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Correction to: Scientific Reports https:// doi. org/ 10. 1038/ s41598- 020- 73007-1, published online 30 September 
2020

The original version of this Article contained errors.

As pointed out by recent  works1–4, the velocity appearing in the Boussinesq-Scriven constitutive  equation5 for 
the viscous interfacial stress is the 3D fluid velocity evaluated on the interface, including both the tangential and 
normal components to that surface. Previous studies (see, e.g.,6–8) have erroneously interpreted this velocity as 
the 2D velocity resulting from the projection of the fluid velocity onto the interface, which can lead to significant 
errors for high interface curvatures. Besides, there are works in which it is not clear whether the velocity in the 
Boussinesq-Scriven equation was misinterpreted as explained above, or the authors were implicitly assuming 
that the surface was always flat when that equation was invoked (see, e.g.,9,10).

The balance of normal and tangential stresses at the free surface yields.

Due to the above-mentioned misinterpretation of the velocity on the surface, the viscosity contribution to the 
stress tensor τ s was not calculated correctly in the paper. This quantity should  read1

where DS = 1/2([∇S
v · IS + I

S · (∇S
v)T ]. It must be pointed out that v is the (3D) fluid velocity on the free 

surface.

The above equations replace equations 8 and 10 and due to renumbering are now listed as equations 9 and 10.

As a result of the above, the Methods have been revised. The changes are outlined below.

In the Methods section, under the subheading ‘Theoretical model’,

“The theoretical model is that considered by Ponce-Torres et al.7” has now been removed.

In addition, under the subheading ‘Theoretical model’,

“Neglecting the dynamic effects of the surrounding gas, the balance of normal stresses at the free surface  yields44
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where  B = ρgR2
0/σ0 is the Bond number,  g  the gravitational acceleration, n the unit outward nor-

mal vector,  σ̂ ≡ σ/σ0 is the ratio of the local value σ   of the surface tension to its equilibrium 
value σ0, OhS1,2 = µS

1,2(ρσ0R
3
0)

−1/2 are the superficial Ohnesorge numbers defined in terms of the surface 
shear and dilatational viscosities µS

1 and µS
2 , respectively, ∇S the tangential intrinsic gradient along the free 

surface, vS(z, t) the (two-dimensional) tangential velocity to the free surface, κ = κ1 + κ2 (twice) the mean 
curvature of the free surface, κ1 and κ2 the curvatures along the meridians and parallels in the inward normal 
direction, respectively, and (∇S

v
S)11 and (∇S

v
S)22 the diagonal elements of ∇S

v
S along the meridians and the 

parallels, respectively.

In addition, the balance of tangential stresses leads to

where t is the unit vector tangential to the free surface meridians, and

is the surface stress tensor.”

now reads:

“Neglecting the dynamic effects of the surrounding gas, the balance of normal stresses at the free surface yields.

where B = ρgR2
0/σ0 is the Bond number, g the gravitational acceleration, n the unit outward normal vector, t 

the unit vector tangenital to the free surface meridians, and

is the surface stress  tensor41. Here, DS = 1/2([∇S
v · IS + I

S · (∇S
v)T ],∇S is the tangential intrinsic gradient 

along the free surface, v the (3D) fluid velocity on the free surface, IS is the tensor that projects any vector 
on that surface, σ̂ ≡ σ/σ0 is the ratio of the local value σ of the surface tension to its equilibrium value σ0 , 
Oh

S
1,2 = µS

1,2(ρσ0R
3
0)

−1/2 are the superficial Ohnesorge numbers defined in terms of the surface shear dilatational 
viscosities µS

1 and µS
2 , respectively.”

As a result of the above, the numerical results have been re-calculated and the Results and discussion section 
revised. Consequently, Figure 3, Figure 4, Figure 6 and Figure 7 and their associated legends contained errors 
and have now been replaced.

Using the corrected expression for the surface viscous stresses, the dilatational viscosity has been found to play a 
negligible role. Besides, the (2D) velocity on the surface makes no sense anymore. For those reasons, the original 
Figure 5 of the paper no longer applies and has subsequently been removed.

The original Figures 3, 4, 5, 6 and 7 and their accompanying legends appear below.
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Figure 3.  Rmin (τ ) or the breakup of a pendant drop of DIW and DIW+SDS 0.8cmc. The black and blue 
symbols are the experimental data for DIW and DIW+SDS 0.8cmc, respectively. The different symbols 
correspond to experiments visualized with different magnifications. The black solid line and magenta dashed 
line correspond to the simulation and the power law Rmin (τ ) ∼ τ 2/3 for DIW, respectively. (Left) The colored 
solid lines correspond to simulations of DIW+SDS 0.8cmc for µS∗

1 = 0 and µS∗
2 = 0 (blue), 5× 10−10 (red), 

and 3.5× 10−9 Pa s m (cyan). (Right) the colored solid lines correspond to simulations of DIW+SDS 0.8cmc 
for µS∗

1 = 0 and µS∗
2 = 0 (blue), 3.5× 10−9 (red) 10−8 (cyan), and  10−7 Pa s m (green). All the numerical 

results were calculated for B = 3.396× 10−3 , Oh = 0.01510 , Ŵ̂cmc = 1.002 , and PeS = 7.730× 104 (see 
“Methods” section). In the left-hand graph, the colored solid lines correspond to OhS∗2 = 0 and OhS∗1 = 0 (blue), 
6.563× 10−5 (red), and 4.594× 10−4 (cyan). In the right-hand graph, the colored solid lines correspond to 
OhS∗1 = 0 and OhS∗2 = 0 (blue), 4.594× 10−4 (red), 1.313× 10−3 (cyan), and 1.313× 10−2 (green).

Figure 4.  Axial distribution of the Marangoni stress (M) and tangential dilatational viscous stress (DV) (a), 
surfactant surface concentration (b), and free surface radius (c) for DIW+SDS 0.8cmc. The solid lines are the 
results for {µS∗

1 = 0 , µS∗
2 = 3.5× 10−9 Pa s m} , while the dotted lines correspond to µS∗

1 = µS∗
2 = 0 (in the 

right-hand graphs, Rmin = 0.3 µ m for µS∗
1 = µS∗

2 = 0 . The results were calculated for B = 3.396× 10−3 , Oh 
= 0.0151, Ŵ̂cmc = 1.002 , PeS = 7.730× 104 , OhS∗1 = 0 , and OhS∗2 = 4.594× 10−4 (solid lines) and 0 (dotted 
lines) (see “Methods” section).
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Figure 5.  Maximum values of the surfactant gradient, max(|∇SŴ̂|) (solid symbols), and the surface velocity 
gradient, max

(∣∣∇S · vS
∣∣) (open symbols). (b) Full width at half maximum, Δz of the dilatational viscous stress 

as a function of the minimum radius Rmin . (c) Surface velocity νS(z) (upper graph) and free surface radius 
R(z) (lower graph). The dashed vertical lines indicate the position of the free surface neck. In all the cases, 
the results were calculated for DIW+SDS 0.8cmc with { µS∗

1 = 0 , µS∗
2 = 3.5× 10−9 Pa s m} . The values of the 

dimensionless parameters are B = 3.396× 10−3 , Oh = 0.0151, Ŵ̂cmc = 1.002 , PeS = 7.730× 104 , OhS∗1 = 0 , 
and OhS∗2 = 4.594× 10−4(see “Methods” section).

Figure 6.  Dimensionless minimum radius Rmin /R0 as a function of the dimensionless time to the breakup, 
τ/t0 , or the breakup of a pendant drop of DIW+SDS 0.8cmc. The labels indicate the values of the non-zero 
shear/dilatational viscosity in each case. The results were calculated for B = 3.396× 10−3 , Oh = 0.01510, 
Ŵ̂cmc = 1.0016 , and PeS = 7.73× 104 (see “Methods” section).
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As a result of the changes, the numbering of Figures has been revised.

The fitting values for the surface viscosities have been re-calculated.

In the Results and discussion section,  5th paragraph.

“The experimental results can be reproduced for µS∗
1 = 5× 10−10 Pa s m and µS∗

2 = 0 (Fig. 3-left). This upper 
bound of the surface shear viscosity is consistent with the results obtained by Zell et al.6, who concluded that the 
surface shear viscosity of SDS in DIW must take values below  10-8 Pa s m (the sensitivity limit of their technique). 
The experimental results can also be reproduced for µS∗

1 = 0 and µS∗
2 = 3.5× 10−9 Pa s m (Fig. 3-right). There 

are significant deviations when other values of µS∗
2  found in the literature are  considered36. The optimum value 

of the shear viscosity is one order of magnitude smaller than that of the dilatational viscosity, which suggests that 
shear viscous stresses have a greater effect on the pinching than dilatational ones for the same value of the cor-
responding surface viscosities. In fact, when the surface shear viscosity takes the value of the dilatational viscosity 
( µS∗

1 = 3.5× 10−9 Pa s m, µS∗
2 = 0 ) the numerical curve (cyan solid line in Fig. 3-left) significantly deviates 

from the experimental one. The relative importance of the shear and dilatational viscosities can be explained in 
terms of the equivalence between the corresponding terms in the 1D approximation, as will be discussed below. 
Similar conclusions can be drawn from the experiments with DIW+SDS 2cmc (see Supplementary Information).”

now reads:

“The numerical results fit the experimental measurements for µS∗
1 = 1.2× 10−9 Pa s m and µS∗

2 = 0 (Fig. 3-left) 
or µS∗

1 = 0 and µS∗
2 = 6× 10−7 Pa s m (Fig. 3-right). As can be observed, the optimum value of the dilatational 

viscosity µS∗
2  is more than two orders of magnitude larger than that of the shear viscosity µS∗

1  . This means that the 
effect of the dilatational viscosity is much smaller than that of the shear viscosity. If one assumes that the values of 
both viscosities are commensurate with each other, the dilatational viscosity plays a negligible role in the filament 
thinning. This result has practical consequences because it means that the breakup of a pendant drop can be used 
to measure the shear surface viscosity of a nearly-inviscid surfactant monolayer. The value µS∗

1 = 1.2× 10−9 Pa 
s m is consistent with the results obtained by Zell et al.6, who concluded that the shear viscosity of SDS in DIW 
must take values below  10–8 Pa s m (the sensitivity limit of their technique).

Figure 7.  Axial distribution of the capillary stress Pc = σ̂ κ (blue lines) and normal dilatational viscous stress 
D̂V = Oh

S

2(∇
S · vS)κ (red lines) for DIW+SDS 0.8cmc and three instants as indicated by the value of Rmin . The 

left-hand and right-hand graphs correspond to { µS∗
1 = 0 , µS∗

2 = 10−7 Pa s m} and µS∗
1 = 0 , µS∗

2 = 3.5× 10−9 
Pa s m} , respectively. The results were calculated for B = 3.396× 10−3 , Oh = 0.01510, Ŵ̂cmc = 1.002 , and 
PeS = 7.730× 104 , OhS∗1 = 0 , and OhS∗2 = 1.313× 10−2 (left-hand graphs) and 4.594× 10−4 (right-hand 
graphs) (see “Methods” section).
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In the Results and discussion section,  6th paragraph,

“When surface viscosities are accounted for, a competition arises between the Marangoni stress, M ≡ t ·∇Sσ̂ 
and the tangential projection of the surface viscous stress,

where SV and DV are the (dimensionless) contributions associated with the shear and dilatational surface viscosi-
ties, respectively, and OhS1,2 = µS

1,2(ρσ0R
3
0)

−1/2 are the superficial Ohnesorge numbers defined in terms of the 
surface shear and dilatational viscosities µS

1 and µS
2 the liquid density ρρ and equilibrium surface tension σ0(see 

“Methods” section). Figure 4 shows the axial distribution of the tangential stresses, surfactant surface concentra-
tion, and free surface radius at a given instant of the droplet evolution. We analyze the solution for µS∗

1 = 0 and 
the optimum value of the dilatational surface viscosity determined from Fig. 3-right, µS∗

2 = 3.5× 10−9 Pa s m 
(the same comparison is presented in the Supplemental Information but for µS∗

1 = µS∗
2 = 0 and the optimum 

value of the shear surface viscosity determined from Fig. 3-left, µS∗
1 = 5× 10−10  Pa s m). The instants were 

selected so that Rmin took approximately the same value in the simulations with and without surface viscosi-
ties. For Rmin = 0.9836 µm, the shear viscous stress is much smaller than the Marangoni stress over the entire 
free surface. As the minimum radius decreases, the relative importance of the shear viscosity increases. In 
fact, the maximum value of the shear viscous stress becomes comparable to that of the Marangoni stress for 
Rmin = 0.3 µm. Small differences in the surfactant distribution arise for Rmin � 0.3 μm. The presence of shear 
viscosity slightly reduces the magnitude of the Marangoni stress.”

now reads:

“Figure 4 shows the values of the axial distribution of the Marangoni stress M and tangenital shear viscous stress 
SV, the surfactant surface concentration Ŵ̂ , and the free surface radius R/R0 for DIW + SDS 0.8cmc. Here,

where OhS1 is the superficial Ohnesorge number defined in terms of the surface shear viscosity (see Methods sec-
tion). The relative importance of the shear viscosity increases as the minimum radius decreases. The presence of 
shear viscosity slightly reduces the magnitude of the Marangoni stress. The viscous surface stress hardly alters 
the surfactant distribution and the free surface shape.”

In the Results and discussion section, due to the removal of Figure 5, the following text was removed from 
paragraph 7:

“While the gradient of surfactant concentration remains bounded in the pinching region, the gradient of surface 
velocity continues to increase there (Fig. 5a). This may explain why surface viscous stresses grow faster than 
Marangoni stress over the time interval analyzed. Similar conclusions can be drawn from the numerical simula-
tion conducted for {µS∗

1 = 5× 10−10, µS∗
2 = 0 Pa s m} (see Supplementary Information).”

For consistency with the new figures, in the Results and discussion section,  8th paragraph,

“For instance, Rmin = 0.32 and 0.57 μm at τ ≃ 0.35 μs for {µS∗
1 = 0 Pa s m, µS∗

2 = 3.5× 10−9} and uS∗1 = µS∗
2 = 0  

respectively. However, the free surface shapes are practically the same if they are compared when the same value 
Rmin = 0.32 μm of the minimum radius is reached.”

now reads:

“For instance, Rmin = 0.24 and 0.42 μm at τ ≃ 0.25 μs for {µS∗
1 = 1.2× 10−9 Pa s m, µS∗

2 = 0} and uS∗1 = µS∗
2 = 0  

respectively. However, the free surface shapes are practically the same if they are compared when the same value 
Rmin = 0.24 μm of the minimum radius is reached.”

In the Results and discussion section, due to the removal of Figure 5, paragraph 9 was removed. This paragraph 
previously read:

“The dilatational viscous stress exhibits a noticeable maximum near the free surface neck. The full width at half 
maximum, �z , measured in terms of the minimum radius, Rmin, sharply increases as the droplet approaches its 
breakup (Fig. 5b), which shows the growing importance of the dilatational viscous stress with time. Figure 5c 

(2)SV ≡ t ·
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S
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shows the velocity vS (see “Methods” section) along the free surface as the droplet approaches its breakup for the 
case {µS∗

1 = 0 µS∗
2 = 3.5× 10−9 Pa s m}. As can be observed, the maximum of vS(z) , exhibits a non-monotonic 

behavior with respect to the time to the pinching, and is located at the free surface neck. The difference between 
the maximum and minimum values of vS(z)  increases with time, and so does the average dilatational stress in the 
pinching region. The overturning of the free surface is observed for Rmin � 0.3 . For this reason, vS(z) , becomes 
a multivalued function on the right side of the free surface neck.”

In the paper, the authors studied how the scaling of the minimum radius depends on the surfactant viscosities. 
According to the corrected results, that scaling should be modified.

In the Results and discussion section,  11th paragraph,

“The value of the exponent β can be guessed from the balance of forces. Both Marangoni and surface viscous 
stresses delay the free surface pinch-off (Fig. 3) acting against the driving capillary force. For sufficiently small 
values of Rmin , the effect of surface viscous stresses become comparable and even larger than that caused by 
Marangoni stress (Fig. 4). The value of Rmin below which this occurs decreases as the surface viscosities decrease. 
For instance, Marangoni and surface viscous stresses produce similar effects for Rmin � 2 µm and Rmin � 0.15 
µm in the cases {µS∗

1 = 0, µS∗
2 = 10−7 Pa s m} and {µS∗

1 = 0, µS∗
2 = 3.5× 10−9 Pa s m} respectively. Therefore, 

we expect surface viscous stresses to be commensurate with the driving capillary pressure in the pinch-off region 
for those intervals of Rmin . In fact, the interfacial Ohnesorge numbers defined in terms of Rmin take values at 
least of order of unity in those intervals.”

now reads, current paragraph 10:

“The value of the exponent β can be guessed from the balance of forces. Both Marangoni and surface viscous 
stresses delay the free surface pinch-off (Fig. 3) acting against the driving capillary force. For sufficiently small 
values of Rmin , the effect of surface viscous stresses become comparable to that caused by Marangoni stress 
(Fig. 4). The value of Rmin below which this occurs decreases as the surface viscosities decrease. Therefore, we 
expect surface viscous stresses to be commensurate with the driving capillary pressure in the pinch-off region 
for Rmin → 0.”

In the Results and discussion section, the  12th paragraph was revised to include a new Equation 5.

“The balance between the capillary pressure and the surface viscous stresses in Eq. (8) yields σ0/Rs ∼ µS∗
1,2/(Rsτs) , 

where we have taken into account that the variation of surface velocity scales as (Rs/τs)/Rs due to the continuity 
equation. The above balance allows us to conclude that β = 1 and therefore α = 2/3 . According to our analysis,

in the viscous regime.”

now reads, current paragraph 11:

“The balance between the capillary pressure and the normal surface viscous stresses in Eq.  (10) 
yields σ0/Rs ∼ µS∗

1,2/(Rsτs) , where we have taken into account that the variation of surface velocity scales 
as (Rs/τs)/Rs due to the continuity equation. The above balance allows us to conclude that β = 1 and therefore 
α = 2/3 . According to our analysis,

in the viscous regime. According to our previous results (Fig. 3), we can assume that the dilatational viscosity 
plays a negligible role. Then, we have

in surface viscosity-dominated regime. Figure 5 shows the results scaled with those exponents. The simulations 
show the transition from the inertio-capillary regime Rmin ∼ τ 2/3 to the asymptotic behavior given by power 
law γ = 1 . The asymptotic behavior Rmin ∼ τ coincides with that recently derived by Wee et al.36 .”

(5)Rmin
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In the Results and discussion section, paragraphs 13, 14 and 15 were removed. These paragraphs previously read:

“In the 1D (slenderness)  approximation37, the axial forces per unit volume due to the shear and dilatational sur-
face viscosities are (9µS

1Rwz)z/2R
2 and (µS

2Rwz)z/2R
2 [38], respectively, where R is the free surface radius, w is 

the z-component of the velocity, and the subscript z indicates the derivative with respect to the coordinate z. As 
can be seen, the terms corresponding to the shear and dilatational viscosities differ only by a factor 9. Therefore, 
the asymptotic behavior of Rmin(τ ) for 

{
µS∗
1 = a,µS∗

2 = 0
}

 (a is an arbitrary constant) is expected to be the 
same as that for {µS∗

1 = 0,µS∗
2 = 9a }. As will be seen below, this allows us to group the simulation results for 

µS∗
1 �= 0 and µS∗

2 �= 0.

Using the equivalence 9µS
1 ↔ µS

2 , we find the values of the exponents β and γ leading to the collapse of all 
the numerical data for Rmin → 0 . Following the optimization method described by Montanero and Gañán-
Calvo39, the best collapse is obtained for β = 1.1 and γ = 1.4 . Figure 6 shows the results scaled with the expo-
nents β = 1 and α = 2/3 calculated in the previous analysis. As explained above, we have grouped the results for 
nonzero shear and dilatational viscosities using the factor 9 suggested by the 1D model. The simulations show the 
transition from the inertio-capillary regime Rmin ∼ τ 2/3 to the asymptotic behavior given by power law γ = 3/2.

The axial distributions of the capillary pressure and the dilatational viscous stress are shown in Fig. 7 for the 
cases {µS∗

1 = 0,µS∗
2 = 10−7 Pa s m} and {µS∗

1 = 0,µS∗
2 = 3.5× 10−9 Pa s m}. As can be observed, the dilatational 

viscous stress becomes comparable with the driving capillary pressure for Rmin � 2 and Rmin � 0.15 µm in the 
cases µS∗

2 = 10−7 Pa s m and µS∗
2 = 3.5× 10−9 Pa s m, respectively. This explains the good agreement between 

the numerical simulations and the scaling proposed above for the minimum radius.”

Paragraph 12 now reads:

“Figure 6 shows the axial distribution of the capillary pressure Pc and normal shear viscous stress ŜV for 
DIW + SDS 0.8cmc at three instants as indicated by the value of Rmin . Here,

We consider the shear viscous stress ŜV because the results indicate that shear viscosity plays a more significant 
role than the dilatational one. The normal shear viscous stress becomes comparable with the capillary pressure 
as Rmin → 0.”

Lastly, the final paragraph of the Results and discussion section has been revised:

“The pinching of an interface is a singular phenomenon that allows us to test theoretical models under extreme 
conditions. The vanishing spatiotemporal scales reached by the system as the interface approaches its breakup 
unveil physical effects hidden in phenomena occurring on much larger scales. This work is an example of this. 
Surface viscous stresses become relevant in the vicinity of the pinching region long before thermal fluctuations 
become  significant41,42, even for practically inviscid surfactants, such as SDS. In this sense, the surfactant-laden 
pendant droplet can be seen as a very sensitive surfactometer to determine the values of the surface viscosities, 
which constitutes a difficult  problem43. A series of experiments for different surfactant concentrations and nee-
dle radii may lead to accurate measurements of µS

1(Ŵ) and µS
2(Ŵ) characterizing the behavior of low-viscosity 

surfactants.”

now reads:

“The pinching of an interface is a singular phenomenon that allows us to test theoretical models under extreme 
conditions. The vanishing spatiotemporal scales reached by the system as the interface approaches its breakup 
unveil physical effects hidden in phenomena occurring on much larger scales. This work is an example of this. 
Surface viscous stresses become relevant in the vicinity of the pinching region long before thermal fluctuations 
become  significant38,39, even for practically inviscid surfactants, such as SDS. Besides, the effect of the dilatational 
surface viscosity on the thinning has shown to be negligible with respect to the shear viscosity. In this sense, the 
surfactant-laden pendant droplet can be seen as a very sensitive surfactometer to determine the values of the 
surface shear viscosity, which constitutes a difficult  problem40. A series of experiments for different surfactant 
concentrations and needle radii may lead to accurate measurements of µS

1(Ŵ) characterizing the behavior of 
low-viscosity surfactants.”

The original Article has been corrected.

(6)Pc = −
(
∇

S · n
)
σ̂ , ŜV = Oh

S
1

(
∇

S · n
)(
∇

S · v
)
.
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