
Metamorphic Testing: A Literature
Review

Version 1.3

Sergio Segura, Gordon Fraser, Ana B. Sánchez and Antonio Ruiz-Cortés

sergiosegura@us.es

Applied Software Engineering Research Group

University of Seville, Spain

February 9, 2016

Technical Report ISA-16-TR-02

This report was prepared by the

Applied Software Engineering Research Group (ISA)
Department of computer languages and systems
Av/ Reina Mercedes S/N, 41012 Seville, Spain
http://www.isa.us.es/

Copyright c©2016 by ISA Research Group.

Permission to reproduce this document and to prepare derivative works from this docu-
ment for internal use is granted, provided the copyright and ’No Warranty’ statements
are included with all reproductions and derivative works.

NO WARRANTY
THIS ISA RESEARCHGROUPMATERIAL IS FURNISHEDON AN ’AS-IS’ BASIS.
ISA RESEARCH GROUP MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIM-
ITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

Use of any trademarks in this report is not intended in any way to infringe on the
rights of the trademark holder

Support: This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project TAPAS (TIN2012-32273)
and the Andalusian Government projects THEOS (TIC-5906) and COPAS (P12-TIC-
1867).

List of changes

Version Date Description

1.0 May 25, 2015 First release.

1.1 July 10, 2015 Eight new papers added to the review.

New author added. Structure and writ-

ing updated.

1.2 January 11, 2016 Minor fixes throughout the paper.

China and Hong Kong considered as

two different countries. Search time

span extended to November 2015. Sev-

enteen new papers reviewed.

1.3 February 9, 2016 New paper added. Typo fixed.

3

1

Metamorphic Testing: A Literature Review
Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés

Abstract—A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the
expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture
formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output,
but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since
the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the
technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This technical
report provides a comprehensive literature review on metamorphic testing: It summarises the research results and application areas,
and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges.

Index Terms—Metamorphic testing, oracle problem, survey.

F

1 INTRODUCTION

Software testing is an essential but costly activity applied
during software development to detect faults in programs.
Testing consists of executing a program with test inputs,
and to detect faults there needs to be some procedure by
which testers can decide whether the output of the program
is correct or not, a so–called test oracle [1]. Often, the test
oracle consists of comparing an expected output value with
the observed output, but this may not always be feasible. For
example, consider programs that produce complex output,
like complicated numerical simulations, or code generated
by a compiler — predicting the correct output for a given
input and then comparing it with the observed output may
be non-trivial and error-prone. This problem is referred to
as the oracle problem and it is recognised as one of the
fundamental challenges of software testing [1], [2], [3], [4].

Metamorphic testing [5] is a technique conceived to alle-
viate the oracle problem. It is based on the idea that often
it is simpler to reason about relations between outputs of
a program, than it is to fully understand or formalise its
input-output behaviour. The prototypical example is that
of a program that computes the sine function: What is the
exact value of sin(12)? Is an observed output of −0.5365
correct? A mathematical property of the sine function states
that sin(x) = sin(π−x), and we can use this to test whether
sin(12) = sin(π − 12) without knowing the concrete values
of either sine calculation. This is an example of a metamorphic
relation: an input transformation that can be used to gener-
ate new test cases from existing test data, and an output
relation, that compares the outputs produced by a pair of
test cases. Metamorphic testing does not only alleviate the
oracle problem, but it can also be highly automated.

• S. Segura, Ana. B. Sánchez and A. Ruiz-Cortés are with the Dept. of
Computer Languages and Systems, Universidad de Sevilla, Spain. E-mail:
sergiosegura@us.es

• G. Fraser is with the Dept. of Computer Science, the University of
Sheffield, Sheffield, UK.

The introduction of metamorphic testing can be traced
back to a technical report by Chen et al. [5] published
in 1998. However, the use of identity relations to check
program outputs can be found in earlier articles on testing
of numerical programs [6], [7] and fault tolerance [8]. Since
its introduction, the literature on metamorphic testing has
flourished with numerous techniques, applications and as-
sessment studies that have not been fully reviewed until
now. Although some papers present overviews of meta-
morphic testing, they are usually the result of the authors’
own experience [9], [10], [11], [12], [13], review of selected
articles [14], [15], [16] or surveys on related testing topics [3].
At the time of writing this technical report, the only known
survey on metamorphic testing is written in Chinese and
was published in 20091 [17]. As a result, publications on
metamorphic testing remain scattered in the literature, and
this hinders the analysis of the state of the art and the
identification of new research directions.

In this technical report, we present an exhaustive liter-
ature review on metamorphic testing, covering 119 papers
published between 1998 and 2015. To provide researchers
and practitioners with an entry point, Section 2 contains
an introduction to metamorphic testing. All papers were
carefully reviewed and classified, and the review method-
ology followed in our literature review as well as a brief
summary and analysis of the selected papers are detailed in
Section 3. We summarise the state of the art by capturing
the main advances on metamorphic testing in Section 4.
Across all surveyed papers, we identified more than 12 dif-
ferent application areas, ranging from web services through
simulation and modelling to computer graphics (Section 5).
Of particular interest for researchers is a detailed analysis
of experimental studies and evaluation metrics (Section 6).
As a result of our literature review, a number of research
challenges emerge, providing avenues for future research
(Section 7); in particular, there are open questions on how
to derive effective metamorphic relations, as well as how to

1. Note that 86 out of the 119 papers reviewed in our literature review
were published in 2009 or later.

2

reduce the costs of testing with them.

2 METAMORPHIC TESTING

Identity relations are a well-known concept in testing, and
have been used even before the introduction of meta-
morphic relations. For example, Blum et al. [7] checked
whether numerical programs satisfy identity relations such
as P (x) = P (x1) + P (x2) for random values of x1 and
x2. In the context of fault tolerance, the technique of data
diversity [8] runs the program on re-expressed forms of
the original input; e.g., sin(x) = sin(a) × sin(π/2 − b) +
sin(π/2−a)×sin(b) where a+b = x. The concept of meta-
morphic testing, introduced by Chen [5] in 1998, generalises
these ideas from identity relations to any type of relation,
such as equalities, inequalities, periodicity properties, con-
vergence constraints, subsumption relationships and many
others. In general, a metamorphic relation for a function f
is expressed as a relation among a series of function inputs
x1, x2, . . . , xn (with n > 1), and their corresponding output
values f(x1), f(x2), . . . , f(xn) [18]. For instance, for the sine
example from the introduction the relation between x1 and
x2 would be π − x1 = x2, and the relation between f(x1)
and f(x2) would be equality, i.e.:

R = {(x1, x2, sinx1, sinx2) | π−x1 = x2 → sinx1 = sinx2}

This resembles the traditional concept of program invari-
ants, which are properties (for example expressed as assert
statements) that hold at certain points in programs [19].
However, the key difference is that an invariant has to
hold for every possible program execution, whereas a meta-
morphic relation is a relation between different executions.
A relation between two executions implicitly defines how,
given an existing source test case (x1), one has to transform
this into a follow-up test case (x2), such that an abstract
relation R (e.g., sinx1 = sinx2) can be checked on the
inputs represented by x1 and x2, as well as the outputs
produced by executing x1 and x2. The term metamorphic
relation presumably refers to this “metamorphosis” of test
inputs and outputs. If the relation R does not hold on a pair
of source and follow–up test cases x1 and x2, then a fault has
been detected. In this article, we use the term metamorphic
test case to refer to a pair of a source test case and its follow–
up test case.

The basic process for the application of metamorphic
testing can be summarised as follows:

1) Construction of metamorphic relations. Identify necessary
properties of the program under test and represent
them as metamorphic relations among multiple test
case inputs and their expected outputs, together with
some method to generate a follow–up test case based
on a source test case. Note that metamorphic relations
may be associated with preconditions that restrict the
source test cases to which they can be applied.

2) Generation of source test cases. Generate or select a set of
source test cases for the program under test using any
traditional testing technique (e.g., random testing).

3) Execution of metamorphic test cases. Use the metamorphic
relations to generate follow–up test cases, execute
source and follow–up test cases, and check the relations.
If the outputs of a source test case and its follow–up test

case violate the metamorphic relation, the metamorphic
test case is said to have failed, indicating that the
program under test contains a bug.

As an illustrative example, consider a program that
computes the shortest path between a source vertex s and
destination vertex d in a graph G, SP (G, s, d). A meta-
morphic relation of the program is that if the source and
destination vertices are swapped, the length of the shortest
path should be equal: |SP (G, s, d)| = |SP (G, d, s)|. Sup-
pose that a source test case (G, a, b) is selected according
to some testing method (e.g., randomly). Based on the
metamorphic relation, we can now easily generate a new
follow–up test case by swapping the source and destination
vertices (G, b, a). After executing the program with both
test cases, their outputs can be checked against the relation
to confirm whether it is satisfied or not, i.e., whether the
outputs are equal. If the metamorphic relation is violated, it
can be concluded that the metamorphic test has failed and
the program is faulty.

As a further example, consider testing an online search
engine such as Google or Yahoo [20]. Let Count(q) be the
number of results returned for a search query q. Intuitively,
the number of returned results for q should be greater or
equal than that obtained when refining the search with
another keyword k. This can be expressed as the following
metamorphic relation: Count(q) ≥ Count(q + k), where +
denotes the concatenation of two keywords. Fig. 1 illustrates
the application of this metamorphic relation on Google.
Consider a source test case consisting in a search for the
keyword “metamorphic”, resulting in “About” 4.2M results.
Suppose that a follow–up test case is constructed by search-
ing for the keywords “metamorphic testing”: This leads to
8,380 results which is less than the result for “metamorphic”,
and thus satisfies the relation. If more results were found,
then that would violate the metamorphic relation, revealing
a bug in the system.

If source test cases are generated automatically, then
metamorphic testing enables full test automation, i.e., in-
put generation and output checking. In the sine example
presented in Section 1, for instance, metamorphic testing
could be used together with random testing to automatically
generate random source test cases (x) and their respective
follow–up test cases (π − x), until a pair is found that
violates the metamorphic relation, or a maximum time out
is reached. Similarly, in the search engine example, meta-
morphic testing could also be used together with a random
word generator to automatically construct source test cases
(e.g., “algorithm”) and their respective follow–up test cases
(e.g., “algorithm colour”) until a pair that reveals a bug is
found, if any such pairs exists.

3 REVIEW METHOD

To perform a literature review on metamorphic testing we
followed a systematic and structured method inspired by
the guidelines of Kitchenham [21] and Webster et al. [22].
A similar approach was followed by some of the authors
in the context of software product lines [23]. To report the
results, we also took inspiration from recent surveys on
related topics such as the oracle problem [3], search–based
testing [24], automated test case generation [2] and mutation

3

(a) Source test case. (b) Follow-up test case.

Figure 1. Metamorphic test on the Google search engine checking the relation Count(q) ≥ Count(q + k).

analysis [25]. Below, we detail the main data regarding the
review process and its results.

3.1 Research questions

The aim of this literature review is to answer the following
research questions on metamorphic testing:

• RQ1: What improvements to the technique have been made?
• RQ2: What are its known application domains?
• RQ3: How are experimental evaluations performed?
• RQ4: What are the future research challenges?
We propose RQ1 to obtain an in–depth view on meta-

morphic testing outlining the state of the art in terms
of the main advances in the application of the technique
since its original introduction. RQ2 is proposed to give
an insight into the scope of metamorphic testing and its
applicability to different domains including its integration
with other testing techniques. We also want to know how
different approaches of performing metamorphic testing are
evaluated including the subject programs used, types of
detected faults, evaluation metrics, and empirical studies
involving humans. Finally, based on the answer to the pre-
vious questions, we expect to identify unresolved problems
and research opportunities in response to RQ4.

3.2 Inclusion and exclusion criteria

We scrutinised the existing literature, looking for papers
addressing any topic related to metamorphic testing, includ-
ing methods, tools or guidelines for the application of the
technique, applications to specific testing problems, empir-
ical evaluations, and surveys. Articles of the same authors
but with very similar content were intentionally classified
and evaluated as separate contributions for a more rigorous
analysis. Later, in the presentation of results, we grouped
those articles with no major differences. We excluded PhD
theses as well as those papers not related to the computer
sciences field, not written in English, or not accessible on the
Web.

3.3 Source material and search strategy

The search for relevant papers was carried out in the on-
line repositories of the main technical publishers, including
ACM, Elsevier, IEEE, Springer and Wiley. We collected
computer science papers published between January 1st
1998 (when Chen’s report was published) and November
30th 2015 which have either “metamorphic test”, “meta-
morphic testing”, “metamorphic relation” or “metamorphic
relations” in their title, abstract or keywords. After a quick
review of the results, we noticed that some articles on

metamorphic testing with many citations were not among
the candidate papers, including the technical report of Chen
et al. [5] where the technique was introduced. To include
those papers, we performed the search in the Google Scholar
database, and additionally selected all papers with 5 or more
citations published outside our target publication sources2.
These were merged with our previous results, resulting in a
final set of 362 candidate papers.

Next, we examined the abstracts of the papers identified
in the previous step and filtered them according to our
inclusion and exclusion criteria, checking the content of
the papers when unsure. This step was performed by two
different authors who agreed on the results. The set of
candidate papers was filtered to 116 publications within the
scope of our survey. Then, we contacted the corresponding
authors of the 116 selected papers and asked them to inform
us about any missing papers within the scope of our search.
Based on the feedback received, we included 3 new papers
meeting our search criteria, except for the inclusion of the
search terms in their title, abstract or keywords. As a result,
the search was finally narrowed to 119 publications that
were in the scope of this survey. These papers are referred
to as the primary studies [21]. Table 1 presents the number of
primary studies retrieved from each source.

It is possible that our search has failed to find all papers
since we focused on a subset of reputed publishers. How-
ever, we remain confident that the overall trends we report
are accurate and provide a fair picture of the state of the art
on metamorphic testing.

3.4 Data collection

All 119 primary studies were carefully analysed to answer
our research questions. For each study, we extracted the
following information: full reference, brief summary, type of
contribution (e.g., case study), application domains, integra-
tion with other testing techniques, number of metamorphic
relations proposed, evaluation details, lessons learned and
suggested challenges. To facilitate the process, we filled in a
data extraction form for each primary study. All the forms
are attached to this report in Appendix B.

Primary studies were read at least twice by two different
authors to reduce misunderstandings or missing informa-
tion. As a sanity check, we contacted the corresponding
author of each primary study and sent them the technical
report to confirm that the information collected from their
papers was correct.

2. The search was performed on December 30th, 2015.

4

Table 1
Search engines used and number of results.

Search engine Search queries Results Primary studies

ACM digital library i) acmdlTitle:(“metamorphic testing” “metamorphic test”
“metamorphic relation” “metamorphic relations”) 1998-2015,
ii) recordAbstract:(“metamorphic testing” “metamorphic test”
“metamorphic relation” “metamorphic relations”) 1998-2015, iii)
keywords.author.keyword:(“metamorphic testing” “metamorphic test”
“metamorphic relation” “metamorphic relations”) 1998-2015

12 12

Elsevier ScienceDirect pub-date > 1997 and pub-date < 2015 and TITLE-ABSTR-
KEY(“metamorphic testing”) or TITLE-ABSTR-KEY(“metamorphic
test”) or TITLE-ABSTR-KEY(“metamorphic relations”) or TITLE-
ABSTR-KEY(“metamorphic relation”)[All Sources(Computer Science)]

6 6

IEEEXplore digital library (((((((((((((“Document Title”:“metamorphic testing”) OR “Ab-
stract”:“metamorphic testing”) OR “Author Keywords”:“metamorphic
testing”) OR “Document Title”:“metamorphic test”) OR “Ab-
stract”:“metamorphic test”) OR “Author Keywords”:“metamorphic
test”) OR “Document Title”:“metamorphic relations”)
OR “Abstract”:“metamorphic relations”) OR “Author
Keywords”:“metamorphic relations”) OR “Document
Title”:“metamorphic relation”) OR “Abstract”:“metamorphic relation”
OR “Author Keywords”:“metamorphic relation”))) and refined by Year:
1998-2015

72 65

Springer online library “metamorphic testing” OR “metamorphic test” OR “metamorphic rela-
tion” OR “metamorphic relations”’ within 1998 - 2014

87 13

Wiley InterScience “metamorphic testing” in Article Titles OR “metamorphic testing” in
Abstract OR “metamorphic testing” in Keywords OR “metamorphic
test” in Article Titles OR “metamorphic test” in Abstract OR “meta-
morphic test” in Keywords OR “metamorphic relations” in Article Titles
OR “metamorphic relations” in Abstract OR “metamorphic relations”
in Keywords OR “metamorphic relation” in Article Titles OR “meta-
morphic relation” in Abstract OR “metamorphic relation” in Keywords
NOT geology in All Fields NOT zoology in All Fields NOT ecology in
All Fields between years 1998 and 2015

29 4

Google Scholar (+5 citations) All of the words: “software”, Any of the words: “metamorphic testing”
“metamorphic test” “metamorphic relations” “metamorphic relation”,
None of the words: “zoology” “geology” “ecology”, “anywhere in the
article” Date filter: 1998-2015 (Citations filtered using the Publish or
Perish program [26])

156 16

(a) Number of publications per year. (b) Cumulative number of publications per year.

Figure 2. Metamorphic testing papers published between January 1st 1998 and November 30th 2015.

3.5 Summary of results
The following sections summarise the primary studies in
terms of publication trends, authors, venues, and research
topics on metamorphic testing.

3.5.1 Publication trends
Fig. 2a illustrates the number of publications on meta-
morphic testing published between January 1st 1998 and
November 30th 2015. The graph shows a constant flow of
papers on the topic since 2001, in particular from 2010 on-
wards. The cumulative number of publications is illustrated

in Fig. 2b. We found a close fit to a quadratic function with
a high determination coefficient (R2 = 0.997), indicating a
strong polynomial growth, a sign of continued health and
interest in the subject. If the trend continues, there will be
more than 170 metamorphic testing papers by 2018, two
decades after the introduction of the technique.

3.5.2 Researchers and organisations
We identified 183 distinct co-authors from 74 different or-
ganisations in the 119 primary studies under review. Table 2
presents the top authors on metamorphic testing and their

5

most recent affiliation. Unsurprisingly, Prof. T. Y. Chen, with
44 papers, is the most prolific author on the topic.

3.5.3 Geographical distribution of publications
We related the geographical origin of each primary study
to the affiliation country of its first co–author. Interestingly,
we found that all 119 primary studies originated from only
11 different countries with Australia and China ahead, as
presented in Table 3. By continents, 37% of the papers
originated from Asia, 30% from Oceania, 19% from Europe
and 14% from America. This suggests that the metamorphic
testing community is formed by a modest number of coun-
tries but fairly distributed around the world.

3.5.4 Publication venues
The 119 primary studies under review were published in
72 distinct venues. This means that the metamorphic testing
literature is very dispersed, probably due to its applicability
to multiple testing domains. Regarding the type of venue,
most papers were presented at conferences and symposia
(58%), followed by journals (23%), workshops (16%) and
technical reports (3%). Table 4 lists the venues where at least
three metamorphic testing papers have been presented.

3.5.5 Types of contributions and research topics
Fig. 3a classifies the primary studies according to the type of
contribution. We found that half of the papers present case
studies (50%), followed by new techniques and methodo-
logies (31%), and assessments and empirical studies (10%).
We also found a miscellany of papers (7%) including related
surveys, tutorial synopsis, and guidelines. Only two of the
papers (2%) presented a tool as their main contribution.

A similar classification based on the main research topic
is presented in Fig. 3b. Interestingly, we found that 49%
of the papers report applications of metamorphic testing
to different problem domains. The rest of papers address
the construction of metamorphic relations (19%), integration
with other testing techniques (10%), assessment of meta-
morphic testing (6%), execution of metamorphic test cases
(5%) and generation of source test cases (4%). Finally, a few
papers (7%) present brief overviews on the technique, its
applications and research directions.

4 STATE OF THE ART IN METAMORPHIC TESTING

In this section, we address RQ1 by summarising the main
contributions to metamorphic testing in the literature. First,
we review the papers studying the properties of effective
metamorphic relations. Then, approaches are classified ac-
cording to the step they contribute to in the metamorphic
testing process presented in Section 2, namely, construction
of metamorphic relations, generation of source test cases,
and execution of metamorphic test cases.

4.1 Properties of good metamorphic relations
The effectiveness of metamorphic testing is highly
dependent on the specific metamorphic relations that
are used, and designing effective metamorphic relations is
thus a critical step when applying metamorphic testing.
For most problems, a variety of metamorphic relations

with different fault–detection capability can be identified
[9], [16], [18], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. Therefore, it is advisable to use a variety of diverse
metamorphic relations to effectively test a given program.
Several authors even suggest using as many metamorphic
relations as possible during testing [28], [29], [36], [37].
However, because defining metamorphic relations can be
difficult, it is important to know how to select the most
effective ones. In this section, we review papers studying
the properties that make metamorphic relations good at
detecting faults.

Defining good metamorphic relations requires knowledge
of the problem domain. Chen et al. [27] compared the
effectiveness of metamorphic relations solely based on the
theoretical knowledge of the problem (black–box) versus
those derived from the program structure (white–box)
using two case studies. They concluded that theoretical
knowledge of the problem domain is not adequate for
distinguishing good metamorphic relations. Instead, good
metamorphic relations should be preferably selected with
regard to the algorithm under test following a white–box
approach. However, this was later disputed by Mayer
and Guderlei [38], who studied six subject programs
for matrix determinant computation with seeded faults.
They concluded that metamorphic relations in the form
of equalities or linear equations3 as well as those close to
the implementation strategy have limited effectiveness.
Conversely, they reported that good metamorphic relations
are usually strongly inspired by the semantics of the
program under test. Other studies have also emphasised
the knowledge of the problem domain as a requirement for
the application of metamorphic testing [30], [39], [40].

Metamorphic relations should make execution of the
follow–up test case as different as possible from the
source test case. Chen et al. [27] reported that good
metamorphic relations are those that can make the
execution of the source–test case as different as possible to
its follow–up test case. They defined the “difference among
executions” as any aspects of program runs (e.g., paths
traversed). This observation has been confirmed by several
later studies [9], [41], [42], [43], [44], [45]. In particular,
Asrafi et al. [46] hypothesised that the higher the combined
code coverage of the source and follow-up test cases, the
more different are the executions, and the more effective
is the metamorphic relation. Their study on two subject
programs showed a strong correlation between coverage
and fault–detection effectiveness in one of the two. In a
similar study, Cao et al. [47] assessed the relation between
fault–detection effectiveness of metamorphic relations
and test case dissimilarity. An extensive experiment with
83 faulty programs and 7 distance metrics between the
execution profiles of source and follow–up test cases
revealed a strong and statistically significant correlation
between the fault–detection capability of metamorphic
relations and the distance among test cases, in particular
when using branch coverage Manhattan distance [48].

3. The authors literally refer to “equations with linear combinations
on each side (with at least two terms on one of the sides)”

6

Table 2
Top 10 co-authors on metamorphic testing

Author Institution Country Papers

T. Y. Chen Swinburne University of Technology Australia 44
T. H. Tse The University of Hong Kong Hong Kong 20
F.-C. Kuo Swinburne University of Technology Australia 17
Z. Q. Zhou University of Wollongong Australia 14
W. K. Chan City University of Hong Kong Hong Kong 11
H. Liu RMIT University Australia 9
C. Murphy Columbia University United States 9
G. Kaiser Columbia University United States 8
X. Xie Swinburne University of Technology Australia 7
B. Xu Nanjing University China 7

(a) Type of contribution. (b) Research topic.

Figure 3. Classification of primary studies by publication type and research topic.

Table 3
Geographical distribution of publications

Country Papers

Australia 36
China 25
United States 17
Hong Kong 12
Germany 8
Spain 7
India 5
United Kingdom 3
Switzerland 3
Malaysia 2
France 1

Metamorphic relations derived from specific parts of
the system are more effective than those targeting
the whole system. Several authors have explored the
applicability of metamorphic testing for integration testing
with some helpful conclusions for the construction of
good metamorphic relations. Just and Schweiggert [49],
[50] assessed the applicability of metamorphic testing for
system and integration testing in the context of an image
encoder. Among other results, they concluded that the
metamorphic relations derived from the components of
a system are usually better at detecting faults than those
metamorphic relations derived from the whole system.

Table 4
Top venues on metamorphic testing.

Venue Papers

Int Conference on Quality Software 9
Int Computer Software & Applications Conference 8
Int Workshop on Automation of Software Test 4
Int Conference on Software Engineering 4
IEEE Transactions on Software Engineering 4
Software Testing, Verification and Reliability 4
Int Conf on Software Testing, Verification and Validation 3
Information and Software Technology 3

This finding was later confirmed by Xie et al. [51], who
reported that metamorphic relations targeting specific parts
of the program under test are easier to construct, more
constrained, and therefore more effective in detecting faults
than metamorphic relations at the system level.

Metamorphic relations should be formally described.
Chan et al. [52] formally described metamorphic relations
and metamorphic testing for a precise definition of the
technique. Their formalisation was reused by several au-
thors [29], [36] and later revised by Chan and Tse [12].
Hui and Huang [53] pointed out that most metamorphic
relations in the literature are informally described using
natural language, which makes them easily misunderstood,
ambiguous and hard to reuse. The authors suggested that

7

good metamorphic relations should be formally described
and proposed a formal model for the rigorous description
of metamorphic relations using predicate logic, inspired by
the work of Chan et al. [52]. In particular, they proposed
representing a metamorphic relation as a 3–tuple composed
of i) relation between the inputs of source and follow–up
test cases, ii) relation between the outputs of source and
follow-up test cases, and iii) program function.

4.2 Construction of metamorphic relations

Constructing metamorphic relations is typically a manual
task that demands thorough knowledge of the program
under test. In this section, we review proposed alternative
ways to create metamorphic relations, either by combining
existing relations, or by generating them automatically.

Liu et al. [54] proposed a method named Composition of
Metamorphic Relations (CMR) to construct new metamorphic
relations by combining several existing relations. A similar
idea had been superficially explored previously by Dong
et al. [55]. The rationale behind this method is that the
resulting relations should embed all properties of the ori-
ginal metamorphic relations, and thus they should provide
similar effectiveness with a fewer number of metamorphic
relations and test executions. Intuitively, Liu et al. defined
two metamorphic relations as “compositable” if the follow–
up test cases of one of the relations can always be used as
source test case of the other. The composition is sensitive to
the order of metamorphic relations and generalisable to any
number of them. Determining whether two metamorphic re-
lations are composable is a manual task. The results of a case
study with a bioinformatics program processing an input
matrix show that the composition of a set of metamorphic
relations usually produces a composite relation with higher
(or at least similar) fault–detection effectiveness than the ori-
ginal metamorphic relations, provided that all component
relations have similar “tightness”. The tightness of a relation
determines how hard it is to satisfy it by mere chance — the
tighter a relation is, the more difficult it is to satisfy it with
some random outputs; e.g., sin(x) = sin(π − x) is tighter
than sin(x) 6= sin(π − x/2). They also concluded that the
CMR method delivers higher cost–effectiveness than classic
metamorphic testing since it involves fewer test executions.

Kanewala and Bieman [56], [57] proposed a method that
determines, given a predefined set of relations that they
believe to hold for many numerical programs, which of
these are exhibited by a given numerical program. Their
method works by extracting a function’s control flow graph
and building a predictive model using machine learning
techniques; i.e., it is a white-box method that requires static
access to the source code. The approach was evaluated
by constructing a prediction model using a code corpus
of 48 mathematical functions with numerical inputs and
outputs. The model was designed to predict three specific
types of metamorphic relations: permutative, additive and
inclusive [58]. In addition, they checked the fault–detection
effectiveness of the predictive metamorphic relations using
seeded faults. The results revealed that 66% of the faults (655
out of 988) were detected by the predicted metamorphic
relations. In later work [59], the authors extended their
method using graph kernels, which provide various ways

of measuring similarity among graphs. The intuition be-
hind their approach was that functions that have similar
control flow and data dependency graphs may have similar
metamorphic relations. Empirical results on the prediction
of six different types of metamorphic relations on a corpus
of 100 numerical programs revealed that graph kernels lead
to higher prediction accuracy.

Zhang et al. [60] proposed a search–based approach for
the inference of polynomial metamorphic relations. More
specifically, the algorithm searches for metamorphic rela-
tions in the form of linear or quadratic equations (e.g.,
cos(2x) = 2cos2(x) − 1). Relations are inferred by running
the program under test repeatedly, searching for relations
among the inputs and outputs. It is therefore a black–box
approach which requires no access to the source code. Since
running the program with all the possible input values is
rarely possible, the relations identified are strictly referred
to as likely metamorphic relations, until they are confirmed
by a domain expert. Their work was evaluated inferring
hundreds of likely metamorphic relations for 189 functions
of 4 commercial and open source mathematical libraries. The
results showed that the generated metamorphic relations
are effective in detecting mutants. Notice that in contrast to
the work of Kanewala and Bieman [56], [57], this approach
does not predict whether the program exhibits a previously
defined metamorphic relation, but rather infers the meta-
morphic relation from scratch.

Carzinaga et al. [61] proposed to generate oracles by
exploiting the redundancy contained in programs. Given a
source test case, they generate a test with the same code in
which some operations are replaced with redundant ones.
For instance, in the AbstractMultimap<K,V> class of
the Google Guava library4, the methods put(k,v) and
putAll(k,c) are equivalent when c is a collection con-
taining a single element v. If the outputs of both test cases
are not equal, the code must contain a bug. The author
presented an implementation of their approach using as-
pects. The identification of redundant methods is a manual
task. Although the core of their contribution was not related
to metamorphic testing, their approach can be considered
a specific application of the technique. In a related article,
Goffi et al. [62], [63] presented a search–based algorithm
for the automated synthesis of likely–equivalent method se-
quences in object–oriented programs. The authors suggest
that such likely–equivalent sequences could be used as
metamorphic relations during testing. The approach was
evaluated using 47 methods of 7 classes taken from the Stack
Java Standard Library and the Graphstream library. The
algorithm automatically synthesised 87% (123 out of 141)
of the equivalent method sequences manually identified.

Su et al. [64] presented an approach named KABU for
the dynamic inference of likely metamorphic relations in-
spired by previous work on the inference of program invari-
ants [19]. The inference process is constrained by searching
for a set of predefined metamorphic relations [58]. A Java
tool implementing the approach was presented and eval-
uated on the inference of likely metamorphic relations in
two sample programs. As a result, KABU found more likely
metamorphic relations than a group of 23 students trained

4. https://github.com/google/guava

https://github.com/google/guava

8

in the task. Authors also proposed a method, Metamorphic
Differential Testing (MDT), built upon KABU, to compare
the metamorphic relations between different versions of the
same program reporting the differences as potential bugs.
Experimental results on different versions of two classifica-
tion algorithms showed that MDT successfully detected the
changes reported in the logs of the Weka library.

Chen et al. [65] presented a specification–based meth-
odology and associated tool called METRIC for the identi-
fication of metamorphic relations based on the category–
choice framework [66]. In this framework, the program
specification is used to partition the input domain in terms
of categories, choices and complete test frames. Roughly
speaking, a complete test frame is an abstract test case de-
fining possible combinations of inputs, e.g., {type of vehicle,
weekday, parking hours}. Given a set of complete test frames,
METRIC guides testers on the identification of metamorphic
relations and related source and follow-up test cases. The
results of an empirical study with 19 participants suggest
that METRIC is effective and efficient at identifying meta-
morphic relations.

4.3 Generation of source test cases

As mentioned in Section 6.2, most contributions on meta-
morphic testing use either random test data or existing test
suites for the creation of source test cases. In this section,
we review the papers proposing alternative methods for the
generation of source test cases.

Gotlieb and Botella [67] presented a framework named
Automated Metamorphic Testing (AMT) to automatically gen-
erate test data for metamorphic relations. Given the source
code of a program written in a subset of C and a meta-
morphic relation, AMT tries to find test cases that violate the
relation. The underlying method is based on the translation
of the code into an equivalent constraint logic program over
finite domains. The solving process is executed until a solu-
tion is found or a timeout is reached. The supported types
of metamorphic relations are limited to numeric expressions
over integers. The framework was evaluated using three
laboratory programs with seeded faults.

Chen et al. [28] compared the effectiveness of “special
values” and random testing as source test cases for meta-
morphic testing. Special values are test inputs for which the
expected output is well known (e.g., sin(π/2) = 1). Since
test cases with special values must be manually constructed
we consider them as manual testing. The authors found
that manual and metamorphic testing are complementary
techniques, but they also note that random testing has the
advantage of being able to provide much larger test data
sets. In a closely related study, Wu et al. [68] concluded
that random source test cases result in more effective meta-
morphic test cases than those derived from manual test
cases (special values). Segura et al. [69] compared the ef-
fectiveness of random testing and a manually designed test
suite as the source test cases for metamorphic testing, and
their results also showed that random source test cases are
more effective at detecting faults than manually designed
source test cases in all the subject programs. Even though
this suggests that random testing is more effective, there are
also indications that combining random testing with manual

tests may be even better: Chen et al [28] concluded that
random testing is an efficient mechanism to augment the
number of source test cases; Segura et al. [69] observed that
combining manual tests with random tests leads to faster
fault detection compared to using random tests only.

Batra and Sengupta [41] presented a genetic algorithm
for the selection of source test cases maximising the paths
traversed in the program under test. The goal is to generate
a small but highly effective set of source test cases. Their
algorithm was evaluated by generating source test cases
for several metamorphic relations in a small C program,
which determines the type of a triangle, where 4 mutants
were generated and killed. In related work, Chen et al. [42]
addressed the same problem from a black–box perspect-
ive. They proposed partitioning the input domain of the
program under test into equivalence classes, in which the
program is expected to process the inputs in a similar way.
Then, they proposed an algorithm to select test cases that
cover those equivalence classes. Evaluation on the triangle
program suggests that their algorithm can generate a small
set of test cases with high detection rate.

Dong and Zhang [44] presented a method for the con-
struction of metamorphic relations and their corresponding
source test cases using symbolic execution. The method first
analyses the source code of the program to determine the
symbolic inputs that cause the execution of each path. Then,
the symbolic inputs are manually inspected and used to
guide the construction of metamorphic relations that can
exercise all the paths of the program. Finally, source test
cases are generated by replacing the symbolic inputs by real
values. As in previous work, the approach was evaluated
using a small C program with seeded faults.

4.4 Execution of metamorphic test cases

The execution of a metamorphic test case is typically per-
formed in two steps. First, a follow–up test case is generated
by applying a transformation to the inputs of a source test
case. Second, source and follow–up test cases are executed,
checking whether their outputs violate the metamorphic
relation. In this section, we present those articles that either
propose a different approach for the execution of meta-
morphic test cases, or to automate part of the process.

Several papers have contributed to the execution and
assessment of metamorphic test cases. Wu [70] presented
a method named Iterative Metamorphic Testing (IMT) to
systematically exploit more information from metamorphic
tests, by applying metamorphic relations iteratively. In
IMT, a sequence of metamorphic relations are applied in
a chain style, by reusing the follow–up test case of each
metamorphic relation as the source test case of the next
metamorphic relation. A case study was presented with a
program for sparse matrix multiplication and more than
1300 mutants. The results revealed that IMT detects more
faults than classic metamorphic testing and special value
testing. Dong et al. [71] presented an algorithm integrat-
ing IMT and program path analysis. The algorithm runs
metamorphic tests iteratively until a certain path coverage
criterion is satisfied. Segura et al. [69], [72], [73] presented
a metamorphic testing approach for the detection of faults
in variability analysis tools. Their method is based on the

9

iterative application of a small set of metamorphic rela-
tions. Each relation relates two input variability models and
their corresponding set of configurations, (i.e., output). In
practice, the process can generate an unlimited number of
random test cases of any size. In certain domains, it was
necessary to apply the metamorphic relations in a certain
order. Their approach was proven effective in detecting 19
real bugs in 7 different tools.

Guderlei and Mayer [74] proposed Statistical Meta-
morphic Testing (SMT) for the application of metamorphic
testing to non–deterministic programs. SMT does not con-
sider a single execution, but is based on studying the
statistical properties of multiple invocations to the program
under test. The method works by generating two or more
sequences of outputs by executing source and follow–up test
cases. Then, the sequences of outputs are compared accord-
ing to their statistical properties using statistical hypothesis
tests. The applicability of the approach was illustrated with
a single metamorphic relation on a subject program with
seeded faults. In later work, Murphy et al. [75], [76] success-
fully applied SMT to the detection of faults in a health care
simulation program with non–deterministic time events.

Murphy et al. [77], [78] presented an extension of the
Java Modelling Language (JML) [79] for the specification
and runtime checking of metamorphic relations. Their ap-
proach extends the JML syntax to enable the specification
of metamorphic properties, which are included in the Java
source code as annotations. The extension was designed so
it could express the typical metamorphic relations observed
by the authors in the domain of machine learning [80].
Additionally, they presented a tool, named Corduroy, that
pre–processes the specification of metamorphic relations
and generates test code that can be executed using JML
runtime assertion checking, ensuring that the relations hold
during program execution. For the evaluation, they spe-
cified 25 metamorphic relations on several machine learning
applications uncovering a few defects.

Murphy et al. [81] presented a framework named Ams-
terdam for the automated application of metamorphic test-
ing. The tool takes as inputs the program under test and a
set of metamorphic relations, defined in an XML file. Then,
Amsterdam automatically runs the program, applies the
metamorphic relations and checks the results. The authors
argue that in certain cases slight variations in the outputs
are not actually indicative of errors, e.g., floating point
calculations. To address this issue, the authors propose the
concept of heuristic test oracles, by defining a function that
determines whether the outputs are “close enough” to be
considered equals. This idea was also used in a later empir-
ical study [75] comparing the effectiveness of three different
techniques to test programs without oracles: “niche oracle”
(i.e. inputs with known expected outputs), metamorphic
testing and assertion checking. The study revealed that
metamorphic testing outperforms the other techniques, also
when testing non–deterministic programs.

Ding et al. [43] proposed a method named Self-Checked
Metamorphic Testing (SCMT) combining metamorphic testing
and structural testing. SCMT checks the code coverage of
source and follow-up test cases during test execution to
evaluate the quality of metamorphic relations. It is assumed
that the higher the coverage, the more effective the meta-

morphic relation. The test coverage data obtained may be
used to refine test cases by creating, replacing or updating
metamorphic relations and their test data. It is also sugges-
ted that unexpected coverage outcomes could help detect
false–positive results, which they define as a metamorphic
relation that holds despite the program being faulty. The
approach was evaluated using a cellular image processing
program with one seeded bug.

Zhu [82] presented JFuzz, a Java unit testing tool us-
ing metamorphic testing. In JFuzz, tests are specified in
three parts, namely i) source test case inputs (x), ii) pos-
sible transformations on the test inputs (y = π − x), and
iii) metamorphic relations implemented as code assertions
(sin(x) = sin(π − x)). Once these elements are defined, the
tool automatically generates follow-up test cases by apply-
ing the transformations to the source test inputs, it executes
source and follow-up test cases, and checks whether the
metamorphic relations are violated.

5 THE APPLICATION OF METAMORPHIC TESTING

In this section, we answer RQ2 by investigating the scope
of metamorphic testing and its applications. In particular,
we review applications of metamorphic testing to specific
problem domains, and summarise approaches that use
metamorphic testing to enhance other testing techniques.

5.1 Application domains

In this section, we review those papers where the main
contribution is a case study on the application of meta-
morphic testing to specific testing problems (58 out of 119).
Fig. 4 classifies these papers according to their application
domain. In total, we identified more than 12 different applic-
ation areas. The most popular domains are web services and
applications (16%) followed by computer graphics (12%),
simulation and modelling (12%) and embedded systems
(10%). We also found a variety of applications to other fields
(21%) such as financial software, optimisation programs or
encryption programs. Each of the other domains is explored
in no more than four papers, to date. Interestingly, we found
that only 4% of the papers reported results in numerical pro-
grams, even though this seems to be the dominant domain
used to illustrate metamorphic testing in the literature.

Fig. 5 shows the domains where metamorphic testing
applications have been reported in chronological order. Do-
mains marked with (T) were only explored theoretically. As
illustrated, the first application of metamorphic testing was
reported in the domain of numerical programs back in 2002.
While in the subsequent years the potential applications of
metamorphic testing were mainly explored at a theoretical
level, there are applications in multiple domains from 2007
onwards. The rest of this section introduces the papers
reporting results in each application domain.

5.1.1 Web services and applications
Chan et al. [83], [84] presented a metamorphic testing meth-
odology for Service–Oriented Applications (SOA). Their
method relies on the use of so-called metamorphic services
to encapsulate the services under test, execute source and
follow–up test cases and check their results. Similarly, Sun

10

Figure 4. Metamorphic testing application domains

et al. [34], [85] proposed to manually derive metamorphic
relations from the WSDL description of web services. Their
technique automatically generates random source test cases
from the WSDL specification and applies the metamorphic
relations. They presented a tool to partially automate the
process, and evaluated it with three subject web services and
mutation analysis. In a related project, Castro–Cabrera and
Medina–Bulo [86], [87] presented a metamorphic testing–
based approach for web service compositions using the
Web Service Business Process Execution Language (WS–
BPEL) [88]. To this end, they proposed to analyse the XML
description of the service composition to select adequate
metamorphic relations. Test cases were defined in terms of
the inputs and outputs of the participant services.

In a related set of papers, Zhou et al. [20], [89] used meta-
morphic testing for the detection of inconsistencies in on-
line web search applications. Several metamorphic relations
were proposed and used in a number of experiments with
the web search engines Google, Yahoo! and Live Search.
Their results showed that metamorphic testing effectively
detected inconsistencies in the searches in terms of both
returned content and ranking quality. In later work [90], the
authors performed an extensive empirical study on the web
search engines Google, Bing, Chinese Bing and Baidu. As
a novel contribution, metamorphic relations were defined
from the user perspective, representing the properties that a
user expects from a “good” search engine, regardless of how
the engine is designed. In practice, as previously noticed
by Xie et al. [31], this means that metamorphic relations
are not only suitable to detect faults in the software under
test (verification) but also to check whether the program
behaves as the user expects (validation). The authors also
proposed using metamorphic testing to assess quality re-
lated properties such as reliability, usability or performance.
Experimental results revealed a number of failures in the
search engines under test.

5.1.2 Computer graphics
Mayer and Guderlei [91], [92] compared several random
image generation techniques for testing image processing
programs. The study was performed on the implementa-
tion of several image operators as the Euclidean distance
transform. Several metamorphic relations were used for the
generation of follow–up test cases and the assessment of test
results. Chan et al. [93], [94] presented a testing approach
for mesh simplification programs using pattern classifica-
tion and metamorphic testing. Metamorphic relations were
used to detect test cases erroneously labelled as passed
by a trained pattern classifier. Just and Schweiggert [95]
used mutation analysis to evaluate the effectiveness of test
data generation techniques and metamorphic relations for
a jpeg2000 image encoder. Kuo et al. [33] presented a
metamorphic testing approach for programs dealing with
the surface visibility problem. A real bug was revealed in
a binary space partitioning tree program. Finally, Jameel
et al. [96] presented a case study on the application of
metamorphic testing to detect faults in morphological image
operations such as dilation and erosion. Eight metamorphic
relations were reported and assessed on the detection of
seeded faults in a binary image dilation program.

5.1.3 Embedded systems
Tse et al. [97] proposed the application of metamorphic test-
ing to context–sensitive middleware–based software pro-
grams. Context–based applications adapt their behaviour
according to the information from its environment referred
to as context. The process of updating the context inform-
ation typically relies on a middleware. Intuitively, their ap-
proach generates different context situations and checks
whether the outcomes of the programs under test satisfy
certain relations. This work was extended to deal with
changes in the context during test execution [52], [98]. Chan
et al. [99] applied metamorphic testing to wireless sensor
networks. As a novel contribution, they proposed to check
not only the functional output of source and follow–up
test cases but also the energy consumed during the exe-
cution, thus targeting both functional and non–functional
bugs. Kuo et al. [100] reported a case study on the use of
metamorphic testing for the detection of faults in a wireless
metering system. A metamorphic relation was identified
and used to test the meter reading function of a commercial
device from the electric industry in which two real defects
were uncovered. Finally, Jiang et al. [101] presented several
metamorphic relations for the detection of faults in Central
Processing Unit (CPU) scheduling algorithms. Two real bugs
were detected in one of the simulators under test.

5.1.4 Simulation and modelling
Sim et al. [102] presented an application of metamorphic
testing for casting simulation, exploiting the properties of
the Medial Axis geometry function. Several metamorphic
relations were introduced but no empirical results were
presented. Chen et al. [103] proposed the application of
metamorphic testing to check the conformance between
network protocols and network simulators. A case study
was presented testing the OMNeT++ simulator [104] for
conformance with the ad–hoc on–demand distance vector

11

Figure 5. Timeline of metamorphic testing applications. Domains marked with (T) were only explored theoretically.

protocol. In a related project, Chen et al. [37] proposed
using metamorphic testing for the detection of faults in open
queuing network modelling, a technique for planning the
capacity of computer and communication systems. Ding et
al. [105] presented a case study on the detection of faults
in a Monte Carlo modelling program for the simulation of
photon propagation. Based on their previous work [43], the
authors used code coverage criteria to guide the selection
of effective metamorphic relations and the creation of test
cases. Murphy et al. [76] proposed using metamorphic
relations to systematically test health care simulation pro-
grams, and presented a case study with two real–world
simulators and mutation testing. More recently, Núñez and
Hierons [106] proposed using metamorphic relations to
detect unexpected behaviour when simulating cloud pro-
visioning and usage. A case study using two cloud models
on the iCanCloud simulator [107] was reported. Cañizares
et al. [108] presented some preliminary ideas on the use
of simulation and metamorphic testing for the detection of
bugs related to energy consumption in distributed systems
as cloud environments.

5.1.5 Machine learning

Murphy et al. [58] identified six metamorphic relations that
they believe exist in most machine learning applications,
namely: additive, multiplicative, permutative, invertive, in-
clusive, and exclusive relations. The effectiveness of the
relations was assessed on three specific machine learning
tools in which some real bugs were detected. In a related
project, Xie et al. [31], [109] proposed using metamorphic
testing for the detection of faults in supervised classifiers.
It was argued that metamorphic relations may represent
both necessary and expected properties of the algorithm
under test. Violations of necessary properties are caused
by faults in the algorithm and therefore are helpful for the
purpose of verification. Violations of expected properties
indicate divergences between what the algorithm does and
what the user expects, and thus are helpful for the purpose
of validation. Two specific algorithms were studied: K-
Nearest neighbours and Naı̈ve Bayes classifier. The results
revealed that both algorithms violated some of the necessary
properties identified as metamorphic relations indicating
faults or unexpected behaviours. Also, some real faults were

detected in the open–source machine learning tool Weka
[110]. Finally, Jing et al. [111] presented a set of metamorphic
relations for association rule algorithms and evaluated them
using a contact–lenses data set and the Weka tool.

5.1.6 Variability and decision support
Segura et al. [69], [72] presented a test data generator for
feature model analysis tools. Test cases are automatically
generated from scratch using step–wise transformations that
ensure that certain constraints (metamorphic relations) hold
at each step. In later work [73], the authors generalised their
approach to other variability domains, namely CUDF doc-
uments and Boolean formulas. An extensive evaluation of
effectiveness showed, among other results, fully automatic
detection of 19 real bugs in 7 tools. In a related domain5,
Kuo et al. [45] presented a metamorphic testing approach
for the automated detection of faults in decision support
systems. In particular, they focused on the so–called multi–
criteria group decision making, in which decision problems
are modelled as a three–dimensional matrix representing
alternatives, criteria and experts. Several metamorphic re-
lations were presented and used to test the research tool
Decider [45], where a bug was uncovered.

5.1.7 Bioinformatics
Chen et al. [40] presented several metamorphic relations for
the detection of faults in two open–source bioinformatics
programs for gene regulatory networks simulations and
short sequence mapping. Also, the authors discussed how
metamorphic testing could be used to address the oracle
problem in other bioinformatics domains such as phylogen-
etic, microarray analysis and biological database retrieval.
Pullum and Ozmen [112] proposed using metamorphic
testing for the detection of faults in predictive models for
disease spread. A case study on the detection of faults in two
disease–spread models of the 1918 Spanish flu was presen-
ted, revealing no bugs. In a related project, Ramanathan et
al. [113] proposed using metamorphic testing, data visual-
isation, and model checking techniques to formally verify
and validate compartmental epidemiological models.

5. Note that variability models can be used as decision models during
software configuration.

12

5.1.8 Components
Beydeda [114] proposed a self–testing method for commer-
cial off–the–shelf components using metamorphic testing. In
this method, components are augmented with self–testing
functionality including test case generation, execution and
evaluation. In practice, this method allows users of a com-
ponent to test it even without access to its source code. Lu
et al. [115] presented a metamorphic testing methodology
for component–based software applications, both at the unit
and integration level. The underlying idea is to run test cases
against the interfaces of the components under test, using
metamorphic relations to construct follow–up test cases and
to check their results.

5.1.9 Numerical programs
Chen et al. [116] presented a case study on the applic-
ation of metamorphic testing to programs implementing
partial differential equations. The case study focused on
a practical problem in thermodynamics, namely the dis-
tribution of temperatures in a square plate. They injected
a seeded fault in the program under test and compared
the effectiveness of “special” test cases and metamorphic
testing in detecting the fault. Special test cases were unable
to detect the fault, while metamorphic testing was effective
at revealing it using a single metamorphic relation. Aruna
and Prasad [117] presented several metamorphic relations
for multiplication and division of multi–precision arithmetic
software applications. The work was evaluated with four
real–time mathematical projects and mutation analysis.

5.1.10 Compilers
Tao et al. [118] presented a so–called “equivalence preserva-
tion” metamorphic relation to test compilers. Given an input
program, the relation is used to generate an equivalent vari-
ant of it, checking whether the behaviours of the resulting
executables are the same for a random set of inputs. The
authors proposed three different strategies for the genera-
tion of equivalent source programs, such as replacing an
expression with an equivalent one (e.g., e× 2 ≡ e+ e). The
evaluation of their approach revealed two real bugs in two
C compilers. A closely related idea was presented by Le et
al. [119]. Given a program and a set of input values, the au-
thors proposed to create equivalent versions of the program
by profiling its execution and pruning unexecuted code.
Once a program and its equivalent variant are constructed,
both are used as input of the compiler under test, checking
for inconsistencies in their results. So far, this method has
been used to detect 147 confirmed bugs in two open source
C compilers, GCC and LLVM.

5.1.11 Other domains
Zhou et al. [39] presented several illustrative applications of
metamorphic testing in the context of numerical programs,
graph theory, computer graphics, compilers and interactive
software. Chen et al. [120] claimed that metamorphic testing
is both practical and effective for end–user programmers.
To support their claim, the authors briefly suggested how
metamorphic relations could be used to detect bugs in
spreadsheet, database and web applications. Sim et al. [121]
presented a metamorphic testing approach for financial

software. Several metamorphic relations were integrated
into the commercial tool MetaTrader [122] following a self–
testing strategy. Source and follow-up test cases were de-
rived from the real–time input price data received at differ-
ent time periods. Metamorphic testing has also been applied
to optimisation programs using both stochastic [123] and
heuristic algorithms [32]. Yao et al. [124], [125], [126] presen-
ted preliminary results on the use of metamorphic testing
to detect integer overflows. Batra and Singh [127] proposed
using UML diagrams to guide the selection of metamorphic
relations and presented a small case study using a banking
application. Sun et al. [128] reported several metamorphic
relations for encryption programs. Aruna and Prasad [129]
presented a small case study on the application of meta-
morphic testing to two popular graph theory algorithms.
Finally, Lindvall et al. [130] presented an experience report
on the use of metamorphic testing to address acceptance
testing of NASA’s Data Access Toolkit (DAT). DAT is a
huge database of telemetry data collected from different
NASA missions, and an advance query interface to search
and mine the available data. Due to the massive amount
of data contained in the database, checking the correctness
of the query results is challenging. To address this issue,
metamorphic testing was used by formulating the same
query in different equivalent ways, and asserting that the
resulting datasets are the same. Several issues were detected
with this approach.

5.2 Other testing applications

Besides direct application as a testing technique, meta-
morphic testing has been integrated into other testing tech-
niques, in order to improve their applicability and effective-
ness. In this section, we review these approaches.

Chen et al. [18], [131] proposed using metamorphic
testing with fault–based testing. Fault–based testing uses
symbolic evaluation [132], [133] and constraint solving [133]
techniques to prove the absence of certain types of faults
in the program under test. The authors used several nu-
merical programs to illustrate how real and symbolic inputs
can be used to discard certain types of faults even in the
absence of an oracle. In a related project [30], [134], the
authors presented a method called semi–proving integrating
global symbolic execution and constraint solving for pro-
gram proving, testing and debugging. Their method uses
symbolic execution to prove whether the program satisfies
certain metamorphic relations or identify the inputs that
violate them. It also supports debugging by identifying
violated constraint expressions that reveal failures.

Dong et al. [135] proposed improving the efficiency of
Structural Evolutionary Testing (SET) using metamorphic
relations. In SET, evolutionary algorithms are used to gen-
erate test data that satisfy a certain coverage criteria (e.g.,
condition coverage). This is often achieved by minimising
the distance of the test input to execute the program con-
ditions in the desired way. To improve the efficiency of the
process, the authors proposed to use metamorphic relations
during the search to consider both source and follow–up
test cases as candidate solutions, accelerating the chances of
reaching the coverage target. Their approach was evaluated
with two numerical programs.

13

Xie et al. [136], [137] proposed the combination of
metamorphic testing and Spectrum-Based Fault Localisation
(SBFL) for debugging programs without an oracle. SBFL
uses the results of test cases and the corresponding coverage
information to estimate the risk of each program entity
(e.g., statements) of being faulty. Rather than a regular test
oracle, the authors proposed to use the violation or non-
violation information from metamorphic relations rather
than the actual output of test cases. Among other results,
their approach was used to uncover two real bugs in the
Siemens Suite [138]. In a related project, Lei et al. [139]
applied the same idea to address the oracle problem in
a variant of SBFL named Backward-Slice Statistical Fault
Localisation (BSSFL) [140]. Rao et al. [141] investigated
the ratio between non-violated and violated metamorphic
relations in SBFL. They concluded that the higher the ratio
of non–violated metamorphic relations to violated meta-
morphic relations, the less effective the technique. Aruna et
al. [142] proposed integrating metamorphic testing with the
Ochiai algorithm [143] for fault localisation in dynamic web
applications. Five metamorphic relations for a classification
algorithm were presented as well as some experimental
results.

Liu et al. [144] presented a theoretical description of a
new method called Metamorphic Fault Tolerance (MFT). In
MFT, the trustworthiness of test inputs is determined in
terms of the number of violated and non–violated meta-
morphic relations. The more relations are satisfied and the
fewer relations are violated, the more trustworthy the input
is. Also, if an output is judged as untrustworthy, the outputs
provided by metamorphic relations can be used to provide
a more accurate output.

Jin et al. [145] presented an approach called Concolic
Metamorphic Debugging, which integrates concolic testing,
metamorphic testing, and branch switching debugging, in
order to localise potential bugs. Concolic testing is a tech-
nique that executes the program under test with both, sym-
bolic and concrete inputs, and then uses symbolic path con-
ditions to derive new test inputs for paths not yet explored.
Based on a failure-inducing test input, the proposed method
explores all possible program paths in depth-first-order,
searching for the first one that passes the metamorphic
relation. The final goal is to isolate a minimum amount of
code to obtain a passing input, and use that isolation point
to localise the fault. The approach, implemented in a tool
called Comedy, was evaluated on 21 small programs with
seeded faults. Comedy successfully generated debugging
reports in 88% of the faulty programs and precisely located
the fault in 36% of them.

6 EXPERIMENTAL EVALUATIONS

In this section, we address RQ3 by reviewing the exper-
imental evaluations of the surveyed papers. In particular,
we summarise their main characteristics in terms of subject
programs, source test cases, types of faults, number of meta-
morphic relations and evaluation metrics. Additionally, we
review the results of empirical studies involving humans.

Figure 6. Research vs real world subject programs

6.1 Subject programs

As a part of the review process, we collected information
about the subject programs used for the evaluation of meta-
morphic testing contributions. Appendix A shows the name,
language, size, description and the references of the papers
reporting results for each program. In the cases where the
information was unavailable in the literature, it is indicated
with “NR” (Not Reported). The table is ordered by the
number of papers that use the subject programs. Thus, the
programs at the top of the list are the most studied subject
programs in the metamorphic testing literature. Overall, we
identified 145 different subject programs. Most of them are
written in Java (46.2%) and C/C++ (35.5%), with reported
sizes ranging between 12 and 12,795 lines of code.

In experimentation, the use of real world programs,
rather than research programs, is commonly recognised as
an indicator of the maturity of a discipline [25]. To assess
this maturity, we studied the relationship between the use
of research and real world programs in metamorphic testing
experiments. Similarly to previous surveys [25], we consider
a program to be a “real world” program if it is either a com-
mercial or an open–source program, otherwise we consider
it as a “research program”. As an exception to this rule,
we consider all open source projects that are designed as
benchmarks rather than applications as research programs
(e.g., the Siemens suite). Fig. 6 presents the cumulative
view of the number of each type of program, research
and real world, by year. As illustrated, research programs
are used since 2002, while real world programs were not
introduced in metamorphic testing experiments until 2006.
Since then, the use of both types of programs has increased
with similar trends. It is noteworthy that the number of real
world programs in 2010 was higher than the number of
research programs. The cumulative number in 2015 shows
a significant advantage of research programs (83) over real
world programs (62). The overall trend, however, suggests
that metamorphic testing is maturing.

6.2 Source test cases

Metamorphic testing requires the use of source test cases
that serve as seed for the generation of follow–up test cases.
Source test cases can be generated using any traditional

14

Figure 7. Source test case generation techniques

testing techniques. We studied the different techniques used
in the literature and counted the number of papers using
each of them; the results are presented in Fig. 7. As illus-
trated, a majority of studies used random testing for the
generation of source test cases (57%), followed by those
using an existing test suite (34%). Also, several papers (6%)
use tool–based techniques such as constraint programming,
search–based testing or symbolic execution. This diversity
of usable sources supports the applicability of metamorphic
testing. It also supports the use of random testing as a cost–
effective and straightforward approach for the generation of
the initial test suite (cf. Section 4.3).

6.3 Types of faults
The effectiveness of metamorphic testing approaches is as-
sessed according to their ability to detect failures caused
by faults in the programs under test. Uncovering real bugs
is the primary goal, but they are not always available for
evaluation. Thus, most authors introduce artificial faults
(a.k.a. mutants) in the subject programs either manually or
automatically, using mutation testing tools [25]. To study the
relationship between real bugs and mutants in metamorphic
testing evaluations, we calculated the cumulative number of
papers reporting results with artificial and real bugs by year,
depicted in Fig. 8. We consider a real bug to be a latent,
initially unknown, fault in the subject program. As illus-
trated in Fig. 8, the first experimental results with mutants
were presented back in 2002, while the first real bugs were
reported in 2007. Since then, the number of papers reporting
results with both types of faults has increased, although
artificial faults show a steeper angle representing a stronger
trend. Besides this, we also counted the number of faults
used in each paper. To date, metamorphic testing has been
used to detect about 295 distinct real faults in 36 different
tools, 23 of which are real world programs, suggesting that
metamorphic testing is effective at detecting real bugs.

6.4 Metamorphic relations
The number of metamorphic relations used in experiment-
ation may be a good indicator of the effort required to

Figure 8. Artificial vs real faults

Figure 9. Number of metamorphic relations

apply metamorphic testing. As a part of the data col-
lection process, we counted the number of metamorphic
relations presented in each paper containing experimental
results. Fig. 9 classifies the papers based on the number of
metamorphic relations reported. As illustrated, the largest
portion of studies report between 5 and 9 metamorphic
relations (39%), followed by those presenting between 1 and
4 metamorphic relations (24%) and those reporting between
10 and 14 metamorphic relations (12%). Interestingly, only
9 studies (13%) presented more than 25 metamorphic re-
lations. We took a closer look at those 9 papers and ob-
served that all of them reported results for several subject
programs. These findings suggest that a modest number of
metamorphic relations (less than 10) is usually sufficient to
apply metamorphic testing with positive results.

6.5 Evaluation metrics

Numerous metrics to evaluate the effectiveness of meta-
morphic testing approaches have been proposed. Among
them, we identified two metrics intensively used in the
surveyed papers, such that they could be considered as a
de–facto standard in the metamorphic testing literature.

15

6.5.1 Mutation score
This metric is based on mutation analysis, where muta-
tion operators are applied to systematically produce ver-
sions of the program under test containing artificial faults
(“mutants”) [25]. The mutation score is the ratio of de-
tected (“killed”) mutants to the total number of mutants.
Mutants that do not change the program’s semantics and
thus cannot be detected are referred to as equivalent [25].
In theory, equivalent mutants should be excluded from
the total number of mutants, but in practice this is not
always possible since program equivalence is undecidable.
Suppose a metamorphic test suite t composed of a set of
metamorphic tests, i.e., pairs of source and follow–up test
cases. The Mutation Score (MS) of t is calculated as follows:

MS(t) =
Mk

Mt −Me
(1)

where Mk is the number of killed mutants by the meta-
morphic tests in t, Mt is the total number of mutants and
Me is the number of equivalent mutants. A variant of this
metric [71], [91], [121] is often used to calculate the ratio
of mutants detected by a given metamorphic relation r as
follows:

MS(t, r) =
Mkr

Mt −Me
(2)

where Mkr is the number of mutants killed by the
metamorphic tests in t derived from r. This metric is also
called mutation detection ratio [36].

6.5.2 Fault detection ratio
This metric calculates the ratio of test cases that detect a
given fault [41], [55], [68], [70], [71], [101], [124], [126]. The
Fault Detection Ratio (FDR) of a metamorphic test suite t
and a fault f is calculated as follows:

FDR(t, f) =
Tf
Tt

(3)

where Tf is the number of tests that detect f and Tt is the
total number of tests in t. A variant of this metric [27], [32],
[33], [37], [45], [54], [71] calculates the ratio of test cases that
detect a fault f using a given metamorphic relation r as
follows:

FDR(t, f, r) =
Tfr
Tr

(4)

where Mfr is the number of tests in t derived from the
relation r that detect the fault f , and Tr is the total number
of metamorphic tests derived from r. This metric is also
called fault discovery rate [34], [85], [128].

6.6 Empirical studies with humans

Hu et al. [29], [36] reported on a controlled experiment
to investigate the cost–effectiveness of using metamorphic
testing by 38 testers on three open–source programs. The
experiment participants were either asked to write meta-
morphic relations, or tests with assertions to check whether
the final or intermediate state of the program under test is
correct. The experiment revealed a trade–off between both

techniques, with metamorphic testing being less efficient but
more effective at detecting faults than tests with assertions.

Liu et al. [146] reported on a 3–year experience in
teaching metamorphic testing to various groups of students
at Swinburne University of Technology (Australia). The
authors explained the teaching approach followed and the
lesson learned, concluding that metamorphic testing is a
suitable technique for end–user testing. In a later paper,
Liu et al. [4] presented an empirical study to investigate
the effectiveness of metamorphic testing addressing the
oracle problem compared with random testing. For the
study, several groups of undergraduate and postgraduate
students from two different universities were recruited to
identify metamorphic relations in five subject programs of
algorithmic type. Metamorphic testing was compared to
random testing with and without oracle. Their experiment
showed that metamorphic testing was able to find more
faults than random testing with and without oracle in most
subject programs. Furthermore, it was concluded that a
small number of diverse metamorphic relations (between
3 and 6), even those identified in an ad–hoc manner, had
a similar fault-detection capability to a test oracle, i.e.,
comparing the program output with the expected one.

7 CHALLENGES

A number of open research challenges emerge from
this literature review, based on problems repeatedly
encountered throughout the reviewed papers, or gaps in
the literature. These challenges answer RQ4.

Challenge 1: Guidelines for the construction of good
metamorphic relations. For most problems, a variety
of metamorphic relations with different fault–detection
capability can be identified. It is therefore key to know the
properties of effective metamorphic relations and to provide
systematic methods for their construction. Although several
authors have reported lessons learned on the properties
of good metamorphic relations (cf. Section 4.1), these are
often complementary or even contradictory (e.g., [27],
[38]). Therefore, there is a lack of reliable guidelines for
the construction of effective metamorphic relations. Such
guidelines should provide a step–by–step process to guide
testers, both experts and beginners, in the construction of
good metamorphic relations.

Challenge 2: Prioritisation and minimisation of
metamorphic relations. In certain cases using all the
available metamorphic relations may be too expensive and
a subset of them must be selected. It is therefore important
to know how to prioritise the most effective metamorphic
relations. To this end, several authors have proposed using
code coverage [43], [46] or test case similarity [47] with
promising results. However, the applicability of those
approaches as domain–independent prioritisation criteria
still needs to be explored. Furthermore, analogously to
the concept of test suite minimisation, where redundant
test cases are removed from a suite as it evolves [147],
the use of minimisation techniques to remove redundant
metamorphic relations is an open problem where research is
needed. It is worth mentioning that test case minimisation

16

is a NP–hard problem and therefore heuristic techniques
should be explored.

Challenge 3: Generation of likely metamorphic relations.
The generation of metamorphic relations is probably the
most challenging problem to be addressed. Although
some promising results have been reported, those are
mainly restricted to the scope of numerical programs. The
generation of metamorphic relations in other domains as
well as the use of different techniques for rule inference are
topics where contributions are expected. We also foresee
a fruitful line of research exploring the synergies between
the problem of generating metamorphic relations and the
detection of program invariants [64], [148].

Challenge 4: Combination of metamorphic relations. As
presented in Section 4.2, several authors have explored
the benefits of combining metamorphic relations following
two different strategies, namely applying metamorphic
relations in a chain style (IMT) and composing metamorphic
relations to construct new relations (CMR). It remains an
open problem, however, to compare both approaches and
to provide heuristics to decide when to use one or the other.
Also, these techniques raise new research problems such us
determining whether a given set of metamorphic relations
can be combined and in which order.

Challenge 5: Automated generation of source test cases. As
described in Section 4.3, most papers use either randomly
generated or existing test suites as source tests when
applying metamorphic testing. However, there is evidence
that the source test cases influence the effectiveness of
metamorphic relations [28], [68], [69]. Promising initial
results in generating source test cases specifically for given
metamorphic relations have been achieved, but many open
questions remain about what constitutes the best possible
source test cases and how to generate them.

Challenge 6: Metamorphic testing tools. Only two out of all
119 presented a tool as main contribution [78], [82], and very
few of the papers on metamorphic testing mentioned a tool
implementing the presented techniques [64], [65], [67], [73],
[81], [89], [118], [145]. Indeed, if practitioners want to apply
metamorphic testing today, they would have to implement
their own tool, as there are no publicly available and main-
tained tools. This is a significant obstacle for a wide-spread
use of metamorphic testing in empirical research as well as
in practice.

8 CONCLUSIONS

In this technical report, we presented a literature review
on metamorphic testing covering 119 papers published
between 1998 and 2015. We analysed ratios and trends in-
dicating the main advances on the technique, its application
domains and the characteristics of experimental evaluations.
The results of the survey show that metamorphic testing is
a thriving topic with an increasing trend of contributions
on the subject. We also found evidence of the applicability
of the technique to multiple domains far beyond numerical

programs, as well as its integration with other testing tech-
niques. Furthermore, we identified an increasing number of
papers reporting the detection of faults in real world pro-
grams. All these findings suggest that metamorphic testing
is gaining maturity as an effective testing technique, not
only to alleviate the oracle problem, but also for the auto-
mated generation of test data. Finally, despite the advances
on metamorphic testing, our survey points to areas where
research is needed. We trust that this work may become a
helpful reference for future development on metamorphic
testing as well as to introduce newcomers in this promising
testing technique.

ACKNOWLEDGEMENTS

We would like to thank T. Y. Chen, Robert M. Hierons,
Phil McMinn, Amador Durán, Zhi Quan Zhou, Christian
Murphy, Huai Liu, Xiaoyuan Xie, Alberto Goffi, Gagandeep,
Carmen Castro-Cabrera, Yan Lei and Peng Wu for their
helpful comments in an earlier version of this article. We are
also grateful to the members of the SSE research group led
by Mark Harman for the insightful and inspiring discussion
during our visit at the University College London.

This work has been partially supported by the European
Commission (FEDER) and Spanish Government under
CICYT project TAPAS (TIN2012-32273) and the Andalusian
Government projects THEOS (TIC-5906) and COPAS (P12-
TIC-1867).

REFERENCES

[1] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn,
“An orchestrated survey of methodologies for automated
software test case generation,” Journal of Systems and Software,
vol. 86, no. 8, pp. 1978–2001, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2013.02.061

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo,
“The oracle problem in software testing: A survey,” Software
Engineering, IEEE Transactions on, vol. 41, no. 5, pp. 507–525, May
2015.

[4] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” Software
Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 4–22, Jan 2014.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Technical Report
HKUST-CS98-01, Department of Computer Science, The Hong
Kong University of Science and Technology, Tech. Rep., 1998.

[6] W. J. Cody, Software Manual for the Elementary Functions. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1980.

[7] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting
with applications to numerical problems,” Journal of Computer
and System Sciences, vol. 47, no. 3, pp. 549 – 595, 1993.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/002200009390044W

[8] P. E. Ammann and J. C. Knight, “Data diversity: An approach
to software fault tolerance,” IEEE Transactions on Computers,
vol. 37, no. 4, pp. 418–425, Apr. 1988. [Online]. Available:
http://dx.doi.org/10.1109/12.2185

[9] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Eleventh Annual International Workshop on
Software Technology and Engineering Practice, 2003., Sept 2003, pp.
94–100.

[10] T. H. Tse, “Research directions on model-based metamorphic
testing and verification,” in 29th Annual International Computer
Software and Applications Conference, 2005. COMPSAC 2005., vol. 1,
July 2005, pp. 332 Vol. 2–.

http://dx.doi.org/10.1016/j.jss.2013.02.061
http://www.sciencedirect.com/science/article/pii/002200009390044W
http://www.sciencedirect.com/science/article/pii/002200009390044W
http://dx.doi.org/10.1109/12.2185

17

[11] T. Y. Chen, “Metamorphic testing: A simple approach to alleviate
the oracle problem,” in Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), 2010, June 2010, pp.
1–2.

[12] W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and hardly
understood: Confessions of software testing researchers,” in 13th
International Conference on Quality Software (QSIC), 2013, July 2013,
pp. 245–252.

[13] T. Y. Chen, “Metamorphic testing: A simple method for
alleviating the test oracle problem,” in Proceedings of the 10th
International Workshop on Automation of Software Test, ser. AST
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 53–54. [Online].
Available: http://dl.acm.org/citation.cfm?id=2819261.2819278

[14] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “Metamorphic
testing: Applications and integration with other methods: Tu-
torial synopsis,” in 12th International Conference on Quality Soft-
ware (QSIC), 2012, Aug 2012, pp. 285–288.

[15] Z. Hui and S. Huang, “Achievements and challenges of meta-
morphic testing,” in ourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 73–77.

[16] U. Kanewala and J. M. Bieman, “Techniques for testing scientific
programs without an oracle,” in 5th International Workshop on
Software Engineering for Computational Science and Engineering (SE-
CSE), 2013, May 2013, pp. 48–57.

[17] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Survey of
metamorphic testing,” Journal of Frontiers of Computer Science and
Technology, vol. 3, no. 2, pp. 130–143, 2009.

[18] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based
testing without the need of oracles,” Information & Software
Technology, vol. 45, no. 1, pp. 1–9, 2003. [Online]. Available:
http://dx.doi.org/10.1016/S0950-5849(02)00129-5

[19] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The daikon system for
dynamic detection of likely invariants,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 35–45, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2007.01.015

[20] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo,
and T. Y. Chen, “Automated functional testing of online search
services,” Software Testing, Verification and Reliability Journal,
vol. 22, no. 4, pp. 221–243, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.437

[21] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele University and NICTA, Tech. Rep., 2004.

[22] J. Webster and R. Watson, “Analyzing the past to prepare
for the future: Writing a literature review,” MIS Quarterly,
vol. 26, no. 2, pp. xiii–xxiii, 2002. [Online]. Available:
http://www.misq.org/archivist/vol/no26/issue2/GuestEd.pdf

[23] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated ana-
lysis of feature models 20 years later: A literature review,”
Information Systems, vol. 35, no. 6, pp. 615 – 636, 2010.

[24] Y. J. M. Harman and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in 8th IEEE
International Conference on Software Testing, Verification and Valida-
tion, Graz, Austria, April 2015, keynote.

[25] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 649–678, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2010.62

[26] A. Harzing, “Publish or Perish. http://www.harzing.com/pop.
htm,” 2007.

[27] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case studies
on the selection of useful relations in metamorphic testing,”
in Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC 2004), 2004, pp.
569–583.

[28] T. Y. Chen, F.-C. Kuo, Y. Liu, and A. Tang, “Metamorphic testing
and testing with special values,” in 5th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2004, pp. 128–134.

[29] Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu, “Experimental
study to compare the use of metamorphic testing and assertion
checking,” Journal of Software, vol. 20, no. 10, pp. 2637–2654, 2009.

[30] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An in-
tegrated method for program proving, testing, and debugging,”
IEEE Transactions on Software Engineering, vol. 37, no. 1, pp. 109–
125, Jan 2011.

[31] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and
T. Y. Chen, “Testing and validating machine learning classifiers

by metamorphic testing,” The Journal of Systems and Software,
vol. 84, no. 4, pp. 544–558, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2010.11.920

[32] A. C. Barus, T. Y. Chen, D. Grant, F.-C. Kuo, and
M. F. Lau, “Testing of heuristic methods: A case study
of greedy algorithm,” in Software Engineering Techniques, ser.
Lecture Notes in Computer Science, Z. Huzar, R. Koci,
B. Meyer, B. Walter, and J. Zendulka, Eds. Springer Berlin
Heidelberg, 2011, vol. 4980, pp. 246–260. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22386-0 19

[33] F.-C. Kuo, S. Liu, and T. Y. Chen, “Testing a binary space
partitioning algorithm with metamorphic testing,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC
’11. New York, NY, USA: ACM, 2011, pp. 1482–1489. [Online].
Available: http://doi.acm.org/10.1145/1982185.1982502

[34] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“Metamorphic testing for web services: Framework and a case
study,” in IEEE International Conference on Web Services (ICWS),
2011, July 2011, pp. 283–290.

[35] Z.-W. Hui, S. Huang, H. Li, J.-H. Liu, and L.-P. Rao, “Measurable
metrics for qualitative guidelines of metamorphic relation,” in
Computer Software and Applications Conference (COMPSAC), 2015
IEEE 39th Annual, vol. 3, July 2015, pp. 417–422.

[36] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse, “An
empirical comparison between direct and indirect test result
checking approaches,” in Proceedings of the 3rd International
Workshop on Software Quality Assurance, ser. SOQUA ’06. New
York, NY, USA: ACM, 2006, pp. 6–13. [Online]. Available:
http://doi.acm.org/10.1145/1188895.1188901

[37] T. Y. Chen, F.-C. Kuo, R. Merkel, and W. K. Tam, “Testing an open
source suite for open queuing network modelling using meta-
morphic testing technique,” in 14th IEEE International Conference
on Engineering of Complex Computer Systems, June 2009, pp. 23–29.

[38] J. Mayer and R. Guderlei, “An empirical study on the selection
of good metamorphic relations,” in 30th Annual International
Computer Software and Applications Conference, vol. 1, Sept 2006,
pp. 475–484.

[39] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic testing and its applications,” in Proceedings
of the 8th International Symposium on Future Software Technology
(ISFST 2004). Software Engineers Association, 2004.

[40] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An
innovative approach for testing bioinformatics programs
using metamorphic testing,” BioMed Central Bioinformatics
Journal, vol. 10, no. 1, p. 24, 2009. [Online]. Available:
http://www.biomedcentral.com/1471-2105/10/24

[41] G. Batra and J. Sengupta, “An efficient metamorphic testing
technique using genetic algorithm,” in Information Intelligence,
Systems, Technology and Management, ser. Communications in
Computer and Information Science, S. Dua, S. Sahni, and
D. Goyal, Eds. Springer Berlin Heidelberg, 2011, vol. 141,
pp. 180–188. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19423-8 19

[42] L. Chen, L. Cai, J. Liu, Z. Liu, S. Wei, and P. Liu, “An optimized
method for generating cases of metamorphic testing,” in 6th
International Conference on New Trends in Information Science and
Service Science and Data Mining (ISSDM), 2012, Oct 2012, pp. 439–
443.

[43] J. Ding, T. Wu, J. Q. Lu, and X. Hu, “Self-checked metamorphic
testing of an image processing program,” in 2010 Fourth Inter-
national Conference on Secure Software Integration and Reliability
Improvement (SSIRI), June 2010, pp. 190–197.

[44] G. Dong, T. Guo, and P. Zhang, “Security assurance with program
path analysis and metamorphic testing,” in 4th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
2013, May 2013, pp. 193–197.

[45] F.-C. Kuo, Z. Q. Zhou, J. Ma, and G. Zhang, “Metamorphic testing
of decision support systems: a case study,” Software, IET, vol. 4,
no. 4, pp. 294–301, August 2010.

[46] M. Asrafi, H. Liu, and F.-C. Kuo, “On testing effectiveness of
metamorphic relations: A case study,” in Fifth International Con-
ference on Secure Software Integration and Reliability Improvement
(SSIRI), 2011, June 2011, pp. 147–156.

[47] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between
the effectiveness of metamorphic relations and dissimilarities of
test case executions,” in 13th International Conference on Quality
Software (QSIC), 2013, July 2013, pp. 153–162.

http://dl.acm.org/citation.cfm?id=2819261.2819278
http://dx.doi.org/10.1016/S0950-5849(02)00129-5
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1002/stvr.437
http://www.misq.org/archivist/vol/no26/issue2/GuestEd.pdf
http://dx.doi.org/10.1109/TSE.2010.62
http://www.harzing.com/pop.htm
http://www.harzing.com/pop.htm
http://dx.doi.org/10.1016/j.jss.2010.11.920
http://dx.doi.org/10.1007/978-3-642-22386-0_19
http://doi.acm.org/10.1145/1982185.1982502
http://doi.acm.org/10.1145/1188895.1188901
http://www.biomedcentral.com/1471-2105/10/24
http://dx.doi.org/10.1007/978-3-642-19423-8_19
http://dx.doi.org/10.1007/978-3-642-19423-8_19

18

[48] Z. Q. Zhou, “Using coverage information to guide test case
selection in adaptive random testing,” in Computer Software and
Applications Conference Workshops, July 2010, pp. 208–213.

[49] R. Just and F. Schweiggert, “Automating software tests with
partial oracles in integrated environments,” in Proceedings of
the 5th Workshop on Automation of Software Test, ser. AST ’10.
New York, NY, USA: ACM, 2010, pp. 91–94. [Online]. Available:
http://doi.acm.org/10.1145/1808266.1808280

[50] ——, “Automating unit and integration testing with partial
oracles,” Software Quality Journal, vol. 19, no. 4, pp. 753–
769, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11219-011-9151-x

[51] X. Xie, J. Tu, T. Y. Chen, and B. Xu, “Bottom-up integration testing
with the technique of metamorphic testing,” in 14th International
Conference on Quality Software (QSIC), 2014, Oct 2014, pp. 73–78.

[52] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S.
Yau, “Integration testing of context-sensitive middleware-based
applications: a metamorphic approach.” International Journal of
Software Engineering and Knowledge Engineering, vol. 16, no. 5, pp.
677–704, 2006. [Online]. Available: http://dblp.uni-trier.de/db/
journals/ijseke/ijseke16.html#ChanCLTY06

[53] Z. Hui and S. Huang, “A formal model for metamorphic relation
decomposition,” in Fourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 64–68.

[54] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing
metamorphic relations,” in 12th International Conference on Quality
Software (QSIC), 2012, Aug 2012, pp. 59–68.

[55] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Case studies
on testing with compositional metamorphic relations,” Journal of
Southeast University (English Edition), vol. 24, no. 4, pp. 437–443,
2008.

[56] U. Kanewala and J. M. Bieman, “Using machine learning tech-
niques to detect metamorphic relations for programs without
test oracles,” in IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), 2013, Nov 2013, pp. 1–10.

[57] U. Kanewala, “Techniques for automatic detection of meta-
morphic relations,” in IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),
2014, March 2014, pp. 237–238.

[58] C. Murphy, G. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” Department of
Computer Science, Columbia University, New York NY, Tech.
Rep., 2008.

[59] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting
metamorphic relations for testing scientific software: a machine
learning approach using graph kernels,” Software Testing,
Verification and Reliability, 2015. [Online]. Available: http:
//dx.doi.org/10.1002/stvr.1594

[60] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and
H. Mei, “Search-based inference of polynomial metamorphic
relations,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 701–712. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642994

[61] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè, “Cross-checking oracles from intrinsic software
redundancy,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 931–942. [Online]. Available: http:
//doi.acm.org/10.1145/2568225.2568287

[62] A. Goffi, A. Gorla, A. Mattavelli, M. Pezze, and P. Tonella,
“Search-based synthesis of equivalent method sequences,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 366–376. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635888

[63] A. Goffi, “Automatic generation of cost-effective test oracles,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 678–681. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591078

[64] F. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference
of likely metamorphic properties to support differential
testing,” in Proceedings of the 10th International Workshop
on Automation of Software Test, ser. AST ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 55–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819261.2819279

[65] T. Y. Chen, P. Poon, and X. Xie, “METRIC: METamorphic Relation
Identification based on the Category-choice framework,” Journal
of Systems and Software, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121215001624

[66] T. Y. Chen, P.-L. Poon, S.-F. Tang, and T. H. Tse, “Dessert:
a divide-and-conquer methodology for identifying categories,
choices, and choice relations for test case generation,” Software
Engineering, IEEE Transactions on, vol. 38, no. 4, pp. 794–809, July
2012.

[67] A. Gotlieb and B. Botella, “Automated metamorphic testing,” in
Proceedings of the 27th Annual International Conference on Computer
Software and Applications, ser. COMPSAC ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 34–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=950785.950794

[68] P. Wu, X. Shi, J. Tang, H. Lin, and T. Y. Chen, “Metamorphic
testing and special case testing: A case study,” Journal of Software,
vol. 16, pp. 1210–1220, 2005.

[69] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés,
“Automated metamorphic testing on the analyses of feature
models,” Information and Software Technology, vol. 53, no. 3, pp.
245 – 258, 2011. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584910001904

[70] P. Wu, “Iterative metamorphic testing,” in 29th Annual In-
ternational Computer Software and Applications Conference, 2005.
COMPSAC 2005, vol. 1, July 2005, pp. 19–24.

[71] G. Dong, C. Nie, B. Xu, and L. Wang, “An effective iterative
metamorphic testing algorithm based on program path analysis,”
in eventh International Conference on Quality Software, 2007. QSIC
’07, Oct 2007, pp. 292–297.

[72] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortes,
“Automated test data generation on the analyses of feature
models: A metamorphic testing approach,” in Third International
Conference on Software Testing, Verification and Validation (ICST),
2010, April 2010, pp. 35–44.

[73] S. Segura, A. Durán, A. B. Sánchez, D. L. Berre, E. Lonca,
and A. Ruiz-Cortés, “Automated metamorphic testing of
variability analysis tools,” Software Testing, Verification and
Reliability, vol. 25, no. 2, pp. 138–163, 2015. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1566

[74] R. Guderlei and J. Mayer, “Statistical metamorphic testing: Test-
ing programs with random output by means of statistical hy-
pothesis tests and metamorphic testing,” in Seventh International
Conference on Quality Software, 2007. QSIC ’07, Oct 2007, pp. 404–
409.

[75] C. Murphy and G. Kaiser, “Empirical evaluation of approaches to
testing applications without test oracles,” Columbia University
Computer Science Technical Reports, Tech. Rep. CUCS-039-10,
2010. [Online]. Available: http://hdl.handle.net/10022/AC:P:
10525

[76] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano,
G. Kaiser, I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil,
“On effective testing of health care simulation software,” in
Proceedings of the 3rd Workshop on Software Engineering in Health
Care, ser. SEHC ’11. New York, NY, USA: ACM, 2011, pp.
40–47. [Online]. Available: http://doi.acm.org/10.1145/1987993.
1988003

[77] C. Murphy, “Using runtime testing to detect defects in
applications without test oracles,” in Proceedings of the
2008 Foundations of Software Engineering Doctoral Symposium, ser.
FSEDS ’08. New York, NY, USA: ACM, 2008, pp. 21–24. [Online].
Available: http://doi.acm.org/10.1145/1496653.1496659

[78] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime asser-
tion checking to automate metamorphic testing in applications
without test oracles,” in Second International Conference on Software
Testing Verification and Validation, ICST 2009, 2009.

[79] “Java Modeling Language (JML). http://www.eecs.ucf.edu/
∼leavens/JML//index.shtml,” accessed on May 2015.

[80] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing.” in Interna-
tional conference on software engineering and knowledge engineering,
2008, pp. 867—-872.

[81] C. Murphy, K. Shen, and G. Kaiser, “Automatic system
testing of programs without test oracles,” in Proceedings of
the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009,
pp. 189–200. [Online]. Available: http://doi.acm.org/10.1145/
1572272.1572295

http://doi.acm.org/10.1145/1808266.1808280
http://dx.doi.org/10.1007/s11219-011-9151-x
http://dx.doi.org/10.1007/s11219-011-9151-x
http://dblp.uni-trier.de/db/journals/ijseke/ijseke16.html#ChanCLTY06
http://dblp.uni-trier.de/db/journals/ijseke/ijseke16.html#ChanCLTY06
http://dx.doi.org/10.1002/stvr.1594
http://dx.doi.org/10.1002/stvr.1594
http://doi.acm.org/10.1145/2642937.2642994
http://doi.acm.org/10.1145/2568225.2568287
http://doi.acm.org/10.1145/2568225.2568287
http://doi.acm.org/10.1145/2635868.2635888
http://doi.acm.org/10.1145/2591062.2591078
http://dl.acm.org/citation.cfm?id=2819261.2819279
http://www.sciencedirect.com/science/article/pii/S0164121215001624
http://www.sciencedirect.com/science/article/pii/S0164121215001624
http://dl.acm.org/citation.cfm?id=950785.950794
http://www.sciencedirect.com/science/article/pii/S0950584910001904
http://www.sciencedirect.com/science/article/pii/S0950584910001904
http://dx.doi.org/10.1002/stvr.1566
http://hdl.handle.net/10022/AC:P:10525
http://hdl.handle.net/10022/AC:P:10525
http://doi.acm.org/10.1145/1987993.1988003
http://doi.acm.org/10.1145/1987993.1988003
http://doi.acm.org/10.1145/1496653.1496659
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://doi.acm.org/10.1145/1572272.1572295
http://doi.acm.org/10.1145/1572272.1572295

19

[82] H. Zhu, “Jfuzz: A tool for automated java unit testing based on
data mutation and metamorphic testing methods,” in Trustworthy
Systems and Their Applications (TSA), 2015 Second International
Conference on, July 2015, pp. 8–15.

[83] W. K. Chan, S. C. Cheung, and K. R. P. Leung, “Towards a
metamorphic testing methodology for service-oriented software
applications,” in Fifth International Conference on Quality Software,
2005. (QSIC 2005), Sept 2005, pp. 470–476.

[84] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “A metamorphic
testing approach for online testing of service-oriented software
applications.” International Journal of Web Services Research,
vol. 4, no. 2, pp. 61–81, 2007. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07

[85] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y.
Chen, “A metamorphic relation-based approach to testing web
services without oracles,” International Journal of Web Services
Research, vol. 9, no. 1, pp. 51–73, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.4018/jwsr.2012010103

[86] C. Castro-Cabrera and I. Medina-Bulo, “An approach to meta-
morphic testing for ws-bpel compositions,” in Proceedings of the
International Conference on e-Business (ICE-B), 2011, July 2011, pp.
1–6.

[87] ——, “Application of metamorphic testing to a case study in web
services compositions,” in E-Business and Telecommunications,
ser. Communications in Computer and Information Science,
M. Obaidat, J. Sevillano, and J. Filipe, Eds. Springer Berlin
Heidelberg, 2012, vol. 314, pp. 168–181. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35755-8 13

[88] “OASIS: Web Services Business Process Execution Language 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
html,” accessed on May 2015.

[89] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated
functional testing of web search engines in the absence of an
oracle,” Department of Computer Science, The University of
Hong Kong, Tech. Rep. TR-2007-06, 2007.

[90] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” Software
Engineering, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[91] J. Mayer and R. Guderlei, “On random testing of image pro-
cessing applications,” in Sixth International Conference on Quality
Software, 2006. QSIC 2006, Oct 2006, pp. 85–92.

[92] R. Guderlei and J. Mayer, “Towards automatic testing of
imaging software by means of random and metamorphic
testing,” International Journal of Software Engineering and
Knowledge Engineering, vol. 17, no. 06, pp. 757–781, 2007.
[Online]. Available: http://www.worldscientific.com/doi/abs/
10.1142/S0218194007003471

[93] W. K. Chan, J. C. F. Ho, and T. H. Tse, “Piping classification to
metamorphic testing: An empirical study towards better effect-
iveness for the identification of failures in mesh simplification
programs,” in 31st Annual International Computer Software and
Applications Conference, 2007. COMPSAC 2007, vol. 1, July 2007,
pp. 397–404.

[94] ——, “Finding failures from passed test cases: Improving
the pattern classification approach to the testing of mesh
simplification programs,” Software Testing, Verification and
Reliability Journal, vol. 20, no. 2, pp. 89–120, Jun. 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.v20:2

[95] R. Just and F. Schweiggert, “Evaluating testing strategies for
imaging software by means of mutation analysis,” in International
Conference on Software Testing, Verification and Validation Workshops,
2009. ICSTW ’09, April 2009, pp. 205–209.

[96] T. Jameel, L. Mengxiang, and C. Liu, “Test oracles based on
metamorphic relations for image processing applications,” in
Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS Interna-
tional Conference on, June 2015, pp. 1–6.

[97] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing
context-sensitive middleware-based software applications,” in
Computer Software and Applications Conference, 2004. COMPSAC
2004. Proceedings of the 28th Annual International, Sept 2004, pp.
458–466 vol.1.

[98] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau, “A
metamorphic approach to integration testing of context-sensitive
middleware-based applications,” in Fifth International Conference
on Quality Software, 2005. (QSIC 2005), Sept 2005, pp. 241–249.

[99] W. K. Chan, T. Y. Chen, S. C. Cheung, T. H. Tse, and
Z. Zhang, “Towards the testing of power-aware software

applications for wireless sensor networks,” in Ada Europe 2007
- Reliable Software Technologies, ser. Lecture Notes in Computer
Science, N. Abdennadher and F. Kordon, Eds. Springer Berlin
Heidelberg, 2007, vol. 4498, pp. 84–99. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73230-3 7

[100] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded soft-
ware by metamorphic testing: A wireless metering system case
study,” in IEEE 36th Conference on Local Computer Networks (LCN),
2011, Oct 2011, pp. 291–294.

[101] M. Jiang, T. Y. Chen, F.-C. Kuo, and Z. Ding, “Testing central pro-
cessing unit scheduling algorithms using metamorphic testing,”
in 4th IEEE International Conference on Software Engineering and
Service Science (ICSESS), 2013, May 2013, pp. 530–536.

[102] K. Y. Sim, W. K. S. Pao, and C. Lin, “Metamorphic testing
using geometric interrogation technique and its application,”
in Proceedings of the 2nd International Conference of Electrical En-
gineering/Electronics, Computer, Telecommunications, and Information
Technology, 2005, pp. 91–95.

[103] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang, “Conformance
testing of network simulators based on metamorphic testing
technique,” in Formal Techniques for Distributed Systems, ser.
Lecture Notes in Computer Science, D. Lee, A. Lopes,
and A. Poetzsch-Heffter, Eds. Springer Berlin Heidelberg,
2009, vol. 5522, pp. 243–248. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-02138-1 19

[104] “OMNeT++ system. http://www.omnetpp.org,” accessed on
April 2015.

[105] J. Ding, T. Wu, D. Xu, J. Q. Lu, and X. Hu, “Metamorphic testing
of a monte carlo modeling program,” in Proceedings of the 6th
International Workshop on Automation of Software Test, ser. AST ’11.
New York, NY, USA: ACM, 2011, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1982595.1982597

[106] A. Nuñez and R. M. Hierons, “A methodology for validating
cloud models using metamorphic testing,” annals of telecommu-
nications - annales des télécommunications, pp. 1–9, 2014. [Online].
Available: http://dx.doi.org/10.1007/s12243-014-0442-7

[107] A. Nuñez, J. L. Vazquez-Poletti, A. C. Caminero, G. G.
Castañe, J. Carretero, and I. M. Llorente, “icancloud: A flexible
and scalable cloud infrastructure simulator,” Journal of Grid
Computing, vol. 10, no. 1, pp. 185–209, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10723-012-9208-5

[108] P. C. Cañizares, A. Núñez, M. Núñez, and J. J. Pardo,
“A methodology for designing energy-aware systems for
computational science,” Procedia Computer Science, vol. 51, pp.
2804 – 2808, 2015, international Conference On Computational
Science, {ICCS} 2015Computational Science at the Gates
of Nature. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877050915012466

[109] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Application of metamorphic testing to supervised classifiers,”
in 9th International Conference on Quality Software, 2009. QSIC ’09.,
Aug 2009, pp. 135–144.

[110] J. E. Gewehr, M. Szugat, and R. Zimmer, “Bioweka—extending
the weka framework for bioinformatics,” Bioinformatics, vol. 23,
no. 5, pp. 651–653, Feb. 2007. [Online]. Available: http:
//dx.doi.org/10.1093/bioinformatics/btl671

[111] Z. Jing, H. Xuegang, and Z. Bin, “An evaluation approach for the
program of association rules algorithm based on metamorphic
relations,” Journal of Electronics (China), vol. 28, no. 4-6, pp.
623–631, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11767-012-0743-9

[112] L. L. Pullum and O. Ozmen, “Early results from metamorphic
testing of epidemiological models,” in ASE/IEEE International
Conference on BioMedical Computing (BioMedCom), 2012, Dec 2012,
pp. 62–67.

[113] A. Ramanathan, C. A. Steed, and L. L. Pullum, “Verification
of compartmental epidemiological models using metamorphic
testing, model checking and visual analytics,” in ASE/IEEE In-
ternational Conference on BioMedical Computing (BioMedCom), 2012,
Dec 2012, pp. 68–73.

[114] S. Beydeda, “Self-metamorphic-testing components,” in 30th An-
nual International Computer Software and Applications Conference,
2006. COMPSAC ’06, vol. 2, Sept 2006, pp. 265–272.

[115] X. Lu, Y. Dong, and C. Luo, “Testing of component-based
software: A metamorphic testing methodology,” in International
Conference on Ubiquitous Intelligence Computing and International
Conference on Autonomic Trusted Computing, Oct 2010, pp. 272–276.

http://dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07
http://dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07
http://dx.doi.org/10.4018/jwsr.2012010103
http://dx.doi.org/10.1007/978-3-642-35755-8_13
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.worldscientific.com/doi/abs/10.1142/S0218194007003471
http://www.worldscientific.com/doi/abs/10.1142/S0218194007003471
http://dx.doi.org/10.1002/stvr.v20:2
http://dx.doi.org/10.1007/978-3-540-73230-3_7
http://dx.doi.org/10.1007/978-3-642-02138-1_19
http://dx.doi.org/10.1007/978-3-642-02138-1_19
http://www.omnetpp.org
http://doi.acm.org/10.1145/1982595.1982597
http://dx.doi.org/10.1007/s12243-014-0442-7
http://dx.doi.org/10.1007/s10723-012-9208-5
http://www.sciencedirect.com/science/article/pii/S1877050915012466
http://www.sciencedirect.com/science/article/pii/S1877050915012466
http://dx.doi.org/10.1093/bioinformatics/btl671
http://dx.doi.org/10.1093/bioinformatics/btl671
http://dx.doi.org/10.1007/s11767-012-0743-9
http://dx.doi.org/10.1007/s11767-012-0743-9

20

[116] T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing
of programs on partial differential equations: A case study,”
in Proceedings of the 26th International Computer Software and
Applications Conference on Prolonging Software Life: Development
and Redevelopment, ser. COMPSAC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 327–333. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645984.675903

[117] C. Aruna and R. S. R. Prasad, “Metamorphic relations to im-
prove the test accuracy of multi precision arithmetic software
applications,” in International Conference on Advances in Comput-
ing, Communications and Informatics (ICACCI, 2014, Sept 2014, pp.
2244–2248.

[118] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for compiler based on metamorphic testing technique,”
in 17th Asia Pacific Software Engineering Conference (APSEC), 2010,
Nov 2010, pp. 270–279.

[119] V. Le, M. Afshari, and Z. Su, “Compiler validation via
equivalence modulo inputs,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,
pp. 216–226. [Online]. Available: http://doi.acm.org/10.1145/
2594291.2594334

[120] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “An effective testing
method for end-user programmers,” in Proceedings of the First
Workshop on End-user Software Engineering, ser. WEUSE I. New
York, NY, USA: ACM, 2005, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083236

[121] K. Y. Sim, C. S. Low, and F.-C. Kuo, “Detecting faults in tech-
nical indicator computations for financial market analysis,” in
2nd International Conference on Information Science and Engineering
(ICISE), 2010, Dec 2010, pp. 2749–2754.

[122] “MetaTrader 4 Trading Terminal. http://www.metaquotes.net/
en/metatrader4/trading terminal,” accessed April 2015.

[123] S. Yoo, “Metamorphic testing of stochastic optimisation,” in
Third International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), 2010, April 2010, pp. 192–201.

[124] Y. Yao, S. Huang, and M. Ji, “Research on metamorphic
testing for oracle problem of integer bugs,” in Fourth
International Conference on Advances in Computer Science and
Information Engineering, ser. Advances in Intelligent and
Soft Computing, D. Jin and S. Lin, Eds. Springer Berlin
Heidelberg, 2012, vol. 168, pp. 95–100. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30126-1 16

[125] Y. Yao, C. Zheng, S. Huang, and Z. Ren, “Research on meta-
morphic testing: A case study in integer bugs detection,” in
Fourth International Conference on Intelligent Systems Design and
Engineering Applications, 2013, Nov 2013, pp. 488–493.

[126] Z. Hui, S. Huang, Z. Ren, and Y. Yao, “Metamorphic testing
integer overflow faults of mission critical program: A case study,”
Mathematical Problems in Engineering, vol. 2013, 2013.

[127] G. Batra and G. Singh, “An automated metamorphic testing
technique for designing effective metamorphic relations,” in
Contemporary Computing, ser. Communications in Computer
and Information Science, M. Parashar, D. Kaushik, O. Rana,
R. Samtaney, Y. Yang, and A. Zomaya, Eds. Springer Berlin
Heidelberg, 2012, vol. 306, pp. 152–163. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32129-0 20

[128] C. Sun, Z. Wang, and G. Wang, “A property-based testing
framework for encryption programs,” Frontiers of Computer
Science, vol. 8, no. 3, pp. 478–489, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11704-014-3040-y

[129] C. Aruna and R. S. R. Prasad, “Adopting metamorphic relations
to verify non-testable graph theory algorithms,” in Advances in
Computing and Communication Engineering (ICACCE), 2015 Second
International Conference on, May 2015, pp. 673–678.

[130] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Meta-
morphic model-based testing applied on nasa dat – an experience
report,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 2, May 2015, pp. 129–138.

[131] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing in the
absence of an oracle,” in Proceedings of the 25th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC
2001). IEEE Computer Society Press, 2001, pp. 172–178.

[132] C. Cadar and K. Sen, “Symbolic execution for software
testing: Three decades later,” Communications of the ACM,

vol. 56, no. 2, pp. 82–90, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408795

[133] I. Erete and A. Orso, “Optimizing constraint solving to better
support symbolic execution,” in Workshop on Constraints in Soft-
ware Testing, Verification, and Analysis, 2011.

[134] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An
integrated method based on global symbolic evaluation and
metamorphic testing,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser.
ISSTA ’02. New York, NY, USA: ACM, 2002, pp. 191–195.
[Online]. Available: http://doi.acm.org/10.1145/566172.566202

[135] G. Dong, S. Wu, G. Wang, T. Guo, and Y. Huang, “Security
assurance with metamorphic testing and genetic algorithm,”
in IEEE/WIC/ACM International Conference onWeb Intelligence and
Intelligent Agent Technology (WI-IAT), 2010, vol. 3, Aug 2010, pp.
397–401.

[136] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Spectrum-based fault
localization: Testing oracles are no longer mandatory,” in 11th
International Conference on Quality Software (QSIC), 2011, July 2011,
pp. 1–10.

[137] ——, “Metamorphic slice: An application in spectrum-based
fault localization,” Information and Software Technology, vol. 55,
no. 5, pp. 866 – 879, 2013. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950584912001759

[138] “Siemens Suite. http://sir.unl.edu/portal/bios/tcas.php#
siemens,” accessed May 2015.

[139] Y. Lei, X. Mao, and T. Y. Chen, “Backward-slice-based statistical
fault localization without test oracles,” in 13th International Con-
ference on Quality Software (QSIC), 2013, July 2013, pp. 212–221.

[140] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault
localization using program slices,” in Computer Software and Ap-
plications Conference, July 2012, pp. 1–10.

[141] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai, “Impacts of
test suite’s class imbalance on spectrum-based fault localization
techniques,” in 13th International Conference on Quality Software
(QSIC), 2013, July 2013, pp. 260–267.

[142] C. Aruna and R. S. R. Prasad, “Testing approach for dynamic
web applications based on automated test strategies,” in ICT and
Critical Infrastructure: Proceedings of the 48th Annual Convention
of Computer Society of India- Vol II, ser. Advances in Intelligent
Systems and Computing, S. C. Satapathy, P. S. Avadhani, S. K.
Udgata, and S. Lakshminarayana, Eds. Springer International
Publishing, 2014, vol. 249, pp. 399–410. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-03095-1 43

[143] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst, “Finding bugs in dynamic web applications,”
in International Symposium on Software Testing and Analysis,
ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp. 261–
272. [Online]. Available: http://doi.acm.org/10.1145/1390630.
1390662

[144] H. Liu, I. I. Yusuf, H. W. Schmidt, and T. Y. Chen,
“Metamorphic fault tolerance: An automated and systematic
methodology for fault tolerance in the absence of test oracle,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 420–423. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591109

[145] H. Jin, Y. Jiang, N. Liu, C. Xu, X. Ma, and J. Lu, “Concolic
metamorphic debugging,” in Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2, July 2015,
pp. 232–241.

[146] H. Liu, F.-C. Kuo, and T. Y. Chen, “Teaching an end-user testing
methodology,” in 23rd IEEE Conference on Software Engineering
Education and Training (CSEE T), March 2010, pp. 81–88.

[147] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.
[Online]. Available: http://dx.doi.org/10.1002/stvr.430

[148] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99. New York,
NY, USA: ACM, 1999, pp. 213–224. [Online]. Available:
http://doi.acm.org/10.1145/302405.302467

http://dl.acm.org/citation.cfm?id=645984.675903
http://doi.acm.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/1082983.1083236
http://www.metaquotes.net/en/metatrader4/trading_terminal
http://www.metaquotes.net/en/metatrader4/trading_terminal
http://dx.doi.org/10.1007/978-3-642-30126-1_16
http://dx.doi.org/10.1007/978-3-642-32129-0_20
http://dx.doi.org/10.1007/s11704-014-3040-y
http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/566172.566202
http://www.sciencedirect.com/science/article/pii/S0950584912001759
http://www.sciencedirect.com/science/article/pii/S0950584912001759
http://sir.unl.edu/portal/bios/tcas.php#siemens
http://sir.unl.edu/portal/bios/tcas.php#siemens
http://dx.doi.org/10.1007/978-3-319-03095-1_43
http://doi.acm.org/10.1145/1390630.1390662
http://doi.acm.org/10.1145/1390630.1390662
http://doi.acm.org/10.1145/2591062.2591109
http://dx.doi.org/10.1002/stvr.430
http://doi.acm.org/10.1145/302405.302467

21

APPENDIX A
SUBJECT PROGRAMS IN METAMORPHIC TESTING

Name Language Size Description References

TCAS C/C++ 173 Onboard aircraft conflict detection (Siemens suite) [35], [46], [124], [126], [136],
[137], [139], [141]

Weka Java NR Machine learning application [31], [51], [64], [75], [78], [81],
[109], [111]

Grep C/C++ 1006 Command-line tool for pattern matching [47], [136], [137], [139], [141]
Replace C/C++ 563 Regular expression matching and substitutions (Siemens suite) [30], [136], [137], [139], [141]
Print tokens C/C++ 342 Lexical analyzer (Siemens suite) [136], [137], [139], [141]
Print tokens2 C/C++ 355 Lexical analyzer (Siemens suite) [136], [137], [139], [141]
Schedule C/C++ 292 Priority scheduler (Siemens suite) [136], [137], [139], [141]
Schedule2 C/C++ 262 Priority scheduler (Siemens suite) [136], [137], [139], [141]
Tot info C/C++ 273 Information measure (Siemens suite) [136], [137], [139], [141]
TriSquareJ Java 30 Returns the type and square of a triangle [42], [44], [71], [135]
Boyer Java 241 Returns the index of the first occurrence of a pattern within a text [29], [36], [145]
FaMa Java NR Feature model analysis tool [69], [72], [73]
GCC C/C++ NR C compiler [118], [119]
GeoStoch Java NR Matrix determinant computation [38], [91], [92]
Google Online N/A Online search engine [20], [89], [90]
JJ2000 library Java NR jpeg2000 image encoder/decoder [49], [50], [95]
MartiRank C/C++ NR Ranking algorithm [58], [75], [81]
PAYL C/C++ NR Anomaly-based instrusion detection system [58], [81], [117]
SeqMap C/C++ 1783 Tool for mapping short sequence reads to a reference genome [40], [136], [137]
ShortestPath Java 271 Mesh simplification algorithm [27], [93], [129]
SpMatMult C/C++ 35 Sparse matrix multiplication (JASPA benchmark) [55], [68], [70]
Trityp C/C++ 30 Triangle classification program [41], [55], [67]
ATM Java 136 Automatic teller machine web service [34], [85]
C4.5 C/C++ NR Algorithm for building decision trees [75], [81]
CommonsMath1 Java 1626 Apache Mathematical library [59], [60]
Bsearch C/C++ 43 Binary search within a sorted array [28], [67]
Jboolexpr Java 231 Boolean string expressions evaluation [29], [36]
Jsim Java NR Discrete even simulator [75], [76]
Knapsack Java 180 Knapsack optimization algorithm [46], [64]
LiveSearch Online N/A Online search engine [20], [89]
Melax Java NR Polygon reduction algorithm [93], [94]
Quadric Java NR Mesh simplification algorithm [93], [94]
QuadricTri Java NR Mesh simplification algorithm [93], [94]
Sine C/C++ 99 Sine calculation [28], [35]
SPLAR Java NR Feature model analysis tool [69], [73]
TxnTableSorter Java 281 Personal accounting software [29], [36]
Yahoo Online N/A Online search engine [20], [89]
2D-MatrixSearch Java 34 Searches for a value in an m x n matrix [145]
35Math Java 7–45 35 mathematical functions [56]
3DCell Fortran90 5600 3D cell structure reconstruction [43]
Apache Mahout Java NR Machine learning library [59]
Arhant-II C/C++ NR Real-time mathematical C project [117]
Aspcudf C/C++ CUDF document analyser [73]
Baidu NR NR Online search engine [90]
Bank C# NR Banking system application [127]
Bash C/C++ 5984 Command-line interpreter [47]
BigInt C/C++ 500 Calculator for very large integers [47]
Bing NR NR Online search engine [90]
BSP-TreeVS C/C++ NR Surface visibility using Binary Space Partitioning (BSP) tree [33]
Cabot Java NR LANDMARC RFID-based location sensing algorithm [52]
Chinese Bing NR NR Online search engine [90]
Clasp NR Conflict-driven answer SAT solver [73]
ClosestPair Java 370 Princeton algorithm for finding the closest pair [145]
Colt project Java NR Scientific and technical computing library [59]
CommonsMath2 Java NR Matrix determinant computation [38]
ConnectedC8 Java 215 Labeling of connected components in binary images [92]
CpWiki C/C++ 125 Return the longest path in a graph and its length [47]
CriticalPath NR NR Return the longest path in a graph and its length [27]
Cudf-check C/C++ CUDF document analyser [73]
Decider Java 12795 Decision support system [45]
DecodingWays Java 78 Return the number of ways to decode an encoded message [145]
Determinant1 Java NR Matrix determinant computation (Michael Flanagan’s implementation) [38]
Determinant2 Java NR Matrix determinant computation (Jon Squire’s implementation) [38]
Determinant3 Java 30 Matrix determinant computation [135]
DistinctSubsequence Java 32 Count the distinct subsequences of an string in another string [145]
Dnapars NR NR Phylogenetic program [54]
Editing distance Java 73 Enhanced edit distance algorithm [145]
Edmonds-Karp Java 229 Maximum flow algorithm [145]
FindKNN Java 153 Finding the k nearest neighbors of a sample point [4]
FirstMissingPositive Java 40 Find the first missing positive integer in an unsorted integer array [145]
FLAME Prolog Feature model analysis tool [73]

continued on next page

22

Name Language Size Description References

Gaffitter C/C++ NR Arranges an input list of items into volumes of a certain capacity [75]
GBT C/C++ NR Real-time mathematical C project [117]
GCS MATLAB NR Loop insulin titration simulator [76]
GetMid C/C++ 17 Compute the median of three integers [67]
GNLab C/C++ NR Analysis and simulation of gene regulatory networks [40]
Grade C/C++ 2035 Grade computation module [35]
GraphStream Java NR Modeling and analysis of graphs [61]
Guava Java NR Google utility library [61]
HeapSort Java 66 Heap sort algorithm [145]
HillCipher C/C++ 74 Hill cipher encryption program [128]
HRRN1 NR NR Highest Response Ratio Next (HRRN) scheduler simulator [101]
HRRN2 NR NR Highest Response Ratio Next (HRRN) scheduler simulator [101]
ImageDilation C/C++ NR Binary image dilation [96]
InterleavingString Java 73 Find whether an string is formed by the interleaving of other two strings [145]
InvCum Java 90 Inverse cumulative distribution function of the normal distribution [74]
JAMA Java NR Linear algebra package [38]
JMT Java NR Calculate the major outputs of the queuing network systems [37]
Joda-Time Java NR Date and time utilities [61]
Jscience Java NR Scientific calculations and visualizations [38]
Kcnfs C/C++ SAT Solver [73]
KLP Java 36 Key-lock problem algorithm [32]
LargestRectangle Java 77 Find the area of the largest rectangle in a histogram [145]
Lingeling C/C++ SAT Solver [73]
Lipschitz Java 320 Computation of the Lipschitz cover [92]
LLVM C/C++ NR C compiler [119]
Lucene Java NR Text search engine library [75]
March ks C/C++ SAT Solver [73]
March rw C/C++ SAT Solver [73]
MaxRectangle Java 113 Find the largest rectangle in a 2D binary matrix [145]
MaxSUB Java 25 Kadane’s MAXSUB algorithm [145]
MaxTreePathSum Java 74 Given a binary tree, find the maximum path sum [145]
MetaTrader C/C++ NR Online trading software platform [121]
MinimizeDFA Java 929 Minimize a deterministic finite automation [4]
MinInRot Java 34 Find the minimum element in a sorted and rotated array [145]
Minisat C/C++ SAT Solver [73]
MinSpanTree NR NR Dijkstra’s algorithm to find the minimal spanning tree [129]
MonteCarlo Fortran91 1600 Monte Carlo modelling program [105]
Multi-MAXSUM Java 61 Multi-segment MAXSUM algorithm [145]
MultipleKnapscack Java 808 Solve the multiple knapsack problem [4]
NASADAT NR NR NASA database of telemetry data and query interface [130]
NormDist NR 36 Normal distribution probability computation [44]
OMNeT++ C/C++ NR Network simulator [103]
P2cudf Java CUDF document analyser [73]
PartialDiff NR NR Partial differential equation calculation [116]
PCC C/C++ NR C compiler [116]
Picosat C/C++ SAT Solver [73]
Prim Java 765 Compute a minimum spanning forest using Prim’s MST algorithm [145]
QuickSort Java 49 Quick sort algorithm [145]
RapidMiner Java NR Analytic platform application [78]
RF-Soft C/C++ NR Wireless metering program [100]
RMB converter service NR NR Currency converter web service [85]
RSA C/C++ 28 RSA encryption program [128]
Rsat C/C++ SAT solver [73]
Sat4j Java NR SAT Solver [73]
SCAR NR NR Company car and expense claim system [65]
SearchInRot Java 53 Find a target value in a sorted rotated array [145]
Sed C/C++ 1442 Stream editor that perform text transformations on an input stream [47]
Seismic web service Java 551 Seismic data query web service [85]
Servcalc C/C++ 2480 Service-oriented calculator [84]
SetCover Java 211 Solve the set coverage problem using a greedy algorithm [4]
Shortest Java NR Mesh simplification algorithm [93]
SimAnnealing Java 25 Simulated annealing search [123]
SMOS NR NR Meal ordering system [65]
SparseMatrixMultiply Java 259 Mutiply two sparse matrices [4]
SpStudent C/C++ 200 Find the two shortest paths between two vertices in a graph [47]
SpWiki C/C++ 95 Shortest path between between two vertices in a graph [47]
Superstring NR NR Find the shortest common string [64]
SurroundedRegion Java 78 Capture all regions of a board surrounded by a symbol [145]
SVM C/C++ NR Real-time mathematical C project [117]
SVM-Light C/C++ NR Vector Machine learning application [58]
TCC C/C++ NR C compiler [118]
Triangle NR 12 Calculate triangle area (Heron’s formula) [125]
TrisquareC C/C++ 168 Calculate triangle area [35]
UCC C/C++ NR C compiler [118]

23

APPENDIX B
DATA EXTRACTION FORMS

B.1 List of surveyed papers
1) Chen et al. TR’98
2) Chen et al. COMPSAC’01
3) Chen et al. COMPSAC’02
4) Chen et al. ISSTA’02
5) Chen et al. IST’03
6) Gotlieb and Botella COMPSAC’03
7) Chen et al. IBCSE’04
8) Chen et al. SNPD’04
9) Chen et al. STEP’04

10) Tse et al. COMPSAC’04
11) Zhou et al. ISFST’04
12) Chan et al. QSIC’05
13) Chan et al. QSIC’05 (b)
14) Chen et al. WEUSE’05
15) Sim et al. EEEC’05
16) Tse COMPSAC’05
17) Wu COMPSAC’05
18) Wu et al. JS’05
19) Beydeda COMPSAC’06
20) Chan et al. IJSEKE’06
21) Hu et al. SOQUA’06
22) Mayer and Guderlei COMPSAC’06
23) Mayer and Guderlei QSIC’06
24) Chan et al. COMPSAC’07
25) Chan et al. IJWSR’07
26) Chan et al. RST’07
27) Dong et al. QSIC’07
28) Guderlei and Mayer IJSEKE’07
29) Guderlei and Mayer QSIC’07
30) Zhou et al. TR’07
31) Dong et al. JSU’08
32) Murphy FSEDS’08
33) Murphy et al. TR’08
34) Chan et al. STVR’09
35) Chen et al. BIOINFORMATICS’09
36) Chen et al. FTDS’09
37) Chen et al. ICECCS’09
38) Just and Schweiggert ICSTW’09
39) Murphy et al. ICST’09
40) Murphy et al. ISSTA’09
41) Xie et al. QSIC’09
42) Zhang et al. JS’09
43) Chen SOSE’10
44) Chen et al TSE’10
45) Ding et al SSIRI’10
46) Dong et al ICWIIAT’10
47) Just and Schweiggert AST’10
48) Kuo et al. IET’10
49) Liu et al. CSEET’10
50) Lu et al. UATC’10
51) Murphy and Kaiser TR’10
52) Segura et al. ICST’10
53) Segura et al. IST’10
54) Sim et al. ICISE’10
55) Tao et al. APSEC’10
56) Xie et al. JSS’10
57) Yoo ICSTW’10

58) Zhou et al. STVR’10
59) Asrafi et al. SSIRI’11
60) Barus et al. SET’11
61) Batra and Sengupta ISTM’11
62) Castro-Cabrera and Medina-Bulo ICEB’11
63) Ding et al. AST’11
64) Jing et al. JE’11
65) Just and Schweiggert SQJ’11
66) Kuo et al. LCN’11
67) Kuo et al. SAC’11
68) Murphy et al. SEHC’11
69) Sun et al. ICWS’11
70) Xie et al. QSIC’11
71) Castro-Cabrera and Medina-Bulo EBT’12
72) Chen et al. ISSDM’12
73) Chen et al. QSIC’12
74) Gagandeep and Singh CCIS’12
75) Liu et al. QSIC’12
76) Pullum and Ozmen BIOMEDCOM’12
77) Ramanathan et al. BIOMEDCOM’12
78) Sun et al. IJWSR’12
79) Xie et al. IST’12
80) Yi et al. ACSIE’12
81) Cao et al. QSIC’13
82) Chan and Tse QSIC’13
83) Dong et al. ICESS’13
84) Hui et al. MPE’13
85) Hui and Huang WCSE’13
86) Hui and Huang WCSE’13 (b)
87) Jiang et al. ICESS’13
88) Kanewala and Bieman ISSRE’13
89) Kanewala and Bieman SECSE’13
90) Lei et al. QSIC’13
91) Rao et al. QSIC’13
92) Yi et al. ISDEA’13
93) Aruna and Prasad ICACCI’14
94) Aruna and Prasad ICT’14
95) Barr et al. TSE’14
96) Carzaniga et al. ICSE’14
97) Goffi et al. FSE’14
98) Goffi ICSEDS’14
99) Kanewala ICSTDS’14
100) Le et al. PLDI’14
101) Liu et al. ICSE’14
102) Liu et al. TSE’14
103) Nuñez and Hierons ATJ’14
104) Segura et al. STVR’14
105) Sun et al. FCS’14
106) Xie et al. QSIC’14
107) Zhang et al. ASE’14
108) Aruna and Prasad ICACCE’15
109) Cañizares et al. ICCS’15
110) Chen AST’15
111) Chen et al. JSS’15
112) Hui et al. STA’15
113) Jameel et al. SNPD’15
114) Jin et al. COMPSAC’15
115) Kanewala et al. STVR’15
116) Lindvall et al. ICSE’15
117) Su et al. AST’15
118) Zhou et al. TSE’15

24

119) Zhu TSA’15

25

B.2 Legend
In the following, we detail the meaning of the fields in-
cluded in the data extraction forms presented in the follow-
ing pages.

Authors. List of authors’ names.

Title. Title of the paper.

Publication. Name of the venue in which the paper was
published.

Pub. Type. Type of publication (journal, confer-
ence/symposium, workshop or other).

Year. Year of publication (online publication in the case of
journal articles).

Pages. Number of pages of the paper.

Country. Affiliation country of the first author of the paper.

Contact. E-mail address of the first author of the paper.

Summary. Short summary of the contributions written by
the authors of the review.

Contribution. Type of contribution.

Combination with other techniques. Name of the testing
techniques used in combination with metamorphic testing,
if any. This does not include the testing techniques used for
the generation of source test cases.

Application domain(s). Application domains in which
metamorphic testing was applied, e.g., graph theory.

Application scenarios. Specific application scenarios in
which metamorphic testing was applied, e.g., shortest path
problem.

Number of MRs. Number of metamorphic relations repor-
ted on each application scenario.

Program. Name of the program used to evaluate the ap-
proach.

Language. Programming language of the subject program.

Size. Number of lines of code of the subject program.

Real. When enabled, it indicates that the program is either
commercial or open–source. We did not consider as real
those open source programs specifically developed to work
as testing benchmarks.

STCs. Number of source test cases used for testing the
subject program.

Mutants. Number of artificial faults (i.e., mutants) seeded in
the subject program.

Faults. Number of real–world faults uncovered in the pro-
gram under test.

Source TCs generation technique. Technique(s) used to
generate the source test cases.

Evaluation metrics. Name of the metric(s) used to evaluate
the effectiveness of metamorphic testing.

Available evaluation material. Enabled if the paper include
the evaluation material (source code, mutants, scripts, etc.).

Lesson learned / guidelines. Lessons learned or guidelines
reported on the paper.

Challenges. Challenges reported in the paper.

NR. Not Reported.

1998-chen-tr

Publication data

Authors: T. Y. Chen and S. C. Cheung and S. M. Yiu

Title: Metamorphic Testing: A New Approach for Generating Next Test Cases

Publication:
Technical Report HKUST-CS98-01, Department of Computer Science, The Hong Kong University of
Science and Technology

Pub. Type: Journal Conference / Symp. Workshop
 Other: Technical

Report

Year: 1998

DOI/URL: http://www.cse.ust.hk/~scc/publ/CS98-01-metamorphictesting.pdf

Pages: 11

Country: Australia

Contact: scc@cs.ust.hk

Summary:
First paper introducing metamorphic testing as a way to create new test cases from successful ones,
overcoming the oracle problem. Authors remark the need of combining metamorphic testing with other test
case selection strategies. They also mention that metamorphic testing generally requires the use of problem
domain knowledge. Four examples are presented, i) Binary search on sorted array, ii) kth occurrence of x in
unsorted array, iii) Shortest path in an undirected graph, and iv) Solving a system of linear equations by
Gaussian elimination.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool
 Other:

Combination with other techniques:

Application domain(s): Numerical program, graph theory
Application scenarios Number of MRs
Binary search on sorted array 4

Kth occurrence of x in unsorted array 3

Shortest path in an undirected graph 1

Solving a system of linear equations by Gaussian elimination 1

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Metamorphic testing generally requires the use of problem domain knowledge

Challenges

26

B.3 Chen et al. TR’98
See legend in page 25 to know the exact meaning of each field.

2001-chen-compsac

Publication data

Authors: T. Y. Chen and T. H. Tse and Z. Zhou

Title: Fault-Based Testing in the Absence of an Oracle
Publication: 25th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2001

DOI/URL: http://dx.doi.org/10.1109/CMPSAC.2001.960614
 Pages: 7

Country: Australia

Contact: tse@csis.hku.hk

Summary:

The article proposes to enhance fault-based testing to alleviate the oracle problem using metamorphic
testing. Some examples with numerical problems are presented using both real and symbolic inputs. No
experiments are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Fault-based testing

Application domain(s): Numerical programs
Application scenarios Number of MRs
Mathematical function 1

Power 1

Compute exponent 1

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

27

B.4 Chen et al. COMPSAC’01
See legend in page 25 to know the exact meaning of each field.

2002-chen-compsac

Publication data

Authors: T. Y. Chen and J. Feng and T. H. Tse
Title: Metamorphic Testing of Programs on Partial Differential Equations: a Case Study

Publication: 26th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2002

DOI/URL: http://dx.doi.org/10.1109/CMPSAC.2002.1045022
 Pages: 7

Country: Australia

Contact: tse@csis.hku.hk

Summary:

The paper presents a case study on the use of metamorphic testing of programs on partial differential
equations. A specific problem is presented and implemented, i.e. distribution of temperatures on a square
plate. The authors present 4 test cases using special values and one metamorphic relation. They show how
metamorphic testing effectively detects a seeded fault in the program.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Special values

Application domain(s): Numerical programs (partial differential equations)
Application scenarios Number of MRs
Partial differential equations (distribution of temperatures on a square plate) 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

Partial differential equation NR NR NR 1 0

Total

Source TCs generation technique: Test suite (special values)

Evaluation metrics: NR

 Available evaluation material

Lessons learned / guidelines

Challenges

28

B.5 Chen et al. COMPSAC’02
See legend in page 25 to know the exact meaning of each field.

2002-chen-issta

Publication data

Authors: T. Y. Chen and T. H. Tse and Z. Zhou

Title:
Semi-Proving: an Integrated Method Based on Global Symbolic Evaluation and Metamorphic
Testing
 Publication: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing and analysis

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2002

DOI/URL: http://dx.doi.org/10.1145/566171.566202
 Pages: 5

Country: Australia

Contact: tse@csis.hku.hk

Summary:

The article proposes a semi-proving method combining global symbolic execution and metamorphic testing.
The method combines structural information (white-box) when performing global symbolic execution and
functional information (black box) when identifying the expected necessary conditions (i.e. metamorphic
relations) for correctness. Two examples are presented with numerical programs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Global symbolic execution

Application domain(s): Numerical programs
Application scenarios Number of MRs
Numerical median (1 mutant) 1

Area under a curve (1 mutant) 1

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

29

B.6 Chen et al. ISSTA’02
See legend in page 25 to know the exact meaning of each field.

2003-chen-ist

Publication data

Authors: T. Y. Chen and T. H. Tse and Z. Zhou
Title: Fault-based testing without the need of oracles
Publication: Information and Software Technology

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2003

DOI/URL: http://dx.doi.org/10.1016/S0950-5849(02)00129-5

Pages: 9

Country: Australia

Contact: tychen@it.swin.edu.au

Summary:

The article proposes to enhance fault-based testing to alleviate the oracle problem using metamorphic
testing. Some examples with numerical problems are presented using both real and symbolic inputs. The
authors conclude that different metamorphic relations may have different fault-detection capabilities for
different types of faults. This work is an extended version of a conference paper (Chen et al. COMPSAC
2011).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Fault-based testing

Application domain(s): Numerical programs
Application scenarios Number of MRs
Mathematical function 1

Power 1

Sin 2

Area under a curve� 1

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Different metamorphic relations may have different fault-detection capabilities for different types of

faults.

Challenges

30

B.7 Chen et al. IST’03
See legend in page 25 to know the exact meaning of each field.

2003-gotlieb-compsac

Publication data

Authors: A. Gotlieb and B. Botella
 Title: Automated Metamorphic Testing

Publication: 27th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2003

DOI/URL: http://dx.doi.org/10.1109/CMPSAC.2003.1245319

Pages: 7

Country: France

Contact: Arnaud.Gotlieb@irisa.fr

Summary:

The paper presents an Automated Metamorphic Testing (AMT) framework written in Java and Prolog The
framework uses constraint programming to find test data that violate certain Metamorphic Relations (MRs).
The tool is evaluated using mutation testing on three academic programs written in a subset of C. The types
of MRs supported by the tool are limited to numeric expressions over integers.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Binary search into a sorted array 1

Median 1

Is scalene triangle 2

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

bsearch C 17 NR 3 0

GetMid C 17 NR 2 0

trityp C 28 NR 33 0

Total 62 39

Source TCs generation technique: Constraint programming

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

31

B.8 Gotlieb and Botella COMPSAC’03
See legend in page 25 to know the exact meaning of each field.

2004-chen-ibcse

Publication data

Authors: T. Y. Chen and D. H. Huang and T. H. Tse and Z. Zhou
Title: Case Studies on the Selection of Useful Relations in Metamorphic Testing

Publication:
Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge
Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2004
DOI/URL: http://grise.upm.es/rearviewmirror/conferencias/jiisic04/Papers/25.pdf#sthash.FzIbXIGQ.dpu

Pages: 15

Country: Australia

Contact: zhzhou@it.swin.edu.au

Summary:

The paper presents two case studies on the selection of useful metamorphic relations. In particular, they
compare the effectiveness of MRs identified from a black-box perspective to those obtained using a white-
box approach. Several experiments are presented measuring the fault-detection capability of different MRs
on two mutated graph-theory programs. Several lessons learned are presented as the main conclusion of
the study.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other: Guidelines

Combination with other techniques:

Application domain(s): Graph theory
Application scenarios Number of MRs
Shortest path 4

Critical path program 3

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

ShortestPath 1000 19

CriticalPath 1000 18

Total 2000 37

Source TCs generation technique: Random

Evaluation metrics: Fault detection rate

 Available evaluation material

Lessons learned / guidelines
- Theoretical knowledge of the problem domain is not adequate for distinguishing good MRs.
- Good MRs should be those that can make the multiple executions of the SUT as different as

possible.
- Good MRs should be selected with regard to the algorithm that the program follows because

algorithms are easier to understand than the source code.
- Different MRs have different failure-detecting capabilities with regard to different types of program

defect.
Challenges

- Prioritize MRs according to their fault detection capability.

32

B.9 Chen et al. IBCSE’04
See legend in page 25 to know the exact meaning of each field.

2004-chen-snpd

Publication data
Authors: T. Y. Chen and F. Kuo and Y. Liu and A. Tang
Title: Metamorphic Testing and Testing with Special Values

Publication:

Int. Conf. on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2004)

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2004

DOI/URL: http://hdl.handle.net/1959.3/3613

Pages: 7

Country: Australia

Contact: dkuo@it.swin.edu.au
 Summary:

This paper proposes the use of special values as source test cases for the application of MT. Special test
values are test input values for which the expected output is well known. The approach is evaluated with
two subject programs using both special values and random values as source test cases. The results show
that MT complements and improve the fault-detection effectiveness of special value testing. It also reveal
that random testing is an effective approach to augment the number of source test cases and thus to cover
more of the test domain.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Sin 10

Binary search 2

Total: 12

Evaluation

Program Language Size Real STCs Mutants Faults

Sin C 41 10 1 0

Binary search C 43 13 1 0

Total 84 23 2 0

Source TCs generation technique: Special values and random

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- It is useful to perform MT with all the available MRs.
- MRs should be “strong”. A strong MR should exercise the core functionality of the program. It also

should have high sensitivity to fault meaning that the relationship does not hold true for most input
data.

- Some MRs are more sensitive to faults than others.

Challenges

33

B.10 Chen et al. SNPD’04
See legend in page 25 to know the exact meaning of each field.

2004-chen-step

Publication data

Authors: T. Y. Chen and F. Kuo and T. H. Tse and Z. Zhou
Title: Metamorphic Testing and Beyond
Publication: Eleventh Annual International Workshop on Software Technology and Engineering Practice

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2004

DOI/URL: http://doi.ieeecomputersociety.org/10.1109/STEP.2003.18
 Pages: 7

Country: Australia

Contact: tse@csis.hku.hk

Summary:

The paper presents the basic concepts of metamorphic testing and its application illustrating them with
examples. Also, some lessons learned and guidelines for the design of effective metamorphic relations are
presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other: Overview of
MT/Guidelines

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Sin 10

Partial equation problem 1

Power 1

Med 1

Shortest Path 3

Total: 16

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- The failure-causing abilities of different MRs vary greatly.
- It is recommended to employ more than one MR due to the previous finding.
- Theoretically stronger MRs may not necessarily be more effective in detecting faults than weaker

ones.
- When selecting MR to test a given program, the algorithm and structure of the algorithm should be

taken into account.
- MRs that can make the second execution most different from the first one are likely to achieve the

best failure-revealing effect.

Challenges

34

B.11 Chen et al. STEP’04
See legend in page 25 to know the exact meaning of each field.

‐ Find out desirable characteristics of MRs that are good at revealing failures.

35

2004-tse-compsac

Publication data

Authors: T. H. Tse and S. S. Yau and W. K. Chan and H. Lu and T. Y. Chen
Title: Testing Context-Sensitive Middleware-Based Software Applications
Publication: 28th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2004

DOI/URL: http://dx.doi.org/10.1109/CMPSAC.2004.1342879
 Pages: 9

Country: Hong Kong
 Contact: thtse@hku.hk

Summary:

The paper proposes the application of metamorphic testing for the detection of faults in context-sensitive
middleware-based software applications. The authors introduce the topic of context-sensitive applications
and present a specific application scenario, i.e. a smart streetlight system. Then, they show how a certain
metamorphic relation could help to detect two seeded faults in the sample program.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Embedded systems (context-sensitive middleware-based
applications)

Application scenarios Number of MRs
Smart streetlight system 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

36

B.12 Tse et al. COMPSAC’04
See legend in page 25 to know the exact meaning of each field.

2004-zhou-isfst

Publication data

Authors: Z. Zhou and D. H. Huang and T. H. Tse and Z. Yang and H. Huang, T. Y. Chen
Title: Metamorphic Testing and Its Applications
Publication: Proceedings of the 8th International Symposium on Future Software Technology

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2004

DOI/URL: http://www.sea.jp/Events/isfst/ISFST2004/CDROM04/Presented04/2P1-
T2/ISFST2004_O346.pdf

Pages: 6

Country: Australia
 Contact: zhzhou@it.swin.edu.au

Summary:

The paper presents an introduction to metamorphic testing and suggests possible applications in different
domains. No experimental evaluation is presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs, graph theory, computer graphics, compilers,
interactive software

Application scenarios Number of MRs
Sin 1

Partial differential equations 1

Shortest path problem 2

Pixel display -

Parallelizing compiler -

Telephone transaction software -

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Good knowledge of the problem domain is necessary for an effective application of MT.

Challenges

37

B.13 Zhou et al. ISFST’04
See legend in page 25 to know the exact meaning of each field.

2005-chan-qsic

Publication data

Authors: W. K. Chan and S. C. Cheung and K. R. P. H. Leung
Title: Towards a Metamorphic Testing Methodology for Service-Oriented Software Applications
Publication: First International Workshop on Services Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005
DOI/URL: http://dx.doi.org/10.1109/QSIC.2005.67

Pages: 7

Country: Hong Kong
 Contact: wkchan@cs.ust.hk

Summary:
The paper presents a MT-oriented testing methodology for service-oriented applications. In particular, the
authors propose to use so-called metamorphic services to encapsulate services and MRs. The major steps
of the methodology are presented for both unit and integration testing. A theoretical illustration example is
presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Service-oriented software applications

Application scenarios Number of MRs
Foreign exchange dealing service 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges
- How to find suitable metamorphic relations for a service?

38

B.14 Chan et al. QSIC’05
See legend in page 25 to know the exact meaning of each field.

2005-chan-qsic-b

Publication data

Authors: W. K. Chan and T. Y. Chen and H. Lu and T. H. Tse and S. S. Yau
Title: A Metamorphic Approach to Integration Testing of Context-Sensitive Middleware-Based Applications
Publication: Fifth International Conference on Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005
DOI/URL: http://dx.doi.org/10.1109/QSIC.2005.3
Pages: 9

Country: Hong Kong
 Contact: thtse@cs.hku.hk

Summary:
The paper proposes the application of metamorphic testing for the detection of faults in context-sensitive
middleware-based software applications. The authors introduce the topic of context-sensitive applications
and present a specific application scenario, i.e. a smart delivery system. The paper extends the work of Tse
et al. (COMPSAC 2004) to scenarios subjected to evolution. The notion of checkpoint is introduced to
facilitate checking the results of MRs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Embedded systems (context-sensitive middleware-based
applications)

Application scenarios Number of MRs
Smart delivery system 2

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

39

B.15 Chan et al. QSIC’05 (b)
See legend in page 25 to know the exact meaning of each field.

2005-chen-weuse

Publication data

Authors: T. Y. Chen and F. Kuo and Z. Zhou
Title: An Effective Testing Method for End-User Programmers
Publication: First workshop on End-user software engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005
DOI/URL: http://dx.doi.org/10.1145/1083231.1083236
Pages: 5

Country: Australia

Contact: zhzhou@it.swin.edu.au

Summary:
This paper proposes MT as a suitable testing method for end-user programmers. Some sample applications
are presented in three different domains: i) Simulation and scientific computation, ii) spreadsheet and DB
applications, and iii) web applications. Some lessons learned for the definition of good MRs are presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other: Guidelines

Combination with other techniques:

Application domain(s): Numerical programs, spreadsheet, DB applications, Web
application

Application scenarios Number of MRs
Thermodynamic problem (partial differential equation) 1

Spreadsheet application 1

Web user interface

Web user actions (search engine)

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines - Good MRs are those that can make multiple executions as different as possible. - Identification of good MRs requires the tester to have both black-box knowledge of the problem
domain and white-box knowledge of the program structure.

Challenges

40

B.16 Chen et al. WEUSE’05
See legend in page 25 to know the exact meaning of each field.

2005-sim-eeec

Publication data
Authors: K. Y. Sim and W. K. S. Pao and C. Lin
Title: Metamorphic testing using geometric interrogation technique and its application

Publication:

Electrical Engineering/Electronics, Computer, Telecommunications, and Information
Technology International Conference.

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005

DOI/URL: http://hdl.handle.net/1959.3/2609

Pages: 4

Country: Malaysia

Contact: ksim@swinburne.edu.my
 Summary:

This paper presents a metamorphic testing approach for casting simulation using medial axis transform. The
authors first present the application scenario and then they introduce 4 sample metamorphic relations. No
empirical evaluation is presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Simulation
Application scenarios Number of MRs
Casting simulation 4

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

41

B.17 Sim et al. EEEC’05
See legend in page 25 to know the exact meaning of each field.

2005-tse-compsac

Publication data

Authors: T. H. Tse
Title: Research Directions in Model-Based Metamorphic Testing and Verification
Publication: 29th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005
DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2005.130

Pages: 1

Country: Hong Kong
 Contact: thtse@cs.hku.hk

Summary:
The paper briefly presents some research direction in the context of metamorphic testing including model-
based metamorphic testing and verification. Some previous contributions of the authors are presented as
illustrative examples.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other: Research
directions

Combination with other techniques: Model-based testing

Application domain(s):

Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

42

B.18 Tse COMPSAC’05
See legend in page 25 to know the exact meaning of each field.

2005-wu-compsac

Publication data

Authors: P. Wu
Title: Iterative Metamorphic Testing
Publication: 29th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005
DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2005.93

Pages: 6

Country: China
 Contact: wp@ios.ac.cn

Summary:
This paper proposes applying metamorphic relation iteratively as a way to increase the number of generated
test cases and their effectiveness at detecting faults. A case study is presented with a C program for sparse
matrix multiplication and more than 1300 mutants. Results reveal that iterative mutation testing outperforms
classical metamorphic testing and special case testing in terms of their fault detection capability.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs

Application scenarios Number of MRs
Sparse matrix multiplication 9

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

SpMatMul (from JASPA benchmark) C 35 NR 1325 0

Total

Source TCs generation technique: Test suite

Evaluation metrics: Mutation Score (MS) and Fault Detection Ratio (FD)

 Available evaluation material

Lessons learned / guidelines

Challenges
- Find out the relationships between the number of iterations and the number of faults detected.

43

B.19 Wu COMPSAC’05
See legend in page 25 to know the exact meaning of each field.

2005-wu-js

Publication data
Authors: P. Wu and X. Shi and J. Tang and H. Lin and T. Y. Chen
Title: Metamorphic testing and special case testing: a case study

 Publication: Journal of Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2005

DOI/URL: http://dx.doi.org/10.1360/jos161210

Pages: 11

Country: China

Contact: wp@ios.ac.cn
 Summary:

This paper evaluates and compares three testing approaches, namely: i) special case testing, ii)
metamorphic testing with special values, and iii) metamorphic testing with random test cases. The
effectiveness of the testing methods is evaluated using a subject program of sparse matrix multiplication
and mutation analysis. Among other results, the study reveals that metamorphic testing with random test
cases is more effective than metamorphic testing with special test cases. It also shows that metamorphic
testing and special case testing are complementary methods.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical program
Application scenarios Number of MRs
Sparse matrix multiplication 9

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

SpMatMult (from JASPA benchmark) C 35 NR 5 0

Total 5 0

Source TCs generation technique: Special values and random

Evaluation metrics: Mutation Score (MS) and Fault Detection Ratio (FDR)

 Available evaluation material

Lessons learned / guidelines
- Metamorphic relation selection is crucial to metamorphic testing.
- MT with special test cases well supplements the fault detection capabilities of special test cases.
- MT with random source test cases outperform that with special test cases.

Challenges

44

B.20 Wu et al. JS’05
See legend in page 25 to know the exact meaning of each field.

2006-beydeda-compsac

Publication data

Authors: S. Beydeda
 Title: Self-Metamorphic-Testing Components

Publication: The Third International Workshop on Software Cybernetics

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2006
DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2006.161

Pages: 6

Country: Germany
 Contact: sb@stecc.de

Summary:
This paper proposes integrating self-testing capabilities in COST components using MRs. A very preliminary
case study is presented. No MRs are presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Components

Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

45

B.21 Beydeda COMPSAC’06
See legend in page 25 to know the exact meaning of each field.

2006-chan-ijseke

Publication data
Authors: W.K. Chan and T.Y. Chen and H. Lu and T.H. Tse and S.S. Yau

Title:
Integration Testing of Context-Sensitive Middleware-Based Applications: a Metamorphic
Approach

Publication: International Journal of Software Engineering and Knowledge Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2006

DOI/URL: https://dx.doi.org/10.1142/S0218194006002951

Pages: 25

Country: Hong Kong

Contact: thtse@cs.hku.hk
 Summary:

The paper proposes the application of metamorphic testing for the detection of faults in context-sensitive
middleware-based software applications. The authors introduce the topic of context-sensitive applications
and present a specific application scenario, i.e. a smart delivery system. The approach is illustrated with an
experiment on the detection of faults in an RFID-based location estimation program running on a context-
aware prototype. This work is an extension of a conference paper (Chan et al. QSIC 2005)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Embedded systems (context-sensitive middleware-based
applications)

Application scenarios Number of MRs
Smart delivery system 2

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Cabot system v2.0 Java NR 60 21

Total 60 21

Source TCs generation technique: Random testing

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

46

B.22 Chan et al. IJSEKE’06
See legend in page 25 to know the exact meaning of each field.

2006-hu-soqua

Publication data

Authors: P. Hu and Z. Zhang W. K. Chan and T. H. Tse

Title: An Empirical Comparison between Direct and Indirect Test Result Checking Approaches

Publication: Third International Workshop on Software Quality Assurance

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2006
DOI/URL: http://dx.doi.org/10.1145/1188895.1188901
Pages: 8

Country: Hong Kong

Contact: thtse@cs.hku.hk

Summary:
This paper reports on a controlled experiment to investigate the cost effectiveness of using MT by 38 testers
on three open-source programs. The results are compared with those of assertion checking. The results
suggest that MT is more effective than assertion checking in detecting faults but it is more time consuming.
Several lessons learned are presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Text patterns, Boolean expression evaluation, office application

Application scenarios Number of MRs
Text pattern search 18

Boolean expression evaluation 39

Table sorting 25

Total: 82

Evaluation

Program Language Size Real STCs Mutants Faults

Boyer - Pattern search Java 241 NR 132 0

Jboolexpr - Boolean expression Java 231 NR 127 0

Eurobadget - TxnTableSorter Java 281 NR 317 0

Total 753 576 0

Source TCs generation technique: Test suite

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines - The more MRs are used, the higher the mutation detection ratio. - The effectiveness of using a MR increases as we increase the number of test cases.

Challenges - There is a need to propose more systematic methods for creating metamorphic relations. - It is necessary to know which MRs should be given a higher priority.

47

B.23 Hu et al. SOQUA’06
See legend in page 25 to know the exact meaning of each field.

2006-mayer-compsac

Publication data

Authors: J. Mayer and R. Guderlei
 Title: An Empirical Study on the Selection of Good Metamorphic Relations

Publication: 30th Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:
Year: 2006
DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2006.24
Pages: 10

Country: Germany
 Contact: johannes.mayer@uni-ulm.de

Summary:
This paper presents an empirical assessment of the quality of MRs. Six Java programs for determinant
computation are mutated and used as a case study. The authors presents 16 MRs and apply then to
randomly generated test cases checking the number of killed mutants. As a result, a number of rules for
judging the suitability of MRs are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other: Guidelines

Combination with other techniques:

Application domain(s): Numerical programs

Application scenarios Number of MRs
Determinant computation 16

Total: 16

Evaluation

Program Language Size Real STCs Mutants Faults

Commons.Math Apache v1.0 Java NR 100K/
mutants 149 0

JScience v2.0.1 Java NR
100K/

mutants 1 0

JAMA v1.0.2 Java NR 100K/
mutants 76 0

Impl. of Michael Flanagan 01/05/2005 Java NR 100K/
mutants 183 0

Impl. of Jon Squire 20/10/2005 Java NR 100K/
mutants 60 0

GeoStoch Java NR 100K/
mutants

59 0

Total 528 0

Source TCs generation technique: Random

Evaluation metrics: Number of test cases to kill a mutant

 Available evaluation material

Lessons learned / guidelines

48

B.24 Mayer and Guderlei COMPSAC’06
See legend in page 25 to know the exact meaning of each field.

- MRs that have the form of equalities are especially weak.
- Equalities of linear combinations are stronger than simple equalities.
- Good MRs contain much of the semantics of the SUT.
- MRs should not be close to the implementation/algorithm under test.
- Combining MRs may yield better results than applying the MRs independently (at the expense of

higher costs)

Challenges

49

2006-mayer-qsic

Publication data

Authors: J. Mayer and R. Guderlei
 Title: On Random Testing of Image Processing Applications

Publication: Sixth International Conference on Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2006
DOI/URL: http://dx.doi.org/10.1109/QSIC.2006.45

Pages: 8

Country: Germany
 Contact: johannes.mayer@uni-ulm.de

Summary:
This paper proposes an approach for random testing of image processing application using metamorphic
testing. Two models for random generation are evaluated using mutation testing and several MRs. Also,
some properties and special values are proposed. The approach is evaluated using a Java implementation
of the Euclidean distance transform integrated as a part of the GeoStoch library.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics

Application scenarios Number of MRs
Euclidean distance transform (image processing) 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

Euclidean distance (GeoStoch library) Java NR 1000 1334

Total 1000 1334

Source TCs generation technique: Random, special values

Evaluation metrics: Number of mutants killed by each MR

 Available evaluation material

Lessons learned / guidelines
- Special value testing should be accompanied by another testing strategy.
- Combined application of MRs yield better results than MRs in isolation.

Challenges

50

B.25 Mayer and Guderlei QSIC’06
See legend in page 25 to know the exact meaning of each field.

2007-chan-compsac

Publication data

Authors: W. K. Chan and J. C. F. Ho and T. H. Tse

Title:
Piping Classification to Metamorphic Testing: An Empirical Study towards Better Effectiveness for the
Identification of Failures in Mesh Simplification Programs

Publication: 31st Annual International Computer Software and Applications Conference

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007
DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2007.167
Pages: 8

Country: Hong Kong
 Contact: thtse@cs.hku.hk

Summary:
This paper presents a testing approach for mesh simplification programs using pattern classification and
metamorphic testing. First, test cases are classified as passed or failed by a pattern classification
component. Then, metamorphic testing is used to detect missed failures in those test cases classified as
passed. A case study with four java programs and several hundreds of mutants are presented. Three MRs
are used. The experimental results reveal a 10% improvement in effectiveness.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics

Application scenarios Number of MRs
Euclidean distance transform (image processing) 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Shortest Java NR 10648 350 0

Melax Java NR 10648 401 0

Quadric Java NR 10648 1122 0

QuadricTri Java NR 10648 1187 0

Total 42592 3060

Source TCs generation technique: Test suite

Evaluation metrics:
 Available evaluation material

Lessons learned / guidelines

Challenges

51

B.26 Chan et al. COMPSAC’07
See legend in page 25 to know the exact meaning of each field.

2007-chan-ijwsr

Publication data

Authors: W. K. Chan and S. C. Cheung and K. R. P. H. Leung
 Title: A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

Publication: International Journal of Web Services Research

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007
DOI/URL: http://www.cs.cityu.edu.hk/~wkchan/papers/sacmta09-chan+cheung+leung.pdf
Pages: 21

Country: Hong Kong

Contact: wkchan@cs.cityu.edu.hk

Summary:
The paper presents a MT-oriented testing methodology for service-oriented applications. The authors
propose to use so-called metamorphic services to encapsulate services and MRs. An experiment with a
service-oriented calculator is presented. The results reveal higher effectiveness with less effort, compared
to a control experiment not using MT. The work is an extension of a conference paper (Chan et al. 2005
QSIC).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Service-oriented software applications

Application scenarios Number of MRs
Foreign exchange dealing service 3

Service oriented calculator 3+

Total: 6+

Evaluation

Program Language Size Real STCs Mutants Faults

Service oriented calculator C++ 2480 25006 6

Total 2480 6

Source TCs generation technique: Test suite (black-box combinatorial approach)

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

52

B.27 Chan et al. IJWSR’07
See legend in page 25 to know the exact meaning of each field.

2007-chan-rst

Publication data

Authors: W. K. Chan and T. Y. Chen and S. C. Cheung and T. H. Tse and Z. Zhang
 Title: Towards the Testing of Power-Aware Software Applications for Wireless Sensor Networks
 Publication: 12th Ada-Europe International Conference on Reliable Software Technologies
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007

DOI/URL: http://dx.doi.org/10.1007/978-3-540-73230-3_7

Pages: 16

Country: Hong Kong

Contact: wkchan@cs.cityu.edu.hk
 Summary:

This paper proposes the application of MT to Wireless Sensor Networks (WSN) software systems. As a
novelty, authors propose testing non-functional properties related to power consumption. A temperature
monitoring application scenario is used to illustrate the approach.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Embedded systems (wireless sensor network applications)
Application scenarios Number of MRs
Temperature monitoring 2

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

53

B.28 Chan et al. RST’07
See legend in page 25 to know the exact meaning of each field.

2007-dong-qsic

Publication data

Authors: G. Dong and C. Nie and B. Xu and L. Wang
 Title: An Effective Iterative Metamorphic Testing Algorithm Based on Program Path Analysis
 Publication: Seventh International Conference on Quality Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007

DOI/URL: http://dx.doi.org/10.1109/QSIC.2007.4385510
 Pages: 6

Country: China

Contact: dgw@seu.edu.cn
 Summary:

This paper presents an algorithm for iterative MT named APCEMSI. The idea is to apply MRs iteratively as
proposed by Wu (Wu, COMPSAC 2005) until a path coverage criterion is fulfilled, namely, APCEM (All-Path
Coverage for Every MR). A small experiment is presented evaluating the effectiveness of the algorithm with
4 mutants and 7 MRs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Symbolic execution, structural testing

Application domain(s): Numerical programs
Application scenarios Number of MRs
TriSquare. Check whether 3 positive real numbers could construct a triangle 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

TriSquare Java 30 100 4

Total 100 4

Source TCs generation technique:

Evaluation metrics:
Mutation score, Faults on problem Path Detection ratio (FPD),
MR Detection Performance (MDP), MR Detection ratio for
each Mutant (MDM)

 Available evaluation material

Lessons learned / guidelines

Challenges

54

B.29 Dong et al. QSIC’07
See legend in page 25 to know the exact meaning of each field.

2007-guderlei-ijseke

Publication data
Authors: R. Guderlei and J. Mayer

Title: Towards automatic testing of imaging software by means of random and metamorphic
testing.

Publication: International Journal of Software Engineering and Knowledge Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007

DOI/URL: https://dx.doi.org/10.1142/S0218194007003471

Pages: 25

Country: Germany

Contact: ralph.guderlei@uni-ulm.de
 Summary:

This article proposes an approach for random testing of image processing application using metamorphic
testing. Two models for random generation are evaluated using mutation testing and several MRs. In
particular, two types of MRs are presented: 4 general MRs applicable to most image operators and 5 MRs
specifically designed for the Euclidean distance transform operator. Also, some properties and special values
are proposed. The approach is evaluated using three Java implementations of different image operators. This
work is an extension of a conference paper (Mayer and Guderlei QSIC 2006)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
General image processing 4

Euclidean distance transform (image processing) 5

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

GeoStoch library Java 301 1000 1241

ConnectedC8 Java 215 1000 495

Lipschitz Java 320 100 940

Total 836 2100 2676

Source TCs generation technique: Random testing and special values

Evaluation metrics: Number of mutants killed by each MR

 Available evaluation material

Lessons learned / guidelines
- Special value testing should be accompanied by another testing strategy.

Challenges

55

B.30 Guderlei and Mayer IJSEKE’07
See legend in page 25 to know the exact meaning of each field.

2007-guderlei-qsic

Publication data

Authors: R. Guderlei and J. Mayer

Title:
Statistical Metamorphic Testing – Testing Programs with Random Output by Means of
Statistical Hypothesis Tests and Metamorphic Testing
 Publication: First International Workshop on Software Test Evaluation

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2007

DOI/URL: http://dx.doi.org/10.1109/QSIC.2007.4385527
 Pages: 6

Country: Germany

Contact: ralph.guderlei@uni-ulm.de
 Summary:

This paper presents a new testing method for non-deterministic programs called Statistical Metamorphic
Testing (SMT). In SMT, two or more independent output sequences are generated and then compared
according to MRs using statistical hypothesis tests. A small case study is presented. Although the
effectiveness of the approach is not demonstrated, the authors claim that their approach is the only
approach to test randomized software where not theoretical values about the output distributions are known.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Statistical hypothesis testing

Application domain(s): Simulation
Application scenarios Number of MRs
Simulation algorithm for random mosaics 2

Inverse cumulative distribution function of the normal distribution Φ-1 1

Total: 3

Evaluation

Program Language Size Real STCs Mutant

Faults

Inverse cumulative distribution function of
the normal distribution Φ-1 NR 90

5000/
mutant 306 0

Total 90 306

Source TCs generation technique: Random
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

56

B.31 Guderlei and Mayer QSIC’07
See legend in page 25 to know the exact meaning of each field.

2007-zhou-tr

Publication data
Authors: Z. Zhou, T. H. Tse, F.-C. Kuo and T. Y. Chen
Title: Automated Functional Testing of Web Search Engines in the Absence of an Oracle

 Publication: Technical report – Department of Computer Science, The University of Hong Kong
 Pub. Type: Journal Conference / Symp. Workshop Other:TR

Year: 2007

DOI/URL: http://www.cs.hku.hk/research/techreps/document/TR-2007-06.pdf

Pages: 12

Country: Australia

Contact: zhiquan@uow.edu.au
 Summary:

This technical report presents a case study and an associated tool for metamorphic testing of web search
engines. Several metamorphic relations are presented and illustrated with examples in three real search
engines: Google, Yahoo and LiveSearch. An automated testing tool is also presented and evaluated on these
search engines in which several failures were revealed. An extension of this work was published in the STVR
journal in 2010.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Search engines
Application scenarios Number of MRs
Web search 9

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

Google 3

Yahoo 1

LiveSearch 2

Total 6

Source TCs generation technique: Random (using a dictionary)

Evaluation metrics: Failure rate

 Available evaluation material

Lessons learned / guidelines

Challenges

57

B.32 Zhou et al. TR’07
See legend in page 25 to know the exact meaning of each field.

2008-dong-jsu

Publication data
Authors: G. Dong and B. Xu and L. Chen and C. Nie and L. Wang
Title: Case studies on testing with compositional metamorphic relations

 Publication: Journal of Southeast University
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2008

DOI/URL:
http://caod.oriprobe.com/articles/15290800/Case_studies_on_testing_with_compositional_m
etamorphic_relations.htm

Pages: 6

Country: China

Contact: bwxu@seu.edu.cn
 Summary:

The authors propose to create new metamorphic relations by composing existing relations with the aim of
improving their fault detection capability and reduce the number of executed test cases. The approach is
evaluated with to small case studies from which a few lessons learned are reported. This method was later
explored in more detail by Liu et al (2012-liu-qsic).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Sparse matrix multiplication 9

Triangle square calculation 7

Total: 16

Evaluation

Program Language Size Real STCs Mutants Faults

Sparse matrix multiplication C 26 8 5

Triangle square calculation C 13 5 4

Total 39 13 9

Source TCs generation technique: Special values / existing suite

Evaluation metrics: Mutation score, fault detection ratio

 Available evaluation material

Lessons learned / guidelines
- The order of the composition matters.
- Not all metamorphic relations can be composed.

Challenges

58

B.33 Dong et al. JSU’08
See legend in page 25 to know the exact meaning of each field.

2008-murphy-fseds

Publication data

Authors: C. Murphy
 Title: Using Runtime Testing to Detect Defects in Applications without Test Oracles

Publication: Foundations of Software Engineering Doctoral Symposium

Pub. Type: Journal Conference / Symp. Workshop Other: Doctoral
symposium

Year: 2008

DOI/URL: http://dx.doi.org/10.1145/1496653.1496659
 Pages: 4

Country: United States

Contact: cmurphy@cs.columbia.edu
 Summary:

The paper was presented in a doctoral symposium and anticipates the thesis contribution of the authors. In
particular, the author proposes using runtime MT for the detection of faults in highly configurable systems.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

59

B.34 Murphy FSEDS’08
See legend in page 25 to know the exact meaning of each field.

2008-murphy-tr

Publication data

Authors: C. Murphy and G. Kaiser and L. Hu
 Title: Properties of Machine Learning Applications for Use in Metamorphic Testing

Publication: Department of Computer Science, Columbia University, New York NY

Pub. Type: Journal Conference / Symp. Workshop Other: Technical
Report

Year: 2008

DOI/URL: http://mice.cs.columbia.edu/getTechreport.php?techreportID=509

Pages: 7

Country: United States

Contact: cmurphy@cs.columbia.edu
 Summary:

This paper proposes using MT to alleviate the oracle problem in machine learning applications. To that
purpose, the authors define 6 MRs for supervised and unsupervised machine learning algorithms and
assess their applicability in three specific tools. They argue that the proposed MRs are generic enough to
be applied to other machine learning applications: additive, multiplicative, permutative, invertive, inclusive,
and exclusive. They conclude that MT is a suitable and generic approach to address the oracle problem in
the machine learning domain.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
(Un)supervised ML algorithm 6

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

MartiRank NR NR NR 0 1

SVM-Light NR NR NR 0 1
PAYL NR NR NR 0 2
Total

Source TCs generation technique: Random
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

60

B.35 Murphy et al. TR’08
See legend in page 25 to know the exact meaning of each field.

2009-chan-stvr

Publication data

Authors: W. K. Chan and J. C. F. Ho and T. H. Tse

Title:
Finding failures from passed test cases: improving the pattern classification approach to the
testing of mesh simplification programs
 Publication: Software Testing, Verification and Reliability Journal
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1002/stvr.v20:2

Pages: 32

Country: Hong Kong

Contact: wkchan@cs.cityu.edu.hk
 Summary:

This article presents a testing approach for mesh simplification programs using pattern classification and
metamorphic testing. Test cases are first classified as passed or failed by a pattern classification
component and then MT is used to detect missed failures in those test cases classified as passed. A case
study with three java programs and several hundreds of mutants are presented. Three MRs are used. The
article is an extension of a conference paper (Chan et al. 2007 COMPSAC).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
Mesh simplification 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults
Melax Java NR 10648 401 0
Quadric Java NR 10648 1122 0
QuadricTri Java NR 10648 1187 0
Total 31944 2710

Source TCs generation technique: Test suite
Evaluation metrics: Data mining specifics

 Available evaluation material

Lessons learned / guidelines

Challenges

61

B.36 Chan et al. STVR’09
See legend in page 25 to know the exact meaning of each field.

2009-chen-bioinformatics

Publication data

Authors: T. Y. Chen and J. W. K. Ho and H. Liu

and X. Xie

 Title: An innovative approach for testing bioinformatics programs using metamorphic testing
Publication: BioMed Central Bioinformatics Journal

 J l Pub. Type: Journal Conference / Symp. Workshop Other:
Year: 2009

DOI/URL: http://dx.doi.org/10.1186/1471-2105-10-24

Pages: 12

Country: Australia

Contact: tychen@swin.edu.au
 Summary:

The article proposed using MT for the detection of faults in bioinformatics programs with the oracle problem.
For the evaluation of the approach, the authors propose 19 MRs for two open-source bioinformatics
programs and measure their effectiveness at detecting faults using mutation testing. Random and real
inputs are used for the source test cases. Finally, they also mention how MT could be applied to test
programs from other domains of bioinformatics.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Bioinformatics
Application scenarios Number of MRs
Network simulation (graph computation) 10

Approximate string matching problem 9

Total: 19

Evaluation

Program Language Size Real STCs Mutants Faults
GNLab NR NR NR 9 0
SeqMap NR NR NR 3 0
Total 12

Source TCs generation technique: Random, tool-based (GRN and E.coli GRN)
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- MT can be combined with special values.
- MT allows the use of real inputs as test cases.
- MT is suitable for bioinformatics programmers.
- MT is useful for testing diverse types of programs.
- Selecting the most effective MRs requires good understanding of the problem domains.
- The effectiveness of MT depends on the number and variety of source test cases.

Challenges

62

B.37 Chen et al. BIOINFORMATICS’09
See legend in page 25 to know the exact meaning of each field.

2009-chen-ftds

Publication data

Authors: T. Y. Chen and F. Kuo and H. Liu

and S. Wang

 Title: Conformance Testing of Network Simulators Based on Metamorphic Testing Technique

Publication:
Joint 11th IFIP WG 6.1 International Conference FMOODS 2009 and 29th IFIP WG 6.1
International Conference FORTE 2009 on Formal Techniques for Distributed Systems

Pub. Type: Journal Conference / Symp. Workshop Other:
Year: 2009

DOI/URL: http://dx.doi.org/10.1007/978-3-642-02138-1_19

Pages: 6

Country: Australia

Contact: hliu@swin.edu.au
 Summary:

This paper proposes the application of MT for conformance testing of network simulators. A case study is
presented testing the OMNeT++ tool for conformance with the Ad-hoc On-demand Distance Vector (AODV)
protocol. Eleven MRs are defined and applied to the program with six seeded faults. The results show a
significant success rate in detecting faults.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Simulation
Application scenarios Number of MRs
Ad-hoc On-demand Distance Vector (AODV) 11

Total: 11

Evaluation

Program Language Size Real STCs Mutants Faults
OMNeT++ C++ NR NR 6 0

Total 6

Source TCs generation technique: Random
Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

63

B.38 Chen et al. FTDS’09
See legend in page 25 to know the exact meaning of each field.

2009-chen-iceccs

Publication data

Authors: T. Y. Chen and F. Kuo and R. Merkel and W. K. Tam

Title:
Testing an Open Source Suite for Open Queuing Network Modelling using Metamorphic
Testing Technique

Publication: 14th IEEE International Conference on Engineering of Complex Computer Systems

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1109/ICECCS.2009.28

Pages: 7

Country: Australia

Contact: dkuo@groupwise.swin.edu.au

Summary:

This paper proposes using MT for the detection of faults in open Queuing Network Modelling (QNM)
systems. A case study is presented with the JMVA module of JMT open source tool for QNM. In particular, 7
MRs were devised and evaluated using mutation testing. The results suggest that MT is an effective
approach for the detection of faults in QNM applications (16 out of 20 mutants were detected)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Queuing network modelling
Application scenarios Number of MRs
Open queuing network modelling 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

JMT – JMVA module v0.7.3 Java NR 100 20 0

Total 100 20

Source TCs generation technique: Random

Evaluation metrics: Percentage of test cases that detected a mutant M using
metamorphic relation MR.

 Available evaluation material

Lessons learned / guidelines - The best results are likely to be achieved by broadest range of MRs.

Challenges

64

B.39 Chen et al. ICECCS’09
See legend in page 25 to know the exact meaning of each field.

2009-just-icstw

Publication data

Authors: R. Just and F. Schweiggert
 Title: Evaluating testing strategies for imaging software by means of Mutation Analysis

Publication: Mutation
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1109/ICSTW.2009.20

Pages: 5

Country: Germany

Contact: rene.just@uni-ulm.de
 Summary:

The paper proposes using mutation testing for the selection of suitable test inputs and the evaluation of
partial oracles. A case study is presented using MT in an open source library for image processing. Among
other results, the authors propose using combinations of MRs to increase the number of mutants detected.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
JPEG Image decoder 4

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

JJ2000 library Java NR NR 514 0

Total 514

Source TCs generation technique: Random

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

65

B.40 Just and Schweiggert ICSTW’09
See legend in page 25 to know the exact meaning of each field.

2009-murphy-icst

Publication data

Authors: C. Murphy and K. Shen and G. Kaiser

Title:
Using JML Runtime Assertion Checking to Automate Metamorphic Testing in Applications
without Test Oracles
 Publication: Second International Conference on Software Testing Verification and Validation
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1109/ICST.2009.19

Pages: 10

Country: United States

Contact: cmurphy@cs.columbia.edu
 Summary:

The paper proposes specifying MRs as runtime assertions for ensuring that the specifications holds during
program execution. The author presents a tool called Corduroy that acts as a pre-processor that convert the
specification of MRs into JML (Java Modelling Language) assertions. A case study with two real world
machine learning tools is presented. The author mentions the use of 25 MRs but they are not reported in the
paper. Three real faults were detected.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
Naïve Bayes

Support vector machines

K-nearest neighbours

C4.5

Total: 25

Evaluation

Program Language Size Real STCs Mutants Faults

Weka 3.5.8 Java NR NR 0 2

RapidMiner 4.1 Java NR NR 0 1

Total 3

Source TCs generation technique: Test suite (UC-Irvine Machine Learning Repository)

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

66

B.41 Murphy et al. ICST’09
See legend in page 25 to know the exact meaning of each field.

2009-murphy-issta

Publication data

Authors: C. Murphy and K. Shen and G. Kaiser
 Title: Automatic System Testing of Programs without Test Oracles

Publication: The eighteenth International Symposium on Software Testing and Analysis
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1145/1572272.1572295

Pages: 11

Country: United States

Contact: cmurphy@cs.columbia.edu
 Summary:

This paper presents a framework called Amsterdam for the automated application of MT. The tool takes as
inputs the program under test and a set MRs, defined in a XML file. Then, Amsterdam automatically runs
the program, applies the MRs and checks the results. In certain cases, the results of two executions may
not match due to floating point calculation or non-determinism. To address this issue, the authors propose
the concept of “heuristic test oracles”, by defining a function that determines whether the outputs are “close
enough” to be considered equal. An experimental evaluation is reported with three machine learning
applications. The paper is an extension of a previous work (Murphy et al. 2008 Tech report)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
SVM – Classification algorithm 4

C4.5 – decision tree algorithm 4

MartiRank – ranking algorithm 4

PAYL – Unsupervised algorithm 2

Total: 14

Evaluation

Program Language Size Real STCs Mutant

Faults

SVM-Weka 3.5.8 Java NR 150 85 0

C4.5 C NR 150 28 0

MartiRank NR NR 10000 69 0

PAYL NR NR NR 40 0

Total 222

Source TCs generation technique: Test suite (“iris” dataset from UC-Irvine repository)

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges
- The transformation of input data can be laborious and error-prone (large tables, binary files…)
- Generation of initial test cases.
- Check “close enough” expected solutions, e.g. imprecisions with floating point.

67

B.42 Murphy et al. ISSTA’09
See legend in page 25 to know the exact meaning of each field.

2009-xie-qsic

Publication data

Authors: X. Xie and J. Ho and C. Murphy and G. Kaiser and B. Xu and T. Y. Chen
 Title: Application of Metamorphic Testing to Supervised Classifiers

Publication: Ninth International Conference on Quality Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.1109/QSIC.2009.26

Pages: 10

Country: Australia

Contact: cmurphy@cs.columbia.edu
 Summary:

These authors propose using MT for the detection of faults in supervised classifiers. They argue that MT
can be helpful for both validation and verification. Validation is used to find out whether the algorithm is
appropriate for the problem. Verification is used to detect fault in the algorithms. Two specific algorithms
are studied: K-Nearest Neighbours (KNN) and Naïve Bayes Classifier (NBC). As a first step, 11 MRs are
proposed and applied to implementations of the algorithms in the tool Weka. The results reveal that 5 MRs
do not hold for KNN (3 for NBC) and are therefore not necessary properties for the algorithms under study.
The rest of MRs, however, show to be effective and detect several defects. This work is an extension of a
previous technical report (Murphy 2008 TR).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
K-Nearest neighbours

11
Naïve Bayes Classifier

Total: 11

Evaluation

Program Language Size Real STCs Mutants Faults

Weka 3.5.7 Java NR NR 0 3

Total 3

Source TCs generation technique: Random

Evaluation metrics: Percentage of test cases violating each MR

 Available evaluation material

Lessons learned / guidelines

Challenges

68

B.43 Xie et al. QSIC’09
See legend in page 25 to know the exact meaning of each field.

2009-zhang-js

Publication data
Authors: Z. Y. Zhang and W. K. Chan and T. H. Tse and P. F. Hu
Title: Experimental study to compare the use of metamorphic testing and assertion checking

 Publication: Journal of Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2009

DOI/URL: http://dx.doi.org/10.3724/SP.J.1001.2009.00578

Pages: 19

Country: Hong Kong

Contact: wkchan@cs.cityu.edu.hk
 Summary:

This article presents a controlled experiment to compare the cost effectiveness of metamorphic testing and
assertion checking. The study was conducted with 38 subject participants and three real-world subject
programs. The experiment revealed that metamorphic testing is less efficient but more effective than
assertion checking. It also shows that average programmers are able to design and implement metamorphic
relations after a general introduction to the technique. Several lessons learned and challenges are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Pattern matching, Boolean expressions, table sorting
Application scenarios Number of MRs
Pattern matching 18

Boolean expressions 39

Table sorting 25

Total: 82

Evaluation

Program Language Size Real STCs Mutants Faults

Boyer Java 241 NR 151

BooleanExpression (jboolexpr) Java 231 NR 145

TxnTableSorter Java 281 NR 378

Total 753 674

Source TCs generation technique: NR

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
- The more MRs being used, the higher will be the mutation detection ratio.
- The utilization of an MR implementation increases as testers increase the number of initial test cases

applicable to the MR.
- MRs have different fault detection capability.

Challenges
- There is a need to develop systematic methods for creating metamorphic relations.

69

B.44 Zhang et al. JS’09
See legend in page 25 to know the exact meaning of each field.

2010-chen-sose

Publication data

Authors: T. Y. Chen
 Title: Metamorphic Testing: A Simple Approach to Alleviate the Oracle Problem

Publication: Fifth International Symposium on Service Oriented System Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/SOSE.2010.31

Pages: 2

Country: Australia

Contact: tychen@swin.edu.au
 Summary:

The paper is a two-pages summary of a tutorial on metamorphic testing.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

70

B.45 Chen SOSE’10
See legend in page 25 to know the exact meaning of each field.

2010-chen-tse

Publication data

Authors: T. Y. Chen and T.H. Tse and Z. Zhou
 Title: Semi-Proving: An Integrated Method for Program Proving, Testing, and Debugging

Publication: Transactions on Software Engineering Journal
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/TSE.2010.23

Pages: 17

Country: Australia

Contact: tychen@swin.edu.au
 Summary:

The article proposes combining MT and symbolic execution in an integrated approach for proving, testing
and debugging. The method first proves that the program satisfies certain MRs for the entire input domain
or a subset of it, identifying all the inputs that violate the MRs. For certain programs, the method can be
also turned into a conventional symbolic-testing approach, testing a subset of selected paths. The approach
also supports automated debugging through the identification of constraint expressions that reveal failures.
A case study with one of the C programs of the Siemens Suite (replace) is presented. Some lessons
learned are reported. This work is an extension of a conference paper (Chen et al. 2002 ISSTA)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Symbolic execution

Application domain(s): Pattern matching
Application scenarios Number of MRs
Regular expression matching 4

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

Replace (Siemens suite) C 563 5542 32 0

Total

Source TCs generation technique: Test suite

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Finding good MRs requires knowledge of the problem domain, understanding of user requirements, as

well as some creativity.
- Different MRs demonstrate different fault-detection capabilities.
- Different MRs are complementary to one another.
- More than one MR should be used for testing programs.

Challenges
- Prioritization of MRs.

71

B.46 Chen et al TSE’10
See legend in page 25 to know the exact meaning of each field.

2010-ding-ssiri

Publication data

Authors: J. Ding and T. Wu and J. Q. Lu and X. Hu
 Title: Self-Checked Metamorphic Testing of an Image Processing Program

Publication: Fourth International Conference on Secure Software Integration and Reliability Improvement
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/SSIRI.2010.25

Pages: 8

Country: United States

Contact: dingj@ecu.edu
 Summary:

This paper proposed a combined approach of MT with structural testing (coverage criteria). The authors
argue that for some random inputs MRs could still hold remaining faults undetected. To further explore
those MR, the authors propose using coverage criteria to detect differences on the execution of source and
follow-up test cases revealing faults even when MRs hold. A case study with a cellular image processing
program is presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Structural testing (coverage)

Application domain(s): Computer graphics
Application scenarios Number of MRs
Cellular image processing (3D reconstruction of mitochondrion structure) 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Program for 3D cell structure
reconstruction Fortran 90 5600 36 1 0

Total 5600 1

Source TCs generation technique: Test suite

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

72

B.47 Ding et al SSIRI’10
See legend in page 25 to know the exact meaning of each field.

2010-dong-icwiiat

Publication data

Authors: G. Dong and S. Wu and G. Wang and T. Guo and Y. Huang
 Title: Security Assurance with Metamorphic Testing and Genetic Algorithm

Publication: Workshop on Service Intelligence and Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/WI-IAT.2010.101

Pages: 5

Country: China

Contact: guotao@itsec.gov.cn
 Summary:

This paper proposes the combination of genetic algorithm and metamorphic testing for the generation of test
data. In particular, the authors propose using MRs as part of the fitness function to accelerate the
convergence of the search toward the target. Two small case studies with numerical programs are
presented. The results suggest that the approach generates more effective test data than pure search-
based testing.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Search-based testing

Application domain(s): Numerical programs
Application scenarios Number of MRs
TriSquare: Decides whether 3 integers could form a triangle. 2

Determinant computation 1

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

TriSquare Java 30 NR 2 0

Determinant Java 30 NR 1 0

Total 3

Source TCs generation technique: Search-based generation

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

73

B.48 Dong et al ICWIIAT’10
See legend in page 25 to know the exact meaning of each field.

2010-just-ast

Publication data

Authors: R. Just and F. Schweiggert
 Title: Automating Software Tests with Partial Oracles in Integrated Environments

Publication: 5th Workshop on Automation of Software Test
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1145/1808266.1808280

Pages: 4

Country: Germany

Contact: rene.just@uni-ulm.de
 Summary:

This paper presents a case study on the use of MT to test the individual parts of an integrated system for
image processing. Four MRs are defined and applied to the open source tool JJ2000 from which 2183
mutants were generated. The results suggest that the MRs used to test part of the systems may not show
the same effectiveness when used to test the whole application. Combining MRs is suggested as a way to
compensate such variations. A similar case study was presented by the authors in a previous conference
paper (Just and Schweiggert 2009 ICSTW).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
Image preprocessing and decorrelation 4

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

JJ2000 library Java NR NR 2183 0

Total 4396 2183

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
- The combination of MRs can significantly increase their effectiveness.
- Combining the most effective MRs is nearly as effective as combining all MRs.

Challenges

74

B.49 Just and Schweiggert AST’10
See legend in page 25 to know the exact meaning of each field.

2010-kuo-iet

Publication data

Authors: F. Kuo and Z. Zhou and J. Ma and G. Zhang

Title: Metamorphic testing of decision support systems: a case study
Publication: IET Software Journal

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1049/iet-sen.2009.0084

Pages: 8

Country: Australia

Contact: zhiquan@uow.edu.au

Summary:

This paper presents an approach for the automated detection of faults in decision support systems. In
particular, they focus on the so—called Multi--Criteria Group Decision Making (MCGDM), in which decision
problems are modelled as a matrix with several dimensions: alternatives, criteria and experts. They also
introduced eleven metamorphic relations in natural language, and evaluated their approach using artificial
faults in the research tool Decider. The results show that MT is effective for fault detection in decision
support systems.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Decision support systems
Application scenarios Number of MRs
Multi-criteria group decision making 11

Total: 11

Evaluation

Program Language Size Real STCs Mutants Faults

Decider (release Sept 2008) Java 12795 1000 10 1

Total 12795 1000 10 1

Source TCs generation technique: Random

Evaluation metrics: Number of test failed test cases for each mutant and MR

 Available evaluation material

Lessons learned / guidelines
- Many different MRs can be combined to improve fault-detection effectiveness.
- If the initial and follow-up test case are very different, then the chance of violating an MR will be

relatively higher.

Challenges - Prioritization of MRs.

75

B.50 Kuo et al. IET’10
See legend in page 25 to know the exact meaning of each field.

2010-liu-cseet

Publication data

Authors: H. Liu and F. Kuo and T. Y. Chen
 Title: Teaching an End-User Testing Methodology
 Publication: 23rd Conference on Software Engineering Education and Training
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/CSEET.2010.28

Pages: 8

Country: Australia

Contact: hliu@swin.edu.au
 Summary:

The paper reports a 3-year experience in teaching MT to various groups of students at Swinburne University
of Technology (Australia). The authors explain the teaching approach followed and the main results
including a number of lessons learned. The main conclusion is that MT is a suitable technique for end-user
engineering.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Most students understood the concepts and principles of MT and learned how to use MT.
- Most students were able to identify correct MRs based on the authors’ guidance.
- Different students identified different MRs that target different faults.
- The majority of students were able to automate MT without the supporting tool.
- The test drivers developed by different students have different failure-detection effectiveness.

Challenges

76

B.51 Liu et al. CSEET’10
See legend in page 25 to know the exact meaning of each field.

2010-lu-uatc

Publication data

Authors: X. Lu and Y. Dong and C. Luo
 Title: Testing of Component-based Software: a Metamorphic Testing Methodology
 Publication: Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/UIC-ATC.2010.75

Pages: 5

Country: China

Contact: luxl73@nwu.edu.cn
 Summary:

This paper proposes a MT-based methodology for testing component-based applications. First, the basic
steps of the methodology are presented. Then, they are illustrated in a trivial scenario. No experimental
evaluation is reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Component-based software
Application scenarios Number of MRs
Foreign exchange component 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

77

B.52 Lu et al. UATC’10
See legend in page 25 to know the exact meaning of each field.

2010-murphy-tr

Publication data
Authors: Christian Murphy, Gail Kaiser
Title: Empirical Evaluation of Approaches to Testing Applications without Test Oracles

 Publication: Columbia University Computer Science Technical Reports
 Pub. Type: Journal Conference / Symp. Workshop Other: TR

Year: 2010

DOI/URL: http://hdl.handle.net/10022/AC:P:10525

Pages: 799 (11 pages + appendices)

Country: United States

Contact: cmurphy@cs.columbia.edu
 Summary:

This technical report presents two empirical studies comparing the effectiveness of three different techniques
addressing the oracle problem: niche oracle (i.e. inputs with known expected outputs), metamorphic testing
and assertion checking. The studies reveal that metamorphic testing outperform the other techniques, also
when dealing with no-determinism. A few lesson learned on testing without an oracle are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning, simulation, text search, optimization
Application scenarios Number of MRs
Classification algorithm 4

Discrete even simulation 2

Text search 4

Bin-packing problem 1

Total: 11

Evaluation

Program Language Size Real STCs Mutants Faults

Weka 3.5.8 (SVM) Java 85

C 4.5 C 28

MartiRank C 69

JSim Java 6

Lucene Java 15

Gaffitter C++ 66

Total 269

Source TCs generation technique: Existing test suite + random inputs

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
- Metamorphic relations should be identified as part of the planning and design phase, and included

in the program specication.
- Metamorphic testing is suitable for use in unit and integration testing.

78

B.53 Murphy and Kaiser TR’10
See legend in page 25 to know the exact meaning of each field.

Challenges
- Identification of metamorphic relations.

79

2010-segura-icst

Publication data

Authors: S. Segura and R. M. Hierons and D. Benavides and A. Ruiz-Cortés

Title:
Automated Test Data Generation on the Analyses of Feature Models: A Metamorphic
Testing Approach
 Publication: Third International Conference on Software Testing, Verification and Validation
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/ICST.2010.20

Pages: 10

Country: Spain

Contact: sergiosegura@us.es
 Summary:

This paper proposes the use of MT to detect faults in feature model analysis tools. The authors present a
number of MRs and a test data generator relying on them. In contrast to related works on MT, the authors
do not propose checking the results of source and follow-up test cases. Instead, MRs are used to compute
the actual output of follow-up test cases. This enables the iterative application of MRs generating non-trivial
input feature models and their corresponding (potentially huge) set of products. The approach is evaluated
using mutation testing in three open-source feature model analysis tools. Also, two defects were found in
the tool FaMa.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Automated analysis of feature models
Application scenarios Number of MRs
Automated analysis of feature models (6 operations) 6

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

Sat4jReasoner v0.9.2 Java 743 NR 188 0

JavaBDDReasoner v0.9.2 Java 625 NR 237 0

JaCoPReasoner v0.8.3 Java 686 NR 136 0

FaMa v1.0.0 alpha Java NR NR 0 2

Total 561 2

Source TCs generation technique: Random

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

80

B.54 Segura et al. ICST’10
See legend in page 25 to know the exact meaning of each field.

2010-segura-ist

Publication data

Authors: S. Segura and R. M. Hierons and D. Benavides and A. Ruiz-Cortés
 Title: Automated metamorphic testing on the analyses of feature models

Publication: Information and Software Technology Journal
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1016/j.infsof.2010.11.002

Pages: 14

Country: Spain

Contact: sergiosegura@us.es
 Summary:

This paper proposes the use of MT to detect faults in feature model analysis tools. The authors present a
number of MRs and a test data generator relying on them. In contrast to related works on MT, the authors
do not propose checking the results of source and follow-up test cases. Instead, MRs are used to compute
the actual output of follow-up test cases. This enables the iterative application of MRs generating non-trivial
input feature models and their corresponding (potentially huge) set of products. The approach is evaluated
using mutation testing in three open-source feature model analysis tools. Also, two defects were found in
the tool FaMa and another two in the tool SPLAR (analysis engine of SPLOT). This work is an extension of
a conference paper (Segura et al. 2010 ICST).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Automated analysis of feature models
Application scenarios Number of MRs
Automated analysis of feature models (7 operations) 6

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

Sat4jReasoner v0.9.2 Java 743 188

JavaBDDReasoner v0.9.2 Java 625 237

JaCoPReasoner v0.8.3 Java 686 136

FaMa v1.0.0 alpha Java 2

SPLAR Feb 2010 2

Total 561 4

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
MT produces better results when combined with other strategies (other than random testing) for the
selection of source test cases. The improvement, however, was noticed in terms of detection time
but not in terms of fault detection capability.

Challenges

81

B.55 Segura et al. IST’10
See legend in page 25 to know the exact meaning of each field.

2010-sim-icise

Publication data

Authors: K. Y. Sim and C. S. Low and F. Kuo
 Title: Detecting Faults in Technical Indicator Computations for Financial Market Analysis

Publication: 2nd International Conference on Information Science and Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/ICISE.2010.5689221
 Pages: 6

Country: Malaysia

Contact: ksim@swinburne.edu.my
 Summary:

The paper presents a MT approach for the detection of faults in financial software. The authors first present
several technical indicators and several MRs for each of them. Then, they generate several mutants of the
commercial tool Metatrader and check how many of them are detected by the proposed MRs. Tests are
integrated in the tool in a self-testing strategy. Source and follow-up test cases are obtained from the run-
time input price data received at different period of times. Results suggest that MT is effective in detecting
faults in financial software suffering from the oracle problem.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Financial software
Application scenarios Number of MRs
Simple Moving Averages (SMA) 2

Smoothed Moving Averages (SMMA) 4

Relative Strength Index (RSI) 2

Total: 8

Evaluation

Program Language Size Real STCs Mutants Faults

MetaTrader 4 client terminal NR NR 2000 8 0

Total 8

Source TCs generation technique: Test suite (run-time price data)

Evaluation metrics: Number of mutants killed by each MR

 Available evaluation material

Lessons learned / guidelines

Challenges

82

B.56 Sim et al. ICISE’10
See legend in page 25 to know the exact meaning of each field.

2010-tao-apsec

Publication data

Authors: Q. Tao and W. Wu and C. Zhao and W. Shen
 Title: An Automatic Testing Approach for Compiler Based on Metamorphic Testing Technique

Publication: 17th Asia Pacific Software Engineering Conference
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/APSEC.2010.39
 Pages: 10

Country: China

Contact: qiuming@iscas.ac.cn
 Summary:

The paper presents and MT-based approach for testing compilers. First, the author proposes a so-called
equivalence preservation metamorphic relation. Then, three different strategies for the generation of input
equivalent source programs are presented. The approach is implemented in a tool named Mettoc. Finally, a
case study with several open source C compilers and mutation is presented. Among other results, two real
defects were detected.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Compilers
Application scenarios Number of MRs
Source code compilation 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

GCC v4.4.2 C NR 2700 621 0

GCC v4.4.3 C NR NR 0 1

PCC v0.9.9 C NR NR 0 0

TCC v0.9.25 C NR NR 0 0

UCC v1.6 C NR NR 0 1

Total 621 2

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

83

B.57 Tao et al. APSEC’10
See legend in page 25 to know the exact meaning of each field.

2010-xie-jss

Publication data

Authors: X. Xie and J. W. K. Ho and C. Murphy and G. Kaiser and B. Xu and T. Y. Chen
 Title: Testing and validating machine learning classifiers by metamorphic testing

Publication: The Journal of Systems and Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1016/j.jss.2010.11.920

Pages: 15

Country: Australia

Contact: xxie@groupwise.swin.edu.au
 Summary:

These authors propose using MT for the detection of faults in supervised classifiers. They argue that MT
can be helpful for both validation and verification. Validation is used to find out whether the algorithm is
appropriate for the problem. Verification is used to detect fault in the algorithms. Two specific algorithms
are studied: K-Nearest Neighbours (KNN) and Naïve Bayes Classifier (NBC). As a first step, 11 MRs are
proposed and applied to implementations of the algorithms in the tool Weka. The results reveal several
defects in the implementation of NBC. A further validation is reported using mutation analysis and cross-
validation. This work is an extension of a previous conference paper (Xie et al. 2009 QSIC).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
K-Nearest neighbours 11

Naïve Bayes Classifier 9

Total: 20

Evaluation

Program Language Size Rea
l

STCs Mutants Faults

Weka 3.5.7 Java 16.4M 300 50 3

Total 300 50 3

Source TCs generation technique: Random

Evaluation metrics: Percentage of test cases violating a MR.

 Available evaluation material

Lessons learned / guidelines
- Equality MRs are preferred because an equality expression is tighter than a non-equality one.
- Different MRs have different performance in detecting program faults.
- Combination of MRs may lead to better failure-detection capabilities.

Challenges

84

B.58 Xie et al. JSS’10
See legend in page 25 to know the exact meaning of each field.

2010-yoo-icstw

Publication data

Authors: S. Yoo
 Title: Metamorphic Testing of Stochastic Optimisation

Publication: 3rd International Workshop on Search-Based
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1109/ICSTW.2010.26

Pages: 10

Country: United kingdom

Contact: Shin.Yoo@kcl.ac.uk
 Summary:

This paper proposes a MT-based approach for stochastic optimization algorithms. More specifically, the
authors apply the Statistical Metamorphic Testing (SMT) approach presented by Guderlei and Mayer (QSIC
2007) to the context of metaheuristics. Since metaheuristic algorithms are by nature stochastic, the authors
propose to compare the output of different executions using statistical hypothesis testing. A case study with
a simulated annealing algorithm and the next release problem is presented. The results show that SMT can
be effective for certain class of faults in optimization algorithms. It also shows that the effectiveness of SMT
not only depends on the algorithm and the fault but also son the problem instance used for the test.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Optimization algorithms
Application scenarios Number of MRs
Simulated Annealing – Next Release Problem 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

Simulated Annealing Java 25 NR 86 0

Total 25 86

Source TCs generation technique: Test suite and random generation

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

85

B.59 Yoo ICSTW’10
See legend in page 25 to know the exact meaning of each field.

2010-zhou-stvr

Publication data

Authors: Z. Zhou and S. Zhang and M. Hagenbuchner and T. H. Tse and F. Kuo and T. Y. Chen
 Title: Automated functional testing of online search services

Publication: Software Testing, Verification and Reliability Journal
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2010

DOI/URL: http://dx.doi.org/10.1002/stvr.437

Pages: 23

Country: Australia

Contact: zhiquan@uow.edu.au
 Summary:

This article proposes using MT for the detection of inconsistencies in online search services. Several MRs
are proposed and used in a number of experiments with three Web search engines: Google, Yahoo and Live
Search. The results show that MT effectively detects inconsistencies in the searches in terms of both
returned content and ranking quality.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Online search services
Application scenarios Number of MRs
Online search engine 7

Total: 7

Evaluation

Program Language Size Real STCs Mutant

Faults

Google >1000

Yahoo >1000

Live Search >1000

Total >3000
Not

explicitly
reported

Source TCs generation technique: Random

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

86

B.60 Zhou et al. STVR’10
See legend in page 25 to know the exact meaning of each field.

2011-asrafi-ssiri

Publication data

Authors: M. Asrafi and H. Liu and F. Kuo
 Title: On Testing Effectiveness of Metamorphic Relations: A Case Study

Publication: Fifth International Conference on Secure Software Integration and Reliability Improvement
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1109/SSIRI.2011.21

Pages: 10

Country: Australia

Contact: hliu@swin.edu.au
 Summary:

This paper presents a case study to explore the correlation between the execution behaviour and the fault-
effectiveness of MRs. Two sample programs are used as the subjects of the case study. First, the programs
are run with thousands of test cases (and associated follow-up test cases) measuring the line and branch
coverage. Then, the fault-detection effectiveness of the proposed MRs is measured using mutation analysis.
Finally, the correlation between coverage and fault-detection effectiveness is statistically analysed. The
authors conclude that execution behaviour is, in general, a good indicator of the fault effectiveness of MRs.
However, they also point out that other aspects must be considered as the program structure. MRs with low
coverage could still be helpful if the code coverage is not exercised by other MRs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Conflict detection, optimization
Application scenarios Number of MRs
Onboard aircraft conflict detection and resolution 14

Knapsack 10

Total: 24

Evaluation

Program Language Size Real STCs Mutants Faults

TCAS C 173 10000 422 0

Knapsack Java 180 10000 100 0

Total 20000 522 0

Source TCs generation technique: Random

Evaluation metrics:
MR Probability (MRP) and Fault Detection Probability within a
Range (FDPR)

 Available evaluation material

Lessons learned / guidelines
- There exists a correlation between the code coverage and the fault-detection effectiveness of MRs.
- Other factors, apart from the code coverage, must be considered when designing MRs e.g.

program structure.
- There can be some situations where some program segments are covered by some MRs with low

coverage, but not by those with high coverage.

Challenges

87

B.61 Asrafi et al. SSIRI’11
See legend in page 25 to know the exact meaning of each field.

2011-barus-set

Publication data

Authors: A. C. Barus and T. Y. Chen and D. Grant and F. Kuo and M. F. Lau
 Title: Testing of Heuristic Methods: A Case Study of Greedy Algorithm

Publication: Third IFIP TC 2 Central and East European conference on Software engineering techniques
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1007/978-3-642-22386-0_19

Pages: 15

Country: Australia

Contact: abarus@ict.swin.edu.au
 Summary:

This paper presents a case study on the use of MT for the detection of faults in a greedy algorithm for
solving the Key-Lock Problem (KLP). Nine MRs are identified. An experiment is conducted to measure the
fault-detection effectiveness of the proposed MRs using five seeded-faults.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Optimization algorithms
Application scenarios Number of MRs
Key-Lock Problem (KLP) 9

Total: 9

Evaluation

Program Language Size Real STCs Mutants Faults

KLP Java 35 100 5 0

Total 100 5

Source TCs generation technique: Random

Evaluation metrics:
Percentage of test cases that detected a mutant M using
metamorphic relation MR, percentage of test cases that
detected any mutant.

 Available evaluation material

Lessons learned / guidelines
- Different failures can be revealed by different MRs.
- Some MRs can reveal more failures than others.

Challenges
- Selection and prioritization of MRs

88

B.62 Barus et al. SET’11
See legend in page 25 to know the exact meaning of each field.

2011-batra-istm

Publication data

Authors: G. Batra and J. Sengupta
 Title: An Efficient Metamorphic Testing Technique Using Genetic Algorithm

Publication:
5th International Conference on Information Intelligence, Systems, Technology and
Management

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1007/978-3-642-19423-8_19

Pages: 9

Country: India

Contact: gdeep.pbi@gmail.com
 Summary:

The paper proposes using a genetic algorithm for the optimized selection of source test cases for
metamorphic testing, named “genetically augmented metamorphic testing”. More specifically, the authors
propose using the traversed paths in the SUT to guide the search toward test cases that exercise the most
critical paths in the program. This is therefore a white-box approach. A small experiment with a C program
for determining the type of a triangle and 4 mutants is reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Search-based testing

Application domain(s): Numerical program
Application scenarios Number of MRs
Triangle type determination program 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Tritype C 32 NR 4 0

Total 32 4

Source TCs generation technique: Search-based generation

Evaluation metrics: Mutation score and fault detection ratio
 Available evaluation material

Lessons learned / guidelines

Challenges

89

B.63 Batra and Sengupta ISTM’11
See legend in page 25 to know the exact meaning of each field.

2011-castro-iceb

Publication data

Authors: C. Castro-Cabrera and I. Medina-Bulo
 Title: An approach to metamorphic testing for WS-BPEL compositions

Publication: International Conference on e-Business

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.5220/0003611401370142
 Pages: 6

Country: Spain

Contact: maricarmen.decastro@uca.es
 Summary:

This short paper describes a theoretical approach for metamorphic testing of WS-BPEL compositions. The
authors explain the main steps of the future system and detail how it will be supported in the work of
previous authors. An illustrative example is presented with a Loan Approval Composition.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Web service composition
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

90

B.64 Castro-Cabrera and Medina-Bulo ICEB’11
See legend in page 25 to know the exact meaning of each field.

2011-ding-ast

Publication data

Authors: J. Ding and T. Wu and D. Xu and J. Q. Lu and X. Hu
 Title: Metamorphic Testing of a Monte Carlo Modeling Program

Publication: 6th International Workshop on Automation of Software Test

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1145/1982595.1982597
 Pages: 7

Country: United States

Contact: dingj@ecu.edu
 Summary:

The paper presents a MT-based approach for testing a Monte Carlo program for the simulation of photon
propagation. In particular, the authors propose using a self-checked metamorphic testing approach (Ding et
al. 2010 SSIRI). In this approach, MT is extended using code coverage criteria to evaluate the quality of the
proposed MRs. Five MRs are presented and used to test a Monte Carlo program written in Fortran 90.
Authors conclude that testing coverage information effectively guide the selection of MRs and the creation
of test cases.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Structural testing (coverage)

Application domain(s): Simulation (stochastic techniques)
Application scenarios Number of MRs
Monte Carlo program of photon transportation 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Monte Carlo program Fortran 90 1600 NR 0 0

Total 1600

Source TCs generation technique: Test suite

Evaluation metrics: Code coverage

 Available evaluation material

Lessons learned / guidelines

- Structural testing is helpful to guide the selection of MRs and test cases.

Challenges

91

B.65 Ding et al. AST’11
See legend in page 25 to know the exact meaning of each field.

2011-jing-je

Publication data

Authors: J. Zhang and X. Hu and B. Zhang

Title:
An evaluation approach for the program of association rules algorithm based on
metamorphic relations

Publication: Journal of Electronics (China)

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1007/s11767-012-0743-9

Pages: 9

Country: China

Contact: Zhangjing@hfut.edu.cn

Summary:

This article presents a case study on the use of MT in association rules programs in the context of data
mining. Seven MRs are presented and used to test one of the algorithm integrated in the machine learning
tool Weka.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool
 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
Association rules algorithm 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

Weka Java NR 124

Total

Source TCs generation technique: Test suite (contact-lenses dataset) and random test cases

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

92

B.66 Jing et al. JE’11
See legend in page 25 to know the exact meaning of each field.

2011-just-sqj

Publication data

Authors: R. Just and F. Schweiggert
 Title: Automating unit and integration testing with partial oracles

Publication: Software Quality Control Journal

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1007/s11219-011-9151-x

Pages: 17

Country: Germany

Contact: rene.just@uni-ulm.de
 Summary:

This paper presents a case study on the use of MT to test the individual parts of an integrated system for
image processing. Seven MRs are defined and applied to the open source tool JJ2000 from which 2183
mutants were generated. The results suggest that the MRs used to test part of the systems may not show
the same effectiveness when used to test the whole application. Combining MRs is suggested as a way to
compensate such variations. This work is an extension of a previous workshop paper (Just and Schweiggert
2010 AST).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
Image preprocessing and decorrelation 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

JJ2000 library Java 4396 NR 2183 0

Total 4396 2183

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
- The combination of MRs can significantly increase their effectiveness.
- Combining the most effective MRs is nearly as effective as combining all MRs.
- When constructing MRs, it is advisable to exploit constraints like equivalence relations in

conjunction with properties such as commutativity, distributive or associativity.
- For efficiency reasons, the combination of necessary conditions should be implemented within a

single MR even although the complexity is increased.
- The partial oracles derived from the characteristics of the integrated (sub)systems may be less

effective than partial oracles for the individual parts of the system.

Challenges

93

B.67 Just and Schweiggert SQJ’11
See legend in page 25 to know the exact meaning of each field.

2011-kuo-lcn

Publication data

Authors: F. Kuo and T. Y. Chen and W. K. Tam

Title:
Testing Embedded Software by Metamorphic Testing: a Wireless Metering System Case
Study
 Publication: 36th Annual IEEE Conference on Local Computer Networks

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: 10.1109/LCN.2011.6115306
 Pages: 4

Country: Australia

Contact: dkuo@ict.swin.edu.au
 Summary:

This paper proposes using MT for the detection of faults in embedded software. A case study is reported on
the use of MT in a wireless metering system. One MR was identified and used to test the meter reading
function of a commercial device from the electric industry. Two real defects were uncovered.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Embedded software
Application scenarios Number of MRs
Wireless metering system 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

RF-Soft C NR NR NR 2

Total 2

Source TCs generation technique: NR

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges
- Identification of MRs.

94

B.68 Kuo et al. LCN’11
See legend in page 25 to know the exact meaning of each field.

2011-kuo-sac

Publication data

Authors: F. Kuo and S. Liu and T. Y. Chen
 Title: Testing a Binary Space Partitioning Algorithm with Metamorphic Testing

Publication: 2011 ACM Symposium on Applied Computing

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1145/1982185.1982502

Pages: 8

Country: Australia

Contact: dkuo@groupwise.swin.edu.au
 Summary:

The paper proposes using MT for detection of faults in a binary space partitioning algorithm. Five MRs are
presented and used to test an implementation of the surface visibility problem using Binary Space
Partitioning (BSP) tree. One real fault and ten mutants were effectively detected.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Computer graphics
Application scenarios Number of MRs
Surface visibility using Binary Space Partitioning (BSP) tree 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

BSP-treeVS C NR 5000 10 1

Total 5000 10 1

Source TCs generation technique: Random

Evaluation metrics: Number of test cases detecting a mutant M using
metamorphic relation R

 Available evaluation material

Lessons learned / guidelines
- Different faults are sensitive to different MRs.

Challenges

95

B.69 Kuo et al. SAC’11
See legend in page 25 to know the exact meaning of each field.

2011-murphy-sehc

Publication data

Authors:
C. Murphy and M. S. Raunak and A. King and S. Chen and C. Imbriano and G. Kaiser and I.
Lee and O. Sokolsky and L. Clarke and L. Osterweil
 Title: On Effective Testing of Health Care Simulation Software

Publication: 3rd Workshop on Software Engineering in Health Care

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1145/1987993.1988003

Pages: 8

Country: United States

Contact: cdmurphy@cis.upenn.edu
 Summary:

This paper proposes using MT for the detection of faults in simulation software. Some guidelines for the
design of MRs are reported. To show the feasibility of the approach, a case study with two health care
simulators (JSIM and GCS) and mutation analysis is presented.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Simulation software
Application scenarios Number of MRs
Discrete event simulation 31

Glycemic control simulation 3

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

JSim Java NR NR 25 0

GCS MATLAB NR NR 724 0

Total 749 0

Source TCs generation technique: Test suite (Emergency department model)

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines
- MRs should consider: 1) Properties shared by all the applications in a given domain, 2) properties

specific to the algorithm under test, and 3) properties applicable only to a given input.

Challenges

1 The number of MRs is not explicitly specified in the paper.

96

B.70 Murphy et al. SEHC’11
See legend in page 25 to know the exact meaning of each field.

2011-sun-icws

Publication data
Authors: C. Sun and G. Wang and B. Mu and H. Liu and Z. Wang and T. Y. Chen
Title: Metamorphic Testing for Web Services: Framework and a Case Study
Publication: International Conference on Web Services

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1109/ICWS.2011.65

Pages: 8

Country: China

Contact: casun@ustb.edu.cn
 Summary:

This paper presents a framework for the application of MT on web services. In particular, the authors
propose several steps and theoretical tools (e.g. “test case generator”) for the application of MT in the
context of SOA. MRs are expected to be provided by the tester. A small case study is presented using an
electronic payment web service and mutation analysis.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Service-oriented applications
Application scenarios Number of MRs
Electronic payment 6

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

ATM Web Service Java 136 50-200 129 0

Total 136 50-200 129

Source TCs generation technique: Random

Evaluation metrics: Mutation score and fault discovery rate.

 Available evaluation material

Lessons learned / guidelines
- Each MR has a varying sensitivity to different mutants.

Challenges

97

B.71 Sun et al. ICWS’11
See legend in page 25 to know the exact meaning of each field.

2011-xie-qsic

Publication data
Authors: X. Xie and W. E. Wong and T. Y. Chen and B. Xu
Title: Spectrum-Based Fault Localization: Testing Oracles Are No Longer Mandatory
Publication: 11th International Conference On Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2011

DOI/URL: http://dx.doi.org/10.1109/QSIC.2011.20

Pages: 10

Country: Australia

Contact: xxie@groupwise.swin.edu.au
 Summary:

The paper proposes using MT to extend the applicability of spectrum-based fault localization to programs
without oracles. In particular, the authors propose the concept of “mice”, based on the integration of MRs
and slices. A case study with 9 programs and mutation analysis is presented. The results suggest that the
approach is applicable offering a fault detection capability similar to the conventional spectrum-based fault
localization techniques.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Spectrum-based fault localization

Application domain(s): Pattern matching, lexical analyser, priority scheduler, altitude
separation, information measure, bioinformatics.

Application scenarios Number of MRs
Grep – pattern matching 31

Short sequence mapping (bioinformatics) 3

Lexical analyser 3

Priority scheduler 3

Altitude separation 3

Information measure 3

String matching 3

Total: 21

Evaluation

Program Language Size Real STCs Mutants Fault
 print_tokens C 342 4130 77 max2 0

print_tokens2 C 355 4115 79 max 0

replace C 512 5542 144 max 0

schedule C 292 2650 98 max 0

schedule2 C 262 2710 94 max 0

tcas C 135 1608 69 max 0

tot_info C 273 1052 76 max 0

seqMap v1.0.8 C++ 1783 300 97 max 0

grep 1.2 C 7309 10069 146 max 0

Total 11270 32176 880 max 0

Source TCs generation technique: Test suite and random testing

98

B.72 Xie et al. QSIC’11
See legend in page 25 to know the exact meaning of each field.

Evaluation metrics:
EXAM score (percentage of executable statements that have
to be examined until the first statement containing the bug is
reached)

 Available evaluation material

Lessons learned / guidelines

Challenges

1 These are the only MRs explicitly presented in the paper.
2 The exact number of mutants is not reported. This is the maximum number of mutants according to the
number of mutants used for each MR on each program.

99

2012-castro-ebt

Publication data
Authors: C. Castro-Cabrera and I. Medina-Bulo
Title: Application of Metamorphic Testing to a Case Study in Web Services Compositions
Publication: E-Business and Telecommunications

Pub. Type: Journal Conference / Symp. Workshop Other: Book ch.

Year: 2012

DOI/URL: http://dx.doi.org/10.1007/978-3-642-35755-8_13

Pages: 14

Country: Spain

Contact: maricarmen.decastro@uca.es
 Summary:

The paper presents a MT-based approach for WS-BPEL Web service compositions. A small case study with
a loan approval composition and three MRs is presented to show the feasibility of the approach. This paper
is an extension of a previous work (Castro et al. 2011 ICEB)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Web service compositions

Application scenarios Number of MRs
Loan approval web service composition 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

100

B.73 Castro-Cabrera and Medina-Bulo EBT’12
See legend in page 25 to know the exact meaning of each field.

2012-chen-issdm

Publication data

Authors: L. Chen and L. Cai and J. Liu and Z. Liu and S. Wei and P. Liu
 Title: An optimized method for generating cases of metamorphic testing

Publication:
6th International Conference on New Trends in Information Science and Service Science
and Data Mining

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6528673

Pages: 5

Country: China

Contact: cll1128@163.com
 Summary:

This paper presents a method to obtain a minimum set of effective source test cases for MT. In particular,
the authors propose an algorithm for the generation of test cases satisfying the so-called ECCEM
(Equivalence-Class Coverage for Every Metamorphic Relation) criterion. A small case study is presented
using mutation testing. The author conclude that selecting a source test case from each equivalence class
lead to test cases with both a high utilization rate and high failure-detection capability. This work is highly
inspired in the work of Dong et al. (Dong et al. 2007 QSIC)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Equivalence class partitioning

Application domain(s): Numerical programs
Application scenarios Number of MRs
TriSquare: Check whether 3 positive real numbers could construct a triangle 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

TriSquare Java 30 NR 4 0

Total 30 4 0

Source TCs generation technique: Test suite (Equivalent class partitioning)

Evaluation metrics: Mutation score and test case rate of utilization.

 Available evaluation material

Lessons learned / guidelines

Challenges

101

B.74 Chen et al. ISSDM’12
See legend in page 25 to know the exact meaning of each field.

2012-chen-qsic

Publication data

Authors: T. Y. Chen and F. Kuo and D. Towey and Z. Zhou
 Title: Metamorphic Testing: Applications and Integration with Other Methods
 Publication: International Workshop on Embedded System Software Development and Quality Assurance

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1109/QSIC.2012.21

Pages: 4

Country: Australia

Contact: tychen@groupwise.swin.edu.au
 Summary:

This tutorial synopsis presents an introduction to MT outlining some of its applications and the integration
with other testing techniques.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Graphs, optimization program, online search services, wireless
embedded software.

Application scenarios Number of MRs
Shortest path 2

Quadratic Assignment Problem (QAP) 3

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- MT can also be regarded as a test case generation strategy because follow-up test cases can be

generated from source test cases by referring to MRs.

Challenges

102

B.75 Chen et al. QSIC’12
See legend in page 25 to know the exact meaning of each field.

2012-gagandeep-ccis

Publication data

Authors: G. Batra and G. Singh

Title: An Automated Metamorphic Testing Technique for Designing Effective Metamorphic Relations

Publication: 5th International Conference on Communications in Computer and Information Science

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1007/978-3-642-32129-0_20

Pages: 12

Country: India

Contact: gdeep.pbi@gmail.com

Summary:

This paper presents a case study on the use of MT in a Banking system research program. First, the
authors describe how MRs (11 in total) can be derived from the specification of the system. Then, MRs are
implemented and executed revealing several faults.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical program

Application scenarios Number of MRs
Banking system (deposit module, withdraw module, loan module, fixed deposit module) 11

Total: 11

Evaluation

Program Language Size Real STCs Mutants Faults

Banking system C# NR NR 0 3

Total

Source TCs generation technique: Test suite

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

103

B.76 Gagandeep and Singh CCIS’12
See legend in page 25 to know the exact meaning of each field.

2012-liu-qsic

Publication data

Authors: H. Liu and X. Liu and T. Y. Chen
 Title: A New Method for Constructing Metamorphic Relations
 Publication: 12th International Conference on Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1109/QSIC.2012.10

Pages: 10

Country: Australia

Contact: hliu@swin.edu.au
 Summary:

This paper presents a new method named composition of metamorphic relations. The approach addresses
the problem of creating MRs by combining existing ones. The work includes some theoretical definitions and
a case study to compare the failure-detection effectiveness of individual MRs and composite MRs. A
bioinformatics programs and 11 mutants are used. The results suggest that composite MRs normally has
higher (or at least similar) failure-detection capability than each component MR. Also, composite MRs
improve the cost-effectiveness of classic MT since it involves a fewer test executions. A similar idea was
earlier presented by Dong et al (see 2008-dong-jsu).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Bioinformatics

Application scenarios Number of MRs
Phylogenetic program 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

Dnapars NR NR 500 11 0

Total 500 11 0

Source TCs generation technique: Random

Evaluation metrics:
Number of test cases that detect a mutant M using
metamorphic relation R. Ratio between the number of
detected failures and the number of executed test cases.

 Available evaluation material

Lessons learned / guidelines
- The composition of k MRs can produce a composite MR that normally has higher (or at least

similar) failure-detection capability than each component MR.
- Certain MRs (those that involves a weak output relation) may reduce the failure-detection

effectiveness of composite MRs.
- The cost-effectiveness of composite MRs (where each individual MR is used only once) is normally

higher than that of the individual MRs.

Challenges
- Identify the MRs that cannot be combined, e.g. MR75 in the paper.

104

B.77 Liu et al. QSIC’12
See legend in page 25 to know the exact meaning of each field.

2012-pullum-biomedcom

Publication data

Authors: L. L. Pullum and O. Ozmen
 Title: Early Results from Metamorphic Testing of Epidemiological Models
 Publication: Workshop on Verification and Validation of Epidemiological Models

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1109/BioMedCom.2012.17

Pages: 6

Country: United States

Contact: pullumll@ornl.gov
 Summary:

The paper proposes using MT for the detection of faults in predictive models for disease spread. A case
study on the detection of faults in an Agent-Based Model (ABM) of the 1918 Spanish flu is presented.
Fourteen MRs were identified and used for testing. This work is closely related to the work of Ramanathan
et al. (Ramanathan et al. 2012 BIOMEDCOM).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Disease spread

Application scenarios Number of MRs
Equation-Based Model (EBM) 14

Agent-Based Model (ABM)
Total: 14

Evaluation

Program Language Size Real STCs Mutants Faults

ABM of the 1918 Spanish flu1 (SIIR model)

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

��
1 A prediction model was tested, not a program.

105

B.78 Pullum and Ozmen BIOMEDCOM’12
See legend in page 25 to know the exact meaning of each field.

2012-ramanathan-biomedcom

Publication data

Authors: A. Ramanathan and C. A. Steed and L. L. Pullum

Title:
Verification of Compartmental Epidemiological Models using Metamorphic Testing, Model Checking
and Visual Analytics
 Publication: Workshop on Verification and Validation of Epidemiological Models

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1109/BioMedCom.2012.18

Pages: 6

Country: United States

Contact: ramanathana@ornl.gov
 Summary:

This paper proposes the use of several techniques, including MT, for the verification of compartmental
epidemiological models. The authors introduce epidemiological models and explain how MT could be helpful
for the detection of certain faults in the implementation of SIR/SEIR models. A few MRs are introduced.
Authors also explain how visualization tools and model checking could be used for the detection of faults in
that type of models.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Disease spread

Application scenarios Number of MRs
SIR/SEIR epidemiological models 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

SIR/SEIR models1

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

��
1 A prediction model was tested, not a program.

106

B.79 Ramanathan et al. BIOMEDCOM’12
See legend in page 25 to know the exact meaning of each field.

2012-sun-jwsr

Publication data
Authors: C. Sun and G. Wang and B. Mu and H. Liu and Z. Wang and T. Y. Chen
Title: A Metamorphic Relation-Based Approach to Testing Web Services Without Oracles

 Publication: International Journal of Web Services Research (IJWSR)
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.4018/jwsr.2012010103

Pages: 25

Country: China

Contact:
 Summary:

This paper presents a metamorphic testing framework for SOAP web services. The author propose to
manually derive metamorphic relations from the WSDL description of web services. Then, they propose to
automatically generate random source test cases from the WSDL specification and apply the metamorphic
relations. A tool to partially automate the process is presented. Their approach is evaluated with three
subject web services and mutation analysis.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Web services
Application scenarios Number of MRs
Automatic Teller Machine 6

Seismic query service 12

Money numerical quantity to text 4

Total: 22

Evaluation

Program Language Size Real STCs Mutants Faults

Balance Transfer (ATM) service Java 136 200 129 0

Seismic web service Java 551 100 724 0

RMB converter service NR NR 100 195 0

Total 400 1048 0

Source TCs generation technique: Random

Evaluation metrics: Mutation Score (MS) and Fault Discovery Rate (FDR)

 Available evaluation material

Lessons learned / guidelines
- Good MRs are relations which involve the execution of the core functionality.
- Good MRs are those that can make the multiple executions of the program as different as possible.

Challenges

107

B.80 Sun et al. IJWSR’12
See legend in page 25 to know the exact meaning of each field.

2012-xie-ist

Publication data

Authors: X. Xie and W. E. Wong and T. Y. Chen and B. Xu
 Title: Metamorphic slice: An application in spectrum-based fault localization

Publication: Information and Software Technology

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1016/j.infsof.2012.08.008

Pages: 14

Country: Australia

Contact: xxie@swin.edu.au
 Summary:

This article proposes the combination of MT and Spectrum-Based Fault Localization (SBFL) for program
debugging. More specifically, the authors use a new concept, metamorphic slice, resulting from the
integration of MT and program slicing. Instead of using conventional program slices and the failure or pass
information from test cases, metamorphic slices allow working with violation or non-violation information
from MRs in programs without oracles. A case study with 9 programs and mutation analysis is presented.
Also, two real bugs are detected in two of the programs of the Siemens Suite. The results suggest that the
approach is applicable offering a fault detection capability similar to the conventional SBFL techniques. This
article is an extension of a previous conference paper (Xie et al. 2011 QSIC)

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Spectrum fault localization

Application domain(s): Pattern matching, lexical analyser, priority scheduler, altitude
separation, information measure, bioinformatics.

Application scenarios Number of MRs
grep – pattern matching 3

Short sequence mapping (bioinformatics) 3

Lexical analyser 3

Priority scheduler 3

Altitude separation 3

Information measure 3

String matching 3

Total: 21

Evaluation

Program Language Size Real STCs Mutants Faults

print_tokens C 342 4130 77 max1 1

print_tokens2 C 355 4115 79 max

replace C 512 5542 144 max

schedule C 292 2650 98 max 1

Schedule2 C 269 2710 94 max

tcas C 135 1608 69 max

tot_info C 273 1052 76 max

seqMap v1.0.8 C++ 1783 300 97 max

1 The exact number of mutants is not reported. This is the maximum number of mutants according to the
number of mutants used for each MR on each program.

108

B.81 Xie et al. IST’12
See legend in page 25 to know the exact meaning of each field.

grep 1.2 C 7309 10069 146 max

Total 29466 880 max 2

Source TCs generation technique: Test suite and random testing.

Evaluation metrics:
EXAM score (percentage of executable statements that have
to be examined until the first statement containing the bug is
reached)

 Available evaluation material

Lessons learned / guidelines

Challenges

109

2012-yi-acsie

Publication data

Authors: Y.Yao and S. Huang and M. Ji
 Title: Research on Metamorphic Testing for Oracle Problem of Integer Bugs

Publication:
Fourth International Conference on Advances in Computer Science and Information
Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2012

DOI/URL: http://dx.doi.org/10.1007/978-3-642-30126-1_16
 Pages: 6

Country: China

Contact: yaoyi226@yahoo.com.cn
 Summary:

This paper proposes using MT for the detection of Integer bugs. A small case study with a traffic collision
avoidance program, one MR and 15 mutants is presented. The results suggest that MT is more effective
than the formal safety property method.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Security software (Integer bug detection)

Application scenarios Number of MRs
Traffic collision avoidance system 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

TCAS C 173 60 15 0

Total 173 15 0

Source TCs generation technique: Not reported

Evaluation metrics: Failure detection ratio

 Available evaluation material

Lessons learned / guidelines

Challenges

110

B.82 Yi et al. ACSIE’12
See legend in page 25 to know the exact meaning of each field.

2013-cao-qsic

Publication data

Authors: Y. Cao and Z. Zhou and T. Y. Chen

Title:
On the Correlation between the Effectiveness of Metamorphic Relations and Dissimilarities of Test
Case Executions
 Publication: 13th International Conference on Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/QSIC.2013.43

Pages: 10

Country: Australia

Contact: zhiquan@uow.edu.au
 Summary:

This paper assesses the correlation between fault-detection effectiveness of MRs and test case
dissimilarity. An extensive experiment is reported using 83 faulty programs and 7 distance metrics in test
cases. The results show that there is a strong and statistically significant correlation between the fault-
detection capability of MRs and the distance among test cases, especially when using the Branch Coverage
Manhattan Distance (BCMD) metric.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Graph theory, pattern matching, text transformation, command
line interpreter

Application scenarios Number of MRs
Dijkstra’s shortest path algorithm 20

Critical path search in a directed graph 20

Shortest and second shortest path in a graph 20

Calculator for large integers 43

Pattern matching (grep) 10

Stream editor (performs text transformations in an input stream) 33

Command language interpreter (bash) 10

Total: 156

Evaluation

Program Language Size Real STCs Mutants Faults

spWiki C 95 1000 19 0

cpWiki C 125 1000 18 0

spStudent C++ 200 1000 0 10

bigInt C++ 500 1000 0 21

grep C 1006
8

 10000 5 0

sed C 1442
7

 4333 7 0

bash C 5984
6

 10000 6 0

Total 8526
1

 28333 55 31

Source TCs generation technique: Test suite and random testing.

Evaluation metrics: Failure detection rate

 Available evaluation material

111

B.83 Cao et al. QSIC’13
See legend in page 25 to know the exact meaning of each field.

Lessons learned / guidelines

Challenges

112

2013-chan-qsic

Publication data

Authors: W. K. Chan and T. H. Tse

Title:
Oracles Are Hardly Attain'd, and Hardly Understood: Confessions of Software Testing
Researchers

Publication: The Symposium on Engineering Test Harnesses

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/QSIC.2013.16

Pages: 8

Country: Hong Kong

Contact: wkchan@cityu.edu.hk
 Summary:

This paper summarizes the authors’ works on the oracle problem focusing on three scenarios: i) testing
without a mechanism to determine the expected output, ii) testing without a mechanism to gauge the actual
output, and iii) testing without a mechanism to decide whether the actual results agree with the expected
outcomes. Several previously published works on MT are presented to illustrate their contributions to
scenarios i) and ii).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs, ubiquitous computing
Application scenarios Number of MRs
Partial differential equations 1

Smart delivery system 2

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

113

B.84 Chan and Tse QSIC’13
See legend in page 25 to know the exact meaning of each field.

2013-dong-icsess

Publication data

Authors: G. Dong and T. Guo and P. Zhang

Title: Security Assurance with Program Path Analysis and Metamorphic Testing

Publication: 4th IEEE International Conference on Software Engineering and Service Science

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/ICSESS.2013.6615286

Pages: 5

Country: China

Contact: donggw@itsec,gov.cn

Summary:

This paper proposes using symbolic execution and program path analysis to design MRs that cover all the
program paths with a few executions as possible. The feasibility of the approach is evaluated using two
small case studies and mutation analysis.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Structural testing (path coverage), symbolic execution

Application domain(s): Numerical programs
Application scenarios Number of MRs
Trisquare 2

Normal distribution probability 3

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Trisquare NR NR NR 4 0

Normal distribution probability NR 36 NR 3 0

Total 36 7 0
Source TCs generation technique: Random
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

114

B.85 Dong et al. ICESS’13
See legend in page 25 to know the exact meaning of each field.

2013-hui-mpe

Publication data
Authors: Z. Hui and S. Huang and Z. Ren and Y. Yao
Title: Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study

 Publication: Mathematical Problems in Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1155/2013/381389

Pages: 6

Country: China

Contact: hzw_1983821@163.com
 Summary:

The paper proposes the use of metamorphic testing to detect faults related to integer overflows. A case
study with the aircraft collision avoidance system TCAS from the Siemens Suite is presented. One
metamorphic relations is proposed and evaluated using three mutants.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Aircraft conflict detection
Application scenarios Number of MRs
Aircraft collision avoidance system 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

TCAS C 87 1

Total 87 1

Source TCs generation technique: Existing suite

Evaluation metrics: Fault detection ratio

 Available evaluation material

Lessons learned / guidelines

Challenges

115

B.86 Hui et al. MPE’13
See legend in page 25 to know the exact meaning of each field.

2013-hui-wcse

Publication data

Authors: Z. Hui and S. Huang

Title: Achievements and Challenges of Metamorphic Testing

Publication: Fourth World Congress on Software Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/WCSE.2013.16

Pages: 5

Country: China

Contact:

Summary:

This paper informally reviews some of the previous works on MT in terms of i) construction of MRs, ii)
selection of MRs, iii) generation of test cases, and iv) evaluation of MT effectiveness. As a result of their
review, the authors identify several challenges on MT research.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total
Source TCs generation technique:
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges - Lack of formalized description method for MRs with consistency and ambiguity. - Lack of objective and efficient metrics for MRs. - Construct more efficient MRs based on basic ones to ensure the completeness of MRs.

116

B.87 Hui and Huang WCSE’13
See legend in page 25 to know the exact meaning of each field.

2013-hui-wcse-b

Publication data

Authors: Z. Hui and S. Huang

Title: A Formal Model for Metamorphic Relation Decomposition

Publication: Fourth World Congress on Software Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/WCSE.2013.14

Pages: 5

Country: China

Contact:

Summary:

This paper presents a formal model for the definition of MRs. In particular, they propose decomposing the
definition of each relation in three parts: Input Relation (IR), Output Relation (OR) and program function or
Self Relation (SR). Each part is defined using predicate logic. To illustrate their approach, the authors
formalize some MRs found in the literature.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Sin 1

Integral 1

Shortest path 1

Determinant of a matrix 2

K-Nearest neighbors 2

Integer search in an ordered data structure 1

Total: 8

Evaluation

Program Language Size Real STCs Mutants Faults

Total
Source TCs generation technique:
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges - MRs in different domains differ significantly and may not be easy to understand for software testers
with different domain knowledge. Also, they can be ambiguous and hard to validate. Challenge:
Define formal methods to describe MRs.

117

B.88 Hui and Huang WCSE’13 (b)
See legend in page 25 to know the exact meaning of each field.

2013-jiang-icsess

Publication data

Authors: M. Jiang and T. Y. Chen and F. Kuo and Z. Ding

Title: Testing Central Processing Unit scheduling algorithms using Metamorphic Testing

Publication: 4th IEEE International Conference on Software Engineering and Service Science

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/ICSESS.2013.6615365

Pages: 7

Country: China

Contact:

Summary:

This paper proposes using MT for the detection of faults in CUP scheduling programs. Six MRs are
presented for the Highest Response Ratio Next (HRRN) scheduler. An experimental evaluation with two
simulators is reported. Two defects are detected in one of the simulators. Further experiments using
mutation analysis suggests that the proposed MT approach is an effective method for testing HRRN
schedulers.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Scheduling program
Application scenarios Number of MRs
Highest Response Ratio Next (HRRN) scheduling program 6

Total: 6

Evaluation

Program Language Size Real STCs Mutants Faults

HRRN Simulator 1 NR NR 500 10 0

HRRN Simulator 2 NR NR 500 10 2

Total 1000 20 2
Source TCs generation technique: Random testing

Evaluation metrics:

Effectiveness of MR (No of violated pairs of mutant and MR/
total number of used pairs) and MT (No. of violated
metamorphic test groups/ total no. of executed metamorphic
test groups)

 Available evaluation material

Lessons learned / guidelines

Challenges

118

B.89 Jiang et al. ICESS’13
See legend in page 25 to know the exact meaning of each field.

2013-kanewala-issre

Publication data

Authors: U. Kanewala and J. M. Bieman

Title:
Using Machine Learning Techniques to Detect Metamorphic Relations for Programs without
Test Oracles

Publication: 24th International Symposium on Software Reliability Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/ISSRE.2013.6698899

Pages: 10

Country: United States

Contact: upuleegk@cs.colostate.edu

Summary:

This paper proposes using machine learning techniques for the automated generation of MRs for
mathematical programs. The method works at the function level. First, a Control Flow Graph (CFG) is
generated from the source code of the function. Then, a number of features are extracted from the CFG,
and a machine learning algorithm uses these features to create a predictive model. An experimental
evaluation is reported using 48 mathematical functions and three different types of MRs: permutative,
additive and inclusive. Two different machine learning techniques are used: SVM and decision trees.
Mutation analysis reveals that the generated MRs are effective in detecting 66% of the mutants.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Mathematical functions NR

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

35 mathematical functions Java 7-45 350 988 0

Total 7-45 350 988 0
Source TCs generation technique: Random
Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

119

B.90 Kanewala and Bieman ISSRE’13
See legend in page 25 to know the exact meaning of each field.

2013-kanewala-secse

Publication data

Authors: U. Kanewala and J. M. Bieman

Title: Techniques for Testing Scientific Programs Without an Oracle

Publication:
5th International Workshop on Software Engineering for Computational Science and
Engineering

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/SECSE.2013.6615099

Pages: 10

Country: United States

Contact: upuleegk@cs.colostate.edu

Summary:

This paper examines three different testing techniques: MT, assertion checking and generation of oracles
using machine learning. They compare the techniques in terms of i) oracle properties, ii) fault finding
measures, iii) potential automation, and iv) required domain knowledge. For the comparison, authors review
some works related to each technique discussing their main findings. For each technique, its limitations and
unresolved problems are outlined. The paper concludes mentioning some of the tasks that could be
potentially automated such as the automated generation of likely MRs and the elimination of spurious
invariants.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Assertion checking

Application domain(s): Numerical programs
Application scenarios Number of MRs
Machine learning

Sum of integers in an array 2

JPEG encoder

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total
Source TCs generation technique:
Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- Not all MRs have the same fault detection ability.
- MRs that enforce an equality relationship are preferred over MRs that enforces a non-equality

relationship, since an equality relationship can be violated more easily than a non-equality
relationship.

Challenges
- Automatically detecting likely MRs for a program. Minimize spurious relations.
- Prioritization MRs.
- Identify optimum combinations of MRs to reduce the number of executions required.
- Identify limitation of MT. Are there faults that could never be detected using MT?

120

B.91 Kanewala and Bieman SECSE’13
See legend in page 25 to know the exact meaning of each field.

2013-lei-qsic

Publication data

Authors: Y. Lei and X. Mao and T. Y. Chen

Title: Backward-Slice-Based Statistical Fault Localization without Test Oracles

Publication: 13th International Conference on Quality Software

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/QSIC.2013.45

Pages: 10

Country: China

Contact: yanlei@nudt.edu.cn

Summary:

The paper proposes the integration of Backward-Slice-based Statistical Fault Localization (BSSFL) and MT
to address the localization of bugs in programs with the oracle problem. BSSFL is an extension of Spectrum
Fault Localization (SFL) in which backward slicing techniques are used to determine whether the executions
of a statements affects (or do not affect) the outputs of test cases. The work is inspired in the work of Xie et
al. (Xie et al 2012 IST) combining SFL and MT. The results of an extensive evaluation using 8 programs and
mutation analysis is reported. The results suggest that the presented approach provides similar
performance to that of conventional BSSFL techniques with available test oracles.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Backward-slice-based statistical fault localization (debugging)

Application domain(s): Lexical analyser, pattern recognition, pattern matching,
information measurement, priority scheduler, altitude separation

Application scenarios Number of MRs
Lexical analyser 3

Pattern recognition 3

Priority scheduler 3

Altitude separation 3

Information measure 3

Pattern matching 3

Total: 18

Evaluation

Program Language Size Real STCs Mutants Faults

print_tokens C 342 4130 355 0

print_tokens2 C 355 4115 341 0

replace C 512 5542 279 0

schedule C 292 2650 275 0

schedule2 C 262 2710 303 0

tcas C 135 1608 397 0

tot_info C 274 1052 94 0

grep v 2.0 C 7309 10069 516 0

Total C 9481 31876 2560 0
Source TCs generation technique: Test suite + random testing
Evaluation metrics: EXAM

 Available evaluation material

121

B.92 Lei et al. QSIC’13
See legend in page 25 to know the exact meaning of each field.

Lessons learned / guidelines

Challenges

122

2013-rao-qsic

Publication data

Authors: P. Rao and Z. Zheng and T. Y. Chen and N. Wang and K. Cai

Title: Impacts of Test Suite's Class Imbalance on Spectrum-Based Fault Localization Techniques

Publication: The Symposium on Engineering Test Harnesses

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/QSIC.2013.18

Pages: 8

Country: China

Contact: peifengrao@163.com

Summary:

This paper presents an experimental evaluation of the impact of class imbalance (percentage of failure/pass
test cases) in Spectrum-Based Fault Localization (SBFL) techniques using MT (Xie et al. 2012 IST). The
evaluation is conducted on 8 programs using mutation analysis. Among other conclusions, the results
suggest that the impact of class imbalance using metamorphic slices is similar for SBFL using conventional
slices. As an additional result, a real defect is detected in one of the programs of the Siemens suite.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Spectrum-based fault localization

Application domain(s): Pattern matching, lexical analyser, priority scheduler, altitude
separation, information measure.

Application scenarios Number of MRs
grep – pattern matching 3

Lexical analyser 3

Priority scheduler 3

Altitude separation 3

Information measure 3

String matching 3

Total: 18

Evaluation

Program Language Size Real STCs Mutants Faults

print_tokens C 472 4130 46 max1

print_tokens2 C 399 4115 37 max

replace C 512 5542 129 max

schedule C 292 2650 64 max

schedule2 C 301 2710 48 max 1

tcas C 440 1608 24 max

tot_info C 141 1052 46 max

grep 1.2 C 15633 1006
9

188 max

Total 18190 3187
6

582 max 1
Source TCs generation technique: Test suite + random
1 The exact number of mutants is not reported. This is the maximum number of mutants according to the
number of mutants used for each MR on each program.

123

B.93 Rao et al. QSIC’13
See legend in page 25 to know the exact meaning of each field.

Evaluation metrics: Risk evaluation formulas

 Available evaluation material

Lessons learned / guidelines

Challenges

124

2013-yi-isdea

Publication data

Authors: Y. Yao and C. Zheng and S. Huang and Z. Ren
 Title: Research on Metamorphic Testing: A Case Study in Integer Bugs Detection
 Publication: Fourth International Conference on Intelligent Systems Design and Engineering Applications
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2013

DOI/URL: http://dx.doi.org/10.1109/ISDEA.2013.516

Pages: 6

Country: China

Contact: yaoyi2266@163.com
 Summary:

This paper proposes using MT for the detection of integer bugs. A small case study with a program for
polygon area calculation is presented. A fault is manually seeded in the program and detected by 1 out of
the 2 MRs proposed. Authors conclude that more research is needed to investigate the effectiveness of MT
for the detection of integer bugs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical program
Application scenarios Number of MRs
Calculate area and perimeter of a polygon 2

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Calculate triangle area (Heron’s formula) NR NR 10 1 0

Total 10 1 0

Source TCs generation technique: Random

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

125

B.94 Yi et al. ISDEA’13
See legend in page 25 to know the exact meaning of each field.

2014-aruna-icacci

Publication data

Authors: C. Aruna and R. S. R. Prasad

Title:
Metamorphic relations to improve the test accuracy of Multi Precision Arithmetic software
applications

Publication: Second International Symposium on Women in Computing and Informatics

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1109/ICACCI.2014.6968586

Pages: 5

Country: India

Contact:
Summary:

This paper proposes using MT for the detection of precision faults in arithmetic software applications. Seven
MRs for multiplication and division of multi arithmetic precision programs are presented. The work is
evaluated with a small case study with five mathematical programs. Mutation analysis is mentioned although
it is unclear how the mutants were generated and how many of them were derived from each program. The
results are compared with “other system level approaches” although there are no references for them.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Multiplication on Multi Precision Arithmetic (MPA) 7

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

SVM C NR NR1 500 68 0

Arhant-II C NR NR 500 19 0

GBT C NR NR 500 24 0

PAYL C NR NR 500 53 0

Total 2500 164 0

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

 1 There are no references to the subject tools.

126

B.95 Aruna and Prasad ICACCI’14
See legend in page 25 to know the exact meaning of each field.

2014-aruna-ict

Publication data

Authors: C. Aruna and R. S. R. Prasad
 Title: Testing Approach for Dynamic Web Applications Based on Automated Test Strategies

Publication: 48th Annual Convention of Computer Society of India- Vol II ICT and Critical Infrastructure
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1007/978-3-319-03095-1_43

Pages: 12

Country: India

Contact: chittineni.aruna@gmail.com
 Summary:

This paper proposes extending the Ochiai algorithm with MT for fault localization in dynamic web
application. Five MRs for a classification algorithm are presented. It is unclear how this is related to the
generation of effective test case with high fault-localization capability. Examples are missing. Some results
graphs are presented although it is not clear how they were obtained, i.e. subject programs, experimental
settings, etc.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Spectrum-based fault localization (Ochiai algorithm)

Application domain(s): Machine learning
Application scenarios Number of MRs
Classification algorithm 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:
 Available evaluation material

Lessons learned / guidelines

Challenges

127

B.96 Aruna and Prasad ICT’14
See legend in page 25 to know the exact meaning of each field.

2014-barr-tse

Publication data

Authors: E.T. Barr and M. Harman and P. McMinn and M. Shahbaz and S. Yoo
 Title: The Oracle Problem in Software Testing: A Survey

Publication: IEEE Transactions on Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1109/TSE.2014.2372785

Pages: 30

Country: United Kingdom
 Contact: e.barr@ucl.ac.uk

Summary:

This article presents a survey on the oracle problem in software testing. Among other techniques, MT is
briefly reviewed within the category of derived test oracles.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges
- Automated discovery of MRs.

128

B.97 Barr et al. TSE’14
See legend in page 25 to know the exact meaning of each field.

2014-carzaniga-icse

Publication data
Authors: A. Carzaniga and A. Goffi and A. Gorla and A. Mattavelli and M. Pezzè
Title: Cross-checking oracles from intrinsic software redundancy

 Publication: International Conference on Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://doi.acm.org/10.1145/2568225.2568287

Pages: 12

Country: Switzerland

Contact: antonio.carzaniga@usi.ch
 Summary:

The paper presents the concept of “cross-checking oracles”. Given a source test case, the authors propose
to generate a new test case in which one or more operations are replaced by redundant ones. If the output
of both test cases are not equal, the code must contain a bug. The author propose an implementation of
their approach using aspects. The identification of redundant methods is a manual task.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Object-oriented programs
Application scenarios Number of MRs
Unit testing (Metamorphic relation: equivalence) 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

Guava Java NR NR 1581 0

Joda-Time Java NR NR 842 0

GraphStream Java NR NR 998 1

Total 3421 1

Source TCs generation technique: Test suite + random generation

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

129

B.98 Carzaniga et al. ICSE’14
See legend in page 25 to know the exact meaning of each field.

2014-goffi-fse

Publication data

Authors: A. Goffi and A. Gorla and A. Mattavelli and M. Pezze and P. Tonella
 Title: Search-based Synthesis of Equivalent Method Sequences

Publication: 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1145/2635868.2635888
 Pages: 11

Country: Switzerland
 Contact: goffia@usi.ch
 Summary:

This paper proposes a search-based algorithm for the automated generation of likely-equivalent method
sequences in object oriented programs. The authors suggest that such likely-equivalent sequences could be
used as MRs during testing. The approach was evaluated with 47 methods of 7 classes taken from the
Stack Java Standard Library and the Graphstream library. The algorithm automatically synthesized 123
equivalent method sequences, which represent more than 87% of the 141 sequences that has been
manually identified beforehand.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Search-based optimization

Application domain(s): Object-oriented programs
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

130

B.99 Goffi et al. FSE’14
See legend in page 25 to know the exact meaning of each field.

2014-goffi-icseds

Publication data
Authors: A. Goffi
Title: Automatic generation of cost-effective test oracles

 Publication: International Conference on Software Engineering (ICSE Doctoral symposium)
 Pub. Type: Journal Conference / Symp. Workshop Other:Doct. S.

Year: 2014

DOI/URL: http://doi.acm.org/10.1145/2591062.2591078

Pages: 4

Country: Switzerland

Contact: alberto.goffi@usi.ch
 Summary:

This doctoral symposium paper summarizes the work of the author on the generation of oracles for object
oriented programs. In particular, the author propose to identify equivalence sequences of methods, that is,
code fragments that should produce identical output for any input. Then, given a unit test case, the author
propose to create follow-up test cases by replacing one more statements with equivalent ones. If the output
of source and follow-up test cases is not the same, a candidate fault has been detected. The contribution is
not presented as a metamorphic testing approach but it can be considered as an intuitive application of the
technique.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

131

B.100 Goffi ICSEDS’14
See legend in page 25 to know the exact meaning of each field.

2014-kanewala-icstds

Publication data

Authors: U. Kanewala
 Title: Techniques for Automatic Detection of Metamorphic Relations

Publication:
IEEE Seventh International Conference on Software Testing, Verification and Validation
Workshops

Pub. Type: Journal Conference / Symp. Workshop Other: PhD
Symposium

Year: 2014

DOI/URL: http://dx.doi.org/10.1109/ICSTW.2014.62

Pages: 2

Country: United States
 Contact: upuleegk@cs.colostate.edu
 Summary:

This doctoral symposium paper describes the work of the author on the automated detection of likely MRs in
scientific programs using machine learning techniques. The author describes his preliminary work published
in ISSRE (Kanewala and Bieman 2013 ISSRE).

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

132

B.101 Kanewala ICSTDS’14
See legend in page 25 to know the exact meaning of each field.

2014-le-pldi

Publication data
Authors: V. Le and M. Afshari and Z. Su
Title: Compiler validation via equivalence modulo inputs

 Publication: Conference on Programming Language Design and Implementation
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://doi.acm.org/10.1145/2666356.2594334

Pages: 11

Country: United States

Contact: vmle@ucdavis.edu
 Summary:

The paper presents an approach to test compilers by creating equivalent versions of the programs used as
test inputs. Given a program and a set of input values, the authors propose to create equivalent versions of
the program by profiling its execution and pruning unexecuted code. Once a program and its equivalent
variant are generated, both are used as input of the compiler under test checking for inconsistencies in their
results. The method has been used to detect 147 confirmed bugs in two real C compilers, GCC and LLVM.
The authors do not explicitly mention metamorphic testing but their approach can be considered a specific
application of the technique.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Compilers
Application scenarios Number of MRs
Code optimization 1

Total: 1

Evaluation

Program Language Size Real STCs Mutants Faults

GCC C NR NR 0 111

LLVM C NR NR 0 84

Total 195

Source TCs generation technique: Test suite + random

Evaluation metrics: Number of real bugs detected.

 Available evaluation material

Lessons learned / guidelines

Challenges

133

B.102 Le et al. PLDI’14
See legend in page 25 to know the exact meaning of each field.

2014-liu-icse

Publication data

Authors: H. Liu and I. I. Yusuf and H. W. Schmidt and T. Y. Chen

Title:
Metamorphic Fault Tolerance: An Automated and Systematic Methodology for Fault
Tolerance in the Absence of Test Oracle
 Publication: 36th International Conference on Software Engineering Companion
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1145/2591062.2591109

Pages: 4

Country: Australia
 Contact: huai.liu@rmit.edu.au
 Summary:

This paper introduces a new method called Metamorphic Fault Tolerance (MFT). In MFT, MRs are used to
determine the trustworthiness of inputs in terms of the number of violations and non-violations of MRs. Also,
if an output is judged as untrustworthy, MRs can be used to calculate the right output in certain scenarios.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Fault tolerance

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

134

B.103 Liu et al. ICSE’14
See legend in page 25 to know the exact meaning of each field.

2014-liu-tse

Publication data

Authors: H. Liu and F. Kuo and D. Towey and T. Y. Chen
 Title: How Effectively Does Metamorphic Testing Alleviate the Oracle Problem?

Publication: IEEE Transactions on Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1109/TSE.2013.46

Pages: 19

Country: Australia
 Contact: huai.liu@rmit.edu.au
 Summary:

This article presents an empirical study to investigate the effectiveness of MT addressing the oracle
problem. In particular, the authors intend to answer the following research questions: to what extent can MT
alleviate the oracle problem; how easily and successfully can tester detect faults using MT; and where the
key factors that influence the effectiveness of MT. For the study, several groups of undergraduate and
postgraduate students from two different universities were recruited to identify MRs in 5 subject programs of
algorithmic type. MT was compared to random testing with and without oracle. The study reveals that MT
effectively alleviates the oracle problem. A number of lessons learned are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Optimization, numerical programs, graph theory
Application scenarios Number of MRs
Finding the k nearest neighbours of a sample point 14

Minimizing a deterministic finite automaton 13

Solving the multiple knapsack problem 24

Multiplying two sparse matrices 22

Solving the set coverage problem using a greedy algorithm 15

Total: 88

Evaluation

Program Language Size Real STCs Mutants Faults

FindKNN Java 153 1000 698 0

MinimizeDFA Java 929 1000 1660 0

MultipleKnapsack Java 808 1000 1905 2

SparseMatrixMultiply Java 259 1000 212 1

SetCover Java 211 1000 258 0

Total 2360 5000 4773 3

Source TCs generation technique: Random

Evaluation metrics:

- Oracle Imitation Measure (OIM)
- Fault Detection Effectiveness (FDE) of each MR
- Relation between FDE and number of MRs.
- Relation between MRs identified by the same tester and

number of killed mutants.
- Relation between MRs identified by the same testing

team and number of killed mutants.
- Relation between FDE and number of testers.

135

B.104 Liu et al. TSE’14
See legend in page 25 to know the exact meaning of each field.

 Available evaluation material

Lessons learned / guidelines
- The identification of a sufficient number of appropriate MRs for testing, even by inexperienced

testers, was possible with a very small amount of training.
- The cost-effectiveness of the approach could be enhanced through the use of more diverse MRs.
- A small number (between 3 and 6) of diverse MRs, even those identified in an ad-hoc manner, had

a similar fault-detection capability to a test oracle.
- The diversity of MRs is more important than their quantity.
- It is strongly recommended that a tester should take diversity into account when selecting MRs for

testing.

Challenges

136

2014-nunez-at

Publication data

Authors: A. Nuñez and R. M. Hierons
 Title: A methodology for validating cloud models using metamorphic testing

Publication: Annals of telecommunications Journal
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1007/s12243-014-0442-7

Pages: 9

Country: Spain
 Contact: alberto.nunez@pdi.ucm.es
 Summary:

This article presents an MT-based approach for validating cloud models. In particular, the authors propose
using MRs to detect unexpected behaviour when simulating cloud provisioning and usage. A case study
using two cloud models on the iCanCloud tool are presented. The authors propose three MRs to detect
faults related to performance, functionality and energy awareness respectively. The results of the study
suggest that the approach is effective in revealing poorly designed cloud system models.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Cloud computing (simulation)
Application scenarios Number of MRs
Cloud model 3

Total: 3

Evaluation

Program Language Size Real STCs Mutants Faults

2 cloud models on iCanCloud1 100 0 0

Total 100 0 0

Source TCs generation technique: Heuristic algorithm

Evaluation metrics: Number of test cases that successfully fulfilled each MR

 Available evaluation material

Lessons learned / guidelines

Challenges

1 The cloud models used as input for the simulation are the actual artefact under test.

137

B.105 Nuñez and Hierons ATJ’14
See legend in page 25 to know the exact meaning of each field.

2014-segura-stvr

Publication data

Authors: S. Segura and A. Durán and A. B. Sánchez and D. L. Berre and E. Lonca and A. Ruiz-
Cortés

Title: Automated metamorphic testing of variability analysis tools
Publication: Software Testing, Verification and Reliability Journal

 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1002/stvr.1566

Pages: 26

Country: Spain
 Contact: sergiosegura@us.es
 Summary:

This article presents a generic MT-based approach for the detection of faults in variability analysis tools. A
novel method is proposed in which MRs are used to compute the actual output of follow-up test cases. This
enables generating large variability models (inputs) and their corresponding set of configurations
(potentially huge). The approach is evaluated by trying to detect faults in 15 real tools in the domains of
feature models, CUDF document and SAT formulas. As a result, 19 real faults are detected.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Software variability
Application scenarios Number of MRs
Analysis of feature models 5

Analysis of CUDF documents 4
Boolean satisfiability 5

Total: 14

Evaluation

Program Language Size Real STCs Mutants Faults

FaMa 1.1.2 Java NR 1000 0 4

FLAME Prolog NR 1000 0 5

SPLAR Java NR 1000 0 3

p2cudf 1.14 Java NR 1000 0 2

aspcudf 1.7 C++ NR 1000 0 0

cudf-check 0.6.2-1 NR 1000 0 0

Sat4j 2.3.1 Java NR 10000 0 0

Lingeling ala-b02 NR 10000 0 0

Minisat 2.2 NR 10000 0 0

Clasp 2.1.3 NR 10000 0 0

Picosat 535 NR 10000 0 0

Rsat 2.0 NR 10000 0 0

March_ks 2007 NR 10000 0 3

March_rw 2011 NR 10000 0 1

Kcnfs 1.2 NR 10000 0 1

Total 96000 0 19

138

B.106 Segura et al. STVR’14
See legend in page 25 to know the exact meaning of each field.

Source TCs generation technique: Random

Evaluation metrics: Number of real faults detected.

 Available evaluation material

Lessons learned / guidelines

Challenges

139

2014-sun-fcs

Publication data
Authors: C. Sun and Z. Wang and G. Wang
Title: A property-based testing framework for encryption programs
Publication: Frontiers of Computer Science Journal

 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1007/s11704-014-3040-y
 Pages: 12

Country: China

Contact: casun@ustb.edu.cn
 Summary:

This paper presents a case study on the use of MT for the detection of fault in encryption algorithms. Three
MRs for two encryption algorithms (Hill and RSA) are presented and evaluated using mutation analysis. The
authors conclude that the approach is effective in detecting faults.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Encryption algorithms
Application scenarios Number of MRs
Hill algorithm 3

RSA algorithm 1

Total: 4

Evaluation

Program Language Size Real STCs Mutants Faults

Hill cipher program C 74 200 353 0

RSA program C 28 200 301 0

Total 102 400 654 0

Source TCs generation technique: Random

Evaluation metrics: Mutation Score (MS), Fault Discovery Rate (FDR)
 Available evaluation material

Lessons learned / guidelines
- The increase in the size of the test suites does not improve the fault detection capability when

source test cases are randomly generated.

Challenges

140

B.107 Sun et al. FCS’14
See legend in page 25 to know the exact meaning of each field.

2014-xie-qsic

Publication data
Authors: X. Xie and J. Tu and T. Y. Chen and B. Xu
Title: Bottom-up Integration Testing with the Technique of Metamorphic Testing

 Publication: 14th International Conference on Quality Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1109/QSIC.2014.29
 Pages: 6

Country: Australia

Contact: xxie@swin.edu.au
 Summary:

This paper proposes an integration MT method, which combines bottom-up integration testing and MT.
Roughly speaking, the authors propose defining MRs based on the properties from different sub-
components of the system to achieve better effectiveness and fault isolation. Testing is still conducted in
the whole system as so there is no need for decomposing the systems and using stubs. A case study using
mutation analysis on a filter Feature Selection (FS) algorithm integrated in the tool Weka is presented. The
results support the benefits of the approach.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Machine learning
Application scenarios Number of MRs
Filter Feature Selection (FS) algorithm 10

Total: 10

Evaluation

Program Language Size Real STCs Mutants Faults

Weka 3.6.10 Java NR 400 50 0

Total 400 50 0

Source TCs generation technique: Random

Evaluation metrics: Mutation score and percentage of mutants killed by each MR.

 Available evaluation material

Lessons learned / guidelines

Challenges

141

B.108 Xie et al. QSIC’14
See legend in page 25 to know the exact meaning of each field.

2014-zhang-ase

Publication data
Authors: J. Zhang and J. Chen and D. Hao and Y. Xiong and B. Xie and L. Zhang and H. Mei
Title: Search-based Inference of Polynomial Metamorphic Relations

 Publication: 29th ACM/IEEE International Conference on Automated Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2014

DOI/URL: http://dx.doi.org/10.1145/2642937.2642994

Pages: 12

Country: China

Contact: zhangjie12@sei.pku.edu.cn
 Summary:

This paper proposes an approach to automatically inferring polynomial metamorphic relations by analysing
multiple executions of a program under test (i.e. black-box approach). The problem is model as an
optimization program and solved using a Particle Swarm Optimization (PSO) algorithm. Filtering is required
to discard low-quality MRs. Filtering applies a large number of randomly generated test inputs to a program
P, and records whether a likely MR is violated by each test input. If the MR is violated in a high percentage
of cases, it is deemed. The work is evaluated inferring likely MRs for 189 functions from 4 commercial and
open source mathematical libraries. The results show that the generated MRs are effective in detecting
seeded faults.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Search-based algorithm (Particular swarm optimization)

Application domain(s): Numerical programs
Application scenarios Number of MRs

Total: 100

Evaluation

Program Language Size Real STCs Mutants Faults

For the generation of likely MRs:

Apache Commons Mathematics Library 2.2 Java 1626

JDK 1.6 Java NR

GSL 1.8 C/C++ 7309

MATLAB R2012b NR NR

For the evaluation of the generated MRs (all functions belong to Apache Commons Math. Library 3.2):
sin

Java NR 1000 17 0

cos Java NR 1000 19 0

tan Java NR 1000 18 0

log10 Java NR 1000 58 0

log1p Java NR 1000 115 0

asinh Java NR 1000 297 0

atan Java NR 1000 94 0

abs_d Java NR 1000 7 0

abs_f Java NR 1000 7 0

abs_i Java NR 1000 15 0

142

B.109 Zhang et al. ASE’14
See legend in page 25 to know the exact meaning of each field.

abs_l Java NR 1000 15 0

Total 11000 662 0

Source TCs generation technique: Random

Evaluation metrics: Mutation score

 Available evaluation material

Lessons learned / guidelines

Challenges

143

2015-aruna-icacce

Publication data
Authors: C. Aruna and R.S.R. Prasad
Title: Adopting Metamorphic Relations to verify Non-Testable Graph Theory Algorithms

Publication:

2nd International Conference on Advances in Computing and Communication Engineering
(ICACCE)

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/ICACCE.2015.138

Pages: 6

Country: India

Contact:
 Summary:

This paper presents a case study on the application of MT to two graph theory algorithms: shortest path and
minimal spanning tree. Seven MRs are proposed and a small experiment is reported. The results of MT are
compared to those of alternative testing tools (OSPF and ArcGIS) in terms of execution time and number of
test cases generated.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Graph theory
Application scenarios Number of MRs
Shortest path 2

Minimal spanning tree 5

Total: 7

Evaluation

Program Language Size Real STCs Mutants Faults

Dijkstra’ algorithm shortest path NR NR NR

Dijkstra’ algorithm minimal spanning tree NR NR NR

Total

Source TCs generation technique: NR

Evaluation metrics: Execution time, number of test cases generated.

 Available evaluation material

Lessons learned / guidelines

Challenges

144

B.110 Aruna and Prasad ICACCE’15
See legend in page 25 to know the exact meaning of each field.

2015-canizares-iccs

Publication data
Authors: P. C. Cañizares and A. Nuñez and M. Nuñez and J.J. Pardo
Title: A Methodology for Designing Energy-Aware Systems for Computational Science

 Publication: ICCS 2015 International Conference On Computational Science
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1016/j.procs.2015.05.438

Pages: 5

Country: Spain

Contact: alberto.nunez@pdi.ucm.es
 Summary:

This short paper presents same preliminary ideas on the use of MT for the detection of bugs related to
energy consumption in cloud environments.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Cloud computing, computational science
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

145

B.111 Cañizares et al. ICCS’15
See legend in page 25 to know the exact meaning of each field.

2015-chen-ast

Publication data
Authors: T.Y. Chen
Title: Metamorphic Testing: A Simple Method for Alleviating the Test Oracle Problem

 Publication: 10th International Workshop on Automation of Software Test
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/AST.2015.18

Pages: 2

Country: Australia

Contact: tychen@swin.edu.au
 Summary:

Keynote summary. Brief overview of the technique, its applications and integration with other testing
techniques.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s):
Application scenarios Number of MRs

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

146

B.112 Chen AST’15
See legend in page 25 to know the exact meaning of each field.

2015-chen-jss

Publication data
Authors: T. Y. Chen and P. Poon and X. Xie
Title: METRIC: METamorphic Relation Identification based on the Category-choice framework

 Publication: The Journal of Systems and Software
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1016/j.jss.2015.07.037

Pages: 14

Country: Australia

Contact: drpoonpl@yahoo.com.hk
 Summary:

This article presents a specification-based methodology and associated tool called METRIC for the
identification of MRs based the category-choice framework. The approach requires processing the program
specification to partition the input domain in terms of categories, choices and complete test frames.
Categories are mainly related to input parameters, choices to parameter values and test frames to valid
combination of choices. The complete set of test frames is therefore an abstract representation of all the
potential test cases of the system under test. Given a set of input test frames, METRIC guides testers on
the identification of MR and related source and follow-up test cases. The results of an empirical study with
19 participants suggest that METRIC is effective and efficient at identifying MRs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Category-choice framework

Application domain(s): Information systems
Application scenarios Number of MRs
Parking fee system 3

Company car and expense claim system (CAR) ~40

Meal ordering system (MOS) ~40

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

SCAR (construction of MRs only)

SMOS (construction of MRs only)

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines
- MRs that simultaneously consider both inputs and outputs of the SUT are harder to identify than

those that focus on input relations exclusively.

Challenges

147

B.113 Chen et al. JSS’15
See legend in page 25 to know the exact meaning of each field.

2015-hui-compsac

Publication data
Authors: Z. Hui and S. Huang and H. Li and J. Liu and L. Rao
Title: Measurable Metrics for Qualitative Guidelines of Metamorphic Relation

 Publication: 7th IEEE International Workshop on Software Test Automation (STA)
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2015.179

Pages: 6

Country: China

Contact:
 Summary:

This paper presents three metrics to quantitatively assess the quality of MRs for numerical programs,
namely: i) Number of inputs (InD(IR)), number of output relations (AC(OR)) and distance between inputs
(Dis(IR)). Experimental results with four small programs with seeded faults are reported. The results seem
inconclusive.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Sine 17

Area of a triangle 16

Aircraft conflict detection 37

Grade computation 9

Total: 79

Evaluation

Program Language Size Real STCs Mutants Faults

Sin C/C++ 99 100

Trisquare C/C++ 168 100

TCAS C/C++ 206 100

Grade C/C++ 2035 300

Total 2508 600

Source TCs generation technique: Random testing

Evaluation metrics: Fault detection ratio

 Available evaluation material

Lessons learned / guidelines

Challenges
- Prioritization/assessment of MRs.

148

B.114 Hui et al. STA’15
See legend in page 25 to know the exact meaning of each field.

2015-jameel-snpd

Publication data
Authors: T. Jameel and M. Lin and L. Chao
Title: Test Oracles Based on Metamorphic Relations for Image Processing Applications

Publication:

16th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD)

Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/SNPD.2015.7176238

Pages: 6

Country: China

Contact: tahir@nlsde.buaa.edu.cn
 Summary:

This paper presents a case study on the application of metamorphic testing to detect faults in morphological
image operation such as dilation and erosion. Eight MRs are reported and assessed on the detection of
seeded faults in a MATLAB erosion function.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Image processing
Application scenarios Number of MRs
Dilation and erosion 8

Total: 8

Evaluation

Program Language Size Real STCs Mutants Faults

ImageDilation C/C++ 33

Total 33

Source TCs generation technique: Random testing

Evaluation metrics: Number (and ratio) of mutants detected by each MR

 Available evaluation material

Lessons learned / guidelines

Challenges

149

B.115 Jameel et al. SNPD’15
See legend in page 25 to know the exact meaning of each field.

2015-jin-compsac

Publication data
Authors: H. Jin and Y. Jiang and N. Liu and C. Xu and X. Ma and J. Lu
Title: Concolic Metamorphic Debugging

 Publication: COMPSAC Symposium on Software Engineering Technologies and Applications
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/COMPSAC.2015.79

Pages: 10

Country: China

Contact: changxu@nju.edu.cn
 Summary:

This paper presents an approach called Concolic Metamorphic Debugging (Comedy) that integrate concolic
testing, metamorphic testing and branch witching debugging to localize potential bugs. Comedy explores all
possible programs paths in depth-first-order searching for the first one that pass the metamorphic relation
which is used an oracle. The final goal is to isolate a minimum amount of code to obtain a passing input and
use that isolation point to localize the fault. The approach, implemented in a tool, is evaluated with 21
algorithmic programs using mutation testing.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Concolic testing, branch-switching debugging

Application domain(s): Numerical programs, graph theory, strings.
Application scenarios Number of MRs
Remove redundant whitespaces in an URI - Tomcat example 1

Finding a pair of points with the smallest Euclidean distance between them. 1

Shortest path 2

Maximum flow algorithm 2

Maximum rectangle 1

String search (BoyerMoore) 1

SurroundedRegion in an 2D board 1

DecodingWays (Given an encoded message containing digits, determine the total
number of ways to decode it)

1

Largest rectangle 1

Max tree path sum 1

Enhanced edit distance 1

Interleaving string 1

Heap sort 1

Search in Rotated Sorted Array 2

Quick sort 1

First missing positive 2

Find Minimum in Rotated Sorted Array 2

2D matrix search 1

Distinct subsequence 1

Multi-segment MAXSUM 1

Kadane’s MAXSUM 2

Prim’s algorithm 3

Total: 30

150

B.116 Jin et al. COMPSAC’15
See legend in page 25 to know the exact meaning of each field.

Evaluation

Program Language Size Real STCs Mutants Faults

ClosestPair Java 370 281

Dijkstra Java 271 214

Edmonds-Karp Java 229 46

MaximumRectangle Java 113 172

BoyerMoore Java 93 71

SurroundedRegion Java 78 309

DecodingWays Java 78 409

LargestRectangle Java 77 139

MaxTreePathSum Java 74 76

EditingDistance Java 73 223

InterleavingString Java 73 182

HeapSort Java 66 112

Multi-MAXSUM Java 61 166

SearchInRot Java 53 208

QuickSort Java 49 75

FirstMissingPositive Java 40 83

MinInRot Java 34 71

2D-MatrixSearch Java 34 38

DistinctSubsequence Java 32 53

MAXSUB Java 25 46

Prim Java 765 620

Total 2688 3594

Source TCs generation technique: Random testing

Evaluation metrics: Branch distance

 Available evaluation material

Lessons learned / guidelines

Challenges

151

2015-kanewala-stvr

Publication data
Authors: U. Kanewala and J. M. Bieman and A. Ben-Hur

Title:
Predicting metamorphic relations for testing scientific software: a machine learning
approach using graph kernels

Publication: Journal of Software Testing, Verification and Reliability
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: https://dx.doi.org/10.1002/stvr.1594

Pages: 25

Country: United States

Contact: upuleegk@cs.montana.edu
 Summary:

This article presents a machine learning approach to predict metamorphic relations in numerical programs.
This is an extension of a previous work of the authors (Kanewala and Bieman, 2013 ISSRE). The main
novelty is the use of graph kernels to represent control flow and data dependency information. These
graphs provide various way of measuring similarity and this was exploited to predict MRs under the intuition
that programs with similar control flow and data graphs may have similar MRs. Their approach was
evaluated trying to identify six different types of MRs in a corpus of 100 numerical programs.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Mathematical functions (100)

Total:

Evaluation

Program Language Size Real STCs Mutants Faults

The Colt project (for prediction) Java

Apache Mahout (for prediction) Java

Apache commons (for prediction) Java

Total

Source TCs generation technique:

Evaluation metrics: Balanced success rate, area under the curve

 Available evaluation material

Lessons learned / guidelines

Challenges

152

B.117 Kanewala et al. STVR’15
See legend in page 25 to know the exact meaning of each field.

2015-lindvall-icse

Publication data
Authors: M. Lindvall and D. Ganesan and R. Ardal and R. E. Wiegand
Title: Metamorphic Model-based Testing Applied on NASA DAT –an experience report

 Publication: IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE)
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/ICSE.2015.348

Pages: 10

Country: United States

Contact: mikli@fc-md.umd.edu
 Summary:

The paper presents an experience report on the use of metamorphic testing to address acceptance testing
of NASA’s Data Access Toolkit (DAT). DAT is a huge database of telemetry data collected from different
NASA missions, and an advance query interface to search and mine the available data. Due to the massive
amount of data contained in the database, checking the correctness of the query results is challenging due
to the oracle problem. To this purpose, metamorphic testing is used by formulating the same query in
different equivalent ways and asserting that the resulting datasets are the same. A number of real issues
detected with this approach are reported.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques: Model-based testing

Application domain(s): Database query
Application scenarios Number of MRs
Database query processing 10

Total: 10

Evaluation

Program Language Size Real STCs Mutants Faults

NASA Data Access Toolkit 7

Total 7

Source TCs generation technique: Random testing

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

153

B.118 Lindvall et al. ICSE’15
See legend in page 25 to know the exact meaning of each field.

2015-su-ast

Publication data
Authors: F. Su and J. Bell and C. Murphy and G. Kaiser
Title: Dynamic Inference of Likely Metamorphic Properties to Support Differential Testing

 Publication: 10th International Workshop on Automation of Software Test (AST)
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/AST.2015.19

Pages: 5

Country: United States

Contact: mikefhsu@cs.columbia.edu
 Summary:

The paper proposes a novel approach, KABU, for the dynamic inference of likely metamorphic relations.
The approach is inspired by previous work on inferring likely program invariants with programs as Daikon.
The inference process was constrained by searching for a set of predefined metamorphic relations. A Java
tool implementing the approach was presented and evaluated on the inference of likely metamorphic
relations in two sample programs. As a result, KABU found more likely metamorphic relations than a group
of 23 students trained in the task. Authors also proposed a method, Metamorphic Differential Testing (MDT),
built upon KABU, to compare the metamorphic relations between different versions of the same program
reporting the differences as potential bugs. The preliminary results on different versions of two classification
algorithms detected the changes reported in the logs of the Weka library.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical program, strings
Application scenarios Number of MRs
Knapsack 31

Superstring 16

Total: 47

Evaluation

Program Language Size Real STCs Mutants Faults

Knapsack Java

Superstring Java

LogitBoost (Weka) Java

Decorate (Weka) Java

Total

Source TCs generation technique: Existing suite (“iris dataset provided by Weka”)

Evaluation metrics: Identification rate

 Available evaluation material

Lessons learned / guidelines

Challenges

154

B.119 Su et al. AST’15
See legend in page 25 to know the exact meaning of each field.

2015-zhou-tse

Publication data
Authors: Z. Zhou and S. Xiang and T. Y. Chen
Title: Metamorphic Testing for Software Quality Assessment: A Study of Search Engines

 Publication: IEEE Transactions on Software Engineering
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/TSE.2015.2478001

Pages: 22

Country: Australia

Contact: zhiquan@uow.edu.au
 Summary:

This article presents a user-oriented metamorphic testing approach to test online search engines with two
novel ideas. First, MRs are defined from the user perspective, representing the properties that they expect
form the search engines, regardless of how the engine is designed. In practice, this means that MRs cannot
only be used to detect faults in the software under test (verification) but also to check whether the program
behaves as the user expect (validation). Second, it is argued that MRs can be used to evaluate quality
related properties such as reliability, usability or performance. Five MRs are presented and used to
automatically test 4 search engines revealing a number of failures.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Web search engines
Application scenarios Number of MRs
Web search 5

Total: 5

Evaluation

Program Language Size Real STCs Mutants Faults

Google Online 3

Bing Online 2

Chinese Bing Online 1

Baidu Online 1

Total 7

Source TCs generation technique: Random generation (using dictionaries)

Evaluation metrics:
ROCOF (rate of occurrence of failure)
ROCOA (rate of occurrence of anomaly)

 Available evaluation material

Lessons learned / guidelines
- In order to create an exhaustive list of MRs, follow-up test cases should not only be related to the

source test input but also to the source test output.

Challenges

155

B.120 Zhou et al. TSE’15
See legend in page 25 to know the exact meaning of each field.

2015-zhu-tsa

Publication data
Authors: H. Zhu

Title: JFuzz: A Tool for Automated Java Unit Testing Based on Data Mutation and Metamorphic
Testing Methods

Publication: Second International Conference on Trustworthy Systems and Their Applications
 Pub. Type: Journal Conference / Symp. Workshop Other:

Year: 2015

DOI/URL: http://dx.doi.org/10.1109/TSA.2015.13

Pages: 8

Country: United Kingdom

Contact: hzhu@brookes.ac.uk
 Summary:

This paper presents JFuzz, a Java unit testing tool using metamorphic testing. In JFuzz, tests are specified
in three parts, namely i) source test case inputs, ii) possible transformations on the test inputs, and iii)
metamorphic relations as code assertions. Once these elements are defined, the tool automatically generates
follow-up test cases by applying the transformations to the source test inputs, it executes source and follow-
up test cases, and checks whether the metamorphic relations are violated.

Contribution

 New technique / method

 Case study / application

 Survey / overview

 Assessment

 Empirical study

 Tool

 Other:

Combination with other techniques:

Application domain(s): Numerical programs
Application scenarios Number of MRs
Triangle classification program 1

Sine 1

Total: 2

Evaluation

Program Language Size Real STCs Mutants Faults

Total

Source TCs generation technique:

Evaluation metrics:

 Available evaluation material

Lessons learned / guidelines

Challenges

156

B.121 Zhu TSA’15
See legend in page 25 to know the exact meaning of each field.

	cover
	segura16-tr
	Introduction
	Metamorphic testing
	Review method
	Research questions
	Inclusion and exclusion criteria
	Source material and search strategy
	Data collection
	Summary of results
	Publication trends
	Researchers and organisations
	Geographical distribution of publications
	Publication venues
	Types of contributions and research topics

	State of the art in metamorphic testing
	Properties of good metamorphic relations
	Construction of metamorphic relations
	Generation of source test cases
	Execution of metamorphic test cases

	The application of metamorphic testing
	Application domains
	Web services and applications
	Computer graphics
	Embedded systems
	Simulation and modelling
	Machine learning
	Variability and decision support
	Bioinformatics
	Components
	Numerical programs
	Compilers
	Other domains

	Other testing applications

	Experimental evaluations
	Subject programs
	Source test cases
	Types of faults
	Metamorphic relations
	Evaluation metrics
	Mutation score
	Fault detection ratio

	Empirical studies with humans

	Challenges
	Conclusions
	References
	Appendix A: Subject programs in metamorphic testing
	Appendix B: Data extraction forms
	List of surveyed papers
	Legend
	Chen et al. TR'98
	Chen et al. COMPSAC'01
	Chen et al. COMPSAC'02
	Chen et al. ISSTA'02
	Chen et al. IST'03
	Gotlieb and Botella COMPSAC'03
	Chen et al. IBCSE'04
	Chen et al. SNPD'04
	Chen et al. STEP'04
	Tse et al. COMPSAC'04
	Zhou et al. ISFST'04
	Chan et al. QSIC'05
	Chan et al. QSIC'05 (b)
	Chen et al. WEUSE'05
	Sim et al. EEEC'05
	Tse COMPSAC'05
	Wu COMPSAC'05
	Wu et al. JS'05
	Beydeda COMPSAC'06
	Chan et al. IJSEKE'06
	Hu et al. SOQUA'06
	Mayer and Guderlei COMPSAC'06
	Mayer and Guderlei QSIC'06
	Chan et al. COMPSAC'07
	Chan et al. IJWSR'07
	Chan et al. RST'07
	Dong et al. QSIC'07
	Guderlei and Mayer IJSEKE'07
	Guderlei and Mayer QSIC'07
	Zhou et al. TR'07
	Dong et al. JSU'08
	Murphy FSEDS'08
	Murphy et al. TR'08
	Chan et al. STVR'09
	Chen et al. BIOINFORMATICS'09
	Chen et al. FTDS'09
	Chen et al. ICECCS'09
	Just and Schweiggert ICSTW'09
	Murphy et al. ICST'09
	Murphy et al. ISSTA'09
	Xie et al. QSIC'09
	Zhang et al. JS'09
	Chen SOSE'10
	Chen et al TSE'10
	Ding et al SSIRI'10
	Dong et al ICWIIAT'10
	Just and Schweiggert AST'10
	Kuo et al. IET'10
	Liu et al. CSEET'10
	Lu et al. UATC'10
	Murphy and Kaiser TR'10
	Segura et al. ICST'10
	Segura et al. IST'10
	Sim et al. ICISE'10
	Tao et al. APSEC'10
	Xie et al. JSS'10
	Yoo ICSTW'10
	Zhou et al. STVR'10
	Asrafi et al. SSIRI'11
	Barus et al. SET'11
	Batra and Sengupta ISTM'11
	Castro-Cabrera and Medina-Bulo ICEB'11
	Ding et al. AST'11
	Jing et al. JE'11
	Just and Schweiggert SQJ'11
	Kuo et al. LCN'11
	Kuo et al. SAC'11
	Murphy et al. SEHC'11
	Sun et al. ICWS'11
	Xie et al. QSIC'11
	Castro-Cabrera and Medina-Bulo EBT'12
	Chen et al. ISSDM'12
	Chen et al. QSIC'12
	Gagandeep and Singh CCIS'12
	Liu et al. QSIC'12
	Pullum and Ozmen BIOMEDCOM'12
	Ramanathan et al. BIOMEDCOM'12
	Sun et al. IJWSR'12
	Xie et al. IST'12
	Yi et al. ACSIE'12
	Cao et al. QSIC'13
	Chan and Tse QSIC'13
	Dong et al. ICESS'13
	Hui et al. MPE'13
	Hui and Huang WCSE'13
	Hui and Huang WCSE'13 (b)
	Jiang et al. ICESS'13
	Kanewala and Bieman ISSRE'13
	Kanewala and Bieman SECSE'13
	Lei et al. QSIC'13
	Rao et al. QSIC'13
	Yi et al. ISDEA'13
	Aruna and Prasad ICACCI'14
	Aruna and Prasad ICT'14
	Barr et al. TSE'14
	Carzaniga et al. ICSE'14
	Goffi et al. FSE'14
	Goffi ICSEDS'14
	Kanewala ICSTDS'14
	Le et al. PLDI'14
	Liu et al. ICSE'14
	Liu et al. TSE'14
	Nuñez and Hierons ATJ'14
	Segura et al. STVR'14
	Sun et al. FCS'14
	Xie et al. QSIC'14
	Zhang et al. ASE'14
	Aruna and Prasad ICACCE'15
	Cañizares et al. ICCS'15
	Chen AST'15
	Chen et al. JSS'15
	Hui et al. STA'15
	Jameel et al. SNPD'15
	Jin et al. COMPSAC'15
	Kanewala et al. STVR'15
	Lindvall et al. ICSE'15
	Su et al. AST'15
	Zhou et al. TSE'15
	Zhu TSA'15

