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ABSTRACT Bayesian Optimization is a sequential method for obtaining the maximum of an unknown
function that has gained much popularity in recent years. Bayesian Optimization is commonly used to
monitor the surface of large-scale aquatic environments using an Autonomous Surface Vehicle. We propose
to model water quality parameters using Gaussian Processes, and propose three different adaptations
of classical Acquisition Functions in order to explore an unknown space, considering surface vehicle
restrictions. The proposed Sequential Bayesian Optimization system uses the aforementioned information in
order to monitor the Lake and also to obtain a water quality model, which has an associated uncertainty map.
For evaluation, the Mean Squared Error of the resulting approximated models are compared. Afterwards,
they are compared with other monitoring algorithms, like the Traveling Salesman Problem, using Genetic
Algorithms and Lawnmower. Concluding remarks indicate that the proposed method not only performs better
while minimizing the Mean Squared Error (via active monitoring), but also manages to quickly identify an
approximate of the black-box function, which is very useful for monitoring lakes like Ypacarai Lake (60km?)
in Paraguay. Additionally, the proposed method reduces the MSE by 25% when compared with Traveling
Salesman Problem-based monitoring algorithms and also provides a more robust solution, i.e., 30% more
independent of initial conditions, when compared with known robust coverage methods like the lawnmower
method.

INDEX TERMS Bayesian optimization, Bayes methods, Gaussian processes, data acquisition, environmen-
tal monitoring, informative path planning, autonomous vehicles.

I. INTRODUCTION

Lakes around the world serve as water reservoirs, touristic
points, fishing spots and even wildlife beds, among other
usages, so their health is of the upmost importance. Main-
taining their waters as fresh and as healthy as possible
must be a desired and common practice of every human
being. Nevertheless, in the absence of this practice, water
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contamination will rise, and therefore, water resources will
not be able to provide the same status as before. The current
state of Ypacarai Lake (Paraguay) is an example of this
situation (Fig. 1). The lake is having periodical blooming of
cyanobacteria [1], caused by eutrophication. !

The first step towards eradicating this toxic alga is creating
monitoring systems that are capable of providing a spatial

1 As defined in [2], eutrophication is the enrichment of water by nutrients,
especially nitrogen and phosphorus, which produces an undesirable alter-
ation to water quality and causes an accelerated growth of algae.
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FIGURE 1. Example of the blue-green algae situation found on the shores
of Ypacarai Lake, Paraguay. This alga is gives off a fetid odor and toxic to
humans and animals.

FIGURE 2. Example of an Autonomous Surface Vehicle for lake
monitoring. Catamarans are usually the selected due to their enhanced
stability.

distribution map of water quality parameters, such as pH,
turbidity, CO2 levels, Dissolved Oxygen, etc. The water qual-
ity models (usually presented as a spatial distribution map
or contour graph) will help to locate the main contamina-
tion spots as well as any unnatural behavior of the water.
Therefore, monitoring is one of the most important steps
to manage the contamination situation. Autonomous Surface
Vehicles (ASVs) (Fig. 2) that are able to reach positions
within a lake and perform measurements of water quality are
considered suitable for the task [3].

The environmental monitoring techniques that use ASVs
are usually designed to explore every zone of the search
space. These methods are costly for large scale environments
and they generally do not provide water quality models that
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can be updated or used for future purposes. In real life sce-
narios, the cost of performing measurements is high due to
the indirect costs of reaching the destination point. Conse-
quently, most constraints are related to energy consumption
and reaching defined positions. With an infinite horizon of
time, an accurate model can be obtained with a confidence
of 100%; however, this solution is certainly costly and inef-
ficient. Although monitoring a defined space and obtaining
a mathematical model of the same space are considered dif-
ferent missions, both tasks can be accomplished at the same
time because of the nature of Bayesian Optimization (BO).
Thus, in this work, BO is used as a Mission Planning System
in order to obtain both measurements locations and a model
of the water quality parameters.

BO, which is based on Bayesian inference, has two main
components: i) a surrogate model and ii) an acquisition func-
tion or utility function. The Bayesian process begins when the
surrogate model is first used as a prior model, and given a set
of observations, the Bayes rule is used to obtain a posterior
model that fits the given data. The surrogate model predicts
how the real scenario (water resource) behaves. Gaussian
Processes (GPs) are normally employed as surrogate mod-
els since they can determine the uncertainty of the predic-
tions [4], and previous experience can be incorporated in the
definition of the kernel. In this work, the surrogate model
will supersede a real water quality parameter model; there-
fore, the nature of the used kernels should be based on the
variability of such water quality parameters. Regarding the
acquisition, it is used to calculate a maximum over the current
model so as to achieve maximum information benefit in the
next sample. In the target monitoring task, this maximum
value is used to determine the next water quality measure-
ments performed by the ASV. Notice that the acquisition
function is very important in the proposed monitoring work
because it defines the movements of the ASV. Thus, classical
acquisition functions used in BO cannot be directly applied
to the monitoring problem due to the mobility restrictions
of an ASV. In this work, we proposed several adaptations of
the classical acquisition functions that are more suitable for
monitoring tasks.

The proposed BO-based Mission Planning system presents
important advantages over the exploration or patrolling tech-
niques. First, the ASV will be monitoring and at the same
time obtaining a model of the water quality [5]. Second,
it can significantly reduce the time required to obtain a
model or contamination map, with a given desired confi-
dence level, of a large water resource through an efficient
and intelligent sampling mechanism. This fact is important
since ASVs are normally supplied by batteries. However,
the suitable BO planning of an ASV for monitoring task
requires to analysis and adaptation of the main components
of BO. As such, in this work we study and compare the
main kernels used in BO (Constant, RBF, Matérn, etc.). Their
respective hyperparameters have been selected according to
the predicted behavior of a simulated ground truth based on
the Ypacarai lake. With respect to the acquisition functions,
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some novel adaptations are presented and evaluated that can
be added on top the classical methods (Probabilistic Improve-
ment, Expected Improvement, etc.), such as: i) masking the
acquisition function according to the position of the vehicle,
ii) truncating the path segment between the position of the
vehicle and the optimal position, defining a new location in
the direction of the optimal value, and iii) splitting the path
segment from the starting position to the optimal into smaller
segments to ensure that the vehicle performs a certain number
of measurements before travelling a certain total distance.
The main contributions of this work are:

« The application of Bayesian Optimization for sequential
decision making in a water quality monitoring scenario
using an ASV.

o The hyperparametrization and comparison of classical
kernel functions as surrogate models for water quality
distribution maps.

o The proposal of three adaptations of acquisition func-
tions based on classical techniques for monitoring mis-
sions using an ASV.

o The comparison of the proposed approach with other
exploration algorithms such as Lawnmower and Genetic
Algorithm.

This paper continues as follows: Section II presents the
related work, focusing on monitoring works. Section III
states the problem, the assumptions and the road map to real
life applications, Section IV defines the BO framework and
describes the proposed approach. Next, Section V describes
the setup and execution of the simulations and the results
of the proposed method, as well as a comparison with other
coverage approaches. Finally, Section VI contains the con-
clusions of this work.

Il. RELATED WORK

This section contains current research efforts corresponding
to monitoring systems using ASVs. Although the state of the
art includes numerous works, to the best of the authors knowl-
edge, this work is one of the first to carry out monitoring
of large bodies of water using BO-based mission planning
systems for ASVs.

Conventional methods of monitoring include lawnmower
or sweeping algorithms, which consist of exploring the space
using a predefined distance between measurement locations
and a pre-established route morphology. In general, when
using these techniques monitoring occurs slowly. Therefore,
these are the preferred methods whenever neither time-related
restrictions nor expensive exploration costs are present.
L-Cover, T-Cover and Z-cover [6] are some common methods
and they fall into the lawnmower category. These methods
are extremely useful in situations where the work or search
space is very narrow, such as with rivers and streams; how-
ever, they have lesser impact observational-wise as the water
body widens due to energy availability concerns. In addi-
tion, these methods do not provide online learning. Various
coverage, patrolling and monitoring works can be found that
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use unmanned vehicles to accomplish the task of monitoring.
Some of them [7], [8] develop control systems for ASVs and
are tested in real life scenarios.

Although using multiple vehicles to accomplish coverage
escapes the scope of this work, the idea is very useful because
it facilitates information gathering at the cost of having a
multi robot system coordinator, or a decentralized framework.
In [9], multiple Dubins vehicles (capable of following only
soft curved paths, i.e., no hard turns or rotation about their
axes) were used to perform coverage in a 200 km? lake. The
vehicles can be heterogeneous as well, implying different
physics, dynamics and control for each agent. For example,
in [10], the authors developed a coordinated system using
an Autonomous Underwater Vehicle (AUV) with an ASV to
detect pollution in water environments. Another study [11]
proposes a multi-robot path planning algorithm whenever
connectivity constraints are present.

A comprehensive survey on robot path planning [12] clas-
sifies these works into strategies and approaches that fulfill
the coverage mission. The cited applications range from map-
ping and surveillance to coastal coverage. It is important to
highlight that monitoring tasks are not exclusively for surface
vehicles, since multiple works use Autonomous Aerial Vehi-
cles (AAVs) to perform the same mission. In [13], the authors
present an algorithm that monitors an environment using an
energy-constrained AAV that covers an area together with an
Autonomous Ground Vehicle (AGV). The work in [14] shows
that AAVs can be used to inspect rice farms using Particle
Swarm Optimization (PSO) algorithms.

Informative Path Planning (IPP) algorithms can be used for
surveying underwater algae farms [5], using Gaussian pro-
cesses as surrogate models and information gain-based func-
tions to select viewpoints. Another IPP implementation [15]
uses AAVs to map unknown environments via ray-casting for
mazes and buildings explorations using a Rapidly-Exploring
Random Tree star (RRT*) inspired algorithm. Another exam-
ple that uses ASVs for environmental monitoring can be
found in [16], where orienteering-based approaches are
proposed.

Some works have focused on developing monitoring sys-
tems for Ypacarai Lake [3]. For example, the International
Hydroinformation Center (CIH) [17] of Itaipi focuses on
continuously monitoring fixed locations within the Lake
as well as its main sources of inflow and outflow. Also,
the Multidisciplinary Technology Research Center (CEMIT)
provides the results of sampling measurements performed
in 14 different locations. In [3], the authors propose algo-
rithms that explore the lake with an ASV using Travel-
ling Salesman Problem (TSP)-based evolutionary algorithms,
which provides a global path that manages to explore the
surface of the Ypacarai Lake. In the TSP algorithm, a set
of locations within a working space are defined that must
be visited exactly once. Furthermore, in [18], the TSP-based
work is expanded and Eulerian circuits are used to solve
the path planning problem, instead of Hamiltonian circuits
(TSP based path planning). In [19], an efficient strategy for
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monitoring algae blooms using TSP algorithms was pre-
sented. More recently, in [20], the authors trained a neural
network using Deep Reinforcement Learning based on the
Markov Decision Process (MDP) for the patrolling problem
of the Ypacarai Lake.

Regarding BO-based approaches, recent monitoring pro-
posals using AAV include [21]-[23]. In [21], the authors
use Sequential BO in order to obtain a height map using an
AAV, where the decision is made using a Partially-Observable
Markov Decision Process (POMDP). The obtained results
indicate that the Bayesian approach is useful whenever the
number of measurements is limited. In [22], continuous 3D
trajectories are generated to map an area using Gaussian
Processes. Similarly, a path planning model is proposed
in [23], where an interactive multiple model algorithm is
used to update the belief space. Large scale pollution and
luminosity monitoring simulations were performed in [24]
using continuous BO approaches, obtaining a significant
error reduction compared to other methods. A Bayesian
Exploration-Exploitation approach for online planning was
presented in [25], using a POMDP utility function. A recent
work [26] shows the development of save navigation proce-
dures for mobile robots using BO to predict high movement
vibrations in a defined space.

A summary of the works described in this section is pre-
sented in Table 1, where the objective is to compare differ-
ent deployments of autonomous vehicles that are aimed at
obtaining information about their environment. The works are
ordered by year of publication (2009-2020). Pre-established
Routes (PR) are monitoring algorithms whose goal posi-
tions are defined by a human operator. These works are
control-oriented but manage to monitor areas according to
their objectives.

Although the previous works are promising, the proposed
method presents some important advantages with respect
to the application of real monitoring task applications. The
main benefits include: i) obtaining a mathematical surrogate
model of a real water quality parameter model, which can be
easily used for future purposes, ii) intelligent determination
of measuring locations using adapted acquisition functions
that take into account the mobility restrictions of autonomous
vehicles, and iii) an important reduction of the exploration
cost of a water resource, which is crucial for an efficient
large-scale monitoring.

llIl. STATEMENT OF THE PROBLEM

The objective of the monitoring system is to obtain water
quality models accurately and efficiently for the Ypacarai
lake. The monitoring system contains an ASV that measures
water quality. For the purpose of this work, the Total Distance
Travelled (TDT) by the ASV is assumed to be proportionate
to the invested energy required to conduct the movement.
Therefore, the ASV should travel as little as possible, per-
forming the least possible n number of measurements in
order to obtain water quality models with a good confidence
level.
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TABLE 1. Brief summary of monitoring systems using autonomous
vehicles.

Ref. | Objective

[25] | Localization

Monitoring Algorithm | Vehicle

PODMP - BO

ground
and Mapping
[24] | Large-Scale

Continuous Trajectory aerial

Pollution Monitoring | generation using BO

[24] | Luminosity Continuous Trajectory ground
Monitoring generation using BO
[10] | Underwater Water Lawnmower and underwater

Sampling Loiter and aquatic

[21] | Obtaining POMDP - BO aerial
elevation maps

[14] | Rice Farms Pre-established aerial
inspection Route (PR)

[7] Discrete Measuring | PR aquatic
and Water Sampling

[8] Water Sampling PR aquatic

[6] Bathymetric survey | L-cover and T-cover aquatic

(Lawnmower related)

[16] | Level Set Skeleton based aquatic
Estimation Orienteering IPP

[19] | Algae bloom TSP with aquatic
monitoring Genetic Algorithms

[13] | Rows of Crops TSP-based with aerial and
Coverage recharging mechanism | ground

[5] Underwater algae BO-based IPP underwater
surveying using a camera

[15] | Building exploration | RRT*-inspired aerial
and reconstruction Exploring algorithm

[22] | Discrete/Continuous | Covariance Matrix aerial
variable mapping Adaptation Evolution

Strategy
[20] | Environmental MDP solved w/ Deep aquatic

patrolling/monitoring | Reinforcement Learning
(DDQL)

In the context of water monitoring, the real water quality
model is mathematically defined as the target or objective
function f(x), where the input x corresponds to an (x,y)
location in the lake. The ASV is responsible for performing
n measurements in an environment in a sub-space of the
R”" space. For this purpose, the vehicle is equipped with a
water quality sensor S, which can take samples and store their
values in a vectors = {s; | i = 1, 2, ..., n}, where i
corresponds to the measurement number. The ASV associates
the ith read with a location p; where the measurement has
been performed. The locations are stored in a vector p =
{pili=1,2, ..., n}. The data provided by the ASV is
denoted by D = {(p;, s;) | i = 1, 2, ..., N}, assigning the
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vehicle’s position p; as the input vector x;, and a sensor read
s; as the output value, so that, for each D;,:

si =f(pi) ey

This expression can be used to find the regression that
estimates the relationship between the water quality values y
and the locations x in the entire domain of the Ypacarai Lake.

y~fx) ()

With sufficient data D, the real function f (x) can be approx-
imated.

For evaluating the surrogate models, there are some usual
metrics such as Absolute Error, Mean Squared Error (MSE),
or even the robust estimators shown in [27], [28]. The MSE is
normally used in regression problems; therefore, it is a suit-
able performance metric to evaluate the obtained model. The
MSE is calculated using (3), where f (x) is the ground truth or
real contamination map and y the resulting prediction of the
surrogate model. In this case, the ground truth represents the
distribution map of the water quality in the Ypacarai lake.

”samples_l
Yo -y B

i=0

MSE(f(x), y) =

Nsamples

It is important to indicate that the total travelled distance
plays a more important role than the number of measurements
performed, even though they are correlated. The reason is
that the distance travelled is related to power required by
the ASV and it is well-known that energy is one the main
limitations of autonomous systems. Therefore, the monitor-
ing system should be as efficient as possible in terms power
consumption.

A. ASSUMPTIONS AND CONSIDERATIONS
Several assumptions are considered in the proposed monitor-
ing system based on an ASV.

o Ypacarai Lake: The monitoring space is modelled as
a m x n matrix M, where each element M, ; has a
value defined by an occupancy state (1 if the element
corresponds to an occupied d x d square space in the
space, O if not). The matrix M can be seen as an image
of dimensions m x n, where each pixel is a square of side
d, painted white if any kind of obstacle (land, prohibited
zones, natural obstacles, etc.) is found within or black
otherwise. Fig. 3 shows the model of Ypacarai Lake used
in this work, which has been previously used in [29].
It is a non-convex set, consequently, a local path planner
is needed to ensure that the vehicle can travel from one
point to another.

o Guidance, Navigation & Control (GNC): Fig. 4
presents the proposed block diagram of the GNC system
of the ASV. The ASV is capable of travelling between
locations on the surface of the lake and performing mea-
surements only when it is still. The GNC is fully capable
of performing the task of travelling, using a positioning
system that has a resolution ~d. Therefore, the ASV is
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FIGURE 3. Occupancy grid model of the Ypacarai Lake. It is a non-convex
set because there exist segments made with two black positions which
crosses white zones.

located with a good but not perfect resolution. The GPS
error is also simulated, shifting the goal position by a
few meters (<25), so that the ASV does not perform
measurements in the optimal locations. For simulations
purposes, direct movement between the ASV’s current
position and its goal is allowed as long as the segment
crosses no obstacles, otherwise a local path planner is
used, which provides routes that avoid obstacles found
in the path (see Fig. 4). The RRT* algorithm is selected
as local path planner due to its small path planning
calculation time [30]. Both the Navigation system and
the Control system (low-level) will be executed by an
autopilot software/hardware embedded system, such as
the Navio2? or Pixhawk4.’

o Water quality measurements: Despite being capable
of performing multiple measurements of different qual-
ity parameters (Dissolved Oxygen, power of Hydro-
gen, Total Dissolved Solids, etc.), only the MSE of one
water quality variable is minimized at a time. Moreover,
the values of measurements have standard attributes
(u(x) = 0, o(x) = 1) and noise is negligible. As real
values of water quality parameters are not defined with
a mean of zero, an additional function to normalize the
parameters is required. In addition, we consider that
water quality parameters are stationary during the mon-
itoring task.

« Vehicle autonomy: Battery usage and time consump-
tion are considered through the maximum distance that
the ASV can travel. Performance tests performed using
the ASV shown in Fig. 2 shows that it can travel at a
maximum velocity of 2 m/s for 2.1 hours, it can cover
approximately 15000 linear meters. Therefore, this dis-
tance is the baseline that for comparison in this work.

IV. PROPOSED APPROACH

The monitoring approach proposed in this paper is based on
BO. The main objective consists of minimizing the uncer-
tainty of an unknown water quality model. BO is defined

2https ://navio2.emlid.com/
3 https://pixhawk.org/

9167



l E E E ACCGSS F. Peralta Samaniego et al.: Bayesian Optimization

Approach for Water Resources Monitoring Through an Autonomous Surface Vehicle

) ASV
Perform
Measurement e e e e e e e e e e e e e e e e e e e e e e e e e N
7 Guidance b
l Water Quality + |
Measurements : Perform Best next i Collision Free
- | {pH, 0D, TDS) | Planning position 1 | Velocity Vectors
Environmental !
sensing system : ! Movement
- Informative Path ' [, ¥)
Localizati Mission Planner Planning Local Path I B
ocalization (Movement, (Bayesian Planning Control —
(GNSS) Measuring) Optimization)

e

MNavigation

A

FIGURE 4. Proposed general ASV diagram. It includes the main GNC system and also an Environmental Sensing system, which provides

discrete water quality information.

by three components: the surrogate model, the acquisition
or utility function and an optimization algorithm. In the
proposed approach, these components are tailored for the
monitoring task of an ASV.

A. BAYESIAN OPTIMIZATION FOR MONITORING

BO is a sequential strategy used for obtaining the global
optimal point (global maximum or minimum) of a function
that has expensive evaluation costs [31]. For the monitoring
task, the application of this method is not straightforward,
since in this context obtaining the maximum/minimum value
of a function is not the main objective. Nevertheless, with the
appropriate selection of the main components of BO, such as
the kernel and the acquisition function, we will demonstrate
that BO is a suitable tool that is able to provide confident
models with a small number of samples.

The general steps of BO are shown in Fig. 5. For surrogate
modelling, BO uses Bayes theorem Eq. (4) to infer a posterior
belief of a black box function given by a likelihood function
and a prior belief [4]

P(f|D) = P(DIf) x P(f) “

The expression indicates that the informed surrogate model
(f|D) is proportionate to the data collected by the sensors
(D|f) and the prior (f). The prior incorporates the belief about
the shape or smoothness of the target function. In water mon-
itoring context, it includes the knowledge about the quality
model to be obtained. The likelihood term reflects the data
that the ASV is sampling and the posterior is the updated
model once the new samples are incorporated. After the pos-
terior model is fitted through a Gaussian Regression Process
(GPR), it can predict the values for the search space. Then,
an AF is used over the predictions of the posterior model
to determine the optimal location for a new data sample
Dj1. Therefore, the optimization of the AF determines the
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FIGURE 5. Sequential Bayesian Optimization procedure. The initializing
procedure can include a fitting if there is any prior information. The
decision block will return an affirmative value if a condition of collected
information is met.

next movement of the ASV. The monitoring ends whenever a
specified level of certainty of the model is reached.

Next, we describe the GPR used to fit the model, the clas-
sical AFs used in BO and the proposed modifications tailored
for monitoring task of an ASV.

B. GAUSSIAN PROCESS REGRESSIONS (GPR)

Gaussian Processes (GPs) are generally used as a surrogate
model in the Bayesian inference for both the prior and pos-
terior model. Since they are based on multivariate Gaussian
distributions, they can fit data with ease (some examples
include [5], [21], [26]). GPs are defined with a mean function
(x) and a covariance function. or kernel k(x, x”), defined as

px) = E[f (x)]

k(x, x') = E[(f (%) — n()(F(x) — u(x))] )
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The target function can be approximated to the GP as
follows

fx) ~ GP(u(x), k(x, X)) (6)

For any kernel and some measured data D, it can be demon-
strated [4] that, after fitting, the GP can predict the mean
values and standard deviation of the target function, giving
a posterior using (7). The posterior consists in a Normal or
Gaussian Distribution A(0, o).

V1

~ GP(u(x), k(x,x)) = N(0,0) @)
yn

Covariance functions, or kernels, are the functions that
provide a measure of similarity between two random input
variables and thus are a crucial component of GP. There are
plenty of ways to describe relationships between variables,
but as the desired regressor should be able to describe a 2-D
map of a supposedly continuous spread of a quality measure
(water quality parameters in lake environments are expected
vary smoothly across the surface), the studied kernels should
provide correlations that will produce models that are as
smooth as possible.

Kernels are modelled as a matrix K, such as the element
Ki;j = k(x;,x;) represents the covariance between two
inputs. This matrix should always be positive semidefinite,
implying that relations between all inputs can be found, form-
ing a square matrix. In order to obtain the posterior distribu-
tion, the kernel matrix is augmented to include covariances
between the test inputs (not measured locations that need to
be inferred) x*x with themselves and the covariances with the
known data x using

K=|:K K*i|=|:k(x,x)

k(x, xx)
K*T Ky k(xx, X) i| ®)

k(x*, X*)

Finally, the surrogate model can predict the mean u,, |p and
uncertainty oy, |p of unknown data using the next expressions:

oy 0 = Kuw — KT (K + €2)7 'K, (10

K, describes the covariance between the collected data D
and the unknown data, and K refers to the covariance of the
unknown data. Both are sub-matrices of the kernel K that can
be easily be obtained by applying the covariance function to
the input of data D augmented with the input to predict. In [4],
the authors include a noise function € that is used if there is a
need to consider noisy data input. This noise can be modelled
after Gaussian, Laplacian or uniform functions [32] but in the
scopes of this work, noises are negligible. GPs can provide
water quality models of entire spaces with high accuracy if
sufficient data is supplied. Furthermore, accurate posterior
models can be obtained if appropriate covariance functions
are selected.
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TABLE 2. Kernels in gaussian processes.

Kernel f. | Expression Hyperp.
Constant | o> o0

RBF exp (— % ) )

RQ (1 4 %) - ‘o
Maém [ (27 00) () K (M) ey

1) COVARIANCE FUNCTIONS

The most commonly-used covariance functions are presented
in Table 2, showing the expressions and their respective
hyperparameters. In Table 2, r corresponds to Euclidean
distance between two vector inputs X, X'.

For the target monitoring task through an ASV, a suitable
kernel should be selected. To this aim, we assume that water
quality functions are stationary in terms of the input, i.e., the
lake has homogeneous properties so that the same behavior
can be found anywhere in the lake. Therefore, stationary
kernels are selected and studied.

As follows, we describe the most used stationary kernels
in GPs:

o Constant kernel: A standard covariance function
denoted by 0(2, which determines the average distance
of a target value away from the mean of the function.
Usually, 0¢? is present in most of the kernels.

« Squared Exponential (SE): The most widely-used ker-
nel in this field, also known as RBF (Radial Basis Func-
tion). It is a function that captures the covariance within
arange of [0, 1]. This kernel has a hyperparameter ¢ that
corresponds to a length scale that describes the smooth-
ness of the function. It provides a measure of how far
two different inputs can be in order to affect or influence
each other. The higher the value of ¢, the slower the
rate of change. Moreover, larger values provide more
extrapolation limits.

« Rational Quadratic (RQ): A kernel that represents an
infinite sum of RBFs with different characteristic length
scales. As the infinite sum can be correlated to a scale
mixture, the RQ kernel expects that the objective func-
tion will behave smoothly across many length scales.
The hyperparameters are £, which behaves exactly like
RBF, and «, that corresponds to the scale mixture param-
eter. As o tends to co RQ approximates to a regular RBF.

o Matérn class: A kernel capable of fitting less homoge-
neous data. It has two positive hyperparameters: v and
£. The first defines the smoothness of the function (i.e.,
the greater the value the smoother, up to v — 0o where
the Matérn function becomes the SE.) while the latter
defines the length scale of the kernel. This covariance
function also incorporates two functions I'(v) and K,
which correspond to the Gamma Function and Modified
Bessel Function of second order, respectively. In several
works [4], [33], £ is usually defined as an integer and v
as a half-integer: ¢ 4 1/2.
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C. GENERAL ACQUISITION FUNCTIONS

AF are used to determine the projected utility of measuring
one specific point within the environment. Then, the max-
imum of the AF represents the best possible next point to
measure or sample.

The process for obtaining a new measurement position in
this work differs from common approaches as the assump-
tions of the search space are also different. Water bodies
environments are generally non-convex sets and the defini-
tion of the space is also limited to where the water or the
terrain are present. This constraint leads to the acknowl-
edgement that the monitoring space is not continuous on
the shores of the lake, as no water quality information
can be obtained in the terrain. With these assumptions,
commonly-used fast optimizers like the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) or
the Newton-Conjugate Gradient (N-CG) cannot be used as
they only behave correctly whenever the search space is
continuous. In our case, we proceed to calculate the AF
value for every point in the map that is associated with a
water zone. Therefore, the optimization process corresponds
to fully observing the search space (using an AF) and picking
the maximum/minimum position within the lake.

There are several widely-used functions that balance
exploration/exploitation [33]. Usually in BO-based sequen-
tial decision-making, an agent seeks to explore near the
beginning of the mission and exploit the maximum/minimum
values at the end. Therefore, most AFs are designed to accom-
plish this task and for this reason they include an explicit
exploration/exploitation parameter £, which helps balancing
the AF evaluation. Classical AFs are explained below:

o Probability of Improvement (PI): It computes the
probability of obtaining a value that is better than a the
current maximum. It relies on the Cumulative Distribu-
tion Function (CDF) ®(Z) of the normalized surrogate
model Z. According to [33], Z depends on the current
minimum measured value f(x") and has the form of

_ fxH) —px)— &

o(X)

Z (1D
The probability of improvement of a location can be
obtained using

PI(x) = ®(Z) (12)

+ Expected Improvement (EI): It improves the PI func-
tion using the predictive uncertainty to prevent the
exploitation bias that occurs when only the probability of
improving is considered. Therefore, EI uses not only the
CDF but also the Probabilistic Density Function (PDF).
El returns a measure of optimization beliefs based on the
current CDF &(x) and PDF ¢(x) of the standardized nor-
mal Z. The exploration/exploitation balance is implicitly
found in this AF. The predictive mean (found in the first
term of 13) manages the exploitation weights, while the
predictive uncertainty o (x) provides more exploration
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weight as it increases. The following corresponds to the
EI expression

0 ifo(x) =0
EI(x) = 1 (f(x") — u(x) — §)P(Z) (13)
+ ¢(Z)o (x) else

o Scaled Expected Improvement (SEI): It is an exten-
sion of EI method that has been proposed in [34]. In this
function the EI(x) is scaled to favor selecting points
where the improvement has a small variance, but the
predicted value is expected to be high. The scaling factor
VI (x)] is computed as

VI X)]*> = k(x, X)[(Z> + DDPZ) + Z¢(Z)] — EI(x)*
(14)

The SEI is expressed as

El(x)

El(x) =

VII(x)]
« Max-value Entropy Search (MVES): It is a function

that quantifies the information gain about the supposed

maximum of a function f(x) [35]. It values the nega-

tive differential entropy of the posterior maximum input

using the next expression

15)

Zd(2)
MVES(x) ~
20(Z)

Classical AFs provide useful results in BO when they are
employed to optimize costly functions. However, they present
some limitations related to their application to the monitoring
task of an ASV. Therefore, additional work is required to
adapt them so that BO can be applicable in large-scale water
environmental monitoring tasks.

— log(¢(x)) (16)

D. PROPOSED ACQUISITION FUNCTIONS

To overcome the limitations of classical AF for the monitor-
ing task of an ASV, this work proposes new adaptations for
them to include mechanisms to encourage selecting points
that are near the vehicle’s current position. Three different
adaptations have been designed and tested; each one focuses
on reaching optimal measurement locations as well as select-
ing points not far from the ASV’s current position.

Fig. 6(a) shows an example of ground truth that will
be used to illustrate the results of the proposed AF. It has
three different maximum values and it shows the positions
where previous measurements have been taken. Using these
measurements, a posterior model GP is calculated and used
to determine the output of AFs. Next, Fig. 6(b) shows the
output of the SEI AF without any modification. Although
this example used SEI, all classical AFs can be used with
the proposed adaptations. The blue marker corresponds to the
next position where the ASV will perform a measurement,
which corresponds to the maximum value of the AF. As fol-
lows, we describe the proposed adaptations of AFs, which are
shown in the other subfigures in Fig. 6.
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FIGURE 6. Different adaptations of an example AF (Scaled-El). The first sub-image corresponds to the ground truth, where 3 maxima are defined. The
red triangle represents the current position of the vehicle, yellow triangles: position of previous measurements. The next sub-images (except for (c))
present the values of the AF. The locations where the ASV should perform the evaluations are marked with a blue cross. The optimal value is marked
with a black cross, if the optimal is not equal to the proposed next location. The sub-figure (c) provides an insight of the mask that the ASV will use to

define the next location, according to the masked-adaptation.

o Split Path: The main idea is to leverage the long dis-
tances travelled from one sample position to another in
classical AFs. During long distances the ASV can take
several samples before updating the surrogate model.
This method calculates the new target location according
to classical AFs and the current ASV position. Then,
a set of measurements are taken within the segment
from the vehicle’s position and the target point. These
locations are equally distanced between each one of
them by a constant /, which defines the average distance
that the ASV should travel in order to perform a new
measurement. Fig. 6(c) shows the waypoints defined
by using the AF with the split path adaptation. The
vehicle should visit all goals (the three blue markers) and
perform measurements on each point, but only will fit
the surrogate model and calculate next optimal position
whenever measurements on all points have been per-
formed. The travelled distance between waypoints will
generally be equal /, except on the last path or whenever
the locations are zones with known obstacles.

o Truncated Path: In this method the direct path to the
next target location according to the AF is truncated after
a distance /. The idea is to take into account the mobility
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restrictions of ASV so it should not travel long distances
before updating the surrogate model. Notice that the next
optimal sampling in location is the same used in split
path method (depicted in gray color Fig. 6(d)) since
it is defined by the underlying AF. However, in this
case the distance travelled by the ASV is truncated,
reaching a suboptimal location (depicted in blue color
in Fig. 6(d)). It can be observed that the blue position
is aligned with the current-optimal positions segment.
Whenever the ASV reaches this position and updates the
data, a new goal location is obtained using the selected
AF. This new location is generally not the same as
split path-adaptation because of the new information
provided.

o Masked Path: This method weights the nearby loca-
tions using a simple gradient according to (17), where
x corresponds to the locations on the search space and
p the position of the ASV. An example mask is shown
in Fig. 6(e), which is used to mask the result found by the
classical AFs, producing the masked-AF (Fig. 6(f)). This
process is done by multiplying the mask with the result
of the unmodified AF, as shown in (17). This method
allows exploiting the current position of the ASV in
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TABLE 3. Summary of properties of the proposed adaptations.

Adaptation | Distance b/w new Measurements before

data locations and ASV | GP Fitting step

Split path- [1,2L,...,nl,d n+1
Truncated- |1 1
Masked- generally <= [ 1

order to obtain more information with less movement.

M = exp 08 =21D a7
A summary of the proposed adaptations is included
in Table 3, showing that they only depend on a tunable
hyperparameter /. It is important to highlight that each one
has a distinctive characteristic with respect to updating the
surrogate model. The split path-adaptation will perform at
least one or more measurements before fitting the Gaussian
model. The two others will strictly fit the model after each
measurement. The truncated-adaptation provides the infor-
mation to the ASV in its path to the maximum, so it can
quickly update the model. Finally, masked-adaptation favors
the maximum of nearby locations.

V. PERFORMANCE EVALUATION

In this section, the proposed method based on BO is evalu-
ated for monitoring a simulated aquatic environment. First,
we define a general ground truth model based on Ypacarai
Lake, then simulation results are presented in different test
groups. The first group compares different kernels for moni-
toring the Ypacarai Lake. Next, with a selected kernel, clas-
sical AFs are tested. Then, the best AFs are modified with
our proposed adaptations and evaluated in the case study
scenario. Finally, the best configuration (kernel, adapted-AF)
is compared with other monitoring algorithms.

A. SIMULATION SETUP

This section defines the procedures and parameters for the
evaluation of the proposed method. The code for this section
is available online* and has been developed for python 3.8.4.
The simulations have been conducted in a laptop computer
with 32GB RAM, Intel 17 3.2 GHz processor.

1) GROUND TRUTH OR SIMULATED WATER QUALITY
MODEL FOR YPACARAI LAKE

Water quality models often follow a smooth function due to
fluid dynamics and wind conditions [1], [2]. In that sense, test
scenarios for validating the proposed method can be modelled
as smooth functions, such as Bohachevsky or Himmelblau.
However, their gradients have big values, which are not usual
for environmental parameters. In contrast, the Shekel Multi-
modal Function (SMF) can be adjusted to provide maximum
zones with gentle gradients. Additionally, the SMF can have

4https:// github.com/FedePeralta/BO_drones
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FIGURE 7. Ground Truth for a simulated water quality parameter using a
Shekel-based function, scaled. The model has u(x) =0, o(x) = 1.

any number of maximum values, which fairly simplifies the
setup procedure for obtaining the ground truth for each sim-
ulation run. SMF has the form of:
u 1
X) =

Sshekel (X) ; . Z;V:1(Xj e
where ¢; and a;; correspond to the elements of two given set
of matrices A and ¢ with sizes MxN and Nx1, respectively.
M is the desired number of maximum values and N the
number of dimensions. The simulation area is modelled as
M with dimensions 1000 x 1500, where each element M, ;

corresponds to a square with side d ~ 10[m].

The map shown in Fig. 7 is an example of a test configura-
tion, where there are two defined maximum values in the lake.
The parameter values of each position x, y are taken from
the result of a standardized shekel function scaled up. The
domain of the shekel function is defined in the range [0, 1]
for each dimension, and the shekel input matrices are defined
as A = [[0.16,0.67],[0.9,0.13]] and ¢ = [0.15,0.15].
The locations of the maximum values have been selected
according to the two main towns in contact with the Ypacarai
lake [1] (Aregud and San Bernardino). Both of them are
touristic points, which would imply deviations from the mean
of a water quality parameter. For instance, an inappropriate
disposal of waste could increase the turbidity of the water.
Fig. 7 shows two peaks in the mentioned zones, which repre-
sent a high value of turbidity (turbidity sensor), a distinctive
green color (RGB color sensor), high pH variance (pH sen-
sor), or any other quality parameter with values higher than
usual.

While the original values of the function range from 3.65
to 7.70, the values for the ground truth range approximately
from —2.6 to 1.8, which helps the GP fit data more easily.
For real life applications, where the ground truth is unknown,

(18)
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TABLE 4. Mean of n simulations Mean Squared Errors with their
respective 95% confidence interval for different GP kernels.
MSE = u + 1.960.

Kernel Hyperparameters | MSE (n = 15)
RBF ¢ =100 0.0707 £ 0.2111
Matérn ¢=100,v = 3.5 |0.08 + 0.2236
Rational £=100,a=0.10.0705+0.2111
Quadratic

by applying the Central Limit Theorem (CLT), the measured
data can be modified by dividing the difference between
the real value and the expected mean by the expected (or
maximum allowed) variance.

Initial Data D corresponds to the normalized values pro-
vided by two stations (Club Néutico San Bernardino (CNSB)
and Playa Municipal Aregud (PMA)) of the CIH [17]. The
initial position of the ASV is selected randomly. There-
fore, with pp as the initial position of the ASV D =
(PcnsB» ScnsB)» (Prma» Spma), (Po, So), the initial data to fit
the GP is composed of three samples.

2) PERFORMANCE METRICS

As stated in Section III, MSE is the selected metric used
for evaluating the performance of the proposed method. For
the kernel and classical AF selection, the distance between
points is not relevant since they are not dependent on the
environment constraints. Therefore, the MSE is compared
with the number n of samples performed by the ASV. For the
proposed AFs, the main evaluation is performed whenever the
ASYV travelled a total of 15000 m.

B. KERNEL SELECTION

The covariance functions to be tested (RBF, RQ, Matérn)
are all dependent on the hyperparameter £. For the expected
quiet waters of Ypacarai lake [1], the length scale should
be sufficiently large to ensure smoothness, but bounded to
provide the kernel enough freedom to adapt to varying max-
imum/minimum data. We propose that £ ~ 10% of the
length of the search space. For other hyperparameters, if any,
the most common values [4], [33] are used.

Fifty different simulations have been conducted for the
kernel selection, each test using both different seeds and dif-
fering sets of 15 uniformly drawn points. The results included
in Table 4 show that for the Ypacarai Lake, RBF and RQ have
the best MSE. Consequently, either of these kernels could be
indifferently selected. As RQ is the generalization of RBF,
it is expected that RQ is a more complex expression in terms
of computational requirements. For this reason, RBF is the
selected kernel for the proposed BO-based monitoring system
and it will be used as the prior/posterior model for the next
simulations.

C. ACQUISITION FUNCTION SELECTION
This subsection has the objective of evaluating the classical
AFs for the simulated Ypacarai Lake. The idea is to select
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TABLE 5. Acquisition function behavior test. The value n corresponds to
the number of measurements performed.

Acquisition f. | Hyperparameters | MSE (n = 15)
Probability of | £ = 0.01 0.2960 £ 0.1988
Improvement |£ = 1.0 0.0170 £ 0.0163
Expected £=10.01 0.0421 4 0.0498
Improvement |& = 1.0 0.0193 4+ 0.0204
Scaled £=10.01 0.0380 £ 0.0362
EI £E=1.0 0.0189 £+ 0.0167
Max-value ¢ =0.01 0.5366 £ 0.1864
Entropy Search | £ = 1.0 0.6382 £ 0.3704

the best classical AF that will serve as underlying method
for the proposed modifications. Once the best classical AF is
selected, the proposed modifications have been implemented
on top of it to compare their performances. The ASV has the
initial data D mentioned in V-Al and it has the capabilities
and restrictions mentioned in this work. New samples are
taken once the ASV travels from its current position to the
optimal value per AF. In order to ensure a fair comparison
among AFs, the simulations have been performed with the
same random seeds. After a new measurement is conducted,
the total distance travelled in meters is saved along with the
MSE and the number of measurements. For the comparison
framework, the mean and standard deviation of the MSE
and the Total Distance Travelled (TDT) of each method is
obtained.

1) CLASSICAL ACQUISITION FUNCTIONS

For each one of the classical AFs presented in this work,
two sets of simulations have been run, one with & = 0.01
and the second using & = 1.0. Notice that as & factor
increases, the AF increases its exploration behaviors over
exploitation. Due to the fact that classical AFs are not distance
dependent, the comparison is made between the number of
measurements performed instead of the TDT. The results are
shown in Table 5. It can be observed that the Pl with & = 1.0
has the lowest MSE with a 95% confidence interval. Notice
that the figures present non-negligible confidence intervals;
this is to be expected as the ASVs do not start on the same
position for each one of the 50 simulations, which affects the
behavior of the monitoring system and thus the MSE. Fig. 8
shows a bar graph where the MSE of each method (using the
best &) is displayed for each measurement. Notice that each
bar shows the 95% confidence interval. Also, Fig. 8 shows
that PI, EI and SEI with & = 1.0 behave similarly after
15 steps. Therefore, only the MVES AF should be discarded
while the other classical AFs should be considered for the
proposed adaptations and evaluations.

2) PROPOSED ACQUISITION FUNCTIONS

The next step is to apply the proposed adaptations to the
selected AFs in order to add the mobility restrictions of
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FIGURE 8. MSE using different acquisition functions. The best set of

simulations for each AF is used. The confidence intervals are
approximately equal for the first three AFs (PI, El and SEI).

TABLE 6. Proposed acquisition functions behavior test.

Adaptation | Acquisition | MSE Average Calc.
Function (T'DT = 15000m ) | Time [s]
Split path- | PI(x) 0.2897 £+ 0.2130 1.8581
EI(x) 0.2913 £ 0.2147 2.1947
SEI(x) 0.3129 £ 0.2569 1.7015
Truncated- | PI(x) 0.2498 £ 0.1773 1.7222
EI(x) 0.2445 +0.1614 | 1.8356
SEI(x) 0.2561 + 0.2133 1.8870
Masked- PI(x) 0.4171 £ 0.2791 1.9878
EI(x) 0.4179 +0.2773 1.8102
SEI(x) 0.3520 +0.2176 | 1.7694

the ASV. In these simulations, the number of simulations is
the same as in the previous evaluation, but the number of
measurements performed has been increased by 5. Table 6
shows the results after the ASV has travelled a distance
of 15000 m. It can be seen that the best proposed adaptation
is the truncated method, which provides both the lowest MSE
mean and confidence interval. Additionally, Table 6 shows
the average calculation time to solve the GPs and obtain a
measurement location using an adapted-AF. The MSE for
this method is shown in Fig. 9. It can be observed that the
three methods are set to converge after ~30000 m and they
provide approximately the same mean for MSE. Furthermore,
the tr-EI(x) generally provides the lower confidence interval,
obtaining more robust results. Analytically, EI AF is also
less biased towards exploitation, which is a good property in
monitoring situations.

For visualization, an example of the generated water qual-
ity models for the best run using the proposed method is
shown in Fig. 10. For each column, the upper row corresponds
to the surrogate model GP mean and the lower to the standard
deviation, or uncertainty, of the GP. It can be observed that
whenever new measurements (red triangles) are performed,
the resulting GP mean is more alike the ground truth (Fig. 7).
Consequently, the monitoring system based on the ASV is
working well. It is important to indicate that the following
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FIGURE 9. MSE using the truncated-adaptation on the same acquisition
functions (PI, El, SEI).

seven MSE (plus two initial samples) is only 0.07, and the
standard deviation is always <0.6 in the whole search space.
Therefore, the achieved results by the proposed method are
remarkable.

D. COMPARISON WITH OTHER MONITORING
APPROACHES
Having selected the best overall combination (kernel and AF
with proposed modifications), the next objective is to com-
pare the proposed method with other monitoring techniques
found in the literature. The best path planning provided by
a Genetic Algorithm (GA) proposed in [19] and a Lawn-
mower (LM) algorithm as found in [36] are both applied to
Ypacarai Lake are candidates for comparison. In order to use
the same metric (MSE) for comparison, some changes have
been applied to both the GA and LM approaches. Assum-
ing that measurements cannot be performed continuously
and that both methods define long segments for monitor-
ing, the techniques should divide their segments into smaller
ones that are similar in size to the median distance between
measurements of the best result in Table 6. Another change
made to the GA and LM methods is that GPs are used to
infer the water quality model provided using both GA and
LM measurement data so that the MSE can be calculated to
be compared later. In each case, the overall mean distance
between measurements performed using the truncated-EI(X)
technique has been used to define the minimum distance
that GA and LM should travel before performing a new
measurement. With this distance set, both methods are used in
simulations, obtaining measurements are updating their GPR.
For the sake of a fair comparison, this subsection is divided
into two parts. First, we compare the proposed methods with
respect to the defined ground truth of the water quality param-
eters. Second, we generalize the comparison by comparing
the methods over a number of random ground truths.

1) DEFINED GROUND TRUTH

The results are shown in Table 7 (MSE after 15000 m) as well
as in Fig. 11.It can be seen that the proposed method clearly
outperforms the others. Also, Fig. 11 shows that the proposed
method improves over time. The standard deviation of the BO
after 50 simulations is also the best, implying that generally
the proposed method provides better results.
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FIGURE 10. Example of Sequential Bayesian Optimization for lake monitoring. The system manages to perform the monitoring as well as obtaining a

water quality model at the same time.
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for our proposed method (BO), the monitoring path planning using
Genetic Algorithms (GA) and the Lawnmower (LM) method.

Fig. 12 shows a comparison of the evaluated methods
after 15000 m. For each column, the mean of the GP and
the squared error with the ground truth is shown. It can
be observed that, while GA and LM methods manage to
carefully learn certain zones, they fail to provide a good over-
all response with the same distance travelled. The proposed
BO-based method selects points that represent accurately a
subsection of the search space. Furthermore, after travelling
an approximate total of 15000 m, the number of measure-
ments performed by the BO and the LM method is 10, while
the GA performed 11.
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TABLE 7. Comparison of the proposed method with Genetic
Algorithms and Lawnmower applied to monitoring Ypacarai Lake.

Method MSE
(I'DT = 15000m )
Proposed Method 0.2445 +0.1614

0.3273 £0.2173
0.3442 £ 0.0189

Genetic Algorithm

Lawnmower

2) GENERALIZATION WITH RANDOM GROUND TRUTHS

For generalization, 10 random ground truths are used to
compare the approaches using the SF. We define m € [2, 6]
random maximum locations with approximately the same
factor ¢ within the work space. In total, 500 simulations for
both BO and GA (50 simulations for each ground truth) and
40 for LM (4 simulations each ground truth) were performed.
The results are shown in Fig. 13. While the difference in
the confidence interval of the methods is not as big as the
difference using the selected ground truth, the resulting MSE
is always better using the proposed method.

E. COMPUTATIONAL EFFICIENCY
As GP are non-parametric regressions, the more data is
acquired, the more computationally inefficient the regression
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becomes. The three methods compared in this work use GPs
to provide inferences, but only our method is dependent
on it. This is due to the fact that our proposed method
intelligently provides new waypoints for every iteration on
any situation using AFs, which makes the method an online
or active learning algorithm. On the other hand, GA and
LM methods both provide PR (Pre-established Routes), and
while the GA method used in these comparisons is consid-
ered an intelligent monitoring algorithm that can update the
waypoints offline, the LM method cannot update to provide
new locations and is not an intelligent monitoring algorithm.
These considerations make the computational efficiency non
comparable.

Since our method relies on solving GPs (and subsequently
using an AF) after each measurement, it can be assumed that
BO cannot be applied during real life scenarios. However,
as seen in Table 6, our method is proven to be optimal in
time-related constraints. As the value shown is the median,
it is necessary to state that the BO method takes a shorter
amount of time to provide a result at the early stages of
the monitoring but takes increasingly more time after new
measurements are added to data D. Naturally, this repre-
sents that there is a limit of measurements that can be per-
formed before the method becomes infeasible for real-time
calculations of new locations. To overcome this particular
situation, in [37], the authors present a review on scalabil-
ity of GPs and current techniques for big data fitting such
as Sparse Kernels or Sparse Approximations. In any case,
our proposed method is suitable for the water monitoring
objective and is easily scalable using the aforementioned
techniques.

F. DISCUSSION OF THE RESULTS
As follows, we discuss the main results obtained in this work:

o For the studied ground truth, the best kernel in terms
of fitting and time consumption is RBF. The hyperpa-
rameter value ¢ is a suitable option whenever no data
is known a priori and is effective. The other kernels
adapt successfully to the data and can also be considered
for selection in more complex environments, but as the
behavior of the water quality parameters is expected to
be like the Shekel Function-based ground truth, RBF is
a suitable kernel for selection.

o The selection of appropriate AFs is not easy in these sce-
narios, due to their similarities in terms of MSE (except
for MVES). However, it has been observed that EI
and SEI generally provide new measurement locations
near unknown locations, i.e., weighting exploration over
exploitation, as desired.

o The three proposed AF adaptations are demonstrated to
be useful. However, after the defined total distance trav-
elled, the truncated adaptation performed the best. The
other two methods present some drawbacks. For exam-
ple, split path has the inconvenience of gathering redun-
dant information, while the masked method quickly

VOLUME 9, 2021

disregards useful, but distant locations in non-complex
scenarios.

¢ The proposed ASV and BO-based monitoring approach
obtains an accurate model more rapidly than other meth-
ods. It has been shown that the proposed approach is also
robust with respect to the initial position of the ASV.
The generalization test shows that our method and GA
algorithm performs averages of 6 measurements before
travelling a total distance of 15000 m, but the MSE is
significantly lower (25%) using the proposed method.

o The proposed approach clearly outperforms other mon-
itoring approaches with high exploration capabilities,
such as GA-based and lawnmower algorithm. For exam-
ple, when using the proposed ground truth, the MSE of
our proposed method is 25% and 29% better than the
GA and Lawnmower algorithms, respectively. Similar
results were found in the generalization test, with differ-
ence of 24.5% and 29%, respectively.

o The computational efficiency of our method is profi-
cient for the constraints that are present in a real life
ASV experiment and the amount of measurements it can
perform.

VI. CONCLUSION AND FUTURE WORK

This work proposes one of the first BO methods for path
planning of an ASV, aimed at minimizing the uncertainty of a
contamination distribution of an aquatic environment. We not
only tested multiple kernels to obtain the one that best fits the
data, but also tested and compared several AFs in order to
obtain the best combination of kernel and AF to minimize
the MSE of a simulated ground truth in the Ypacarai Lake
environment. More importantly, we proposed three different
adaptations of classical AFs to deal with the mobility restric-
tions of the ASVs. Our tests show that the proposed truncated
adaptation achieves the best results. Furthermore, we com-
pared the proposed monitoring approach with other alterna-
tives found in the literature, such as the GA-based exploration
algorithm and the lawnmower method. The obtained results
demonstrated the validity of the proposed approach, since
it clearly outperforms the other techniques in the simulated
scenarios. For future works, noisy data can be tested with the
proposed method as GPs can easily take noise into account,
providing a more realistic solution. The proposed method
can also be improved with a multi-agent system composed
of several ASVs. Using a centralized coordination could
decrease the total distance travelled by each ASV through
multi-objective optimization.
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