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Nano-oscillators based on phase-transition materials are being explored for the
implementation of different non-conventional computing paradigms. In particular,
vanadium dioxide (VO2) devices are used to design autonomous non-linear oscillators
from which oscillatory neural networks (ONNs) can be developed. In this work, we
propose a new architecture for ONNs in which sub-harmonic injection locking (SHIL)
is exploited to ensure that the phase information encoded in each neuron can only take
two values. In this sense, the implementation of ONNs from neurons that inherently
encode information with two-phase values has advantages in terms of robustness
and tolerance to variability present in VO2 devices. Unlike conventional interconnection
schemes, in which the sign of the weights is coded in the value of the resistances, in our
proposal the negative (positive) weights are coded using static inverting (non-inverting)
logic at the output of the oscillator. The operation of the proposed architecture is shown
for pattern recognition applications.

Keywords: phase transition materials, VO2, nano-oscillators, ONNs, neuromorphics

INTRODUCTION

Phase-transition materials (PTMs) like vanadium dioxide (VO2), with their abrupt switching
between states with very different resistivity, are being explored for implementing non-boolean
computational paradigms such as neuromorphic architectures. In particular, different groups are
exploiting the capability of a PTM device in series with a resistor to oscillate in the implementation
of oscillator based computing (OBC).

The field of OBC is not a new idea, with outstanding contributions in the field of logic in the
1950s (von Neumann, 1957; Goto, 1959). In recent years, this idea has received considerable interest
and has become an active research area due to the appearance of devices, operating based on very
different physical phenomena, with the ability to implement very compact oscillators and with very
low energy consumption.

In Csaba and Porod (2020) numerous oscillators are evaluated as potential building blocks
of OBC. In terms of energy, PTM-based relaxation oscillators show good performance. They
are reported to reduce energy per cycle by more than an order of magnitude when compared
to CMOS ring oscillators (ROs). They rank second in terms of energy efficiency, behind only
superconducting oscillators.

The most widely used compound as phase-transition material is VO2 and the term VO2 nano-
oscillator has come to be coined (Maffezzoni et al., 2015; Sharma et al., 2015). In addition, they
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show good performance in terms of scalability and
interconnection with electronic circuits, without requiring
any conversion between electrical variables and other non-
electrical variables as occurs with other nano-oscillators that
exploit other physical magnitudes. Numerous experimental
results of VO2 nano-oscillators have been reported as well as
some preliminary results of applications (Shukla et al., 2016;
Corti et al., 2018, 2020; Dutta et al., 2019a,b).

Oscillator based computing encompasses a wide variety of
operating principles and architectures. In the first place, one can
distinguish between those that work with oscillators of ideally
identical frequency and the processing corresponds to obtaining
a pattern of phase synchronization, phase shift key (PSK) and
those that work with oscillators of different frequencies and
patterns of frequency synchronization frequency shift key (FSK)
(Nikonov et al., 2015).

Oscillator-based-computing phase-shift-key has been applied
to obtain solutions to combinatorial optimization problems,
difficult to solve in conventional computers. In Wu et al. (2011);
Parihar et al. (2017), the problem of graph coloring is solved
from the steady-state of a network of oscillators, which represent
the nodes, and in which the branches of the corresponding
graph are mapped into interconnections that push to separate
the phases of the adjacent oscillators. In Dutta et al. (2019a), the
resolution of a Max-Cut problem using VO2 oscillators is shown
experimentally. The comparison with other implementations in
terms of scalability, power and quality of the results obtained
is very favorable.

Phase shift key has been also applied to explore oscillatory
neural networks (ONNs) using a Hopfield-type architecture for
associative memories with application in pattern recognition.
The neurons in the network are replaced by oscillators and
the output is determined by the phase of each one. There are
contributions of mathematical analysis with simulations using
phase models for neurons (Hoppensteadt and Izhikevich, 1999;
Follmann et al., 2015) as well as reporting implementations with
different types of oscillators [phase-locked loops and voltage-
controlled oscillators (Hoppensteadt and Izhikevich, 2000), non-
volatile logic based on magnetic tunnel junctions (Calayir and
Pileggi, 2013), micro-electro-mechanical systems and a feedback
loop with transconductance amplifiers (Kumar and Mohanty,
2017), comparator and a digital circuit in Jackson et al. (2018),
CMOS ring oscillators (Csaba et al., 2016), STOs (Popescu et al.,
2018), or VO2 (Shukla et al., 2014; Maffezzoni et al., 2015; Corti
et al., 2018)]. The implementations based on VO2 devices exhibit
potential for very low energy computation (Corti et al., 2020).
In the case of electrical oscillators, synapses are implemented
with resistors or memristors that play the role of weights. In
this way, the output of each neuron interacts electrically with
the rest. Recently, the potential of ONNs with a small number of
neurons to efficiently tackle different image processing tasks has
been revealed. Corti et al. (2021) have shown that this approach
using VO2 oscillators can be exploited for the implementation of
commercial high-accuracy image processing architectures based
on convolutional neural networks (CNN).

Motivated by the latter type of application, in this paper we
describe the implementation of an ONN using VO2 based phase

encoded logic (PeL). PeL with VO2 devices has been recently
proposed (Avedillo et al., 2020) by the authors. It uses the phase to
encode information in logic circuits and its basic building block
is a VO2 oscillator which performs a weighted sum of inputs to
evaluate its output phase. So we propose to use it to build an
ONN. It overcomes some limitations of previously reported VO2
ONNs (Corti et al., 2018, 2020).

MATERIALS AND METHODS

Background
ONNs With VO2 Oscillators
Figure 1 shows the ONN proposed in Corti et al. (2018,
2020), and the VO2 oscillator used as neuron. The resistances
implement the synapses among neurons.

Under no electrical stimuli VO2 tends to stabilize in the
insulating state. When the applied voltage increases and so the
current density that flows through it reaches a critical current
density, JC−IMT , insulator to metal transition (IMT) occurs.
When the voltage decreases and so the current density reduces
below JC−MIT , the metal to insulator transition (MIT) takes place,
transitioning from the metallic to the insulating state. Electrical
parameters of its model, are summarized in Table 1. VIMT and
VMIT are the voltages at which the IMT and MIT transition occur,
respectively. RINS and RMET are the resistances in the insulating
and metallic state. Since MIT and IMT transitions are abrupt
but not instantaneous, transition times (TTIMT and TTMIT) are
also included. The I-V characteristic of such device is depicted in
Figure 2A. The VO2 device has been simulated with a behavioral
model as described in Maffezzoni et al. (2015). As expected, in
the insulating operating zone the slope is significantly flat, which
indicates that the resistance value is very high. On the other hand,
in the metallic state, the slope of the I-V curve is clearly steeper,
thus implying that the resistance is lower.

VOUT,1

VOUT,2

VOUT,3

VOUT,4

VOUT,N

VOUT,i

FIGURE 1 | Oscillatory hopfield neural network (OHNN) and VO2 oscillator
used as neuron.

TABLE 1 | Vanadium dioxide (VO2) electrical parameters.

VIMT VMIT RMET RINS TT

1.99 V 0.99 V 0.99 K� 100.2 K� 30 ns
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IMT
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FIGURE 2 | (A) I-V curve of the VO2 device reported in Corti et al. (2018, 2020). (B) Simulated waveform of the output of a VO2 oscillator.

Figure 2B depicts simulated waveforms for the oscillator
output, VOUT,OSC, with VDD = 2.5 V and VBIAS = 2.5 V. The
state of the VO2 device is also shown to better illustrate the
circuit behavior. Regions marked with “INS” label mean that
the device is in the insulating state, whereas those marked with
“MET” corresponds to the device in the metallic state. When
the VO2 is in an insulating state (point “X” in Figure 2B),
the oscillator output is discharged through the transistor and,
therefore, the voltage drop across the VO2 (VDD–VOUT,OSC)
and the current through this device are increased. When the
circulating current density reaches the critical value JC−IMT ,
the VO2 switches to the metallic state. On the other hand, the
switching to the metallic state occurs once the VO2 voltage
reaches VIMT , when the output is then charged through the
VO2 device. Due to the low RMET value, this charging is
very fast and leads to a reduction of the voltage seen by
the VO2 until it reaches VMIT and the MIT occurs. Finally,
note that the voltage VBIAS can be used to control the
frequency of the signal.

This ONN works as an associative memory with application
in pattern recognition. The ONN state is defined by the phase of
each neuron. There are states which are stable and others which
if entered converge to a stable one. For pattern recognition, a set
of patterns (called training patterns) are said to be stored in the
network, which means the network is configured so that the state
corresponding to such patterns are stable. When the network is
placed in a state corresponding to a distorted version of a training
pattern, it evolves to a training pattern, ideally to the most similar
one. Placing the ONN in a given state means fixing a specific
phase for each oscillator. This is achieved by suitably delaying the
switching on of the supply voltage of each oscillator.

The stable states of the network are determined by the
resistance values connecting the oscillators, which plays the role
of the weights of the neural network. The required weights to
store a given set of training patterns are derived applying the
well-known Hebbian rule (Hebb, 1949) and then mapped to
resistance values.

There are several challenges in the operation of this ONN.
First, in order to work properly, the neurons must all synchronize
in frequency. Although ideally all neurons are identical, and so
they oscillate at the same frequency, in practice this is not the
case because of different reasons. Variability between the VO2
devices is the main one. Secondly, both positive and negative
values must be mapped to resistance values. Note that positive
weights mean that the phase of both associated oscillators should
be pulled to each other while negative ones should have the
contrary effect. Although, there are results showing that two
oscillators coupled with enough large resistance value end in
anti-phase configuration, the device-to-device of variability can
have a great impact on this behavior, especially when many
oscillators are coupled. The ONN we propose aims at addressing
these challenges.

VO2-Based PeL Description
Key components of PeL logic are VO2 oscillators with only two
possible phases, 180◦ apart. The oscillating phase depends on
the phases (also discretized) of the applied inputs. That is, the
resulting phase is a logic function of the inputs. In particular,
it implements a majority functionality. The output phase is
the majority phase.

Figure 3A depicts the schematic of a three-input majority gate
(Avedillo et al., 2020). It exploits sub harmonic injection locking
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FIGURE 3 | PeL three-input majority gate. (A) Schematic. (B) Waveforms.

(SHIL) to stabilize the oscillator frequency against variability
effects and to discretize its phase. This is achieved by injecting
a synchronization signal (VSYNC), which ranges between 0 and
VDD, of frequency close to twice the natural frequency of
the oscillator. The oscillator outputs exhibit half such injected
frequency. The phases of the input signal are represented in terms
of that of a reference signal (VREF) external to the oscillator.

When signal VWRITE activates, the oscillator phase is
forced to that of the majority phase of its three inputs. For
example, for (VIN1, VIN2, VIN3) = (VREF, VREF, VREF), the
phase corresponding to VREF is stored and for (VIN1, VIN2,
VIN3) = (VREF , VREF, VREF) the phase corresponding to VREF
is stored. Figure 3B depicts simulation results for those input
combinations. From top to bottom the VWRITE, VIN1 and the
oscillator output, VOUT , are shown. VIN1 is the only changing
input and determines the output value. A reference signal (VREF)
is also displayed to ease identification of the phase of each signal.
That is, VIN1 is VREF initially and then changes to VREF . Note
the phase change of VOUT in response to the application of the
second VWRITE pulse.

PeL-Based ONN Architecture
The New Neuron
Figure 4A depicts the topology proposed for the neuron Note the
use of the synchronization signal VSYNC, like in PeL, although

VOSCVREF

A

B

FIGURE 4 | Proposed neuron. (A) Schematic. (B) Operation for two values of
the delay of the supply voltage.

it is injected through the gate of the transistor avoiding the
injection resistor. In the neuron, it contributes to reducing period
variations due to device variability, which translates to frequency
synchronization advantages in the ONN network. Figure 4B
depicts its operation. The oscillator output before the static
logic, VOSC, and a reference signal are shown. The use of SHIL
reduces the number of phases to two. It can be observed that the
oscillation phase can be controlled by the supply voltage delay like
in the original ONN described in the background section. Supply
voltages delays under half the oscillation period (top waveform in
Figure 4B) lead to one phase and delays over half period (bottom
waveform) force the other phase.

It is interesting to study the robustness of the ONNs against
variations in the electrical parameters of the VO2 (resistance
in the insulating and metallic state and switching voltages
between states). In this sense, conventional implementations
of ONNs are sensitive to these variations. Figure 5A depicts
a design space for the phase difference between two identical
coupled oscillators in which the variables are the time difference
between oscillator initialization (1T) and the coupling resistance
(RC). Note how two clearly differentiated regions corresponding
to an in-phase (0◦) and out-of-phase (180◦) operation are
observed. Figure 5B reproduces the previous plot by considering
variations of 10% of the insulating and metallic resistances of
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FIGURE 5 | 1T vs. RC plot for in-phase/out-of-phase operation of two conventional coupled oscillators. (A) Nominal scenario. (B) Considering RINS and RMET

variations. The boundary for the in-phase/out-of-phase operation of two SHIL-based oscillators is depicted with a dashed line.

the VO2 device of one of the oscillators with respect to the
nominal scenario (RINS,1 = 0.9·RINS,2 and RMET,1 = 0.9·RMET,2).
Significant differences are observed given that there are phase
differences other than 180◦ for the out-of-phase region and even
an area of unstable behavior. Unstable behavior means that both
oscillators are not able to synchronize. Also, note that in the plot
corresponding to ideal oscillators there are resistance values for
which both in-phase and out-of-phase are possible depending on
the initial delay (phase difference between) the two oscillators.
This bistability, which is interesting from the point of view of the
ONN functionality, is not observed in the plot with variability
(Figure 5B). In this figure, the boundary between the in-phase
and out-of-phase operating regions for two coupled oscillators
using SHIL, and considering the same variation between the VO2
resistances, has been represented using a dashed line. Two clearly
distinct regions of operation are observed like in the ideal plot.
These results reveal that SHIL has significant benefits in that
inherently two complementary phases are obtained at the output
and this is more tolerant to variations in the parameters of VO2.

Synapse
The proposed interconnection scheme encodes the sign of the
weights in the way the neurons are connected unlike the original

ONN, which relies just on resistance values. Figure 6A shows
two possible scenarios for the interconnection of two neurons
using positive and negative weights. When interconnecting using
positive weights the output of each is connected to a buffer
(marked in green), while for encoding negative weights an
inverter (marked in red) is used. Note that unlike the original
ONN, which uses a bidirectional interconnection mechanism
with a single coupling resistor between two neurons, in the
proposed scheme the interconnection is unidirectional and
therefore two coupling resistors must be used. The rationale
behind using the oscillation signal but complemented for
negative weights is that in an ONN, a negative weight must
push away the phases of the two neurons which is equivalent
to pull the phase of the neurons to the complement of the
other one. The buffer is used for positive weights so that the
shape of the two outputs of the neuron are similar. Figure 6
also shows simulation results of both interconnection schemes.
The four scenarios are illustrated. Initially in-phase neurons
connected with positive coupling weight (Figure 6B) and with
negative weight (Figure 6C) and initially out-of-phase neurons
connecting with positive (Figure 6D) and negative (Figure 6E)
weights. Note neurons coupled with positive weights end up
in phase independently of their initial states (Figures 6B,D).
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FIGURE 6 | (A) Schematics of the interconnection of two neurons with a positive (green) and a negative (red) weight. (B–E) Waveforms showing the operation of
both interconnection schemes.

Similarly, neurons coupled with negative weights evolve toward
out of phase (Figures 6C,E).

Network Operation
The switch at the input of the neurons allows disconnecting
the coupling among them by fixing the VWRITE signal to a low
voltage. This is used at the beginning of the operation to initialize
the ONN state (phase of each neuron oscillation). As mentioned
before, this is the way an input pattern is applied to the network.
After application of successively positive VWRITE pulses enable
interaction among the neurons and the network state evolves
toward ideally the closest stored pattern.

RESULTS

PeL Associative Memory
As a first experiment to verify the operation of the network, we
propose the training and test patterns corresponding to 3 × 3
pixel size images shown in Figure 7. In this demonstration (and

the following ones), the supply voltage is 2.5 V, the oscillator
capacitance is 100 pF and the coupling capacitance is 0.05 pF. The
obtained Hebbian weight matrix exhibits two positive and two
negative values which have been mapped to resistances, 100 K�
and 300 K�, respectively.

The results are shown in Figures 7B–E. Waveforms
corresponding to one of these experiments are shown in Figure 8.
Specifically, the write pulse and the outputs of the oscillators
before the inverter/buffer are shown. Note that the outputs have
been grouped for each of the rows. After the first writing cycle, the
outputs of bits 4 and 9 change their phase and, thus, the expected
training pattern is recovered.

Coming back to Figure 7, the test patterns for which
results are shown have been categorized into four groups
in order to facilitate the analysis. The first three groups
represent test patterns at Hamming distances of 1 (Figure 7B),
2 (Figure 7C), and 3 (Figure 7D) from the training or
stored patterns. To consider a result as correct, the retrieved
pattern must match the training pattern that has the lowest
Hamming distance with respect to the test pattern. All but
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d=1
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d=3

FIGURE 7 | 3 × 3 ONN experiment. (A) Training patterns. (B–D) Applied and
retrieved patterns for Hamming distances of 1, 2, and 3, respectively, from the
training patterns. (E) Applied and retrieved patterns for test patterns
generated from the training ones adding gray pixels with different intensities.

1 2 3
4 5 6
7 8 9

Applied Retrieved Osc1/Osc4/Osc7
Osc2/Osc5/Osc8
Osc3/Osc6/Osc9

t��s]0 93 6
0V

1.5V

0V

1.5V

0V

1.5V
1 2 3

4 5 6

7 8 9

FIGURE 8 | Waveforms corresponding to one of the experiments illustrated in
Figure 7.

Applied Retrieved Applied RetrievedApplied Retrieved

Applied Retrieved Applied RetrievedApplied Retrieved

B

C

Training patternsA

FIGURE 9 | 5 × 3 ONN experiment. (A) Training patterns. (B,C) Applied and
retrieved patterns corresponding to “0” and “1,” respectively.

one test pattern are correctly retrieved. In fact, the one
that has not been recovered, the vertical line with a missed
pixel in Figure 7B, is at distance of 1. However, in order
to fairly analyze the pattern recognition performance of the
proposed ONN, it is important to be aware of the capabilities
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of the Hopfield model itself. It is well known that even the ideal
model is not able to correctly retrieved any number of stored
patterns, but its capacity depends on the number of neurons, the
correlation among the patterns to be stored, and the learning rule.
In the case of random training patterns, the maximum number
which can be reliably stored (PERROR < 1/N) is 0.14·N for the
Hebbian learning rule (Hopfield, 1982). That is, we should not
expect perfect retrieval since we are storing too many patterns
for the network size. So, it is interesting to investigate also the
performance of the Hopfield network on this example. For that,
the same example has been simulated with a MATLAB model of
a Hopfield network. Its accuracy is under 80.5% and in particular,
neither it recovers the vertical line from the one without the
bottom pixel. From our simulations, we have also observed that
the third training pattern is easier to be retrieved and we have
confirmed that this is also the case for the model. This is in
agreement with this pattern being the one exhibiting the smaller
energy minimum and so exercising stronger attraction.

The last group (Figure 7E) depicts test patterns generated
from the training ones adding gray pixels with different
intensities. As explained before, gray values in the input image
are encoded in distinct initialization times of the oscillators.
It can be observed that the most similar training pattern is
retrieved in all cases.

PeL ONN for Character Recognition
In order to further illustrate our proposal, we have designed an
ONN for character recognition. For this, using the Hebbian rule,
weights have been derived to store 5 × 3 pixels representations
of digits “0” and “1” as shown in Figure 9A. These weights have
been mapped to resistance values (RC = 200 K� and RC = 400 K�
for strong and weak coupling weights, respectively) and an ONN
with our architecture has been simulated with them using HSpice
electrical simulator.

The performance of ONN has been evaluated using the set
of 18 test patterns shown in Figure 9. These experiments have
been grouped in sets of nine corresponding to an expected output
of the image “0” (Figure 9B) and “1” (Figure 9C) based on the
criterion of minimum Hamming distance, in which both the
applied and retrieved patterns are shown. Within each set of 9,
the first column represents noisy versions of the corresponding
training pattern. The other two columns represent harder test

patterns in which some bits have been completely flipped. The
results show that all applied patterns were successfully retrieved.

DISCUSSION

A novel ONN architecture based on phase encoding is proposed
and its operation as associative memory is shown. Phase
information storage using oscillators with VO2 devices and
subharmonic injection locking is exploited for the neurons. SHIL
has shown to greatly increase the variability robustness with
respect to free VO2 oscillators. The proposed mechanism of
interconnecting neurons encodes the sign of the weight by using
static logic to force a phase change instead of just having different
resistance values. This architecture allows overcoming some of
the challenges that arise in other implementations of VO2-based
ONN, including improved robustness against variability and
simplifying mapping of weights to resistance values.
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