeting interface, multi-material closed corners.

Noteworthy, the present code can be used to test new analytic
formulas for the characteristic exponents or eigenequations developed
for relevant engineering problems, which are very suitable for practical
applications and parametric studies.

2. Stroh formalism applied to stress singularity analysis of linear
elastic anisotropic materials

Stroh formalism is a powerful tool to solve linear anisotropic elastic
problems. This formalism is based on the equilibrium equations in
terms of displacements (in the absence of body forces) obtained by
using the constitutive law of linear anisotropic elasticity,

0ij = Cijki€ki = Cijkluk,lv @

Cijktirsj =0, (2)

where C,;, is the positive definite (C;;y;¢;;¢;, > 0 for non zero ¢;; = ¢;;)
and symmetric fourth-order tensor of elastic stiffnesses (C;;; = Cjyy =
Cyij)s 0;; is the Cauchy stress tensor, u; the displacement field and
¢;; the small strain tensor. Assuming a generalized plane strain state,
where the displacements u; depend exclusively on the coordinates x,
and x,, u;(x;,x,;), we consider a solution of the system of Egs. (2) in

the following form

uk(xl,xz) = akf(z), 3

z =X + pxy, 4
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Fig. 1. Multi-material corner notation (2D view).

where f(z) is an analytic function of a variable z given by a linear
combination of x; and x,, and p and a; are constants to be deter-
mined. Taking into account the geometry of the present corner problem
(Fig. 1), it will be useful to employ z written in polar coordinates

z = r(cos(0) + psin(6)). 5)

Differentiating twice the expression (3) with respect to x; and x; and
substituting in (2), we obtain the quadratic eigenvalue problem for the
number p and the vector a

[Ciir + P(Ciiga + Ciogt) + P* Ciogalay, = 0. (6)

To write this eigenvalue problem in matrix form, we define the follow-
ing matrices (second-order tensors)

Qi = Gk

Then, the quadratic eigenvalue problem (6) is written as

Ry = Ciikr»  Tix = Cinpa- (7)

[Q+pR+R") + p*Tla=0. (8)

A non trivial solution for a may exist only if the determinant of the
matrix in this linear system is zero,

det (Q + p(R +RT) + p*T) = 0. 9)

This equation is known as the Lekhnitskii-Stroh sextic polynomial
equation in p for anisotropic materials under generalized plane
strain [25]. Lekhnitskii [26] showed that the six dimensionless roots
of this equation p, (@ = 1,...,6), called also eigenvalues, are complex,
i.e. p, € C. In the present paper, we will assume the following ordering
of these six eigenvalues according to the sign of their imaginary part

Im p, >0, puy3=p, @=123, 10)

where Im denotes the imaginary part and the overbar denotes the com-
plex conjugate value. For an eigenvalue p,, the associated eigenvector
a, can be obtained from the linear system (8).

The stress tensor components ¢;; and o, can be obtained by the
following expressions

o1 = Qi + PR ay [ (2), an

o = (Ry; + pTi)ay f(2), (12)

while o33 is obtained from the constitutive law by taking into account
that ¢33 = 0. Expressions (11) and (12) can be rewritten as

o1 = —pb,-f/(z), Cjp = b,-f’(z), 13)
where the eigenvector b is obtained from the eigenvector a as
b=® +Ta=-(Q+ R (14)

The eigenvectors a, and b, are ordered according to the ordering of p,
in (10)

a,,;=a, and b,;=b, a=1273. (15)
By introducing the stress function vector ¢ as

@; = b;f(z), orin matrix notation @ =bf(z), 16)

the expressions (13) take the following form

Oj1l = =@®i2 O =@ a7)

The stress function vector ¢ represents, together with the displacement
vector u, the main variables of the Stroh formalism.

For mathematically non-degenerate materials, i.e. those with the
six different eigenvalues p,, we can superimpose the six solutions for
displacement vector from (3), and the corresponding six solutions for
the stress function vector from (16), giving, in view of (15),

3
UG, %) = Y8, fo(Zy) + 8y fars (), (18)
a=1
3 -
¢(xl ’ xz) = Z bafa(za) + bafa+3(ia)~

a=1

19

Analogous fundamental representations of the Stroh formalism of the
displacement and stress function vectors for degenerate materials, with
multiple eigenvalues p,, can be found in [8,19,20,27].
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For corner singularity analysis, the following expressions will be
considered in the neighborhood of the corner vertex

far3(Ge) = 224y, (20

with no summation over «, and where 1 is the dimensionless character-
istic exponent, related with the stress singularity order § by 6 = 1 — A.
To keep the strain energy bounded, and the resultant forces along the
radial lines to be finite in the neighborhood of the corner tip, the real
part of A must be non-negative, Re(1) > 0. Rigid body translations
correspond to A = 0.

Although, according to the mathematical theory of linear elliptic
systems [22,28,29], the general expression of f, may involve also
positive integer powers of a logarithmic term

faZa) = 24das

fu(z) = 24 10g? 2,q,, with p=0,1,2.. (1)

in the present paper only power-law singularities (20) will be consid-
ered for the sake of simplicity.
Substituting (20) in the representations (18) and (19) gives

u=A(z})q+A(zHq, (22)

@ =B(z})q + B(z})q, 23)

where the column vectors of matrices A and B are the eigenvectors a,
and b,, respectively,

A=[a.ay.a;], B=[b.by.bs, 24
and (zj) denotes a diagonal matrix

(z}y = diag(zf, zé, zg). (25)
By using (5) we get

z, = r(cos(8) + p, sin(9)) = r,(6), (26)

and substituting in (25)

(zf) = r*diag(¢](0).£)(0).£](©0)). 27)

By substituting this expression in (22) and (23) we obtain
u=rHACHa+ACHa). (28)
o =r{(BCHa+B(CHa). 29)
These representations can be written in a compact way as
w(r, 0) = r*XZ*, (30)
where:

u(r, 0) _[a A i - [(CE@) 0

weo= o) x=lo 8- #0=[%7 gl

(31)

For expressions analogous to (30) and (31) for mathematically degen-
erate materials, see [8,19,20].

3. Singular elastic solution in a single-material wedge. Transfer
matrix

Considering the special geometry of singularity problems for multi-
material corners, the transfer matrix concept proposed by Ting [24] is
very helpful to simplify the problem analysis.

In the case of a single-material wedge of number m, this matrix al-
lows us to get a relation between displacements and the stress function
vector, u and ¢, on both faces of the wedge. That is, the transfer matrix
E,, that depends on the material properties, single-material wedge
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angles (0,,,0,,_;) and singularity exponent A, relates w,,(r,0,,_;) with
w,,(r,6,) in the following way:

w,(r,0,)=E,(4,0,,0,_ )W, (T, 0,_). (32)

The matrix E,,, for mathematically non-degenerate materials, is given
by

E,,(4,0,,0,,_1) = X2}(6,,,0,,_)X ", ©3
where

70,0, )= <¢;(om(,)em_1>> @(H:Gm_l» , (34)
and

Ca(0,0,_1) = €080y, — 6,,_1) + po(6,_1) sin(B,, — 0,,_1), @35
with

=P €08 (8,,—1) — sin (6,,_;) (36)

P Sin(0,,_1) +cos(0,,_1)"
Analogous expressions for degenerate and extraordinary degenerate
materials can be found in [8,20]

Continuity problems can arise when evaluating the complex power
function £(@,,.6,,_,) for which a proper choice of branch cut is neces-
sary. Taking into account that 0 < 8,,—0,,_; <2z, and Im(p,(6)) > 0 for
a = 1,2,3, we use in our code the following argument function y and
radius p

v = arg(e(0,,,0,_1) € (0,27), p=1{0,, — Oy 37
in the (real variable) expansion of the complex power function
EH O, 0,-1) = pREP V™D cos (Re(Ay + Im(4) In p)

+ isin (Re(A)y + Im(4) In p)]

(38)

valid for any programming language. An equivalent possibility to avoid
the continuity problem when coding in Matlab is presented in [30,
Section 4.4.1].

For the sake of notation simplicity, hereafter E, (4,6,,,6,,_;) will be
denoted as E,, ().

4. Matrix formalism for boundary and interface conditions

4.1. Reference frame attached to a wedge face

To define the boundary and interface conditions, it is first necessary
to choose a suitable reference frame for the displacement and traction
vectors, which facilitates the further development of the present matrix
formalism. For this purpose, an orthonormal basis of vectors attached
to the corner faces has been chosen as defined in [8], see Fig. 2

(s,(9),83,n(9)), (39)

with Cartesian components

—cosd 0 —sind
s,(9)=|-sind|, s3=|0|, n@®) =] cosd |. (40)
0 1 0

These unique right-handed reference frames at each boundary face
or interface (s,(&), s3(9), n(S)) are defined for the imposition of bound-
ary or interface conditions, for both displacement and stress function
vectors. The vector s, should be used with caution in (41), where the
vector s is considered always as counterclockwise on a solid boundary,
whereas the direction of s, on a wedge face can be clockwise or
counterclockwise.
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%

Fig. 2. Orthonormal basis attached to each face.

4.2. Boundary condition matrices

As follows from the introduction section, the homogeneous bound-
ary conditions considered in the present paper fulfill the orthogonality
condition between the boundary traction and displacement vectors.
Therefore, there is a Cartesian coordinate system in which if a com-
ponent of the stress function vector ¢ is not zero then that component
of the displacement vector u is zero, and vice versa.

Considering that the traction vector t at a point (x;,x,) can be
calculated as the tangential derivative of the stress function vector ¢
with respect to the tangential vector s

a
t(xl,xz):—a—(sp(xl,xz), (41)

and assuming that the stress function vector ¢ vanishes at the vertex of
the wedge (r = 0), a homogeneous and orthogonal boundary condition
for an open corner, for a wedge face of angle 9,,, w = 0 or W, can be
imposed by the following linear relation, for r > 0,

D, @3, )u(r,9,)+D,@,)er9,) =0, (42)

where D, and D, are 3 x 3 real matrices which satisfy the orthogonality
relations

D,(3,)D(9,,) = Dy(39,)D] (8,,) = 0, (43)
and
D,(9,)D (8,)) + Dy, (9,)D(8,) = L, (44)

with subscript T denoting the transpose. Examples of these matrices for
the most relevant homogeneous and orthogonal boundary conditions
are presented in Table 1. It is easy to check that the matrices in
Table 1 meet the orthogonality relations (43) and (44), and represent
the indicated boundary conditions by applying (42). A reference frame
defined by an orthonormal basis of vectors (ﬁ, m,i) is used to define
inclined supports, an example of such reference frame is shown in
Fig. 3. Noteworthy, the matrices D, and D, are defined in Table 1 in
such a way that actually no linear combination of the components of
the vectors u and ¢ occurs in (42), and the boundary conditions for
displacements and stress function vectors are imposed separately.

Matrices D, and D, in Table 1 represent just one of many possible
options to impose the considered boundary conditions. The presented
forms of these matrices have been chosen for convenience due to their
simplicity when using the defined reference frames. Nevertheless, there
is a lot of freedom when defining these matrices:

« If the displacement vector u has a null projection onto a straight
line, the unite vectors m and —m, fulfilling u-m =0 and |m| =1,
can be used to define that line. Similar consideration can be made
for the vector ¢.

Theoretical and Applied Fracture Mechanics 119 (2022) 103271

Table 1
Matrices D, and D,, for homogeneous and orthogonal boundary conditions.

Boundary condition D, D,

Free 05 3 | ER
Clamped I3 0,3

Only u, restricted (Symmetry) [n(d), 0,01 [0,s,(9),s5]"
Only u, allowed (Antisymmetry) [0,s,(89),s51" [n(9),0,01"
Only u, restricted [s,(9),0,01" [0.n(9),s;]"
Only u, allowed [n(9),s;,0]" (0,0,5,(9]"
Only u, restricted [s5,0,0]" [0,5,(9), n(9)]"

Only u; allowed [s,(9),n(9),0]" [0,0,s5]"
Only u, restricted [(8),0,0]" [0, (), 11"
Only u; allowed [m,1,0]” [0,0, (91"

« If the displacement vector u has a null projection onto a plane,
any pair of unit orthogonal vectors m and 1 can be used to define
that plane. This pair of vectors fulfills the following relations:
u-m=0,u-1=0,m-1=0, |/m| = |l| = 1. Similar consideration
can be made for the vector ¢.

Formally, in general, the matrices D, and D,, presented in Table 1
could be multiplied from the left by any 3 x 3 real orthogonal
matrix. It is easy to check that the matrices obtained by such
multiplication will fulfill the orthogonality relations (43) and
(44), and will impose the same boundary condition by applying
(42). However, such multiplication of D, and D,, by an orthogonal
matrix can lead to a linear combination of the components of u
and ¢ having different physical units.

With the matrices D, and D, we can build the main matrix for
boundary conditions

D9, D,@,) D,9,) D,@,)
D 19 , = - u w ~ @ w = u w @ w s 45
5% = |, (s,,) Dq,(sw)] [Dq,(&w) D, (8, “5)
a 6 x 6 real matrix that fulfills the orthogonality relation
DD = D Dy = L, (46)

as follows from the orthogonality relations (43) and (44). Relation (46)
is crucial for the procedure devised.

In particular, it can be checked that the matrices D, and D, in
Table 1 when substituted into (45) verify the orthogonality relation
(46).

With this matrix we can get the prescribed and unknown compo-
nents of w(r, 9) from expression (30) organized in two separates blocks,
only by multiplying the vector w(r, 9) from the left by the matrix Dy

wop(r, Sw)]

wy(r, 9,,) (47)

Dgcw(r,9,,) = [
where wp(r,9,,) = 0 and wy(r,9,,) are 3 x 1 vectors in this special case
where all the boundary conditions considered are orthogonal.

From the orthogonality relation in (46) and by suppressing the
prescribed values wp(r,9,) we can get the displacement and stress
function vectors for w =0 and W

wp(r,9,)] DD b
w(r,9,)=DF [ P “] =1 2l wy@r9,) =% wy39,)
w BC WU("=‘9w) DZ; 1) w D; U w (48)

=Dl wy(r.9,).

where Dgc is a real 6 x 3 matrix. To facilitate the understanding
of this section, an example of how these matrices work is shown in
Appendix A. A general matrix formalism closely related to the one
described above was introduced by Wu [15], employing the procedure
for general boundary conditions in the Stroh formalism developed by
Ting and Wang [27,31].

The last two boundary conditions shown in Table 1 represent in-
clined supports and may need a further explanation. These boundary
conditions are restraints with reference to a plane inclined with respect
to the contour face, as shown in an example in Fig. 3. In this case, i
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Fig. 3. Reference frame for an inclined plane.

and m, respectively, are the normal and the tangential vector to the
inclined plane. Vector T has the same direction as s;, but it could be
not coincident.

The boundary condition only u; restricted means that displacement
in the direction of the vector ii is restricted while it is allowed in the
plane given by the vectors m and 1. The boundary condition only u;
allowed means that displacement in the direction of the vector i is
allowed while it is restricted in the plane given by the vectors m and
I. In Section 8.4 an example of application of this kind of boundary
conditions is given, showing how y affects the singularity exponent A.

4.3. Interface conditions

For both closed and open corners, as long as there are more than one
single-material or multi-material wedge, interface conditions should be
given between their faces. In the present paper, only homogeneous or-
thogonal interface conditions, where the stress vector is perpendicular
to the relative displacement vector at the interface, are considered,
namely: the perfectly bonded and frictionless sliding interface condi-
tion. Nevertheless, in the case where two faces of different materials
are perfectly bonded, the problem can be significantly simplified by
using the wedge transfer matrix K,,, see Section 5.1.

Similarly as for the homogeneous orthogonal boundary conditions,
see (42), the homogeneous orthogonal interface conditions can be
written in the following form:

D, (8,)w,,(r,9,) +Dy(8,)W, (., 9,) =0, (49)

where the real 6 x 6 matrices D, and D, and the associated matrices
D, and D, satisfy the following orthogonality relations:

D,DT + D,D] = Iy
DD + D,D] = Iy (50)
D, DT + D,D] = 0.

Typical examples of the real 6 x 6 matrices D,, D,, D, and D,
are shown in Table 2. Matrices for perfectly bonded interface will be
barely used, mostly for the purpose of code testing. The reason for this
is explained in Section 5.1. The coefficients \/5 and Lz are used to
fulfill the orthogonality relationship. These matrices represent just one
of many possible options to impose the considered interface conditions.
Formally, in general, the matrices presented in Table 2 could be mul-
tiplied from the left by any 6 x 6 real orthogonal matrix. It is easy
to check that the matrices obtained by such multiplication will fulfill
the orthogonality relations (50) and will impose the same interface
condition by applying (49). However, such multiplication of D, and
D, by an orthogonal matrix can lead to a linear combination of the
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components of the displacement and stress function vectors on the
wedge interface having different physical units.

The main matrix for interface conditions is defined as a real 12 x 12
matrix, analogous to the matrix Dy defined in (45):

D,(9,,)
D;(9,,)

D,(3,,)

- . 1
D,(9,,) G

D@9, = [
From the orthogonality relations (50), the matrix D; fulfills the follow-
ing orthogonality relation, similar to (46) for Dyc:

D;D] =D]D; =15,),. (52)

Following the same process as for boundary conditions, if we multi-
ply the matrix D; from the right by the 12 x 1 vector
WL (r,9,), wEH(r, 9,7, we get a vector in which we can separate
the prescribed from the unknown components, wp(r,9,,) and wy(r,9,,),

respectively,

D, [ W, 8,) ] _ [st %)] _ (53)

W1 (r,9,) wy(r,9,,)

From the orthogonality relation (52) and knowing that wp(r,9,,) = 0
we can get the displacement and stress function vectors for 1 < w <
w -1

¢ hi
[Ww(” i) ] _— [w”(r’&w)] - [ 1] o, ). 54

ww+l(r’ '9w) wU(r"gw) f)g

In Appendix B, an example of how these matrices for interface
conditions work can be found.

5. Characteristic system for the analysis of singularities in a multi-
material elastic corner

Once the matrices for the material wedges and for the boundary and
interface conditions are available, the characteristic matrix of the corner
is assembled. The assembly of this matrix will depend on whether the
corner is open or closed (periodic corner).

Initially, regardless the case, the size of this matrix would be 6 M x
6M, M being the number of single-material wedges (materials). As
it will be stated in Section 5.3, to solve the corner problem, the de-
terminant of this matrix should be numerically solved. Computational
complexity of the determinant evaluation increases with the matrix
size as O(n®) if it is solved numerically, where n is the number of
columns or rows of the matrix. This means, if we have 3 materials,
to solve the determinant we will need about (6 M)? = (6 % 3)° = 5832
operations while if the corner is made by 5 materials, we will need
about (6M)3 = (6 * 5)> = 27000 operations. This can be simplified
if some of those materials are perfectly bonded by making use of the
multi-material-wedge transfer matrix.

5.1. Multi-material-wedge transfer matrix

To explain the deduction of the transfer matrix for a multi-material
wedge, we will use a simple example of a wedge given by three
materials perfectly bonded. Let us call these materials as M|, M, and
Mj;. On the perfectly bonded interfaces at the angles 6,, between M,
and M,,,; (m = 1,2), the displacements given in bonded points on both
sides of the interface are identical and tractions at those points are in
equilibrium, which can be expressed as

w,,(r,0,)=w,_ (,0,). (55)

Then, as it was shown in (32), the transfer matrix of a single-material
wedge relates displacements and tractions on both faces considering a
power law elastic solution. We will see now that it is possible to extend
this relation to a multi-material wedge. Getting back to the above three-
material wedge, we can follow this chain of relations until to get the
multi-material-wedge transfer matrix, see equation given in Box I,
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Table 2
Matrices D;, D,, D, and D, for interface conditions.
Perfectly bonded D,(9) = —VLEIﬁxﬁ D,(9) = VLEIﬁxﬁ
interface D, (9 = \/LEIN, D,(9) = \/LEIM
D) = 1 —n(9) 03><l 05,3 03><l !
! V2 | 05y 5,9 Ly S3
T
Frictionless D,(9) = % [3(19) 503(3) 'I)M 0;*‘]
interface X1 B >3 3 ,
D,®=-2L1 [n(g) 055 \/Esr(lg) 05 \/553 03><1]
V2 105, n() 05 O 05 03
T
D,(9) = - [“(‘9) Oy Oy V25,000 0y \/553]
V2 03><l n@d) 0y 03><l 03><1 03><1

w3(r, 03) = E3(D)ws(7, 0,)
w3 (r,0,) = W, (r,0,) w3(r, 03) = E3(D)w,(r, 0,)

W, (r,0,) = E;(Hw,(r, 0))

w3 (r, 03) = E3(DE,(D)w,(r, 6))
Wy (r,0;) = wq(r,0,)

w3 (r, 03) = E3(DE,(D)w,(r, 0;)
w(r,0;) = E{(D)w(r,6))

Box I.

and finally

w3(r, 03) = E3(DE,(DE (A)w,(r, 6;). (56)
By introducing the three-material-wedge transfer matrix
K; (1) = E3(DE,(DE, (4), (57)

and changing from material notation to multi-material wedge notation,
relation (56) can be written as

w(r,9)) = K (A)w,(r,9y). (58)
We can write this expression in a generic way as:
W, (r,9,,) = K (AW, (r,9,,_1)- (59)

This is the transfer relation for the wedge w proposed by Ting [24],
relating the elastic variables between the external faces of a wedge
considering a power law elastic solution, where the matrix K, (1) is
given as

K, =E;, () -E; (D) . By (D) -Ey (D). (60)

This is a 6 x 6 complex-valued matrix, no matter the number of
materials that conform the multi-material wedge with perfectly bonded
interfaces.

This simplification helps to reduce computing time, because now
the size of the matrix determinant to solve is 6W x 6W instead of
6M x 6M. This means that to solve numerically the determinant of
a characteristic matrix of a three perfectly bonded materials wedge,
we go from (6 x3)> = 5832 operations to (6 x 1)> = 216 operations,
considerably reducing the computing time.

The assembly of the characteristic system of a multi-material corner
will be based on the transfer relation for a wedge (59) rewritten as

Ww(r’ '91,0—1)

W, 9,) ©D

[Ky,(4) —Igye6l [ ] = Ogy1»

where the first matrix on the left hand side is a rectangular 6 x 12
matrix.

5.2. Characteristic system assembly for a multi-material corner

If in a corner, one or several interfaces are not perfectly bonded,
there are more than one wedge in such corner. In this case, we

can gather all the multi-material-wedge transfer matrices K, (4) in
a 6W x 12W extended complex matrix of transfer relations of the
multi-material corner

Ki(D) —Isxs  O6xs  O6xs O6x6
Kiormer ex.(1) = 06:><6 06:><6 Kz:(ﬁ) _I:6><6 ) 06:><6 ,
O6xs  Ooxs  Ooxs  Ooxo Ky (D) —Ieys
(62)

and also gather all the elastic variable vectors w,,(r,9,,) and w,,(r,9,,_;)
in a 12W X1 vector of elastic variables (displacement and stress function
vectors) at all wedge faces

wy(r,9p)
w(r,9))
wy(r,9y)

w(r, 97) (63)

wc()rner_exl. =
wy (r, 9y 1)
Wy (r, 1914/)
All the wedge transfer relations for wedges w =1,..., W in (61) can
be written in a compact form as

Kcorner_ext (/‘l)wcorner_ext = 06 Wxl1- (64)

Recall, that the complex-valued matrix K.qmer ext(4) depends, in addi-
tion to /A, also on the material properties and the polar angles of all
single-material wedges in the corner.

With the aim to assemble the characteristic system for an open
corner by matrix multiplication, we need to gather all boundary and
interface condition matrices in a suitable way, fitting the structure of
the matrix K qmer ext(4)- This will be done in Sections 5.2.1 and 5.2.2 by
gathering the matrices D and D; of the corner to form the so-called ex-
tended boundary and interface condition matrix D, per ext($9). Considering
that the matrices Dp¢(9,,) and D;(9,,) fulfill the orthogonality relations
in (46) and (52), we can prove that the matrix Dy e; exc(¥) fulfills the
following orthogonality relation i

Dcorner_ext(s)Dz-omeriext('g) = 112Wx12W’ (65)
where
9=099,9,....9%). (66)
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5.2.1. Open corner

Extended boundary and interface condition matrix. In the case of an open
corner, the boundary and interface condition matrices, defined in Sec-
tions 4.2 and 4.3, are assembled in a real-valued 12W x 12W extended
matrix of boundary and interface conditions for an open multi-material
corner

Deorner ext. @) = blocked_diag[Dpc(8y), Di(8)), ... , Dpc(Sy)]

Dpc(@0)  Osxiz Ogxin + Ogyxs
056 D131 Oz -+ Oy

(67)

Oss  Ogxin Osxi2 Dgc(9y)

Recall that Dy and D; are 6 x 6 and 12 x 12 matrices, respectively.
It is easy to prove that this matrix satisfies the orthogonality relation
(65), as it is a block diagonal matrix whose main-diagonal block
matrices Dpc(9)), Di(9)), ... and Dyc(9y,) are orthogonal.

Open corner characteristic matrix. As previously done for an elastic
variable vector w,(r,9,) for a wedge w in expression (47), when
multiplying the matrix Degmer ext. DY the Wegmer ext. VEcCtor, we get the
Weomer py Which can be partitioned into sub-vectors of the prescribed
and unknown variables

Dcorner,ext‘ (&)wcorner,ext. = WcomeriPU7 (68)

where the 12W x 1 vector

wp(r, 9p)
wy(r, 8¢)
wp(r,9;)

W, wy(r,9) |, (69

corner PU =

wp(r, SW)
L wy(r,dy)

can be reduced to the 6 x 1 vector of unknown variables, considering
that the prescribed variables vanish,

wy(r, 9p)

wy(r, 9;)

w (70)

corner U =
wy(r, 9y)

Note that the vectors wy(r,9,,) for 9, and 9y, are 3 x 1 vectors, as
they are the unknown variables for displacement and stress function
vectors on the boundaries, while for the interfaces at 9,, ..., 9y,_; they
are 6 x 1 vectors.

In view of the orthogonality property (65), relation (68) can be
rewritten as

—_nT
Wcorner,ext. - Dcomer_ext. (8)Wc0mer7PU7 (71)

which substituted into (64) leads to

Kcorner,ext. ()‘)Dgomer_ext, (‘9)Wc0rner,PU = 06W><1 . (72)

In this expression, some columns of the matrix obtained by multi-
plying Keomer ext.(4) by DL . .. (8 can be removed as they would be
multiplied by the prescribed zero values of wp(r,d,,). This procedure
leads to the final complex-valued square matrix with the reduced

dimensions (6W x 6W)

KCOrner(i)
K\Dg (%) -Di®)  Ogp - UG U
- 0z KoDI(9) -DI(9) - O6x6 O6x3 i
063 O6x6 O6x6 Ky DY Oy _) -DL.(9y)

(73)
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which introduced into (72) together with (70) gives the characteristic
system for the singularity analysis of an open multi-material corner, which
represents a nonlinear eigenvalue problem for this corner,

Kcorner(l)wcorner_U = 06W><1 . (74)

Examples of open corners composed by three wedges, i.e. W = 3,
are studied in Table 9. As it may be not so easily inferred from the
general structure of K, ..(4) in (73) which is the structure of this
matrix for a particular case of a corner with a small number of wedges
W =1 or 2, these cases will be described in detail in the following.

One-wedge corner. In the case of one wedge, W =1, K
matrix defined as

(A)isabx6

cornel

Keorer(4) = [Kl(/l)f)gc('go) —ﬁgc(ﬁl)] s (75)

where DBTC(ﬁw), for w =0 and 1, are real 6 x 3 matrices, see (48).

Actually, in the cases studied in the present work, where only
orthogonal boundary conditions can be prescribed on both boundary
surfaces, this can be even further reduced, cf. [15,20,32],

Kcorner_reduced(i) :Du(lgl )K(ll)(/l)f)f ('9()) + Du(&l )K(IZ)(/DDg(&O)

. - 76)
+ D, (@)K (D] (99) + D, (9K (HD] (9y),

where KY) are the 3 x 3 sub-matrices that form the 6 x 6 wedge transfer
matrix of the first and only wedge in this kind of corners

K= | 6 NE @7
K" K7

The characteristic system in this case reduces to

Kcorner_reduced(A)wcorner_U (r, '90) = 03><1 . (78)

Results of singularity analysis for several examples of this kind of
corners can be found in Tables 4-7.

Two-wedge corner. For the corners composed by two wedges, W = 2,
the structure of the 12 x 12 corner characteristic matrix is

KDL (99 -DT(9)) 06,

A . 79
Oss KDy (9)) —Dy(9)

Keorner(4) =
Results of singularity analysis for several examples of two wedge
corners can be found in Table 8.

5.2.2. Closed corner (periodic corner)

Extended interface condition matrix. The procedure to obtain the char-
acteristic matrix of the corner is similar to the one presented in Sec-
tion 5.2.1, but in contrast with open corners, in closed corners there are
no boundary conditions and only interface conditions are prescribed.
For this reason the extended matrix of interface conditions for a closed
multi-material corner is different from that for an open corner. The
structure of this matrix for closed corners, defined by all the interface
condition matrices, is somewhat more involved than for open corners,

D)) Oexiz O6xiz =+ Oz DiOy)
D@0 Oexiz Osxiz =+ Oz DiOw)

Deomerext. @ =] 016 D131 0O1o12 012x12 0556

Diw—1)  O1ax6
(80)

012><6 012><12 012><12

This is a 12W x 12W real-valued matrix constructed in such a way
that it fulfills the orthogonality condition (65), as shown in Appendix C.
Remember that, as it is a closed corner, its first and last angle must meet
the following relation: 9, = 9, + 360°.
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KDI(®) -DI@) 0o - O6x6 U
Os  KDI(9) -DT@®y) - 0656 0656
Kcorner(’i) = > (86)
O6x6 O6x6 O6x6 Ky 1Dl 9y 5)  —D Oy_y)
DI 3)  Oexs O6xs O6x6 Ky DI (9y_1)
Box II.

Closed corner characteristic matrix. As for an open corner, when multi-
plying the matrix Doper ext. DY the Weomer ext. VECtor, we get the 120/ x1
vector Wcorner,PU

Weorner PU = Dcorner_exl.(‘9)wcnrner_ext,' (81)

This vector can be partitioned in sub-vectors of the prescribed and
unknown variables on interfaces

wp(r, )
wy(r, 99)
wp(r,9;)

WcorneriPU =

Wy 91) : (82)

wp(r, 9y 1)
wy(r, Sy _1) i

By omitting the prescribed variables in W py, the following
6W X 1 VeCtor Wqmer y Of unknown variables is obtained:

WU(r, 190)

Wu("ﬂ91)

W, (83)

corner U =
WU (r, SW—] )

For closed corners, all the subvectors wy(r,d,,) are 6 x 1 vectors. In
view of the orthogonality relation (65), Eq. (81) can be rewritten as

_nT
WcorneriexL - Dcumer_ext_(’9)Wcorner7PU' (84)

Then, by substituting this equation in (64) we obtain

Kcorner_ext. (A)Dzomer_ext ('9)Wcorner_PU = 06W><1 . (85)

In this expression some columns of the matrix given by multiply-
ing Keomer ext. () by DI (@) can be removed as they would be
multiplied by the prescribed zero values of wp(r,9,,). This leads to a
reduced 6W x 6W complex-valued matrix in Eq. (86), shown in Box II,
whose application in (85) together with (83) leads to the characteristic
system for the singularity analysis of a closed multi-material corner, which

represents a nonlinear eigenvalue problem for this corner,

Kcorner(l)wcorner,U = 06W><1' (87)

Examples of closed corners composed by more than one wedge,
i.e. W > 2, are studied in Table 11. Similarly as for open corners, it
may be not an easy task to infer from the general structure described
in (86) the structure of K, ..(4) for the cases with only one wedge,
i.e. W = 1. Therefore, these special cases will be studied in detail in
the following.

One-wedge corner. Two cases can be considered in closed corners with
only one wedge, i.e. W = 1. The first case with all the materials
perfectly bonded, and the second case with frictionless sliding on one
of the interfaces.

In the first case, as there is no boundary condition, K y,e, can be
calculated as

Kcorner(l) = Kl - IGXG‘ (88)

This kind of corners is studied in Examples 3.1, 3.2 and 3.4 in Table 10.
It is easy to see that in this case, singularity exponents in the range

0 < Red < 1 may only exist when there are two or more dissimilar
materials perfectly bonded, i.e. M > 2. In case that the corner is made
by a single material, then A = n, where n is an integer number.

In the second case, when the corner is made by one single-material
or multi-material wedge and one of its interface conditions is friction-
less sliding contact (here considered at 9), K qmer can be calculated as
follows

Kcorner,ext()”)D;mer_ext(g())wcomer,PU(r > l9()) = 06><l ’ (89)

D7'(8,)

DI'(9) [ 0
DT(9))

N =0, (90)
DT (9)) ]

[Kl () _Iéxﬁ] |:

Wecorner U (r, ‘90)

. - 0
[K,(ODL(99) DT (9;) K, (DI (9y) — DT (8))] [wmew " ,90>] =0,

91
[Kl(/l)f)g('go) - f)f(&l)] wcorner_U(ry '90) =0, 92)
Keorner(D) = KID;(’SO) - f)T(sl) (93)

Recall that §; = 9,+360°. These kind of corners are studied in Examples
3.3, 3.5 and 3.6 in Table 10. In the special case with the wedge given
by a single material, 4 = 0.5 + n, where n is an integer number.

5.3. Solution of the characteristic system. Singular elastic solution

Avoiding the trivial solution for Wiy y, Where Wy = 0,
any other solution of the corner eigenequatf(m, (74) for open corners
and (87) for closed corners, is a (right) null vector of the corner
characteristic matrix K.gmer(4). To get to this solution, we need first
to find the characteristic (singular) values of A, for which the complex-
valued matrix K¢ (4) is singular with null determinant. Therefore, a
straightforward method to find the singular values is finding the roots
of the matrix determinant

det Koger(4) = 0. (94

Up to this point, all the steps of the present procedure have been
analytical except for the procedure for computing the roots of the
Lekhnitskii-Stroh sextic characteristic polynomial of an anisotropic
linear elastic material in those cases where its roots cannot be expressed
in terms of radicals [33,34]. In some specific cases, this sextic equation
can be solved analytically, e.g., for all transversely isotropic materials
with any spatial orientation [35,36], and also for some classes of
orthotropic materials [33].

Noteworthy, as follows from the procedure presented, all elements
of the matrix Ky (4) are complex analytic (holomorphic) functions
of A, thus, also the determinant of this matrix is a complex analytic
function of A. Nevertheless, an analytic solution of (94) is not possible
in general case, except for very specific simple cases. Even in the case
of a single isotropic material, in plane strain, with free boundary faces,
(94) is a transcendental equation requiring a numerical solution [3].
For this reason, we use a numerical method called Muller method [37]
to solve it. This is a standard iterative procedure suitable for searching
for complex roots of complex analytic functions.
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Argument principle. To find all the roots of the complex-valued analytic
function det K omer(4) of 4 inside a considered region of the complex
plane, the Argument Principle [38] is also included in the code. The
procedure indicates the number of roots (real and complex) in a region
bounded by a closed contour C. This method counts the number of
times the complex value of the analytic function det K .y (4) rotates
around the origin of the co-ordinate system, i.e. what is the multiple
of 360° by which the argument of this function increases or decreases
along the contour C:

J = L larg(det Kegpper(A)]- (95)
2

6. Stresses and displacements

Once that the characteristic exponents A of a corner have been found,
we can calculate the characteristic stress and displacement fields. First,
we have to substitute the obtained A value into the eigenequation (74)
or (87) considering a fixed value of the radial coordinate r, e.g. r = 1.
The solution for Wegme > for this fixed value of r = 1, is a (right) null
vector of the matrix K, (4). As the obtained value for A is substituted
in K omer(4) we get a numerically defined matrix. To compute the null
eigenvector of the numerically defined matrix K., e (A1) we use the
Singular Value Decomposition (SVD) giving the right singular vector
of Komer(4) associated to the minimum singular value o,,;;, 2 0, which
corresponds to Weomer y for » = 1. The reason for using SVD is that
sometimes we have found stability problems when computing the null
eigenvector of K ymer(4), whereas SVD has shown to be a very robust
procedure for this purpose.

Next step is to complete Weome,y With zero values of Weomerp to
get Weomer py- Care must be taken with the size of the subvectors to
be added, since as said before, for closed corners all subvectors wy; are
6 x 1 vectors and so are the corresponding subvectors wp, but for open
corners, the first and last subvectors wy; are 3 x 1 vectors and the rest
6 x 1 vectors, the corresponding subvectors wp have the same size.

Introducing Weomer py in expression (71) or (84), we obtain
Weorner ext- TNiS vector contains the displacement and stress function
for both faces of each wedge, w,(r,9,._,) and w,(r,9,). The w,(r,9;)
vector for the first face of the first wedge, corresponds directly to the
w, (r, 0,) vector of the first face of the first material of the first wedge.
Using now the transfer matrix in (32), we get w,(r, 6,) of the second face
of the first material of the first wedge. As within a wedge we only have
perfectly bonded interfaces, we know that the w,(r,6,) vector has the
same values as w;(r, ;). Continuing with this process we can compute
w,,(r,0,,_,) for the first face of each material in the corner.

Now, starting with each w,,(r,0,,_;) and using an analogous expres-
sion to (32), it is easy to get w,,(r,0) for each 6 within each material,

Wou(r,0) = By (4,60, 0,,_ )W, (r,60,,_) for 6, , <0<8,. (96)

Following the steps proposed by Ting [27, Section 7.3] the dis-
placement vectors and stress tensor in cylindrical coordinates are:

u, = =T (O(r,0), up =0’ Ou(r,0), u;=s!©Ou(r,0), 97
and

. - M o00 =17 ) (1. 0).

Grp = M =-s'(0)p,(.0),

oy = 500500 003 =T (0)9,(1,0), (98)

,
where the comma in the subscript stands for differentiation. We can get
¢ and @ , from (30). On the one hand, as E.X,Z and t do not depend
on r we have

aiw(r, 0) = Ar*"'XZ*(1,6,6,,_)t (99)
p

10
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for @,. On the other hand, as E depends on 6 we have, for non-
degenerate materials,

0 0

2V 0) =~ (3,0,0, )W, (7, 6,,_1), (100)
where

0 2., ; -1

55 B4 00,) = X=52,,4(2,0,0, )X, (101)
90, 1 P 9

S5 Zn" (1:0,0,20) = A2, (4,0, 0,-)52,,(3,0,0,1) (102)
0 (€(6,6,,_1)) 0

2.7,.(4,6.6,_)=| """ - , 103
29 2 m-1) 0 (£16.6,_1)) (103)

(0,6, 1) = %ga(e, 0,1) =—sin(@—0,_1)+ py(0,_1)c0os (0 — 6,,_,).
(104)

These expressions allow us to compute stresses and displacements as
functions of 0 for a given value of r. An example to illustrate this
procedure can be found in Section 8.3.

7. MATLAB implementation

The semianalytic procedure described above has been implemented
in Matlab [23] using Symbolic Math Toolbox. This code calculates the
singularity exponents and plots displacement and stress singular fields
associated to a corner problem. The code is organized in 6 modules:

. Data input

. Definition of single-material wedges
Boundary and interface condition matrices
. Characteristic system assembly

. Solution of the characteristic system

. Displacement and stress singular fields

U~ O

7.1. Data input

The first module reads the data entered by the user and performs
the necessary calculations. This module gives the user two options,
to enter all the values that define the problem through a text file or
interactively.

7.2. Material definition

This module is subdivided into three different functions, each func-
tion is for a type of material currently considered in the code. The
options are isotropic, transversely isotropic or orthotropic. The code
can be easily generalized to any other class of anisotropic materi-
als, covering both, mathematically non-degenerated and degenerated
materials following [8,20]. From the elastic constants and the initial
and final angles for a single-material wedge number m, 6,,_; and 6,,
respectively, the corresponding function will apply the Stroh formal-
ism and store the transfer matrix E, (1) (33) as the definition of the
single-material wedge.

This module is based on the theory described in Sections 2 and 3.
Special attention was paid to the manipulation of angles and complex
numbers to ensure the continuity of analytic functions as discussed in
Section 3. In Matlab the function used to obtain the argument of a
complex number is ‘angle()’ that returns the phase angle in the interval
(—r, ). For the correct execution of (38), the following definition of
‘arg()’ function is used

if angle(z) < 0,

def [ angle(z) + 27
{ if angle(z) > 0. (105)

arg(z) = angle(z)
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Fig. 4. Graphic representation of the real part of the determinant of the characteristic
matrix of the multi-material corner. Example 1.12.

7.3. Boundary and interface condition matrices

The first step of this module is the creation of the right-handed
reference frames (s,, s3, n) attached to each face of the wedges that form
the corner, see Fig. 2, and also (rh, I, i) for the cases of inclined planes
shown in Fig. 3.

Once we have the reference frames defined for each angle at which
a boundary or interface condition is prescribed, the boundary and
interface condition matrices are generated depending on the type of
boundary or interface condition, see Tables 1 and 2.

7.4. Characteristic system assembly

In this part, the K,, matrix for each multi-material wedge (60)
will be formed by the E,, matrices (33) of the materials that form it.
These K,, matrices are combined with matrices Dy in (45) or D; in
(51) generating the characteristic matrix K yqer(4) for open corners
(73) or for closed corners (86). Special attention is paid to the size
of the rectangular and square matrices used in the assembly of the
characteristic system.

7.5. Solution of the characteristic system

This module is based on Section 5.3. Once we have the characteristic
matrix of the system K er(4), (73) for open corners or (86) for closed
corners, we initially define the interval of real values of 1 where the
roots of det K yqer(4) are searched for. This is the first part of the code
where solution is numerical instead of analytical, since different values
of 4 will be substituted in the analytical expression of K yne-(4) matrix
to solve numerically the determinant. If the code detects that there may
be a root between two of the 4 values for which the determinant has
been calculated, it will try to find a root in that interval using the Muller
method [37]. After showing the roots automatically found, the software
will show a graphic representation of Re(det K ,e-(4)) that could help
the user to check the roots automatically found and indicate, in case
that some root is missed, if new starting points for searching more roots
are necessary. To illustrate this, the points where the curve intersects
the abscissa axis in Fig. 4 are the points where the user should look
for roots in case that the automatic procedure had not taken them into
account.

The code also gives the option to run the submodule ‘Argument
Principle’ to detect possible roots (real or complex) in a region of
complex plane that have not been detected automatically.
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7.6. Displacement and stress singular fields

At this point the code will perform the steps described in Section 6
to produce a graph like the one shown in Fig. 5. As can be seen from the
formulas described in (98), for the calculation of stresses it is necessary
to differentiate the stress function vector ¢ with respect to  or r. To
speed up the calculation, the analytical expression of each derivative
has been used instead of leaving it to the software to derive it in
each case. In the case of the derivative with respect to r, it is very
simple, since according to the form of the expression of ¢ shown in
(29), the differentiation with respect to r produces the same function
@ multiplied by the root 4, considering r = 1, see (99). Slightly more
complicated is the differentiation with respect to 6, for which we will
have to differentiate with respect to ¢ the transfer matrix E,,, which
is the only part of the expression dependent on #. The expression for
the derivative of E,, is computed directly from (101)-(104). Special
care must be taken regarding the compatibility of dimensions of many
vectors and matrices used in the procedure.

In the case a parameterization with respect to a corner parameter
is requested, as in the example in Section 8.4, the code will repeat the
modules 2 to 5 as many times as necessary.

8. Examples

To verify the correct implementation of the present procedure for
corner singularity analysis in the developed code, many examples are
solved and the results are compared with the numeric solution of the
closed-form eigenequations available in the literature. In Table 3 we
list, in the full precision considered, the characteristics of the used
materials. For orthotropic materials, the fibers in the x,x;-plane are
oriented by angle ¢ with respect to the x,-axis. This angle is specified
for each case of orthotropic material.

The studied problems are divided into open and closed corners
and further subdivided into single-wedge and multi-wedge corners. The
following acronyms are used: ‘BC’ Boundary Condition, ‘IC’- Interface
Condition, ‘B’ perfectly Bonded, ‘FL’ FrictionLess, ‘F’ stress Free, ‘C’
Clamped, ‘S’ Symmetry, ‘A’ Antisymmetry, ‘(SY)’ SYmmetric loading,
‘(SK)’ SKew-symmetric loading, and ‘(A)’ Antiplane shear. In the tables
in this section, Example is abbreviated as ‘Ex.’ and material as ‘Mat.’ and
the last column is CPU time in a workstation (DELL Precision 5550).

In most of the studied problems, the results found in the literature
are usually for plane strain or plane stress only, whereas the presented
formalism works in generalized plane strain. This means that this
formalism in some cases finds solutions corresponding to the anti-plane
shear that are not provided by some methods found in the literature.
In those cases, in the corresponding table, the result obtained by the
presented formalism is included beside a void cell corresponding to a
result not covered by the eigenequation or closed-form expression for
A found in the literature

8.1. Solutions for open corners

8.1.1. Solutions for open corners with only one single-material or multi-
material wedge

The expression for K. (4) for this special case was deduced in
Section 5.2.1.

Single-material wedge. If the wedge is made of only one material, then
K;(4) = E;(4) in (75). For isotropic materials, with stress free-stress
free boundary conditions, results for 4 are compared with those by
Vasilopoulos [3] with perfect match. For isotropic materials with dif-
ferent homogeneous boundary conditions, we compare with the results
obtained by the closed-form expressions collected by Sinclair [39]. In
Table 4 we show some of these results.

The frictionless boundary condition corresponds to the symmetric
boundary condition in the code, since it only restricts movement in the
direction normal to the wedge face.
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Table 3

Engineering constants for the materials used in the studied examples. Shear and elastic moduli in GPa.
Material E, E, E; G, G3 Gy Vis Vi3 Va3 ¢
A 68.67 0.33
B 3 0.35
C 137.9 14.48 1 5.86 1 1 0.21 0 0 0
D 137.9 14.4795 14.4795 5.86 5.86 5.86 0.21 0.21 0.21 )
E 137.9 14.48 14.48 4.98 4.98 4.98 0.21 0.21 0.21 ¢
F 5.85 0.25
G 141.3 9.58 9.58 5 5 3.5 0.3 0.3 0.32 ¢

Table 4
Comparison with the results found in the literature for open single-material isotropic corners with different boundary conditions, Section 8.1.1.
Corner configuration Ex. BC1 BC2 Mat Results in Present results Time (s)
literature [39]
0.5444837368 (SY) 0.5444837368
1.1 F/0° F/270° 0.6666666667 (A) 0.6666666667 2.5
0.9085291898 (SK) 0.9085291898
N . 0.3333333333 (A) 0.3333333333
1.2 F/0 /270 0.8607568402 0.8607568402 3.1
0.5904563986 (SK) 0.5904563986
1.3 C/0° C/270° A 0.6666666667 (A) 0.6666666667 2.9
0.7673218225 (SY) 0.7673218225
. R 0.3333333333 (SY) (SK) 0.3333333333
14 FL/0 FL/270 0.6666666667 (A) 0.6666666667 3.1
N . 0.3333333333 0.3333333333
15 FL/O F/270 0.6666666667 0.6666666667 2.9
N . 0.3333333333 0.3333333333
16 FL/0 /270 0.6666666667 0.6666666667 3.0
Table 5
Comparison with the results found in the literature for open corner with only one orthotropic single-material wedge with different boundary conditions, Section 8.1.1.
Corner configuration Ex. BC1 BC2 Mat Results in literature [32] Present results Time (s)
1.7 F/ 20° C/ 200° 0.5 +0.0994113836i 0.5 +0.0994113836i 2.2
1.8 F or S or 0.5 0.5 1.9
C/20° A/200° C
X,
! 0.3839541207 0.3839541207
1.9 S/20° A/200° 0.5 2.7
0.6160458793 0.6160458793
o o 0.25 + 0.0497056918i 0.25 + 0.0497056918i
110 F/=340 ¢/20 0.75 + 0.0497056918i 0.75 +0.0497056918i 2.2
0.25 0.25
F or S or
1.11 . N 0.5 0.5 3.1
C/-340 A/20 . 0.75 0.75
0.1919770604 0.1919770604
0.25
112 S/-340° A/20° 0.3080229396 0.3080229396 3.9

0.6919770603

0.8080229396

0.6919770603
0.75
0.8080229396

For orthotropic materials with different homogeneous boundary
conditions, the results are compared with those obtained from the
closed-form expression presented by Manti¢ et al. [32], see Table 5.

In Fig. 4, it is easy to identify the 6 real roots of the determinant
solution of Example 1.12.

Multi-material and single-wedge corner. If there is only one wedge in the
corner, but the wedge is made of several materials, the matrix of the
corner eigenproblem to be solved is also (75).

Several examples of this kind of problem are solved comparing
the results obtained by our code with those from different closed-
form expressions. Some of these results are shown in Table 6 for two
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Table 6
Comparison with the results found in the literature for a multi-material single-wedge corners, Section 8.1.1.
Corner configuration Ex. [Ref.] BC1 IC1 Mat.1 Mat.2 Results in Present Time (s)
BC2 b ¢ literature [10,40,41]  results
0.5116702380 0.5116702380
F/60° R 0.5941068002
1.13 [40] F/420° B/360 0.7012296137 0.7012296137 151
0.9274531170 0.9274531170
0.3362568013 + 0.3362568013+
C/60° 0.0362031284i 0.0362031284i
B, ° 14.2
L14 1401 G/q90.  B/360° A B 0.8253772310 0.8253772310 -
0.9055893170
0.0812530200 0.0812530200
0.0854358803
F/60° R 0.1113639230 0.1113639230
1.15 [40] C/420° B/360 0.5407904749 0.5407904749 156
0.6110310672
0.7326576853 0.7326576853
F/0° 0.0953560579 0.0953560579
1.16 [10] C/240° B/180° 0.1117298041 12.9
0.1634925888 0.1634925888
A/0° 0.1479273432 0.1479273432
1 1.17 [10] C/240° B/180° 0.5224535404 11.1
ic1 A B 0.5235945039 0.5235945039
A/0° 0.0888849178
1.18 [10] A/240° B/180° 0.5 0.5 11.8
0.5224535403
1.19 [41] F/240° B/360° D D 0.9697 0.9697255043 81.1
F/450° 15° 105°
1.20 [41] F/240° B/360° D D 0.9869 0.9869011826 86.1
F/450° 45° 105°
1.21 [41] F/240° B/360° D D 0.9994 0.9993569674 74.8
F/450° 75° 105°

materials. The results for Ex. 1.13, 1.14 and 1.15 have been compared
with the results obtained from an analytic expression in Eq. (7) in [40].!

The results for Ex. 1.16, 1.17 and 1.18, are compared with the
results obtained from closed-form expression of eigenequation in [10].
The results for Ex. 1.19, 1.20 and 1.21 are compared with the values
shown in Table 1 in [41]. In this case, Poonsawat et al. [41] show
valuesof 6 =1 - A.

A special case of a crack meeting a perfectly bonded interface with
an arbitrary angle was studied by various authors. In Table 7 we
compare the results by the code with the results obtained from the
closed-form equation presented by Bogy [42] for isotropic materials
and with the results presented by Chen [43] for anisotropic materials.

8.1.2. Solutions for multi-material and multi-wedge open corners

In this case, we have more than one single-material or multi-
material wedge. All the problems studied in Table 6 can be considered
also in this section, since each material of a multi-material wedge can

1 We would like to comment, as an aid to other researchers, that a
typographical error was found in [40] that leads to wrong results when using
Eq. (7) presented in that article. The original expression

A = +u, 2 H(p. 1, )+ (1 +u)H(p — 27,1, 1)...
should be replaced by the correct one

4 = (1 +u,) 2 H(p, 1, ) + T +u,*H(ep — 27,1, A)...

be handled as a wedge. This is a way to verify the present matrix for-
malism and its computational implementation, since to solve problems
of the last section, the determinants to be solved are for 6 x 6 matrices
while the determinants to be solved for those problems considering
each material as a wedge, are for 6M X 6 M matrices. Examples from
1.13 to 1.21 are solved again as multi-wedge corners instead of as single
wedge corners. In both ways, we get the same results, helping us to
verify the correct performance of the code.

In Table 8 examples with friction-less sliding contact are shown. The
results for Ex. 2.1 and 2.2 obtained by the code are compared with [44],
and for Ex. 2.3 and 2.4, respectively, with the data read from Figs. 3 and
4 in [45].? Some differences can be observed in the results for Ex. 2.3
and 2.4. However if we compare the results by our code and by solving
the corrected equation in [45] (see the footnote 2) a perfect agreement
is achieved.

2 There is a misprint in [45] in Eq. (35), where it says

sin @

cosp
fcos plw,;(6) + t,,(8)] — [w,(6) + ,(8)] + f sin @[w 3(6) + W5(5)]
f cos @[ws(6) + t3,(8)] — [w3,(8) + t3,(6)] + f sin [w33(6) + W33(6)]
it should say

sin @

cosg
[ cos @lws (8) + 3, (6)] — [w3,(8) + t3,(8)] + f sin @[ws3(8) + 33(8)]
fcos plw;(8) + t0y,(8)] — [w,(8) + 1,(8)] + f sin plw5(8) + 3(8)]

13
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Comparison with the results found in the literature for the case of a crack meeting a perfectly bonded interface, Section 8.1.1.

Corner configuration Ex. [Ref.] BC1 IC1 Mat.1 Mat.2 Results in Present results Time (s)
BC2 1C2 ¢ ) literature [42,43]
0.1355742073 0.1355742073
F/0° B/135°
1.22 [42] F;(Z;éO" Bj:;; A B 0.1489730722 46.3
0.3411304471 0.3411304471
N 0.33749 0.3374847738
1.23 [43] 112;260" g;ggw ]3)00 ]1)500 0.505162 0.5051608017 223.4
0.652054 0.6520577716
Table 8
Comparison with the results found in the literature for the case of a frictionless interface, Section 8.1.2.
Corner configuration Ex. BC1 IC1 Mat.1  Mat.2  Results in Present results  Time (s)
[Ref.] BC2 ) ) literature [44,45]
2.1[44] F/-180° FL/0° A B 0.5 0.5 5.7
F/180°
2.2 F/-180° FL/0° B A 0.6294574341 0.6294574341 8.6
[44] F/60°
2.3[45] F/-180° FL/O° F E ~ 0.563 0.6753375590 12.3
F/90° 90°
2.4[45] F/-180° FL/0° E E ~ 0.5687 0.5679983429 10.9
F/120° 45° 0°
Table 9
Comparison with the results found in the literature for the case of a crack meeting a frictionless sliding interface, Section 8.1.2.
Corner configuration Ex. BC1 IC1 Mat.1  Mat.2  Results in Present results  Time (s)
BC2 1C2 literature [46]
2.5 F/5° FL/180° 0.4997164050 0.4997164050 13.9
F/365° FL/360°
2.6 F/45° FL/0° A B 0.3340154357 0.3340154357 12.3
F/405° FL/360°
2.7 F/165° FL/0° 0.4922682295 0.4922682295 12.1
F/525° FL/360°

In examples shown in Table 9 there is a crack meeting an interface,
similarly as in Table 7, but in these cases interfaces are frictionless. The
results by the code for Ex. 2.5-2.7 are compared with the results shown
by Gharpuray et al. [46].

8.2. Solutions for closed corners

8.2.1. Solutions for single-wedge closed corners

The cases studied here are either for corners where there are only
perfectly bonded interface, or where all the interfaces are perfectly
bonded except one of them that allows the frictionless sliding contact.
Both cases are studied in Table 10. Ex. 3.1 shows a multi-material
wedge where every interface is perfectly bonded, this example is com-
pared with the numerical solution of the closed-form eigenequation
introduced by Bogy [13]. Ex. 3.2 shows the same case but for an
orthotropic material bonded to an isotropic material, this cases is
studied by Barroso [47]. Ex. 3.3 shows the case of frictionless contact
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between faces by Sung and Chung [48]. Ex. 3.4 shows the case of
3 orthotropic materials perfectly bonded studied by Chen [43]. In
Ex. 3.5 and 3.6, one of the interfaces of the corner allows the fric-
tionless sliding contact, this example is compared with the numerical
solution of the closed-form eigenequation proposed by Comninou and
Dundurs [49].°

3 There is a misprint in [49] Eq. (7). Where it says
P(a) = (1-a)|B,
it should say

P(a) = (1 - a)p.
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Table 10
Comparison with the results found in the literature for the case of a single-wedge closed corner, Section 8.2.1.
Corner configuration Ex. [Ref.] IC Mat.1 Mat.2 Mat.3 Results in Present results Time (s)
b ¢ ) literature [13,43,47-49]
%2 B/0° 0.7016168738 0.7016168738
Ic1 A1 A 20.
3.1 113 B/135° 0.8153243783 0.5
0.763236 0.7632362887
B/0° G 0.813696 0.8136958777
X1 3.2 [47] B/90° 0° B 0.889389 0.8893886797 285
1.10698 1.1069778843
1C2 B/0° D D
A 3.3 [48] FL/180°  0° 30° 0.5 0.5 7.1
%2 B/90° D D D 0.917457 0.9174528878
Ic1 . 150.2
3.4 [43] B/180° 135° 45° 0° 50
B/270° 0.981241 0.9812418095
B/0°
X 3.5[49] B/180° 0.6563194237 111.4
FL/225° B B 0.7339773900 0.7339773900
Ic2 1c3 B/0° 0.6633562430 0.6633562430
? 3.6 [49] B/180° 147.6
FL/90° 0.8697736950
Table 11
Comparison with the results found in the literature for the case of multi-wedge closed corner, Section 8.2.2.
Corner configuration Ex. 1C Mat.1 Mat.2 Mat.3 Results in Present results Time (s)
literature [50,51]
XZ
c1 FL/50° 0.4583962335 0.4583962335
4.1 [50] FL/310° A A 0.6092455141 0.6092455141 9.1
0.6923076923
X1
FL/75° 0.1738393497 0.1738393497
2 42 [50] FL/285° A A 0.7321077798 0.7321077798 8.9
5 0.8571428571
R FL/0°
4.3 [51]1 Fpr/1200 A A A 0.55 0.5508138197 20.4
FL/240°
T
1c2 1C3
3

8.2.2. Solutions for multi-wedge closed corners

Corners with two or more wedges are studied in this section. In
closed corners, as before for open corners, examples from 3.1 to 3.6
could be studied also as if the corner was made by several single-
material wedges using the perfectly bonded interface condition instead
of employing the multi-material transfer matrix. This exercise has been
done to check the correct performance of the code. In Table 11, some
examples of closed corners with more than one frictionless sliding
interface condition are studied. In Ex. 4.1 and 4.2 the results obtained
by the presented code are compared with those obtained from the
closed-form eigenequation by Arias et al. [50] for this specific case.
Ex. 4.3 makes a comparison between the obtained result and the result
that Picu and Gupta [51] show in a plot. The examples in Table 11 are
only dependent on the geometry, since the same result will be obtained
for any isotropic material, as long as the corner is made only by one
material.
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8.3. Stresses and displacements

To show the capabilities of the developed code regarding the eval-
uation and graphical representation of the singular stress and displace-
ment fields, we present their evolution around the corner for a special
case of a corner under mode I of fracture, see Fig. 5. To simulate
this behavior, we have studied an infinite semiplane of an orthotropic
material G with ¢ = 0 and with boundary conditions only u, allowed at
9y = 0 and only u; restricted at 9, = z. We will compare our values with
those obtained from the expressions deduced in [52], see also [53].

8.4. Parametrization

The present code also offers the possibility of displaying the evolu-
tion of A with respect to the variation of some corner parameters that
may be of interest. Such evolution is shown in Fig. 6 for the variation
of the singularity exponent, 4, as the angle y, the angle that define the
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Fig. 5. Singular stress and displacement fields for orthotropic material G under fracture mode I. Results obtained from analytic expressions are represented by continuous lines,

results obtained by the present code are represented by marks.
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Fig. 6. Evolution of 1 as y increases.

vector i in the boundary condition only u; restricted (See Fig. 3), varies.
In this example we have a single-material wedge of the orthotropic
material D with ¢ = 0, that goes from 9, = 0, with boundary condition
only u; restricted, to 9, = z with symmetry boundary condition, see
Table 1.

9. Conclusions and future developments

This article revises and complements the matrix formalism and the
computational procedure introduced in a very concise way in [8],
in order to be easily understood by the readers. However, the most
relevant contribution of the present article is that it presents the first
general implementation of the proposed procedure, extensively and
successfully tested by many numerical examples. This implementation
allows us to verify the correct performance of the proposed matrix
formalism too. The code has been validated through multiple tests
comparing the obtained results with the results shown by other authors.

This code has several advantages:

- Versatility, since it can solve a multitude of problems with
essentially any useful boundary and interface conditions
and any linear elastic material properties.

Accuracy and reliability. It can be seen that all the numer-
ical results computed by the code developed in the present
work are essentially identical, at least up to 10 digits
shown, to the results obtained by the numerical solution
of closed-form eigenequations found in the literature. This
excellent accuracy is a consequence of the semianalytic
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character of the present procedure, where numerical so-
lution is used to find roots of the sextic Lekhnitskii-Stroh
characteristic polynomial of an anisotropic material if its
solution in radicals is not possible, and to find roots of
the transcendental eigenequation of the corner problem,
where we are looking for roots of a complex-valued ana-
lytic (holomorphic) function of one complex variable. The
rest of the calculations are fully analytical, providing the
maximum accuracy to the present procedure. In fact, an
arbitrary accuracy can be achieved using modern computer
algebra software when working with numbers stored with
an arbitrarily high precision.

Ease of use and extension to study cases not considered in
the current code version. Since the code is programmed by
easily modifiable modules.

An autocheck of this code can be performed in two different
ways:

— When rotating the corner, all 9 will change, and with
them also all relevant matrices. Despite this, the final
results for 4 and w(r,9) have proven to be the same.

— For a multi-material wedge, where there are one
or more perfectly bonded interfaces, the formalism
can be applied by using either the perfectly bonded
interface condition or exploiting the wedge transfer ma-
trix, and the result must be the same in both cases,
even with substantially different sizes of the corner
characteristic matrix.
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The developed code is a general tool useful for researchers who need
to know the singularity exponents and the singular stress fields to im-
prove or check their numerical results by FEM, or to those researchers
who need to verify their analytic formulas or eigenequations developed
for specific corner singularity problems.

For this reason, in the near future, it is planned to share this tool as
an online tool for the international research community. This code will
be further developed by adding new functions like new boundary or
interface conditions, especially friction contact boundary and interface
conditions.
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Appendix A. Example of a boundary condition

Taking as example the case of only u, restricted for a corner face at
9, where 9 = 9, or 9y, the Cartesian components of the vectors in (40)
read

—cos (9) 0 —sin (9)
s, (9 =|-sin(@® |, s3=[0], n@® =] cos(d) (106)
0 1 0
For this case (only u, restricted)
S,T(t9) 0553
D,@®) =|0,5 | and D,® =|n"(9|. (107)
013 Sg
Now, by substituting (106) and (107) in expression (42):
—cos (9) —sin (9) Offu(r,9)
0 0 Offuy(r,9)
0 0 Ollus(r,9
3(r, 9) (108)
0 0 0[] @1(r,®
+ | —sin(9) cos (9) 0| @a(r,|=0,
0 0 L] es3(r,®)
we obtain
—cos (Nuy(r,I) — sin (Nuy(r,9) =0,
—sin ()@ (r,9) + cos (9@, (r,9) =0, (109)

@3(r,9) = 0.

By writing the left hand side of these equations in polar coordinates we
get

u,(r,9)=0,
@o(r,9) =0 = 0he(r,9) =0, (110)
@3(r,) =0 = 04,9 =0.

These results match with the expected boundary conditions for only u,
restricted conditions.
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To see how expression (47) works, we can analyze it using the above
example. First, we assemble the matrix Dpc(9),

[ (sT(®) 0,3
0,3 n’'(9)
0I><3 SZ
Dpc(d) = i
0553 sT(9)
n’ (9) 0,3
A Sg 0153
[(— cos (9) —sin(9) 0 0 0 0
0 0 0 —sin (9) cos (9) 0
_ 0 0 0 0 0 1
- 0 0 0 —cos(® —sin@®) 0)|
—sin (9) cos (9) 0 0 0 0
i 0 0 1 0 0 0
(11D
then we substitute it in (47) leading to
—cos(9) —sin(@ O 0 0 O[ u(r,9)
0 0 0 —sin(® cos(@®) Of|uy(r,9)
0 0 0 0 0 L] us(r,®)
0 0 0 —cos(® —sin@d) Of|ler9
—sin(¥) cos(@ O 0 0 01| @y(r,9)
0 0 1 0 0 0 r,9
@3(r, 9) 112)
—cos (Nuy (r,I) — sin (Nuy(r, I)
—sin ()@ (r,9) + cos ()@, (r, )
_ @3(r,9)
—cos ()@, (1, 9) — sin (e, (r, 9)
—sin (Qu; (r, 9) + cos (Nuy(r, I)
us(r,9)
and with (109)
—cos (Nuy (r,9) — sin (uy(r, J) 0
—sin ()@ (r, 9) + cos (@, (r, 9) 0
@3(r,9) _ 0

—cos (8)@, (r, 8) — sin g, (r, 9 |~
—sin (Qu; (r, 9) + cos (uy(r, 9)
us(r,9)

—cos (D, (r,9) —sin (), (r,9)
—sin (Qu; (r, 9) + cos (Nuy(r, 9)
us(r,9)

_ w9
w9

(113)

we get the separation of the components of w(r,9) into the prescribed
(4., @y, p3) and unknown (@, uy, u3) components.

Appendix B. Example of an interface condition

The most difficult case of interface conditions dealt in this work is
the case of frictionless sliding interface. Considering the same orthonor-
mal basis as in (106), the matrices in Table 2 for this interface condition
take the form

[sin(d) —cos(9) O 0 0 0
0 0 0 —cos(@ -—sin(® O
1 0 0 0 -1 0 0
D1(19)=% 0 0 0 0 - ol (114)
0 0 0 0 0 -1
| 0 0 0 0 0 1
[—sin(9) cos(@®) O 0 0 0
0 0 0 —cos(@ —sin(® O
1 0 0 0 1 0 0
D,(9) = % 0 0 0 0 | ol (115)
0 0 0 0 0 1
| 0 0 0 0 0 1
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[ —sin(9) cos (9) 0 0 0 0

0 0 0 —sin(d) cos(9) O

B 9= L —V2cos(®) —v/2sin@® 0 0 0 0
18)=— ’

V2 0 0 0 0 0 0

0 0 V2 0 0 0

0 0 0 0 0 0
(116)

—sin(9) cos (9) 0 0 0 0]

0 0 0 —sin(d) cos(¥) O

5.0~ 0 0 0 0 0 0
2 F% —V2cos(® —v2sin(® 0 0 0 of

0 0 0 0 0 0

0 0 V2 0 0 0
(117)

By substituting now (114) and (115) into (49) we obtain

[sin(d) —cos(®) O 0 0 07| uftr,®

0 0 0 —cos(® —sin@®) O [[uf(9)

1] o0 0 0 -1 0 0 || ufer,9)
V2l o 0 0 0 -1 0 || @9
0 0 0 0 0 —1|| @¥(r,8)

| 0 0 0 0 0 1| er.9)
[—sin(9) cos(®) 0 0 0 o1 w* (. 9)

0 0 0 —cos@® —sin@® 0||u(.9)
1| o0 0 0 1 0 off w9 | _
V2 0 0 0 0 1 offee*'e 0|

0 0 0 0 0 L[ @& (r, 9)

| 0 0 0 0 0 1 ¢g’+' r,9)

(118)

where superindices w and w + 1 refer to two consecutive wedges, and
9 = 9,. By multiplying the vectors and matrices in (118) we get the
interface conditions in explicit form

% (sin (9)u’(r, 8) — cos (Nuy (r, 9) — sin (19)14?’*l r,9)
2

+ cos (Nu ! (r,9) = 0,
%(— cos (9)e(r,9) — sin (9@ (r, 9) — cos (1‘))(p’1"+l r,9)
2

w+1

“H(r, 9) = 0,

— sin (9)@.

L0, 9) + ¢, 9) = 0,

V2
L 0,9 + o+

V2

1 w w
— (=@ () + @y (r, 9) = 0,

V2
1 )
—(P¥(r,9) + @'
V2
By rewriting these conditions in polar coordinates it is easy to see
what these equations imply

(119)

(r,9) =0,

(r,9)) =0.

) (r, 9) = ul*'(r, 9), (120)
OFr.9) =t 9) = o9 =o' (r.9), (121)
e =" =0 = o9 =09 =0, (122)
o= 9 =0 = ol(r9) =0t (r9)=0. (123)

To see how expression (53) works, we can analyze it using the above
example. By substituting (114)-(117) in (53) we obtain Eq. (124) given
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in Box III, where the separation between the prescribed and unknown
interface variables can be clearly observed.

Rewriting wy(r,0) in polar coordinates, it is easy to see which
components are our six unknown variables (besides a coefficient \/LE):

— sin (O (r, 9) + cos (N (r, 9) — sin (O (r, 9)

, " (125)
=uy(r,9) + ua'“' (r,9) = 2ug (r, 9),

= sin (9)@!( (r, 9) + cos (9} (r, 9) — sin (9)@'*+' (r, 9) + cos (9 +' (1, 9)

= @l (r,9) + i (r,9) = 201 (1, 9). (126)

—V2cos Ou(r, ) = V2sin (Ou(r, ) = —V2u(r,9), (127)

besides u?’(r, 9), and similarly also ur’”l(r, 9) and u3w+1(r, 9).

Appendix C. Orthogonality of extended interface condition matrix

To check the orthogonality of the matrix Deomer exe for a closed
(periodic) corner we have to prove that this matrix fulfills (65),

Dcorner_ext (8)DZorner_ext (8)

[D,%) 06 O6xe 066 06 D, ()]
Dy(89)  Osxs 066 0656 0656 D, (%y)
Osxs D19 D)) 06 O6x6 UG
=| Ogxs D9 D9 0656 066 0656
Ooxs  Ooxs  Ooxs Di@w_1) Doy_1) O
| O6xs (L Osx6 Di@w_) Da@w_))  Opxs |
DI%) DI 04 066 Ogx6 066
066 0 D8 DI Ogx6 066
06><6 06x6 DzT @) f);(’gl) 06><6 06><6
06><6 06><6 06><6 06><6 D1T Ow-1) DT('()W—I)
O6x6 U 0656 0656 DIy _) DIy )
_DIT Ow) DIWy) O O6x6 O6x6 O6x6
A Oy 012412
_ |02 B&D 012512
012512 O12x12 By _1)
(128)

where the 12 x 12 matrices A and B(9,,) are given by

A=
_ [D,(9)DT (99) + D, (9y,)DT (9y,) Dy (96)DT (99) + Dy (9)DT (9y)
| D,(90)D] (99) + D1 (9y)D] (9y,)  D3(96)D] (99) + Dy (9y)D] (9y)
— -I6><6 06><6]
_06><6 IGXG ’
B(9,) =

_ [D,9,)DT(9,) +D,9,)DI(3,)  D;(3,)D7(8,,)+Dy8,)DI (8,
D1 (9,,)D] (9,) + D2(9,)DI(9,)  D1(9,)D] (9,,) + D2(9,)D] (9,,)

I6><(w
_06><6

06><6]
I6><6
(129)

where we have applied (50), using the fact that 9, + 360° = 9y, for a
closed corner, in the matrix A calculation. This proves that the extended
interface condition matrix fulfills the orthogonality relation (65).
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[=NeNeNoNeNe]

Sil-

2
~V2cos (9)u(r, 9) — V/2sin (9 (r, 9)

—V2cos O)ut(r, 9) - V/2sin Ouy+(r, 9)
V2ul(r, )
V2t 9)

— sin () (r, 9) + cos (uf (r, 9) — sin (' (r, 9) + cos (Nuy+! (r, )
—sin ()@ (r, 9) + cos (9@ (r, 9) — sin (9)@'+! (r, 9) + cos (9 +!

(r,9)

sin (9) —cos (9) 0 0 0 0 —sin (9)
0 0 0 —cos(9) -—sin(@®) O 0
0 0 0 -1 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 -1 0
1 0 0 0 0 0 1 0
7 —sin (9) cos (9) 0 0 0 0 —sin (9)
2o 0 0 —sin® cos@® 0 0
—v/2cos (9) —\/Esin @ 0 0 0 0 0
0 0 0 0 0 0 —v2cos(9
0 0 V2o 0 0 0
| o0 0 0 0 0 0 0
WO 9) 1 sin (9)u'’ (r, 9) — cos (9)ul (r, 9) — sin (Nu'*! (r, 9) + cos (u™! (r, 9)
W, 9) = cos (Ne{/(r. 8) = sin (9)¢} (r. 9) — cos (N (1. 8) = sin (9)y* (. 9)
u(r, 9) -l (r, 9) + @ (r, 9)
@, 9) —@y(r, 9) + @5 (r, 9)
PL(r.9) —@¥(r,9) + @ (r, 9)
o9 |1 PL 9 + 9§ (r.9)
uwérl 9 = % —sin (S)uq”(r, 9) + cos (8)u;’(r, 9) —sin (19)14']‘”rl (r,9) + cos (19)14;’“ 9 |=
Lo+ .9) —sin ()@ (r, 9) + cos ()@Y (r, 9) — sin (D)@' +! (1, 9) + cos (N ' (1, 9)
e
W (r,9) ~V/2cos (O)u(r, ) — V2 sin (O (r. 9)
P (. 9) —V2cos (9" (r, ) — V2sin (O™ (r, 9)
(Pzw:i (r,9) \/Eug"(r, 9)
wr
o (9] | V2ulti(r, 9)

_ [wp(r, 9)

cos (9) 0 0 0 0
0 0 —cos(9) —sin(®) O
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
cos (9) 0 0 0 0
0 0 —sin(®) cos(@® O
0 0 0 0
—\/2sin(®) 0 0 0 0
0 0 0 0 0

0 V2 0 0 0f

(124)

wy(r,9)

Box IIL
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