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A B S T R A C T

The rapid increase of human activities with direct influence on the environment has motivated the global
awareness of the need to efficiently monitor the natural resources. Among the wide range of problems
addressed, such as overuse of agrochemicals, uncontrolled waste, etc., the contamination of water resources
plays a protagonist role, given its close links with biodiversity and the food chain. Water monitoring
is considered one of the most efficient ways to deal with these problems, especially through the use
of autonomous vehicles, which can boost the capabilities and efficiency of the monitoring routines with
appropriate strategies. In this work, the monitoring problem is addressed by means of the Non-Homogeneous
Patrolling Problem with closed circuits. This problem has a great computational complexity, especially when
multiple targets are included in a monitoring mission. A formulation based on closed metric graphs and the
application of a multi-objective genetic algorithm is proposed to provide Pareto-efficient monitoring solutions
for a variable number of Autonomous Surface Vehicles. To address the multi-agent, multi-objective and
constrained paradigm, efficient genetic operators have been designed for the generation of valid solutions in
an affordable time. The method results in Pareto-efficient solutions for scenarios with disjoint and uncorrelated
objectives, which outperform the fitness of other solutions by a factor of 2, on average. The results provide
decision makers a method to find different non-dominated strategies depending on the monitoring needs,
depending on fleet and vehicle size.
. Introduction

Adequate water monitoring constitutes the first step towards an effi-
ient management of natural resources. During the last decades, several
uman activities and interventions, such as uncontrolled disposal of
ontamination agents, massive tourism, bad practices in cattle raising,
nd agriculture, or industrial activities, have put at risk most of the
arge water bodies around the world (Lin et al., 2021). It is in this
ontext where technology can play an important role to develop robust
nd efficient monitoring systems and lead a global paradigm shift
owards a better use of the natural resources. Water monitoring systems
ave traditionally relied on manual procedures, generally based on
n situ acquisition and latter laboratory analysis of collected samples.
et, they are time and human resource consuming procedures, given
he required time for taking samples in different locations of water
esources (especially aggravated in large-scale water resources), and for
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E-mail address: dgutierrezreina@us.es (D.G. Reina).

transporting the samples from the water resources to the laboratory.
Not only are the monitoring tasks not able to be performed on a
real-time basis, but also technicians assume a high risk in extreme
scenarios where contamination levels are high. These issues, coupled
with an increasing environmental awareness around the world, have
caused a noticeable interest in novel monitoring systems aiming at
(i) reducing human intervention and (ii) increasing the efficiency of
sample collection and further analysis (Jiang et al., 2020; Ighalo et al.,
2021; Arzamendia et al., 2016).

Among the different alternatives, the use of Autonomous Surface Ve-
hicles (ASVs) has been gaining momentum lately not only as an efficient
alternative to manual sampling for water monitoring tasks (Sánchez-
García et al., 2018), but also for related problems such as informative
path planning (Peralta Samaniego et al., 2021) and patrolling (Arza-
mendia et al., 2019a; Yanes et al., 2020), among others. ASVs are
cheaper and smaller than conventional ships and can be controlled
remotely. Moreover, they can be equipped with sensor probes (pH,
conductivity, turbidity, etc.), allowing to carry out monitoring missions
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autonomously in aquatic scenarios (Arzamendia et al., 2016). A rel-
evant aspect of these vehicles lies in the possibility of working on a
fleet or swarm basis, sharing the payload of the monitoring missions
and thus significantly reducing the time required for accomplishing
them. Furthermore, they can work either in a centralized way or in a
distributed manner, which dramatically increases their versatility and
capabilities.

Despite the chosen strategy, the use of ASVs for water monitoring
tasks requires the calculation of sequential sets of waypoints for the
vehicles to move through the water resource and carry out the mis-
sions. This paper addresses the so-called patrolling problem monitoring
task, and more specifically the Non-Homogeneous Patrolling Problem
(NHPP). Generally, the patrolling problem for monitoring a water
resource is based on its periodical survey to determinate the state of
one or several quality indicators through sampling certain physical
variables. If all zones of the scenario are considered equally important,
that is, they all must be measured with the same frequency, the problem
is known as the Homogeneous Patrolling Problem (HPP) (Yanes et al.,
2020). In contrast, if different levels of importance or interest are
considered, the problem is categorized as NHPP.

Since the NHPP is an extremely complex problem contained in the
NP-Hard due to the exploding number of possible combinations, meta-
heuristic algorithms, such as Genetic Algorithms (GAs) (Whitley, 1994),
Swarm Intelligence (Altan and Parlak, 2020), or Reinforcement Learn-
ing techniques (Sutton and Barto, 2018) have been proven suitable
alternatives. In this work, the NHPP is extended by considering multiple
water quality parameters that are required to be monitored simulta-
neously. Each of these parameters is expected to have an arbitrary
distribution through the water resource, and therefore a multi-objective
strategy is necessary to determine the optimal policy of the ASVs.
A Non-Dominated Sorting GA-II (NSGA-II) is proposed (Deb et al.,
2002) in this work. In addition, to encode the movement policy of
the different vehicles, a messy representation (Goldberg et al., 1989)
is employed for the solutions, as it provides a high flexibility for the
generated policies by non-fixing the length of the vehicle’s path. The
main contributions of this work are:

• Development of a Multi-Objective evolutionary approach based
on Pareto dominance and messy individual representation, for the
NHPP of water resources.

• Implementation of tailored algorithms to generate, mutate, and
crossover domain-constrained individuals using an efficient graph
formulation.

• Validation of the proposed approach for multiple vehicles and
optimization benchmark functions to model water quality param-
eters in a real scenario in Paraguay.

The rest of the paper is organized as follows: Section 2 introduces
elevant related works that can be found in the current literature,
uch as the use of both evolutionary approaches and autonomous
ehicles for monitoring missions. Section 3 presents the statement of
he problem, including the definition of the NHPP and its extension as a
ulti-objective patrolling problem. Section 4 includes the evolutionary

omputational approach that has been developed to solve the NHPP.
he simulation analysis used to validate the approach is presented in
ection 5. Finally, Section 6 summarizes the main conclusions of this
aper.

. Related work

Several artificial-based approaches have been proposed to solve
ater resources monitoring problems like the Non-homogeneous pa-

rolling problem addressed in this work, such as evolutionary ap-
roaches (Arzamendia et al., 2019a, 2016; López Arzamendia et al.,
019; Arzamendia et al., 2019b), reinforcement learning techniques
Yanes et al., 2020; Yanes et al., 2021; Yanes Luis et al., 2021b), swarm
ptimization (Kathen et al., 2021; Xiong et al., 2019), and Bayesian
2

optimization (Peralta Samaniego et al., 2021; Peralta et al., 2021),
among others (Bottarelli et al., 2019).

In Arzamendia et al. (2019a, 2016), the authors solve the homo-
geneous patrolling or coverage problem of Ypacarai lake by using GAs.
The problem is modeled through the classical Traveling Salesman Prob-
lem (TSP), by employing visiting points or beacons that are considered
to be placed at the shore of the lake. In contrast to the classical TSP, in
the proposed problem the objective is for the vehicle to maximize the
distance traveled, since it is directly related to the obtained coverage.
Due to the high number of possible solutions, and given that the TSP
problem is a well-known NP-hard problem, a tailored single objective
GA is used. In López Arzamendia et al. (2019), the previous work is
extended by modeling the problem using the Chinese Postman Problem
(CPP). The number of possible solutions is thus noticeably increased,
since the beacons can be visited more than once. Again, the coverage
problem is addressed as a single objective problem solved by a GA
approach. According to the results, the CPP model outperforms the
TSP problem at the cost of increasing the number of possible solutions.
In Arzamendia et al. (2019b), a hybrid approach is presented for
monitoring water resources. The approach is divided into two steps,
(i) an exploration phase based on the TSP presented in Arzamendia
et al. (2019a) and (ii) a novel intensification phase. On the one hand,
during the exploration phase, the system focuses on finding new areas
of the Ypacarai lake that are contaminated. On the other hand, in the
intensification phase, the vehicle tries to track the contaminated areas.
For both steps, an evolutionary single-objective approach is employed.
It is relevant to note that, despite of the robustness of these works, they
only address the optimization problem from a single-objective mode.

In Ma et al. (2020), Bezier curves are employed to calculate smooth
trajectories in the path planning of a single robot. The objective of the
global path planning is to obtain routes that do not contain obstacles.
The authors propose a single objective GA with a binary encoding to
address this problem. In a similar manner, in Altan (2020) GAs are
used for to develop the so-called Swarm Intelligence Algorithms for the
optimization of controllers in flying vehicles that perform surveillance
and/or monitoring tasks.

Specifically, the Patrolling Problem is theoretically analyzed in
Chevaleyre (2004) for the homogeneous and multi-agent case of the
patrolling problem under multiple algorithms and maps. This work
states that the Patrolling Problem can be solved using a TSP modeling
and applying an evolutionary approach and/or using Reinforcement
Learning (RL). As claimed by the authors, cyclic strategies using a TSP
formulation resulted in a better patrolling than the partitioned-based
ones, where every vehicle remains inside of a particular domain zone.
Nevertheless, this analysis leaves out the non-homogeneous case.

A Deep Reinforcement Learning (DRL) approach for the non-
homogeneous patrolling problem of the Ypacarai lake is presented
in Yanes et al. (2020). The authors proposed a 2D Convolutional
Neural Network (CNN) to approximate the Q table of the policy of
a single vehicle. Moreover, the authors proposed a tailored reward
function for the target patrolling problem that considers collisions
with land and other invalid solutions. A multi-agent extension of the
previous work can be found in Yanes et al. (2021), where up to three
vehicles are trained to solve the non-homogeneous patrolling problem
of the Ypacarai lake. A thorough comparison between GA and deep
reinforcement learning for the non-homogeneous patrolling problem
of the Ypacarai lake can be found in Yanes Luis et al. (2021b). The
authors compare the centralized Deep Q learning proposed in Yanes
et al. (2021) and 𝜇 + 𝜆 GA implementation, for different resolutions
of the problem (different complexity) and a fleet composed of up to
three vehicles. The obtained results reveal that: (i) as the complexity
of the problem increases, the deep learning approach outperforms the
GA, (ii) the deep learning approach is very sensible to hyper-parameters
used in the CNN architecture, (iii) the GA is easier to tune and achieves
robust solutions, and (iv) the deep reinforcement solutions adapt better

to possible failures in the vehicles. In Theile et al. (2020), an aerial
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vehicle is trained using a CNN to cover zones of interest in a map with
obstacles on a landing spot. In Krishna Lakshmanan et al. (2020), a
similar DRL approach was used to deal with the CP for cleaning robots
with a high number of degrees of freedom. The results showed much
better performance than other approaches and suggest DRL is able to
optimize numerous tasks at the cost of many environment evaluations.

Regarding Bayesian Optimization (BO), in Peralta Samaniego et al.
(2021) the authors evaluate the utilization of BO based on Gaussian
Process for informative path planning of the Ypacarai lake. In the infor-
mative path planning, the objective is to collect relevant data from the
target scenario to model it by means of a regression model. Therefore,
informative path planning is usually a previous step of the patrolling
problem. The simulation results demonstrate that the MSE achieved
decreases significantly with the number of samples taken; therefore,
the Gaussian Process regression model is suitable for modeling water
quality variables. In Peralta et al. (2021), the authors extend the work
to estimate several water quality variables simultaneously with a single
vehicle. In Xiong et al. (2019), the authors proposed a Ant Colony Opti-
mization (ACO) approach with Voronoi partitions for informative path
planning in ocean scenarios. The authors use tournament techniques
for the selection of the Voronoi zones with higher interest.

The proposed approach presents important advantages with respect
to previous and related works. First, this paper proposed a novel
graph-based formulation for the NHPP that allows to define tailored
individual generation and genetic operators (crossover and mutation
schemes). This novel formulation allows finding feasible (but not nec-
essarily optimal) solutions to initialize the population to be optimized.
When mutating and crossing individuals, the value of the graph-based
method shines through, since the individuals resulting from both oper-
ators are guaranteed to satisfy the feasibility navigability constraints.
Secondly, it can be highlighted that previous works are based on
single-objective patrolling problems (Arzamendia et al., 2016; Yanes
et al., 2021; Arzamendia et al., 2019a). In this work, on the contrary,
several water quality parameters with different map functions are con-
sidered simultaneously in the optimization problem. Unlike traditional
approaches found in the literature, the functions under study are not
correlated at all, which strongly increases the difficulty to achieve
satisfactory patrolling results. Finally, this paper considers the path
length in two ways: first, as a hard constraint in the cost function and,
in a subsequent analysis, as an additional simultaneous objective. This
way, the proposed optimization framework deals with variable length
chromosomes to find closed paths of different sizes. Thus, this work
also covers the need for multi-scale monitoring in the face of different
travel time budgets. In summary, all these aspects constitute a proposal
of an amendment to the research gaps found in the literature for mon-
itoring water resources with vehicles: multi-objective and multi-agent
optimization with closed path constraints.

3. Statement of the problem

The NHPP problem consists in finding the optimal routes that a sin-
gle or a fleet of vehicles must follow to optimize a certain cost function.
In particular, in this paper, a fleet of ASVs equipped with pollution
sensors is considered. The objective of each ASV is to monitor the state
of a lake by taking samples at different positions. Consequently, the
routes covered by the ASVs are determined by the next considerations:

• There are areas of higher importance that require to be visited
and sampled with a higher frequency than others.

• An area that has been visited many times has lower interest than
others that remain unvisited.

In this paper, several problems are formulated in terms of the
umber of objectives and the number of vehicles considered. Thus, this
ection introduces a formal statement of those problems together with
he main assumptions and considerations that have been taken into

ccount.

3

Fig. 1. Example of an arbitrary graph G with 26 nodes and a closed-loop path
𝑃 (𝐺) = [16, 17, 11, 5, 13, 20, 13, 19, 11, 10, 9, 8, 16]. Note that both the nodes and the edges
can be visited more than once in a single path.

3.1. Notation and graph-based formulation

Consider a discretization of a certain area defined by a weighted
directed graph 𝐺 in which the vertices of the graph, 𝑉 (𝐺) = {1, 2,… , 𝑝},
represent the set of sectors in which the area has been divided; and the
edges of the graph, 𝐸(𝐺) = {(𝑣1, 𝑣2) ∶ 𝑣1, 𝑣2 ∈ 𝑉 (𝐺)}, represent the set
of physical paths that interconnects those sectors.

The monitoring criteria for each of the sectors of the lake may
vary depending on the local authorities or on how the environmental
variables (turbidity, dissolved oxygen, . . . ) are distributed. Thus, let us
define a set 𝐼𝑒(𝐺) = {𝑖1,𝑒, 𝑖2,𝑒,… , 𝑖𝑝,𝑒} as the importance of each sector or
vertex of the graph to be visited in terms of environmental variable 𝑒.
In addition, a set 𝑊 (𝐺) = {𝑤1, 𝑤2,… , 𝑤𝑝} defines the idleness of each
vertex of the graph. The idleness indicates the number of time steps
since the corresponding vertex has not been visited.

Note that, since the position of the vehicles changes at every time
step 𝑡, the idleness of each vertex also does. Analogously, every time
step a certain sector is visited, its corresponding importance decreases.
Thus, let us denote as 𝐼𝑒,𝑡(𝐺) = {𝑖1,𝑒,𝑡, 𝑖2,𝑒,𝑡,… , 𝑖𝑝,𝑒,𝑡} and 𝑊𝑡(𝐺) =
{𝑤1,𝑡, 𝑤2,𝑡,… , 𝑤𝑝,𝑡} to the importance and idleness sets at step 𝑡, respec-
tively.

To have a common base for all objectives of the problem, each
variable that denotes the importance of each sector to be visited in
terms of an specific environmental variable, 𝑖𝑣,𝑒,𝑡, takes a normalized
value between zero and one. On the other hand, idleness variables 𝑤𝑣,𝑡
take integer values greater or equal than zero that represent the number
of time steps since the vertex 𝑣 was last visited.

In sight of the above definitions, it is clear that the main aim of each
vehicle is to follow a path that visits the most important sectors (those
with higher 𝑖𝑣,𝑒,𝑡 ∈ 𝐼𝑒,𝑡(𝐺)) that have been unvisited for a longer time
and, consequently, with higher idleness 𝑤𝑣,𝑡 ∈ 𝑊𝑡(𝐺). To achieve this
combined objective, a variable 𝜔𝑣,𝑒,𝑡 is defined as the relative interest
of sector or vertex 𝑣 in terms of an environmental variable 𝑒 at time
step 𝑡:

𝜔𝑣,𝑒,𝑡 = 𝑖𝑣,𝑒,𝑡𝑤𝑣,𝑡. (1)

which will serve as an indicator of the quality of every action taken.
Once the parameters of the problem have been defined, it is de-

scribed the variables to be optimized, that is, the paths that the vehicles
must follow through the discretized area. The path of a vehicle between
vertices 𝑣1 and 𝑣𝑇 is defined as a sequence of vertices consecutively
visited starting at 𝑣1 and ending at 𝑣𝑇 . In the framework of the graph
formulation of the problem, a path of a vehicle between vertices 𝑣1 and
𝑣𝑇 , 𝑃 (𝐺) = [𝑣1, 𝑣2,… , 𝑣𝑇 ], is defined as a vector with the sequence of
the 𝑇 vertices visited during a directed path form vertex 𝑣1 to 𝑣𝑇 . In
Fig. 1 an example path is represented for the sake of understanding.
Recall that a directed path from vertex 𝑣1 to vertex 𝑣𝑇 is a sequence of
edges such as (𝑣1, 𝑣2), (𝑣2, 𝑣3), … , (𝑣𝑇−1, 𝑣𝑇 ) in a directed graph. Note

that 𝑣𝑡 indicates the vertex visited at step 𝑡 through trajectory 𝑃 (𝐺).
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The relative interest of a vehicle path in terms of an environmental
variable 𝑒 is defined as:

𝛺𝑒(𝑃 (𝐺)) =
∑

𝑣𝑡∈𝑃 (𝐺)
𝜔𝑣𝑡 ,𝑒,𝑡, (2)

where 𝜔𝑣𝑡 ,𝑒,𝑡 has been previously defined in (1).
Let 𝑑𝑣1𝑣2 denote the length of edge (𝑣1, 𝑣2). That is, the distance

traveled by the vehicle to move from vertex 𝑣1 to vertex 𝑣2. Then, it can
be defined the distance of the path 𝑃 (𝐺), 𝐷(𝑃 (𝐺)), as the sum of the
lengths of all the edges in the direct path defined by 𝑃 (𝐺). For instance,
if the path is defined by 𝑃 (𝐺) = [𝑣1, 𝑣2,… , 𝑣𝑇 ], the distance of the path
is computed as 𝐷(𝑃 (𝐺)) = 𝑑𝑣1𝑣2 + 𝑑𝑣2𝑣3 +⋯ + 𝑑𝑣𝑇−1𝑣𝑇 .

3.2. Single objective and single vehicle patrolling problem

Consider the particular scenario in which the aim of the problem is
to optimally design a path 𝑃 (𝐺) for a single vehicle to maximize the
relative interest (2).

Prior to stating the problem, some constraints and considerations
must be taken into account:

• Regarding the morphology of every possible path, it is imposed
a closed condition for every solution of the NHPP, that is, the
starting and ending vertex of the path must be the same.

• To comply with a realistic limited battery constraint of the vehi-
cle, the length of every feasible path 𝐷(𝑃 (𝐺)) must be subjected
to a maximum value of traveled distance 𝑑𝑚𝑎𝑥.

• Finally, and in order to model an attrition effect to those zones
highly covered, the maximum interest of every node in terms of
environmental variable 𝑒, 𝑖𝑣,𝑒,𝑡 is reduced a fifth of its original
value after every visit. Therefore, a zone that has been covered
five times, is not able to contribute to the monitoring task any
more.

Considering the above limitations, the optimization problem is for-
mulated as follows:
max 𝛺𝑒(𝑃 (𝐺)),
𝑠.𝑡. 𝑃 (𝐺) = [𝑣1, 𝑣2,… , 𝑣𝑇 ],

𝐷(𝑃 (𝐺)) ≤ 𝑑𝑚𝑎𝑥,
𝑣1 = 𝑣𝑇 .

(3)

3.3. Multi-objective and multi-vehicle patrolling problem

The NHPP can be extended to a multi-objective problem when it
is specified that the monitoring of the water resource has more than
one interest objective, that is, more than one environmental variable
to monitor. In that way, several importance maps 𝐼𝑒(𝐺) are considered.
It is important to notice that, when imposing different interest maps,
some movements could benefit the maximization of one objective at the
sacrifice of the performance in another interest criterion. For example,
in Fig. 2, the very same closed path covers different interest levels,
and it is clear that the number of possible combinations explodes with
the dimension of the map and the number of objectives. This problem
constitutes a complex generalization of the NHPP and needs for a multi-
objective heuristic approach to balance the monitoring of different
variables in a feasible amount of time.

Thereby, the single vehicle multi-objective problem can be formu-
lated as:
max 𝛺𝑒1 (𝑃 (𝐺)), 𝛺𝑒2 (𝑃 (𝐺)),… , 𝛺𝑒𝑁 (𝑃 (𝐺))
𝑠.𝑡. 𝑃 (𝐺) = [𝑣1, 𝑣2,… , 𝑣𝑇 ],

𝐷(𝑃 (𝐺)) ≤ 𝑑𝑚𝑎𝑥,
𝑣1 = 𝑣𝑇 ,

(4)

where 𝑁 denotes the number of interest maps considered.
It is also possible to expand the problem for a fleet of multiple

ASVs. Since the environment is the same for every agent, the graph
is consequently shared between them, as shown in Fig. 3. Thus, the
4

Fig. 2. Example grid graph of a single-vehicle cyclic trajectory with a Multi-Objective
interest map. Note that every movement across the graph implies a different value of
𝜔𝑣,𝑒,𝑡.

Fig. 3. Example of an arbitrary graph G with 26 nodes and the paths 𝑃1(𝐺) =
[16, 17, 18, 10, 2, 8, 16] (blue), 𝑃2(𝐺) = [23, 19, 12, 11, 17, 23] (green) and 𝑃1(𝐺) =
[25, 26, 21, 14, 20, 19, 20, 25] (red). Note that both the nodes and the edges can be visited
by different vehicles at different steps.

objective of a multi-agent fleet is to share the navigable space to
monitor better, given the diversity of interests and objectives. Every
vehicle will then be able to develop its own path, subjected to the same
movement and distance constraints.

max
𝑁𝑣
∑

𝑛=1
𝛺𝑒1 (𝑃𝑛(𝐺)),… ,

𝑁𝑣
∑

𝑛=1
𝛺𝑒𝑁 (𝑃𝑛(𝐺))

𝑠.𝑡. 𝑃𝑛(𝐺) = [𝑣𝑛1, 𝑣
𝑛
2,… , 𝑣𝑛𝑇 𝑛 ], ∀𝑛 ∈ {1,… , 𝑁𝑣}

𝐷(𝑃𝑛(𝐺)) ≤ 𝑑𝑚𝑎𝑥,𝑛, ∀𝑛 ∈ {1,… , 𝑁𝑣}
𝑣𝑛1 = 𝑣𝑛𝑇 𝑛 , ∀𝑛 ∈ {1,… , 𝑁𝑣},

where 𝑁𝑣 defines the number of vehicles and 𝑑𝑚𝑎𝑥,𝑛 the maximum
distance that vehicle 𝑛 can cover.

3.4. Complexity of the problem

In Chevaleyre (2004), it is stated and demonstrated that the HPP
is contained into the NP-Hard problem set. As the Non-Homogeneous
case is a generalization of the former with a non-uniform distribution
of the periodicity values for every zone, it is reasonable to categorize
the NHPP into the set of NP-Hard problems, which makes exhaustive
or brute force algorithms unfeasible. Therefore, the utilization of a GA
is a justified approach due to the complexity of the target problem.

3.5. Assumptions and considerations

For evaluation of the proposed patrolling problems, the following
assumptions for the movements of the vehicles and the monitoring
mission are made:

• At each step, each of the vehicles can perform a single movement
that commands the agent to move to one of the adjacent cells,
this is moving from a vertex 𝑖 to a vertex 𝑗 through an existing
edge (𝑖, 𝑗).
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Fig. 4. Satellite image of the YpacaraíLake (left) and the corresponding discrete map
used in this approach (right). The triangles indicate the three available deploy points.

• For the sake of simplicity, the map is discretized on a rectan-
gular grid basis, and thus the diagonal movements will have
an equivalent cost of the square root of two of a perpendicular
movement.

• Each ASV will travel at a nominal speed (2 m/s) with full initial
charge (considering a safety minimum for the return to land), on
the basis of which the maximum total distance 𝑑𝑚𝑎𝑥 (39.5 km) is
determined.

• A discrete set of available deployment points are proposed for
the ASVs. They correspond to Costa Serena (San Bernardino),
Playa Chini (Itauguá), and Playa de Areguá (Areguá) (indicated
in Fig. 4). Thus, each ASV must begin and end its path from one
of these points.

• Water quality parameters are modeled through optimization
benchmark functions (see Section 5). These functions, that are
considered to represent water parameters such as pH, tempera-
ture, conductivity, turbidity, etc., indicate the quality of the water
resource, and are considered to have been obtained in advance
by the fleet of vehicles through informative path planning tech-
niques, such as those proposed in Peralta Samaniego et al. (2021)
and Kathen et al. (2021).

4. Proposed evolutionary approach

GAs are meta-heuristic optimization algorithms inspired by Dar-
win’s theory of Evolution (Kramer, 2017), which establishes that the
better an individual adapts to the environment, the higher its probabil-
ity of creating offspring and surviving over generations. The robustness
and flexibility of these algorithms are such that their popularity has
grown exponentially during the last few years, being applied to a wide
range of complex engineering problems in very different areas, such
as robotics (Kulik and Protopopova, 2020; Ma et al., 2020; Yanes Luis
et al., 2021a), energy systems (Ehyaei et al., 2020; Tapia et al., 2020;
Alvarado-Barrios et al., 2019), manufacturing processes (Shen et al.,
2007; Venkatesan et al., 2009) or structure analysis (Sahu and Nayak,
2020).

The main idea behind a GA is the iterative evolution of a population
of candidate solutions (called individuals). Every individual is encoded
in a chromosome-like structure (each gene represents a variable of
the solution), and then is assigned a fitness value, which measures
its adaptation to the search landscape. On the basis of their fitness,
certain individuals are stochastically chosen to create new offspring. As
a rule, the higher the fitness of an individual, the higher the probability
of being chosen as a parent. The new offspring is created by means

of crossover and mutation operators. The crossover operator consists

5

Fig. 5. Working scheme of the 𝜇+ 𝜆 genetic algorithm.

of the combination of the genetic information of two individuals,
while the mutation consists of modifying certain genetic information
of a single individual (both operators are stochastic). Using a proper
tuning of the crossover and mutation probabilities, GAs can achieve a
good balance between exploration and exploitation within the search
landscape of the problem.

In this work, each individual represents a possible patrolling plan
for a fleet of ASVs, this is, a path for each of the vehicles. Given that
the number of movements of a path is not fixed, the algorithm will be
formulated as a Messy GA (Goldberg et al., 1989), where the size of the
individuals, as will be discussed in Section 4.1, would vary through the
generations. Two configurations have been considered to address this
work, these are the single and multi-objective modes of the GA.

4.1. Single-objective

The proposed GA is based on 𝜇+ 𝜆 approach (Ter-Sarkisov and
Marsland, 2011). In this algorithm, summarized in Fig. 5, a population
of 𝜇 individuals compete each other to generate 𝜆 children by the ge-
netic operators (crossover and mutation). After evaluating the offspring
with the fitness function, the extended population formed by 𝜇+ 𝜆
individuals compete through the selection scheme used to pass to the
next generation. This procedure is repeated until the maximum number
of generations is reached. Notice that this approach is more elitist than
canonical implementations since parents and children compete.

4.1.1. Individual representation
The encoding of the individuals is proposed to be based on the

sequential enumeration of the cells that are visited by each ASV. Given
that the length of the paths can vary, an additional gene precedes
each of them containing its length. Using 𝑇 𝑗 to indicate the number
of movements that the 𝑗th vehicle performs, and 𝑣𝑗𝑡 to indicate the
vertex that it visits at the 𝑡th step of its path, an arbitrary individual
𝛥 corresponding to a fleet of 𝑁𝑣 ASVs would be written in the form of

𝛥 =
[

𝑇 1, 𝑣11,… , 𝑣1
𝑇 1 , … , 𝑇𝑁𝑣 , 𝑣𝑁𝑣

1 ,… , 𝑣𝑁𝑣
𝑇𝑁𝑣

,
]

(5)

Two things must be noted regarding the chromosome structure.
First, this encoding is generalized for a fleet of any size, that is, for
any number of vehicles 𝑁𝑣 ≥ 1. Secondly, it is relevant to highlight
that the chromosome has a variable length, as the vehicles can visit a
different number of zones during their paths. A representation of the
chromosome is shown in Fig. 6 for a better understanding.

4.1.2. Fitness function
For the single-objective mode of the algorithm, the fitness function

𝐹 is defined as the sum of the total interest collected by the fleet of
ASVs, if the paths are feasible. There are two situations that are con-

sidered unfeasible, and thus, that cause the individuals to be penalized.
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Fig. 6. Scheme of an individual corresponding to a fleet of three ASVs.

Fig. 7. Example of individual generation with 4 vertex 𝑖, 𝑗, 𝑘, 𝑙. The individual is created
hrough the concatenation of the paths connecting each couple of consecutive vertex
𝑖− 𝑗, 𝑗−𝑘, 𝑘− 𝑙 and 𝑘− 𝑖). These paths, in different colors, are determined by applying
𝑖𝑗𝑘𝑠𝑡𝑟𝑎 algorithm after randomizing the arc-weights.

hese are:

1. One or more vehicle’s paths exceed the maximum distance trav-
eled, this is, 𝐷(𝑃 (𝐺)) ≤ 𝑑𝑚𝑎𝑥.

2. Two or more vehicles visit the same node 𝑣 at the same step 𝑡.

In both cases, a negative fitness is imposed, which virtually means a
eath penalty over those individuals. Thus, for any individual 𝛥 in the
orm of (5), the fitness 𝐹 (𝛥) can be written as shown in expression (6)
s given as in Box I.

.1.3. Individual generation
In sight of the formulation proposed, it is clear that an individual

eneration scheme purely based on randomly selecting combinations of
ertex 𝑣𝑖 ∈ 𝑉 (𝐺) with repetitions is not expected to generate feasible
ndividuals correctly. For this reason, a graph-based tailored generation
cheme is proposed.

The generation scheme is based on choosing a set of 𝑚 arbitrary
odes from the graph 𝐺 and then defining a path 𝑄(𝐺) that visits them

consecutively. This path is constructed by successively applying the
𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 algorithm, with randomized arc weights, to find the shortest
path between each node 𝑖 and the next node 𝑖 + 1 from the set, and
finally concatenating the resulting path into a single one. Note that, as
the generated individual must constitute a closed path, an additional
segment, connecting nodes 𝑚 and 1 from the set is included. In Fig. 7
n example of a generated individual using 𝑚 = 4 nodes is shown.

.1.4. Genetic operators
To ensure that only feasible individuals are created, tailored algo-

ithms are proposed for mutation and crossover operations. As well as
he generation scheme, a graph-based formulation is employed.
 (

6

Fig. 8. Example of mutation on an individual. In this example the vertex 𝑘 steps in for
ertex 𝑖, which is removed from the original path. Note that only those vertex which
re neighbor with both the previous and next visited vertex in the path can be chosen
o substitute 𝑖.

The mutation operator is based on modifying locally the path of a
ehicle, by swapping a visited vertex with a compatible neighbor. This
s applied by first choosing a vertex (gene) randomly from the path of
ne of the vehicles (if more than one). This vertex is removed from
he path, and then a new one, randomly chosen among the common
eighbors from the previous and the next vertex visited is inserted,
losing again the path (see Fig. 8 for an illustrative example). Given
he particularities of the resulting graph, whenever there is no possible
eighbor to step in for the removed one, a new vertex (gene) is chosen
nd the process is repeated.

The crossover operator is designed to combine certain segments of
he paths from the parents to create offspring. This operator is based
n first selecting two vertices 𝑖 and 𝑗 from each parent’s chromosome,
ay 𝑖1, 𝑗1 and 𝑖2, 𝑗2. The corresponding segments, 𝑖1 − 𝑗1 and 𝑖2 − 𝑗2,
re removed from their respective paths. Finally, the path from each
arent is closed by a detour covering the segment removed from the
ther parent (see Fig. 9 for an illustrative example). These detours
o connect the open paths to the segments are created by applying
𝑖𝑗𝑘𝑠𝑡𝑟𝑎 algorithm after randomizing the arc-weights.

.2. Multi-objective

For the multi-objective case, the well-known NSGA-II algorithm is
sed (Deb et al., 2002). In the NSGA-II, a 𝜇+ 𝜆 approach is employed
o create an extended population through selection and genetic oper-
tors (see Fig. 10). Then, the extended population is sorted by Pareto
ominance, placing at the first level those solutions that are dominant.
he next step consists of selecting the 𝜇 best individuals according to
he Pareto-based ranking. In the case that all individuals of the last
evel cannot pass to the next generation (𝜇 size is the limit), a distance
etric is employed to preserve diversity in the Pareto front (see Deb

t al. (2002) for more details).

.2.1. Individual representation
The same individual representation for the single objective mode
Section 4.1) is used.
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Fig. 9. Example of a crossover between two arbitrary individuals. Segments 𝑖 − 𝑗 are
randomly chosen and removed for each of the parents. Each of the resulting open-loop
paths are closed by a detour that includes the segment removed from the other one.

Fig. 10. Working scheme of the NSGA-II genetic algorithm.

.2.2. Fitness function
The fitness function is defined as maximizing simultaneously the

ollected relative interest 𝜔𝑣,𝑒,𝑡 corresponding to each of the 𝑁 im-
ortance maps considered, as shown in expression (7) is given as in
ox II.

The penalty for individuals that violates the restriction of the prob-
ems is again the same as in Section 4.1.2.

.2.3. Individual generation
The generation scheme proposed for the single objective mode

Section 4.1) is used.

.2.4. Genetic operators
Both the mutation and crossover tailored operators from the single

bjective mode (Section 4.1) are used.

. Simulation results

This section describes the experimental results obtained in the
imulations. The conducted simulations are divided into two cases.
7

On the one hand, the problem of a single objective is addressed,
which will serve to obtain a baseline of the algorithm with a sin-
gle interest map (Shekel) with 1–3 ASVs. Furthermore, for this first
approximation, a grid-search of parameters (crossover and mutation
probability) has been performed for the subsequent experiments. In
addition, the proposed approach has been compared with other tech-
niques such as lawnmower and randomized algorithms. On the other
hand, a set of experiments has been conducted that deals with the
multi-agent case with three objective functions based on typical bench-
mark functions for optimization. These functions (see Fig. 12), such as
Shekel,1 Rosenbrock,2 and Himmelblau,3 which have been converted
to maps of interest (), present interesting challenges to balance the
non-homogeneous patrolling of the ASVs, as high interest areas in one
map coexist with low interest in others. Thus, these functions are not
correlated with each other. Consequently, it is not surprising to find
opposed and disperse solutions in the target domain, since human
criteria (tourist interest, . . . ) and biological models of the lake could
be blended. In a later analysis of the multi-objective case, the distance
traveled by a single ASV (for simplicity) has been included, as part of
the objectives to be maximized. Thus, the traveled distance goes from
being a constraint to a useful metric in the design of the paths. As a
result, it is analyzed how the distance traveled affects the possible set
of non-dominated solutions in the three previous objectives.

All simulations have been executed in an Ubuntu Server 18.04,
with a 2.24 GHz AMD 16-Core Processor and 64 GB RAM, using
Python 3.8.5 and the optimization library DEAP.4 In order to reduce
the computation time, the optimization was parallelized using all the 16
cores of the computer. The code is available for replication purposes.5
Additionally, an interactive version of the obtained results (Single and
Multi-Objective) can be found in the same repository.

5.1. Single-objective simulations

For the single-objective case, 1000 generations of the aforemen-
tioned 𝜇 + 𝜆 algorithm have been computed. This number of gener-
ations is sufficient to obtain a good convergence of the GA. In relation
to the cross-breed (𝑝𝑐𝑥) and mutation (𝑝𝑚𝑢𝑡) operation probabilities, a
grid-search of the parameters has been conducted, subjected to 𝑝𝑐𝑥 +
𝑝𝑚𝑢𝑡 = 1 to maintain the population size constant. In every case, the
maximum population size is 500 (see Table 1 for a summary of the
hyper-parameters). For this single-objective case, the selected objec-
tive function is a mapping of the Shekel function with the navigable
boundaries of the YpacaraíLake.

In Table 2, the results of the (𝑝𝑐𝑥, 𝑝𝑚𝑢𝑡) are presented. The achieved
results show that for every fleet size, the best tuple of parameters
is (𝑝𝑐𝑥, 𝑝𝑚𝑢𝑡) = [0.6, 0.4]. In Fig. 11, the best paths are represented
or different fleet sizes. It can be seen that the proposed algorithm is
ble to optimize the solutions to comply with the restrictions and the
arget objective function. In the single ASV case, the resulting path puts
ttention to the most important and close zones to the deploy point

1 https://www.sfu.ca/~ssurjano/shekel.html.
2 https://www.sfu.ca/~ssurjano/rosen.html.
3 https://www.sfu.ca/~ssurjano/stybtang.html.
4 https://deap.readthedocs.io/.
5 https://github.com/FedePeralta/EMOPP.

https://www.sfu.ca/~ssurjano/shekel.html
https://www.sfu.ca/~ssurjano/rosen.html
https://www.sfu.ca/~ssurjano/stybtang.html
https://deap.readthedocs.io/
https://github.com/FedePeralta/EMOPP
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Fig. 11. Best paths obtained in the single-objective case for (a) 1, (b) 2, and (c) 3 vehicles.
Table 1
Simulation parameters for both the single and multi objective case.

Single-objective Multi-objective

𝜇 500 500
𝜆 500 500
Generations 1000 1000
Selection Tournament (size = 3) NSGA-II
P. Crossover [0.5, 0.6, 0.7, 0.8] 0.6
P. Mutation [0.5, 0.4, 0.3, 0.2] 0.4

available and, once those are covered, the vehicle returns using the
most informative way found.

When addressing the use of multiple-ASV, it is remarkable how,
despite the growing complexity, the algorithm is able to synthesize
effective paths for the patrolling task. It is noticeable that the resulting
solutions deal not only with the informativeness of the paths (maxi-
mization of the base information value ), but also with the fact that
revisiting a zone has a very little effect on the fitness during a certain
amount of time because of the idleness level  . It can be noticed
that the maximum fitness in every NHPP is upper-bounded because
of the imposed value of attrition (as explained in Section 3). Hence,
adding more ASVs to the patrolling could increase the relative interest
collected  but only up to a certain point. Thus, the saturation of
surveillance is translated into a high frequency of visiting due to the
high number of agents. This makes the problem even more challenging
since adding more ASVs reduces the improvement margin. Therefore,
the simulation results included in Table 2 show that the increment of
reward with every ASV added is 57.4% in the 2-ASV case and 23,67%
in the 3-ASV case, which reflects the attrition property of this problem.

Two notable aspects of these results are: (i) the length of the solution
routes and (ii) the merit allocation of the total reward in each ASV.
In the former case, it can be observed that the mean distance of the
best individuals is 39.06 km, with a standard deviation of 0.3 km,
clearly indicating that the longest routes provide the most informa-
tion in terms of patrolling. Regarding the fitness contribution of each
vehicle, when two and three ASVs intervene, on average, the fitness
apportionments are [703.72, 746.63] and [572.26, 625.85, 575.18],
respectively. Since the reward collected by each vehicle is similar in
each case, it is reasonable to state that the algorithm is able to distribute
the monitoring capacity homogeneously among them. This quality is
especially important, since an imbalance of the workload between
vehicles means poor monitoring on inefficient routes and excessive time
and battery cost on longer and more effective routes. Furthermore,
according to the obtained results, a relevant consideration with respect
8

Table 2
Results of the tests proposed to tune (𝑝𝑐𝑥 , 𝑝𝑚𝑢𝑡) for the single-objective case.

Hyper-parameter

𝑝𝑐𝑥 , 𝑝𝑚𝑢𝑡 0.5, 0.5 0.6, 0.4 0.7, 0.3 0.8, 0.2

1 ASV

Mean 891.90 899.37 901.34 894.12
Std. dev. 31.96 41.28 34.46 37.30
Min 827.15 796.73 823.60 827.15
Max 950.35 1007.64 992.46 1007.64

2 ASVs

Mean 1439.79 1455.72 1456.84 1442.15
Std. dev. 51.20 54.86 52.07 62.27
Min 1352.81 1342.34 1288.97 1316.37
Max 1550.92 1586.10 1553.78 1556.51

3 ASVs

Mean 1776.38 1778.09 1772.17 1784.44
Std. dev. 65.51 62.55 61.58 46.89
Min 1627.12 1676.80 1647.42 1674.0
Max 1912.3 1961.63 1921.88 1883.67

to the initial points of the agents can be stated: on average, the vehicle
that accumulates the most reward in this multi-agent experiment is the
ASV starting at initial point 2 from Fig. 4, which gives an idea of the
best deployment point.

By comparing the best paths synthesized by the proposed algorithm
with other approaches, it is possible to have an idea of how competitive
it is for this task. The result of the paths resulting from the single-
objective optimization of the Shekel function are compared with a
Lawnmower algorithm (Yanes et al., 2020) and a random search of
1000 aleatory selected individuals that comply with the restrictions. In
Table 3, it can be observed the proposed optimization scheme allows,
on average, a fitness 2.41 times bigger respect to the former, and 1.72
times bigger respect to the latter. This is, consequently, a significant
amelioration from classic coverage paths in this particular patrolling
problem.

5.2. Multi-objective simulations

Regarding the Multi-Objective problem, the algorithm purposes to
obtain a Pareto front since there are multiple objectives to be optimized
simultaneously. Each solution consists of a non-dominated solution,
according to the sum of the total interest locations visited in a sin-
gle mission. Fig. 12 shows a representation of the three objectives
considered.
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Table 3
Comparative between different algorithm in the single-objective optimization
problem.

Algorithm Max. fitness

1 ASV
Proposed 1007.64
Lawnmower 387.01
Random 601.20

2 ASV
Proposed 1586.10
Lawnmower 536.17
Random 922.88

3 ASV
Proposed 1961.63
Lawnmower 1163.76
Random 1097.22

Fig. 12. Three interest maps 𝐼 considered for the multi-objective approach. Each one
s generated using a different benchmark function: Shekel (𝐼1), Rosenbrock (𝐼2) and
immelblau (𝐼3).

In this Multi-Objective approach, the best set of parameters, used in
he previous analysis, (𝑝𝑐𝑥, 𝑝𝑚𝑢𝑡) is again used. Since the single objective
ase obtained a good convergence, the same number of generations
s employed. The additional parameters involved in this case are also
ummarized in Table 1.

In Fig. 13, a representation of the obtained results using one vehicle
an be observed. It is important to highlight that the resulting Pareto
ront is neither continuous nor smooth due to the mentioned nonex-
stent correlation between the used benchmark functions. However,
here is a clear adequate behavior in terms of patrolling, which is the
bjective of this work. Several solutions seem to focus on two objectives
nd obtain as much as possible of the other, i.e., the yellow to red points
btain high values on Rosenbrock and Himmelblau functions, but fail
o achieve a large reward on Shekel function. This situation responds to
he impossibility of finding a non-dominant solution that satisfies the
hekel benchmark with the provided distance restriction. In this sense,
n expedition of the closed path into the important zones of Shekel
unction will have little effect on the other objectives. This statement
s further supported by observing the left and right-most subfigures
n Fig. 13, where the individuals separately focus on the important
ones of Rosenbrock (objective shown in middle), and visit one or
wo important zones of Himmelblau (top). Nonetheless, on overall,
he paths fail to visit the peaks and their surrounding zones of Shekel
bottom), which effectively diminishes the reward.

In the cases of fleets of 2 and 3 ships, this behavior is still noticeable,
ut the objectives seem to be better accomplished. This is mainly
ue to the fact that there is more available traveling distance (more
ehicles). The obtained Pareto front using two vehicles, with the same
objectives, is shown in Fig. 14(a). The individuals of this Pareto

ront seem to highly favor two objectives decreasing the obtained
eward of the third. The obtained paths using two vehicles manage
o effectively collect reward on high importance zones, but since the
vailable reward of the Shekel function is more spread in the search
9

Table 4
Comparative between the fitness of the best individual for the Shekel single objective
(SO) optimization applied to other objectives, and the fitness of the maximum
non-dominated solution for the multi objective (M) in the Shekel axis.

Shekel Rosenbrock Himmelblau

1 ASV
SO (best) 1007,64 102,90 350,46
MO 908,03 165,90 379,33
Inc (%) −9,89% 61,22% 8,24%

2 ASVs
SO (best) 1586,10 239,53 584,30
MO 1265,93 306,32 476,37
Inc (%) −20,19% 27,88% −18,47%

3 ASVs
SO (best) 1961,62 426,70 710,82
MO 1651,38 699,72 719,67
Inc (%) −15,82% 63,98% 1,25%

space, the collected reward is low. Despite this, it is observed that
most of the non-dominated solutions provide paths that manage to
cover more efficiently the Lake, dividing the patrolling region into
two parts. Fig. 14(b) shows this behavior. A very distinct behavior is
observed when the fleet has three ships. Fig. 15 shows the Pareto front
as well as the paths provided by one of the solutions. In this case,
the ships are able to maximize the three objectives simultaneously,
with each ship focusing on their surrounding zones rather than the
total available search space. A comparison of multi-objective paths with
those focused on a single objective (Shekel) can be found in Table 4.
With these results, it is clear that the use of a multi-objective approach
is justified: the best Pareto dominant solutions on the Shekel axis are
a significant improvement over the other objectives. With a 15% loss
in the Shekel objective with respect to the Mono-Objective case, the
proposed approach obtains a percentage increase of 63% and 1.25% in
the other objectives, as a result of the balancing of interest between the
fitness maps.

If we delve deeper into the results of the Multi-objective case, it can
be seen that the Pareto front representation reflects a sparse and discon-
tinuous solution domain, as mentioned in Section 4. This representation
of the non-dominated solutions, grouped in clusters of very different
behaviors, serves the designer to choose and visualize patrolling paths
when two very similar solutions present a very large divergence in
the different objectives (when switching from patrolling the upper part
of the map instead of the lower part, for example). If we look at the
shape of the Pareto fronts, as we increase the size of the fleet, we can
also observe how the solution space becomes more compressed and
continuous (even though two clusters of dispersed solutions continue
to appear). This phenomenon responds to an increase in the flexibility
of the paths to cover significantly more homogeneously the areas of
interest. Thus, by studying the average distance of each non-dominated
solution to the centroid of all solutions (with their axes normalized) and
treating the Pareto front as a hyper-volume (Guerreiro et al., 2020),
is it possible to have a measure of how dispersed the solutions are.
In the case of the Multi-Objective Scenario, for 1,2 and 3 ASVs, we
have an average distance of the solutions of 0.251, 0.197 and 0.108
respectively, indicating that the solution space becomes compressed
about 2.5 times from 1 to 3 ASVs.

Finally, considering distance as the fourth objective, Fig. 16 shows
the obtained Pareto front using one single ship (for the sake of vi-
sualization we have not included the Pareto front for two and three
ASVs). In this case, the distance value is represented with the color of
every solution in the 3D representation, as indicated by the colorbar.
It can be observed that the Pareto front collapses into a single two-
move path and becomes increasingly dispersed as the cycles become
longer in length. The graphical representation in Fig. 16 allows to
understand how the paths are distributed with a limited distance, which
can facilitate the designer in multi-objective planning when the cost of

battery and time is subject to constraints.
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Fig. 13. Representation of the multi-objective problem results, in terms of the objective space (center) and the search space observing two optimal paths (left, right). Note how,
despite having the same approximate rewards, both solutions manifest very distinct vehicle behavior. The complete Pareto front-end representation can be found in the form of
an interactive tool in the GitHub repository https://github.com/FedePeralta/EMOPP.
Fig. 14. Representation of (a) Pareto front obtained for two ships with three simulta-
neous objectives, and (b) paths corresponding to an individual from the Pareto front.
Note how in an optimal solution both vehicles clearly divide up the domain of the
water resource.

5.3. Summary of the simulation results

It is important to note that, as this is a multi-agent and multi-
objective problem, the results and solutions require proper discussion
and interpretation. With respect to the single objective case, the main
results of the analysis conducted are summarized as follows:
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Fig. 15. Representation of (a) Pareto front obtained for three ships with three
simultaneous objectives, and (b) paths corresponding to an individual from the Pareto
front. Note how making each ASV in charge of a single objective seems an efficient
strategy to deal with the multi-objective problem.

• Even though the number of possible solutions is smaller than in
the multi-objective case, it is still a challenge to find optimal
solutions. For this, it is necessary to perform a hyperparameter-
ization of the crossover and mutation probabilities. It has been

https://github.com/FedePeralta/EMOPP
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Fig. 16. Representation of the Pareto front obtained for two ships with four
simultaneous objectives.

determined that the pair (𝑝𝑐𝑥, 𝑝𝑚𝑢𝑡) that returns the best solutions
is [0.6, 0.4]. In any case, it has been observed that it is necessary to
perform a hyperparameterization for each problem to be solved.

• In single-vehicle optimization, the solutions are greedy with re-
spect to interest. This makes sense because the vehicle should
optimally only make one visit per node, so the effect of attrition
does not influence the single-agent case. However, if multiple
vehicles are used, the solutions consider both importance and
idleness.

• There is a saturation of the reward obtained by the vehicles.
Therefore, a lineal increase of the patrolling reward cannot be
observed when increasing the size of the fleet. This is a direct
effect of the attrition parameter in the patrolling problem.

• For the multi-agent case, the fitness obtained for each vehicle is
similar, which indicates that the workload is, too.

• The proposed approach significantly outperforms other algo-
rithms, such as lawnmower and randomized algorithms by a
200%, as a result of the thorough formulation developed.

Regarding the multi-objective case, the main results are:

• For both cases (single-agent a multi-agent), the obtained Pareto
fronts are not continuous. This is even more noticeable for a single
vehicle case. It is understood that the clustering effect of Pareto-
dominant paths occurs because of the very disparate nature of
the solutions in the optimization domain, since the objective
functions are unrelated to each other.

• The solutions of the Pareto front are observed to only provide sat-
isfactory patrolling results in two out of three considered bench-
mark functions when one or two vehicles are used. The main
reason is that the functions considered are not correlated. There-
fore, the interest peaks of  are spread across the scenario, and
thus its simultaneous patrolling is impossible. Only with three
vehicles, the three benchmark functions can be entirely covered.

• It can be observed that, by increasing the number of vehicles, the
Pareto front becomes both more continuous and compressed. The
hyper-volume (considering the average distance from its centroid)
of the Pareto front decreases from 0.251 (one vehicle) to 0.108
(three vehicles). The reason behind this compression is that the
patrolling path, considered as the union of each path of each
vehicle, gets larger, thus increasing both the flexibility and the
number of possible solutions.
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• When the distance is considered as the fourth objective, the
number of solutions explodes. As a result, a less dispersed Pareto
front can be observed.

6. Conclusions

A novel graph-based formulation has been proposed for the multi-
objective non-homogeneous patrolling problem of water resources us-
ing autonomous surface vehicles. The proposed approach allows to
define tailored genetic operators and an efficient individual gener-
ation that achieves satisfactory results in both single-objective and
multi-objective cases. The proposed approach has been validated in a
simulated scenario of the Ypacarai lake and with up to three bench-
mark functions (Shekel, Himmelblau and Rosenbrock) that emulate
water quality parameters. These functions, which are normally used
in optimization algorithm competitions, are not correlated, making it
more challenging the multi-objective patrolling problem. The achieved
simulation results are good in terms of patrolling reward for the
single-objective case, outperforming significantly other competitive ap-
proaches. In the multi-objective case, the obtained Pareto front allows
the decision makers to evaluate simultaneously dominant solutions
in the three objectives with a variable number of vehicles, and also,
considering the maximum distance traveled by the vehicles. Therefore,
the proposed approach provides an overall picture of the possible
solutions in terms of cost considering both the number of vehicles
and the battery capacity for the target patrolling problem. As future
work, a heterogeneous multi-vehicle system (e.g., air/water) can be
used to dynamically allocate tasks according to their advantages and
constraints. The proposed system can be also enhanced so that it is
able to discover patrolling paths in unknown environments with the
use of surrogate models. For future work, it is proposed to study more
deeply the dimension of the problem and how complexity can affect
the obtaining of optimal solutions. Another future line could be to study
how the correlation of the objective functions affects the sparsity of the
Pareto set and its implications in terms of speciation within the genetic
algorithm.
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