Towards Multi-Objective Test Case generation
for Variability-Intensive Systems *

Ana B. Sanchez, Sergio Segura and Antonio Ruiz-Cortés

Department of Computer Languages and Systems, University of Seville,
Av Reina Mercedes S/N Seville, Spain
{anabsanchez, sergiosegura, aruiz}@us.es

Abstract. Testing variability-intensive systems is a challenge due to
the potentially huge number of derivable configurations. To alleviate this
problem, many test case selection and prioritization techniques have been
proposed with the aim of reducing the number of configurations to be
tested and increasing their effectiveness. However, we found that these
approaches do not exploit all available information since they are mainly
driven by functional information such as the feature coverage. Further-
more, most of these works are focused on a single-objective perspective
(e.g. features coverage), which could not reflect the real scenarios where
several goals need to be met (e.g. features coverage and code changes
coverage). In this context, we identify an important challenge, to take
advantage of all available system information to guide the generation of
test cases. As a first step towards a solution, we propose to study all
this information with special emphasis on non-functional properties and
address the test case generation as a multi-objective problem. Also, we
describe some open issues to be explored that we hope have an important
impact on future evaluations.

Keywords: Multi-objective test generation, extra-functional attributes

1 Introduction

The ability of a software system to be configurable and adaptable to different
environments and users’s needs is known as variability. Software applications ex-
posing a high degree of variability are usually referred to as Variability-Intensive
Systems (VISs). Testing VISs is a challenge due to the potentially huge number
of configurations under test. As an example, Debian Wheezy [1] has more than
37,000 packages that can be combined to form millions of different configurations
of the operating system. This makes exhaustive testing of VISs infeasible, that
is, testing every single configuration is too expensive in general. Furthermore,
the software development process usually has to deal with limited available re-
sources and time, which makes that testers must choose the right tests to find

* This work has been partially supported by the European Commission (FEDER)
and Spanish Government under CICYT project TAPAS (TIN2012-32273) and the
Andalusian Government projects THEOS (TIC-5906) and COPAS (P12-TIC-1867).

205



as many faults as possible at the right time. Typical approaches for VIS test-
ing use a model-based approach [10], that is, they take an input feature model
representing the VIS and return a valid set of features (i.e. configurations) to
be tested, i.e. a test suite. In particular, two main strategies have been adopted:
test case selection and test case prioritization. Test case selection [9,11] aims
at reducing the test space by selecting an effective and manageable subset of
configurations to be tested. Test case prioritization [5,12] schedules test cases
for execution in an order that attempts to increase their effectiveness at meeting
some performance goal, e.g. detecting faults as soon as possible. Both strategies
are complementary and are often combined.

Selection and prioritization can be driven by multiple objectives. Typical ones
are those based on combinatorial testing where test cases are selected in a way
that guarantees that all combinations of ¢ features are tested [11]. The properties
of feature models have also been used to select and prioritize test suites in several
approaches [6, 12]. Recently, some works have pointed out that not all features
are equally relevant and take into account user preferences by assigning weights
to the features [8]. Non-functional data such as the number of changes in the
code or the number of known defects are recognized as good indicators of the
error-proneness of software components [13,15]. In fact, these data have been
used in some works to accelerate the detection of faults by testing first those
components with a higher fault propensity [4]. Analogously, non-functional data
such as cost or number of users may be good indicators of the impact of certain
faults. For instance, the number of downloads of a certain module in an open-
source VIS could be used to prioritize test cases running first those exercising the
most popular modules. This would allow us to start debugging and correcting
faults as soon as possible minimizing the impact on the largest portion of users.

Challenges. Current VIS approaches for test case selection and prioritization
are mainly driven by functional information and basic user preferences. However,
although this has shown to be effective, these works fail to exploit non-functional
information such as the number of code changes or the features size, which are
good indicators of their fault propensity and the impact of faults [13]. As a
related problem, most contributions for VIS testing use a single objective ap-
proach [5,11], that is, they either aims to maximize a goal (e.g. feature coverage)
or minimize another (e.g. suite size) but not both at the same time. Other works
[14] combine several goals into a single objective by assigning them weights pro-
portional to their relative importance. While this may be acceptable in certain
scenarios, it may be unrealistic in others where users may wish to study the
trade-offs among multiple objectives where all of them are equally important.
Finally, most works on VIS testing evaluate their approaches in terms of perfor-
mance (e.g. execution time) using synthetic data [7]. Thus, there is a serious lack
of works reporting the results of testing approaches with real data which would
provide researchers and practitioners with a better insight into the effectiveness
of the testing techniques.

206



Solution overview. We address these challenges guiding the generation of test
cases for VISs using both functional and non-functional attributes in a multi-
objective perspective. More specifically, we inspired us on a case study based on
a real VIS system presented by some of the authors in [13] to suggest several ex-
amples of objective functions using non-functional information. These functions
consider the order of the test cases in the suite enabling a combined selection
and prioritization approach. We plan to conduct our evaluation using real data
extracted from the Drupal framework [13].

2 Motivating example

We propose to take advantage of the Drupal framework as a motivating VIS to il-
lustrate and evaluate our approach. Drupal is a highly modular open-source web
content management framework written in PHP with more than 14,000 mod-
ules that can be composed to form valid configurations of the system [3]. More
importantly, the Drupal Git repository and the Drupal issue tracking systems
are public and inexhaustible sources of valuable functional and non-functional
information about the framework and its modules.

Fig 1 depicts the feature model of Drupal v7.23. Nodes in the tree represent
features where a feature corresponds to a Drupal module. The model includes
the core modules of Drupal, modelled as mandatory features (filled circle icon),
plus some optional modules, modelled as optional features (empty circle icon).
In addition to the tree, some cross-tree constraints are also depicted. These are
of the form X requires Y which means that configurations including the feature
X must also include the feature Y. A Drupal configuration is a combination of
features consistent with the hierarchical and cross-tree constraints of the model.
In total, the Drupal feature model represents 96,768 different Drupal configura-
tions. For more information about how the model was constructed see [13].

In this paper, we propose modelling the non-functional data extracted from
the Drupal framework as feature attributes in a feature model. The data were
obtained from the Drupal git repository and the Drupal issue tracking system
and refer to a period of one year, from September 30" 2012 to September 29"
2013 [13]. In particular, we propose using the following attributes:

— Feature size. Number of Lines of Code (LoC) of the source code associated
to the feature. The sizes range between 326 LoC and 70,372 LoC (see [13]).

— Code changes. Number of commits made by the contributors to the feature
in the Drupal git repository. The number of changes ranges from 0 to 43.

— Single faults. Number of faults in the feature reported by the users in the
Drupal issue tracking system. Faults were collected for two consecutive ver-
sions of the framework v7.22 and v7.23. The number of faults found ranges
between 0 and 157 (see [13]).

— Integration faults. List of features for which integration faults have been
reported in the Drupal issue tracking system. For instance, the interaction
between the modules Blog and User caused a fault in the Drupal system
according to the case study in [13].

207



S gr—
= ® Node
© Blog
© Forum
© Book
© Aggregator
® System
® Filter
= ® Field
® Text
® Field SQL storage Drupal Cross-Tree Constraints
O List Forum Regquires Taxonomy
© Number Forum Reguires Options
© Opions iy o
© Field U1 Image Reguires File
o Baige Viows Hagues Clocls |
File Views UI Requires Ctools
© Testing Taxonomy Requires Options
= O Ctools
© Ctools access ruleset
© Views content
© Ctools custom content
® User
© Views
© Views Ul
© Taxonomy
© Comment
© Block

Fig. 1. Drupal v7.23 feature model

— Tests. Number of assertions of the features, i.e. a group of methods that
check for a condition and return a Boolean, according to the work [13].

3 Basic objective functions

In this section, we present some examples of objective functions based on non-
functional attributes. An objective function is a function that represents a goal
to optimize. The functions could receive two input parameters, an attributed
feature model representing the VIS under test with the non-functional data as
feature attributes (afm) and an ordered test suite (¢s). As a result, the functions
would return a real value measuring the quality of the suite with respect to the
optimization goal. These functions would take into account the order of the test
cases in the suite. We define the objective functions as follows:

Maximize the number of changes. Changes in the code are likely to intro-
duce faults [15]. Thus, the number of changes in the code of a feature may be a
good indicator of its error proneness and could help us to predict faults in later
versions of the system. Considering this, we propose an objective function to
maximize the number of changes covered by a test suite, giving a higher prior-
ity to those test cases including the features with a higher number of changes.
Function 1 would calculate the number of code changes, indicated as features
attributes, covered by the features included in each test case of the suite ts.

nchanges(afm,ts) (1)

208



Maximize the number of faults. Earlier studies show that the detection of
faults in an application can be accelerated by testing first those components that
showed to be more error-prone in previous versions of the software [4]. Thus, we
propose an objective function to maximize the number of faults detected by a
test suite giving a higher value to those test cases that detect more faults faster.
Function 2 would return the number of faults found in the features of a previous
system version that are detected by the test cases of the suite ts.

nfaults(afm,ts) (2)

Maximize the features size. The size of a feature, in terms of its number of
Lines of Code (LoC), can provide a rough idea of the complexity of the feature
and its error proneness [13]. Based on this, we propose a novel objective function
to maximize the size of the features covered by a test suite, giving priority to
those test cases covering higher portions of code faster. Function 3 would return
the number of LoC of the features included in each test case of ts.

size(afm,ts) (3)

Minimize the number of test cases. The number of test assertions in the
features of a test case may be used to estimate the test case execution cost.
Hence, we propose an objective function to minimize the execution cost of a
suite by minimizing the number of assertions of its test cases. Thus, the test cases
containing fewer assertions will have a higher priority to be tested. Function 4
would calculate the number of assertions of the features included in the tests
cases of ts.

ntests(afm,ts) (4)

4 Test case generation as a multi-objective problem

In Multi Objective Problems (MOP), algorithms have to optimize two or more
objectives (sometimes conflicting). A typical example of a MOP is the Knapsack
problem, where the goal is to minimize the weight of a sack while maximising
the profit (by placing items into the sack). Considering the objective functions
previously mentioned, we propose use them in a multi-objective perspective to
drive the generation of effective test suites from a feature model representing a
VIS. In a future assessment of our idea, we will have to focus our attention on
the possible combinations of the different objective functions. As an example, we
could maximize the number of changes covered and the number of faults detected
by a suite plus minimize the size of the suite. Another example could be maximize
the features size in order to test earlier the more complex configurations and
minimize the number of test assertions to reduce the cost of testing.

5 Open issues

Throughout this work, we have identified some open issues to be explored in
order to perform our approach, namely:

209



Combination of objective functions. The definition of new objective func-
tions based on non-functional information could lead to a whole new world of
possibilities to help us to optimize the test case generation of VISs. Thus, the
key of this issue is to achieve the right combinations of the optimization goals.

Algorithms to resolve the multi-objective problem. In the literature there
exist different algorithms to address the multi-objective problem. Among the
most popular proposals are the evolutionary algorithms and the mathematical
programming algorithms. Thus, the key of this open issue is to choose the best
option to resolve the multi-objective problem.

References

1.
2.

3.

10.

11.

12.

13.

14.

15.

Debian Wheezy. http://wuw.debian.org/releases/wheezy/, accesed April 2014.
D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analyses of feature mod-
els 20 years later: A literature review. Information Systems, 2010.

D. Buytaert. Drupal Framework.http://www.drupal.org, accessed in Oct 2013.
E. C. P. Cristian Simons. Regression test cases prioritization using failure pursuit
sampling. In ISDA, 2010.

X. Devroey, G. Perrouin, M. Cordy, P.-Y. Schobbens, A. Legay, and P. Heymans.
Towards statistical prioritization for software product lines testing. In International
Workshop on Variability Modelling of Software-Intensive, 2014.

J. Ferrer, F. Chicano, and E. Alba. Evolutionary algorithms for the multi-objective
test data generation problem. Software Practice and Ezperience, 2012.

J. Ferrer, P. Kruse, F. Chicano, and E. Alba. Evolutionary algorithm for prior-
itized pairwise test data generation. In Genetic and Evolutionary Computetion
Conference (GECCO), 2012.

M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen. Gener-
ating better partial covering arrays by modeling weights on sub-product lines. In
International Conference MODELS, 2012.

R. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba. Multi-objective
optimal test suite computation for software product line pairwise testing. In IEEFE
International Conference on Software Maintenance, 2013.

S. Oster, A. Wubbeke, G. Engels, and A. Schurr. A Survey of Model-Based Software
Product Lines Testing, chapter 13, pages 338-381. 2011.

G. Perrouin, S. Oster, S. Sen, J. Klein, B. Budry, and Y. le Traon. Pairwise
testing for software product lines: comparison of two approaches. Software Quality
Journal, 2011.

A. B. Sanchez, S. Segura, and A. Ruiz-Cortés. A comparison of test case priori-
tization criteria for software product lines. In IEEE International Conference on
Software Testing, Verification, and Validation, 2014.

A. B. Sanchez, S. Segura, and A. Ruiz-Cortés. The drupal framework: A case
study to evaluate variability testing techniques. In 8th International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS), 2014.

S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites in software product lines
using weight-based genetic algorithms. In Genetic and Evolutionary Computation
Conference (GECCO), 2013.

S. Yoo and M. Harman. Regression testing minimisation, selection and prioritisa-
tion: A survey. In Software Testing, Verification and Reliability, 2012.

210



