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a b s t r a c t 

The Fukunaga-Koontz transform (FKT) is a powerful supervised feature extraction method used in two- 

class recognition problems, particularly when the classes have equal mean vectors but different covari- 

ance matrices. The present work proves that it is also possible to perform the FKT in an unsupervised 

manner, sparing the need for labeled data, by using a variant of L1-norm Principal Component Anal- 

ysis (L1-PCA) that minimizes the L1-norm in the feature space. Rigorous proof is given in the case of 

data drawn from a mixture of Gaussians. A working iterative algorithm based on gradient-descent in the 

Stiefel manifold is put forward to perform L1-norm minimization with orthogonal constraints. A num- 

ber of numerical experiments on synthetic and real data confirm the theoretical findings and the good 

convergence characteristics of the proposed algorithm. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

The Fukunaga-Koontz transform (FKT) is a popular feature- 

xtraction method used in binary classification problems [1] . It 

rojects the data onto directions along which the variance is much 

arger for one class than for the other. The classification rule 

hus exploits the difference in variance between the two projected 

lasses. 

The true potential of the FKT is revealed when the two classes 

hare the same mean vector, giving overlapping sets of data [2,3] . 

or equal-mean class distributions, reference [4] shows that the 

KT is equivalent to the optimal Chernoff criterion introduced 

n [5] , and thus preserves after the projection as much as possible 

f the Chernoff distance between both populations [6] . The FKT is 

lso closely related to optimal Linear and Quadratic Discriminant 

nalysis and the Generalized Singular Value Decomposition, as has 

een shown in the literature [2,7,8] . Thanks to all its properties, 
� This work is funded by the research project ACACIA (refno. US-1264994 

S/JUNTA/FEDER, UE) awarded by Fondo Europeo de Desarrollo Regional (FEDER) 

nd Junta de Andalucía (Consejería de Economía, Conocimiento, Empresas y 

niversidad). 
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he FKT has been successfully applied to image classification prob- 

ems (where it is also known as the method of the ‘tuned based 

unctions’) [9–13] and in EEG signal processing under the name of 

common spatial patterns’ [14,15] , as well as in other areas of prac- 

ical interest [16,17] . 

Our contribution is to show, for the first time, a link between 

he FKT and a variant of Principal Component Analysis (PCA) called 

1-PCA, which is receiving increasing interest due to its resistance 

o outliers [18–20] and its connections to Independent Component 

nalysis and Linear Discriminant Analysis [21,22] . L1-PCA linearly 

rojects the data onto a few dimensions that maximize the ab- 

olute value of the projected data points. Just changing the word 

maximize’ to ‘minimize’, while retaining the absolute value as ob- 

ective function, this paper shows that it is also possible to calcu- 

ate the Fukunaga-Koontz directions of projection. A rigorous proof 

f this result is given for the case of Gaussian populations with 

ero mean but different covariance matrices, whereas for non- 

aussian data we provide an experimental demonstration of this 

esult. We only require the raw data points be pre-whitened to re- 

ove their covariance structure. The theoretical importance of the 

bove result is that it relates these two apparently disparate tech- 

iques, allowing us to re-interpret the absolute value as a feature- 

xtraction criterion in binary classification problems, which opens 

ew lines of research in this area. 

Furthermore, apart from its theoretical interest, this result also 

as practical relevance because the standard FKT is a supervised 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

Notation and symbols used in this paper. 

0 vector of zeros 

I identity matrix 

(·) † matrix transpose operator 

det (·) , trace (·) determinant and trace of a matrix 

X p-dimensional random variable 

x observation of X

P(C i ) probability of the observed data being drawn from class C i 
E {·} mathematical expectation 

E {· | C i } conditional expectation given the class C i 
f (· | C i ) conditional probability density function (pdf) given C i 
μi = E { X | C i } mean of class i 

�i covariance of class i 

‖ x ‖ L2-norm of vector x 

‖ X ‖ Frobenius norm of matrix X 
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echnique, which requires a training set of correctly class-labeled 

ata points to estimate the parameters of the transformation; how- 

ver, by contrast, minimizing the absolute value can be performed 

n a fully unsupervised fashion, making unnecessary the acquisition 

f training data and opening the door to the computation of the 

KT in the same way. 

The paper is organized as follows: we first present in 

ection 2 some general assumptions made in the paper. 

ection 3 briefly reviews the FKT. In Sections 4 and 5 , we state our

ain results and propose a numerical algorithm for unsupervised 

KT based on L1-norm minimization. Section 6 provides a number 

f numerical experiments that validate our findings in a variety of 

cenarios. Finally, Section 7 brings the paper to an end. Note that 

athematical proofs have been deferred to the Appendices for the 

eader’s convenience. 

. Preliminaries: Notation and basic hypotheses 

The following assumptions hold throughout the paper. Let X ∈ 

 

p be a random vector whose samples x are drawn at random 

rom one of two populations, C 1 and C 2 . We suppose that C 1 and

 2 have common mean vectors μ1 = μ2 but different covariance 

atrices �1 � = �2 . For simplicity, we also suppose that these ma- 

rices do not have repeated eigenvalues. Other symbols and nota- 

ions used in this paper can be found in Table 1 . 

It is assumed as well that the data have been centered (by 

ubtracting the mean across all observations) and whitened (or 

phered ). Centering implies that 

1 = μ2 = 0 . (1) 

hitening consists in transforming the data to have identity covari- 

nce matrix: 

= E { X X 

† } 
= P (C 1 )E { X X 

† | C 1 } + P (C 2 )E { X X 

† | C 2 } 
= P (C 1 ) �1 + P (C 2 ) �2 

= I . (2) 

ike centering, whitening can be assumed without any loss of gen- 

rality: it can be always fulfilled by a simple pre-processing step 

see Section 5.1 ). Whitening is useful, as we will show in the next 

ection, because it intertwines the class covariances as follows: 

roperty 1. After whitening, 

1 = 

1 

P (C 1 ) 
[ I − P (C 2 ) �2 ] . (3) 

Eq. (3) readily follows from Eq. (2) . Thanks to this intertwining, 

e will see in the next Section that C 1 and C 2 lie (approximately) 

n orthogonal subspaces. 
2 
. The Fukunaga-Koontz transform 

Let (λ, v ) be any eigenpair of �1 , i.e., 

1 v = λ v . (4) 

sing (3) , it readily follows that 

1 

P (C 1 ) 
[ I − P (C 2 ) �2 ] v = λ v 

nd hence 

2 v = 

1 − P (C 1 ) λ
P (C 2 ) 

v . 

hat is: if v is any eigenvector of �1 with eigenvalue λ, then v is 
lso an eigenvector of �2 with eigenvalue 

= 

1 − P (C 1 ) λ
P (C 2 ) 

. 

his transformation is strictly decreasing: if the eigenvalues λi of 

1 are ordered from largest to smallest as 

1 > λ2 > . . . > λp , 

t follows that the corresponding eigenvalues of �2 are reversely 

rdered as 

1 < μ2 < . . . < μp 

o that the dominant eigenvectors of �1 are the least dominant 

igenvectors of �2 and vice versa . In the language of classical 

CA [23] , the directions in which the data from class 1 vary the 

ost are also the directions where class 2 varies the least. The op- 

osite is also true: the directions of greatest variance for class 2 

re those of lowest variance for class 1. This makes the two classes 

asier to distinguish. 

Furthermore, the averaged squared distance between the data 

oints from one class and the subspace spanned by the dominant 

igenvectors of their class covariance matrix is minimal. This is, in 

his sense, the best-fitting subspace [23] . 

Feature extraction and classification can be based on exploit- 

ng all these properties. The FKT transforms each data point by or- 

hogonally projecting it onto the span of the eigenvectors of �1 

orresponding to the largest and smallest eigenvalues. If the data 

oint is closer to the subspace spanned by the first few dominant 

igenvectors than to the subspace spanned by the least dominant 

igenvectors, we can assume the presence of a sample of C 1 . The 

pposite suggests allocating it to class C 2 . Several variants of this 

asic approach have been also proposed, see [9–13] . 

Note finally that, in standard FKT, matrices �1 or �2 have to be 

stimated a priori from a set labelled samples. We remark that, for 

his reason, the standard FKT is a supervised technique. 

. Main contribution: Unsupervised FKT via L1-norm 

inimization 

Unsupervised calculation of the FKT is however possible by 

inimizing the L1-norm of the projection: in this Section we prove 

his property in the Gaussian case. Gaussian models are justified by 

heir simplicity and ability to produce accurate results in practice, 

ven when violated. In particular, we make the usual assumption 

hat f ( x |C i ) is a p-variate normal density function of the form 

f ( x |C i ) = (2 π) −
p 
2 det ( �i ) 

− 1 
2 e −

1 
2 x 

† �−1 
i x , i = 1 , 2 . (5)

he global distribution of X is given by the mixture 

f ( x ) = P (C 1 ) f ( x |C 1 ) + P (C 2 ) f ( x |C 2 ) . 
et Y = w 

† X be the projection of X into the direction defined by 

 ∈ R 

p . Only the direction is important, so we can assume w to be 
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 vector of unit length. From basic statistics, the probability density 

unction of Y is a mixture of Gaussians, i.e., 

f (y ) = 

∑ 

k =1 , 2 

P (C k ) √ 

2 πσ 2 
k 

exp 

(
− y 2 

2 σ 2 
k 

)
, (6) 

here σ 2 
k 

= w 

† �k w . 

Now, we are interested in minimizing 

 ( w ) = E {| Y |} = E {| w 

† X |} (7)

ver all possible projections defined by direction w . Criterion D ( w ) 

s quickly gaining popularity in the field of PCA for the follow- 

ng reason: standard PCA [23] aims to maximize the variance of 

 which, for zero-mean data, is given by E { Y 2 } . Because it is raised

o the square power, samples that are far apart from the nominal 

ody of the data completely dominate the value of the variance. 

herefore, standard PCA is very sensitive to outliers. An alternative 

s obtained by replacing Y 2 with | Y | , and it is in this way that we

rrive at criterion D [18–20] . This variant is called L1-PCA because 

 ( w ) is estimated in practice by the L1-norm of the vector that 

ontains the samples of Y [18] . Again, we remark that [18,19] focus 

n maximizing D ( w ) , while we propose just the opposite. 

The directions that solve the constrained optimization problem 

in 

w 

D ( w ) subject to ‖ w ‖ 

2 = 1 (8) 

erify 

 w 

D ( w ) = � ∇ w 

‖ w ‖ 

2 , (9) 

here � is a Lagrange multiplier and ∇ w 

stands for the gradient 

ith respect to w . Under the Gaussian assumption (6) , and af- 

er some algebraic derivations detailed in Appendix A , we obtain 

hat 

 w 

D ( w ) = 

√ 

2 

π

2 ∑ 

k =1 

P ( C k ) 
σk 

Σk w , (10) 

 w 

‖ w ‖ 

2 = 2 w , (11) 

 = 

1 √ 

2 π

2 ∑ 

k =1 

P (C k ) σk , (12) 

nd hence the solutions of (9) satisfy 

2 
 

k =1 

P (C k ) 
σk 

�k w = 

( 

2 ∑ 

k =1 

P (C k ) σk 

) 

w . (13) 

nvoking the whitening constraint (3) , we get: 

σ2 − σ1 

σ1 

)
P (C 1 ) �1 w = 

[ ( 

2 ∑ 

k =1 

P (C k ) σk 

) 

σ2 − 1 

] 

w . (14) 

hen, by replacing the rightmost ‘1’ with 

 = w 

† � w = 

2 ∑ 

k =1 

P (C k ) σ 2 
k , 

hich follows from (2) , and simplifying terms, the equation be- 

omes: 

σ2 − σ1 ) �1 w = (σ2 − σ1 ) σ
2 
1 w . (15) 

hus, apart from the solution σ1 = σ2 (which defines a maximum, 

ee Appendix B ), we find that: 

emma 1. Under the working assumption (6) , the eigenvectors of �1 

or � ) are stationary points of (8) . 
2 

3 
This result is complemented by the following one, which de- 

cribes the minimizers: 

heorem 1. For a p-dimensional random vector X distributed as a 

ixture of two multivariate Gaussian distributions with zero mean 

nd different covariance matrices �1 and �2 verifying the whitening 

onstraint (3) , the minimizers of D ( w ) are the eigenvectors associated 

ith the maximum and minimum eigenvalues of �1 (or �2 ). The in- 

ermediate eigenvectors are saddle points, but are orthogonal to each 

ther and can be found by a suitable optimization approach with or- 

hogonal constraints. 

Proof and details are given in Appendix B . This result hence 

uggests an unsupervised approach to compute the FKT, based on 

he above L1-norm criterion. Furthermore, it endows the proposed 

riterion with discriminative properties in the case of equal-mean 

opulations. Even though the theorem is derived by assuming 

aussian densities, it is still useful even when there are wide de- 

iations from Gaussianity in the data distributions, as we will see 

n the experiments of Section 6 . 

. Algorithm 

Let us now propose a working algorithm for finding a set of 

ppropriate projection vectors based on the above criterion. The 

lgorithm is fully unsupervised, i.e., it does not require the labels 

f the data points. 

.1. Preprocessing 

A few words about the whitening constraint (2) may be needed 

n the first place. To fulfill this condition, we will often require 

n practice a pre-processing of the data. Specifically, given a ‘col- 

red’ (i.e., non-white) random vector X c ∈ R 

p , assumed to have 

ero mean, whitened data X can be obtained, for example, as fol- 

ows [24] : 

 = �−1 / 2 
V 

† X c , 

here V is the matrix whose columns are the eigenvectors of 

 { X c X † c } , and � is the diagonal matrix of its eigenvalues (note that

here exist other whitening approaches that are equally valid [24] ). 

t is straightforward to check that, as desired, � = E { X X † } = I . 

.2. Algorithm for joint L1-norm minimization 

The maximization of the L1-norm criterion D ( w ) defined 

n (7) –(8) has already been studied in a number of recent 

orks [18,19,25] . Unfortunately, because of how they have been 

esigned, none of these ad-hoc maximization approaches can be 

urned into a minimization algorithm. Therefore, we opt here for a 

radient-based approach. 

As the eigenvectors of the class covariance matrices are always 

rthogonal, they can be determined by successively minimizing 

 ( w ) under the constraint that the direction obtained in the cur- 

ent minimization is orthogonal to the previously computed ones 

see Appendix B ). However, this simple deflation approach has the 

isadvantage of accumulating estimation errors along successively 

alculated directions. To avoid these drawbacks, we consider the 

ost function 

( W ) = 

p ∑ 

i =1 

D ( w i ) , 

here W is the matrix [ w : , 1 w : , 2 · · · w : ,p ] containing the projection 

ectors, where w : ,n = w n denotes its n -th column. We are inter- 

sted in its minimization with orthogonality constrains 

min 

W 

J( W ) 
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s.t. W 

† W = I . (16) 

ollowing classical results of optimization over the set of orthog- 

nal matrices [26] , we adopt a minimization approach based on 

radient-descent in the Stiefel manifold. As justified in Appendix D , 

his approach leads to the following multiplicative update scheme, 

hich preserves the orthogonality constraint during iterations: 

 n +1 = U n W n , (17) 

here U n = exp ( S n ) = I + S n + 

1 
2! S 

2 
n + . . . Choosing a skew- 

ymmetric matrix S n , i.e., S n = −S 
† 
n , guarantees the orthogonality 

f matrix U n , and thus that of W n +1 . Apart from fulfilling this 

ondition, matrix S n is closely related to the gradient of J, allowing 

pdate (17) to perform gradient descent, as detailed next. 

The algorithm can be described as follows. Starting from any 

nitial orthogonal matrix W 0 , repeat the following three steps for 

 = 0 , 1 , 2 , . . . until convergence [26] : 

1: Set 

S n = ∂ J(W n ) W 

† 
n − W n ∂ J(W n ) 

† 

where ∂ J(W ) is the matrix of partial derivatives of J with re- 

spect to the elements of W , i.e., 

(∂ J(W )) i j = 

∂ J(W ) 

∂W i j 

(18) 

(this equation will be detailed below). 

2: Define U n = exp (−ηS n ) for η ∈ R 

+ small enough. 

3: Update W n +1 = U n W n . 

It still remains to give a formula for ∂ J( W ) in Eq. (18) . Sub-

erivatives, or subgradients, generalize the notion of derivative to 

on-differentiable convex functions [27] . As the subderivative of 

he absolute value is the sign function, it is easily found that the 

 th column of ∂ J( W ) equals 

∂ 

∂ w n 
D ( w n ) = E 

{
X sgn 

(
w 

† 
n X 

)}
, 

ith D defined in (7) . As a simple illustration, given a p × q data

atrix M_x containing q observed samples of X, ∂ J( W ) can be 

valuated by the MATLAB 

R © command M_x ∗sign(W’ ∗M_x)’/q; . 
bserve that this calculation does not require any knowledge of 

he class data labels. 

.2.1. Interpretation of the method 

The above algorithm can be easily viewed as a gradient descent 

pproach. To see this, we note that, for small η, 

 n = exp (−η S n ) ≈ I − ηS n (18) 

nd therefore 

 n +1 = U n W n ≈ W n − η S n W n . (19) 

ounds on approximation (18) are given in Appendix C , and show 

ts pertinence for sufficiently small η. Interestingly, the term 

J( W n ) = S n W n 

= ∂ J( W n ) W 

† 
n W n − W n ∂ J( W n ) 

† W n 

= ∂ J( W n ) − W n ∂ J( W n ) 
† W n (20) 

s, up to an irrelevant scale factor, the gradient of J in the set 

f orthogonal matrices, i.e., the projection of the gradient of J

n the tangent space of the Stiefel manifold. Details are given in 

ppendix D . This relation allows us to interpret (19) as an approx- 

mate gradient rule, i.e., 

W = W n +1 − W n ≈ −η∇J( W n ) . 

ow, consider the first-order Taylor expansion of J

( W + �W ) = J( W ) + 〈 ∂ J( W ) | �W 〉 + . . . , 
4 
here 〈 ∂ J( W ) | �W 〉 = trace (∂ J( W ) † �W ) . By setting, as before, 

W = −η∇J( W ) , 

ome algebra shows that 

 ∂ J( W ) | �W 〉 = −η

2 

〈∇ J( W ) |∇ J( W ) 〉 , 
hich is always negative for sufficiently small adaption step η

otherwise, the first-order Taylor expansion is no longer valid) and, 

herefore, J( W ) decreases with every update as desired. Note fi- 

ally that, if W contains the eigenvectors of �1 (or �2 ) in its 

olumns, it follows from (9) –(12) that ∂ J( W ) = W �, where � is 

 diagonal matrix containing twice the Lagrange multipliers (12) . 

herefore, matrix 

 = ∂ J( W ) W 

† − W ∂ J( W ) † 

anishes and the iteration stops. 

. Experimental assessment 

Experiments are next performed in a variety of conditions. Tests 

re applied to both synthetic and real electroencephalographic 

EEG) data sets. 

.1. Bivariate Gaussian data 

Let us first consider a mixture in a bidimensional space (i.e., 

p = 2 ) of two equiprobable Gaussian classes with zero-means and 

espective covariances 

1 = 

(
1 0 . 68 

0 . 68 1 

)
and �2 = 

(
1 −0 . 68 

−0 . 68 1 

)
. (21) 

1 and �2 fulfill the whitening condition (2) and share the same 

igenvectors, i.e., 

 1 = 

(
1 √ 

2 

, 
1 √ 

2 

)† 

≈ (0 . 71 , 0 . 71) † , v 2 

= 

(
−1 √ 

2 

, 
1 √ 

2 

)† 

≈ (−0 . 71 , 0 . 71) † . (22) 

e draw 50 samples from each class (100 samples in total), whose 

catter plot is shown in Fig. 1 . The lines through v 1 and v 2 are plot-

ed in dashed blue; as recalled in Section 3 , classes C 1 and C 2 can

e well reconstructed in the line spanned by one of these eigen- 

ectors, and not so well in the line spanned by the other. Here, 

well’ means that the average squared distance of the points to the 

ine is minimized. We also draw in red the lines pointing in the 

irection of 

 1 ≈ (0 . 73 , 0 . 69) † , w 2 ≈ (−0 . 69 , 0 . 73) † . (23)

hese are the minimizers of the L1-norm calculated by the unsu- 

ervised algorithm presented in Section 5 . As w 1 and w 2 are es- 

imates of v 1 and v 2 , we can cluster the observations x into two 

roups, say A and B, based on their closeness to the subspaces 

panned by w 1 and w 2 : 

if 
∥∥x − w 1 ( w 

† 
1 
x ) 

∥∥ < 

∥∥x − w 2 ( w 

† 
2 
x ) 

∥∥, 

assign x ∈ A otherwise x ∈ B. (24) 

By applying this rule, we obtain the confusion matrix shown 

n Table 2 . There is one cluster composed of 35 samples of class 

 and only 13 of class 2, and a second group with 15 instances 

f class 1 and 37 of class 2. We see that most data points of the

ame class lie together, which is what one would expect from an 

nsupervised method. To compute the accuracy, we sum the values 

n the diagonal of the confusion matrix and divide by the number 
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Fig. 1. Scatter plot of the observations of the two classes classes (‘crosses’ and ‘cir- 

cles’). In dashed blue, we show the lines through the eigenvectors of the class co- 

variance matrices. Red lines point to the projection directions found by the unsu- 

pervised algorithm in Section 5 . We observe that ‘red’ axes are rotated through an 

angle of 1 . 61 ◦ with respect to the ‘blue’ ones. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 2 

Confusion matrix obtained after applying the allocation rule (24) . 

Actual class 

C 1 C 2 Total 

Assigned 

cluster 

A 35 13 48 

B 15 37 52 

Total 50 50 100 
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Table 3 

Mean number of iterations (MNI) before the convergence of the algorithm as a 

function of the dimensionality p of the data, averaged over all distributions. 

p 2 5 10 15 20 25 30 

MNI 6.6 54.5 193.8 349.7 514.2 686.0 813.1 
MNI 

p 
3.3 10.9 19.4 23.3 25.7 27.4 27.1 
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f samples: overall, we have 35 + 37 = 72 correctly clustered data 

oints out of 100, implying that the method provides an accuracy 

f 72% . 

Let us see it another way. For any given observed data value x , 

24) is equivalent to 

 w 

† 
1 
x | > | w 

† 
2 
x | . (25) 

ig. 2 (a) shows that inequality (25) usually holds true for the ele- 

ents of C 1 as the orange line is usually above the green one. For 

he elements of C 2 , as seen in Fig. 2 b, it is just the opposite. To

uantify this inverse relationship, we compute Pearson’s correla- 

ion coefficient of the absolute projections, defined as 

i j = 

cov (Z i , Z j ) 

σi σ j 

here cov (·, ·) denotes the covariance of its input variables and 

i is the standard deviation of Z i = | w 

† 
i 
X| . The value of Pearson’s

orrelation coefficient ρ12 between Z 1 = | w 

† 
1 
X| and Z 2 = | w 

† 
2 
X| be- 

omes negative, 

12 = −0 . 254 , 

ndicating that, on average, the magnitudes of the projected points 

or one class and for the other show opposite behavior. 

.1.1. Multivariate Gaussian and non-Gaussian data 

When applied to p-dimensional data points from two equiprob- 

ble classes, the algorithm in Section 5 finds p projection vectors 

 1 , . . . , w p ∈ R 

p . To determine which of them correspond to the 

wo most discriminant directions, one can choose the minimizers 

f D ( w ) as in Theorem 1 . We further introduce a slight refinement

hat experimentally improves the robustness of the classification 

gainst errors in the estimation of the eigenspace due to the fi- 

ite sample size. Let us arrange these vectors so that: ( i ) w is
1 

5 
he global minimizer of the L1-norm criterion, and ( ii ) among all 

emaining directions w i , i > 1 , Pearson’s correlation coefficient be- 

ween | w 

† 
1 
X| and | w 

† 
p X| is the most negative, ρ1 p < ρ1 i for i � = p. As

n the previous experiment, w 1 and w p are expected to represent 

ifferent classes. Then, inspired by (24) , we adopt the rule: 

ssign x to A if: 
∥∥x − w 1 ( w 

† 
1 
x ) 

∥∥ < 

∥∥x − w p ( w 

† 
p x ) 

∥∥
therwise, assign x to B. Fig. 3 shows the accuracy of this fully 

nsupervised classification approach, calculated as in the previous 

xperiment, when tested on different data distributions and val- 

es of p. In each simulation, the covariance matrices are gener- 

ted at random, and the data are whitened as in Section 5.1 to ful-

ll condition (2) . In addition, we draw N = 50 p samples per each 

f the two classes, using the algorithms in [28,29] for generat- 

ng multivariate non-Gaussian data with the specified covariances. 

hese algorithms, widely used in robustness analysis, nonlinearly 

ransform multivariate random Gaussian variables in a way that 

llows us to fix at will the mean, variance, skewness and kurto- 

is of the resulting marginal distributions. Specifically, we generate 

ero-mean, unit variance and zero-skew marginal data. Neverthe- 

ess, to explore different scenarios, we consider different values of 

xcess kurtosis κ of the marginal data. Recall that the excess kurto- 

is is defined as the 4th-order central moment of the standardized 

zero-mean, unit-variance) data minus three. In this experiment, κ
s varied between −1 (which corresponds to a sub-Gaussian den- 

ity) to 5 (highly super-Gaussian distribution), passing through 0 

Gaussian variable). Hence, we can test the performance of the al- 

orithm in Section 5 when the assumption (5) for normality of 

ata is not fulfilled. A notable feature is that, as seen in Fig. 3 ,

he performance of the algorithm increases with the dimensional- 

ty of the input representation, which could be explained by the 

act that it is generally easier to discriminate between classes in a 

eature space of higher dimensions. 

Furthermore, to speed up the algorithm, we have chosen in 

ach iteration the step size η that gives the maximum reduction 

n the value of the cost function. Simple line-search algorithms, 

uch as the golden-section search method, can be used to solve 

his problem [30] . Fig. 4 illustrates the convergence of the algo- 

ithm for the case of p = 15 -dimensional data, suggesting that it 

s roughly independent of the value of the excess kurtosis of the 

ata. In all cases, the algorithm stops when ‖ W n +1 − W n ‖ < 10 −4 , 

here W n the value of matrix W after the n -th iteration. Table 3 

hows the mean number of iterations, averaged over all distribu- 

ions, before the convergence of the algorithm. 

Additionally, L1-norm criteria are also expected to exhibit ro- 

ustness against large outliers. To test this property, we repeat the 

xperiment with the difference that the data points are now cor- 

upted by replacing 10 per cent of the data samples, at randomly 

hosen time instants, by Gaussian noise realizations with identity 

ovariance matrix and mean μoutliers = [10 , 10 , . . . , 10] † , which de-

otes a p-dimensional vector with all elements equal to 10. 

In this new experiment, we have to take into account that the 

sual covariance estimate is very sensitive to the presence of out- 

iers in the data set and, therefore, the whitening pre-processing, 

hich is ultimately based on the eigendecomposition of that co- 

ariance matrix, inherits this sensitivity. To prevent this from af- 

ecting the experiment, whitening is performed by using a Fast- 

CD robust estimator of the data covariance [31] . The new results 
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Fig. 2. Absolute value of the projected data points from (a) class C 1 and (b) class C 2 . 

Fig. 3. Accuracy of the proposed method, as the dimensionality p of the data in- 

creases, for distributions with different excess kurtoses κ (e.g. κ = −1 . 2 corresponds 

to uniformly distributed marginals, κ = 0 to the Gaussian distribution or κ = 3 gives 

the Laplace distribution). Each curve has been obtained by averaging over 100 in- 

dependent experiments. 

Fig. 4. Convergence of the algorithm as a function of the iteration number for dis- 

tributions with different excess kurtoses κ and p = 15 -dimensional data. The curves 

are obtained by averaging 100 independent experiments. 

Fig. 5. Accuracy of the proposed method, for distributions with different excess 

kurtoses κ, when 10 per cent of the data samples are replaced, at randomly cho- 

sen time instants, by large outliers. The data covariance matrix, which is necessary 

for performing the whitening pre-processing, has been estimated by using a robust 

method. 
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6 
re represented in Fig. 5 . Observe that the most leptokurtic dis- 

ribution, that with κ = 5 , seems to be severely affected by the 

resence of outliers. To confirm if this is true, an additional simu- 

ation is performed in which the data were whitened before out- 

iers were added, i.e., the covariance matrix was calculated from 

he outlier-free observations. Fig. 6 shows that the improvement 

btained with respect to the previous case is remarkable. We con- 

lude that it is the whitened pre-processing step, which requires 

stimating a covariance matrix, which actually limits the ability of 

he proposed technique to fight against outliers. Thus, to fully ex- 

loit the capabilities of the L1-norm algorithm, it must be com- 

ined with a robust covariance estimator that guarantees that the 

re-whitening step is also resistant to outliers. This is not actually 

urprising, as the traditional FKT also requires a robust estimation 

f the class covariance matrices. 

.2. Real electroencephalographic (EEG) data 

In motor imagery-based brain computer interfaces (BCI’s), the 

ser imagines a limb moving and the system tries to identify 

he imagined movement by analyzing the EEG data recorded dur- 
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Fig. 6. Accuracy of the proposed method, for distributions with different excess 

kurtoses κ, when 10% of the data samples are replaced, at randomly chosen time 

instants, by large outliers. The whitening transformation is performed by the true 

(outlier-free) covariance matrix of the observations. 

Fig. 7. Butterfly plot of 22-channel EEG recorded while subject number 1 imagines 

movements of tongue. 
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Fig. 8. Density functions (produced with a kernel density estimation method, with 

Gaussian kernel and Silverman’s optimal bandwidth) of the scalar projections of 

the data from several projected ‘left hand’ (orange curves) and ‘feet’ trials (green 

curves) from user 1. The projection direction is that which minimizes the L1-norm- 

based objective function, calculated by the algorithm in Section 5 when using as 

input all ‘left-hand’ and ‘feet’ trials of user 1. The difference between the respective 

variances is apparent. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 4 

Accuracy in the discrimination between pairs of imagined movements (L = left 

hand, R = right hand, F = feet, T = tongue). Results are shown for the nine users in 

the database (u1, . . . , u9). Last column gives the accuracy per user averaged over all 

possible pairs of movements. The last row is the average of all the previous rows. 

User L-R L-F L-T R-F R-T F-T avg 

u1 0.66 0.89 0.91 0.93 0.92 0.52 0.84 

u2 0.52 0.72 0.6 0.68 0.54 0.65 0.64 

u3 0.87 0.68 0.69 0.86 0.86 0.54 0.73 

u4 0.57 0.7 0.61 0.63 0.65 0.55 0.63 

u5 0.53 0.55 0.6 0.55 0.57 0.54 0.56 

u6 0.52 0.64 0.56 0.53 0.54 0.53 0.56 

u7 0.59 0.73 0.74 0.89 0.89 0.69 0.79 

u8 0.77 0.65 0.87 0.59 0.75 0.71 0.72 

u9 0.78 0.86 0.88 0.55 0.7 0.76 0.75 

avg 0.65 0.71 0.72 0.69 0.71 0.61 
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ng the experiment [32,33] . The dataset 2a from the BCI competi- 

ion IV comprises a number of trials (repetitions) of some simple 

imb (left hand, right hand, feet or tongue) motor-imagery move- 

ents [34–36] . In each recording session, p = 22 -channel EEG sig- 

als are measured at a sample rate of 250 Hz from volunteers 

erforming the desired imagery tasks. As usual in BCI signal pro- 

essing, the EEG data are bandpass filtered to 8 − 30 Hz. This pre- 

rocessing ensures that the data are zero-mean and, by central 

imit arguments, also allows us to support the hypothesis of Gaus- 

ianity for long filters. 

Each imagined action lasts for about three seconds, but only the 

nal two of them are kept in our experiment to avoid the initial 

ransient effects. For illustration, one of these two-second intervals 

s shown in Fig. 7 . We concatenate all trials of the same imag-

ned movement into a single 22 × 30 0 0 0 data matrix, and the al-

orithm in Section 5 is fed with pairs of matrices of distinct imag- 

ned movements. As an example, Fig. 8 depicts the density func- 

ions of the scalar projection of some data points, from trials of 

wo distinct imaginary tasks, onto the direction that minimizes the 

1 criterion: the differences in variance between the two classes 

re apparent even to the naked eye. Best results are obtained for 

ata filtered in the band between 12 and 30 Hz (upper α and β
ands), as well as pre-processed with the method in [37] to reduce 

he inherent nonstationarity of the EEG. 
7 
Next, for the set of data points of each trial, we retain the scalar 

rojection in the direction of minimum L1-norm and the two pro- 

ections which are most correlated with the first one, as well as 

he three projections with the lowest correlation, in a similar way 

s we have done before in Section 6.1.1 . Table 4 shows how well

 given imagined movement is classified simply by comparing the 

otal variances of these two groups of three projections. As the tri- 

ls are actually time-series, and not just a point in a p-dimensional 

pace, comparing variances is easier to do and a feasible criterion. 

ote that the total variance in each projected subspace is mea- 

ured by the trace of the covariance matrix of the projected data. 

Accuracy is measured for the nine voluntaries in the database 

nd considering all the possible combination of imagined tasks (L- 

: left hand-right hand, L-F: left hand-feet, and so on). For ex- 

mple, a high degree ( 93% ) of accuracy in discriminating between 

right hand’ and ‘feet’ imagined movements has been obtained for 

ser 1, achieved in a completely unsupervised fashion, but that ac- 

uracy reduces to 52% for the same user and the pair ‘feet-tongue’. 

here is a great variability between users and pairs of movements, 

evertheless, averaged over all users, we can discriminate between 

left-hand’ and ‘feet’, ‘left-hand’ and ‘tongue’, and ‘right-hand’ and 

tongue’ movements in more than 70% of the cases. 
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. Conclusions 

Projecting whitened data onto the few dimensions that mini- 

ize the absolute value of the projected data points can perform 

he FKT in a fully unsupervised fashion, sparing the need for train- 

ng data. This connection between the L1-norm and the FKT had 

reviously gone unnoticed, and endows L1-criteria with discrim- 

native properties in binary classification scenarios, opening new 

ines of research in the area of L1-PCA. A working iterative algo- 

ithm based on gradient-descent in the Stiefel manifold is also put 

orward to perform L1-norm minimization with orthogonal con- 

traints. Even though our theoretical analysis assumes the normal- 

ty of the data, numerical experiments show that a good perfor- 

ance can be achieved when this assumption is not fulfilled. Fur- 

her theoretical research should explore this extension to scenarios 

ith non-Gaussian data. 
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ppendix A. Proof of eqn. (13) 

The cost function is defined as follows: 

 ( w ) = E {| Y |} = 

∫ ∞ 

−∞ 

| y | f (y ) d y 

= 

∫ ∞ 

0 

y f (y ) d y −
∫ 0 

−∞ 

y f (y ) d y, (A.1) 

nd invoking the zero mean assumption, i.e., 

 { Y } = 

∫ ∞ 

0 

y f (y ) d y + 

∫ 0 

−∞ 

y f (y ) d y = 0 ⇒ 

∫ 0 

−∞ 

y f (y ) d y 

= −
∫ ∞ 

0 

y f (y ) d y, 

e readily get 

 ( w ) = E {| Y |} = 2 

∫ ∞ 

0 

y f (y ) d y. 

nder the Gaussian assumption (6) , i.e., 

f (y ) = 

∑ 

k =1 , 2 

P (C k ) √ 

2 πσ 2 
k 

exp 

(
− y 2 

2 σ 2 
k 

)
, 

here 

2 
k = w 

† �k w , (A.2) 

he cost function can be worked out as: 

 ( w ) = 2 

2 ∑ 

k =1 

P (C k ) 
∫ ∞ 

0 

y √ 

2 πσ 2 
k 

exp 

(
− y 2 

2 σ 2 
k 

)
d y 

= 

√ 

2 

π

2 ∑ 

k =1 

P (C k ) σk , (A.3) 

here the second equality is readily obtained by using the iden- 

ity [38] : 
 

y e −
y 2 

2 σ2 d y = −σ 2 e −
y 2 

2 σ2 + constant of integration . 

The stationary points of the constrained optimization problem 

8) verify 

 w 

D ( w ) = � ∇ w 

‖ w ‖ 

2 . (A.4) 
8 
here � is a Lagrange multiplier and ∇ w 

stands for the gradient 

ith respect to w . We see that (A.3) is a function of σ1 and σ2 . It

s easier to calculate ∇ w 

σk by noticing that 

 w 

σ 2 
k = 2 σk ∇ w 

σk , 

nd, as follows from (A.2) , that 

 w 

σ 2 
k = ∇ w 

(
w 

† �k w 

)
= 2 �k w . 

ombining both formulas, we readily get ∇ w 

σk = ∇ w 

σ 2 
k 
/ (2 σk ) = 

k w /σk . Replacing this result in the calculation of the gradient of 

A.3) , it follows that 

 w 

D ( w ) = 

√ 

2 

π

2 ∑ 

k =1 

P (C k ) 
σk 

�k w . (A.5) 

imilarly, 

 w 

‖ w ‖ 

2 = ∇ w 

(
w 

† w 

)
= 2 w . (A.6) 

herefore, (A.4) becomes 
 

2 

π

2 ∑ 

k =1 

P (C k ) 
σk 

�k w = 2 � w . (A.7) 

he value of � can be obtained by pre-multiplying (A.7) by w 

† , af- 

er which we use (A.2) as well as w 

† w = 1 . By so doing, we finally

et: 

 = 

1 √ 

2 π

2 ∑ 

k =1 

P (C k ) σk . (A.8) 

ppendix B. Proof of Theorem 1 

Let us study whether the eigenvectors of �1 and �2 correspond 

o maxima, minima or saddle points of the L1-norm objective func- 

ion. We start by calculating the Hessian (matrix of second order 

artial derivatives) of E {| Y |} . From (A.5) , and after some algebra,

his Hessian is easily found to be: 

2 
w 

E {| Y |} = 

√ 

2 

π

2 ∑ 

k =1 

P (C k ) 
σk 

[
�k −

1 

σ 2 
k 

�k w ( �k w ) † 
]

= 

√ 

2 

π

2 ∑ 

k =1 

P (C k ) 
σk 

[
�k − σ 2 

k w w 

† 
]
. (B.1) 

here the second equality follows from �k w = σ 2 
k 

w . Similarly, the 

essian matrix of the constraint ‖ w ‖ 2 = 1 reads 

2 
w 

‖ w ‖ 

2 = 2 I . (B.2) 

inally, the Hessian of the Lagrangian equals 

2 
w 

L = �2 
w 

E {| Y |} − � �2 
w 

‖ w ‖ 

2 , (B.3) 

here � is the Lagrange multiplier. Then, note the following result 

n [ 39, Chap. 20], which we rewrite here in our own notation: 

heorem 2. Let w be a critical point (maximizer, minimizer or saddle 

oint) of E {| Y |} subject to ‖ w ‖ 2 = 1 . If, for all unit-length vector z 

uch that 

 

† ∇ w 

‖ w ‖ 

2 = 2 z † w = 0 , (B.4) 

t holds that 

 

† (�2 
w 

L ) z > 0 , (B.5) 

then w is a local minimizer. For a local maximizer, the above con- 

ition becomes z † (�2 
w 

L ) z < 0 . 

By using (A.8) , we get 

 

† �2 
w 

L z = 

√ 

2 

π

( 

2 ∑ 

k =1 

s 2 
k 

− σ 2 
k 

σk 

P (C k ) 

) 

, (B.6) 
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here σ 2 
k 

= w 

† �k w and s 2 
k 

= z † �k z . Let us analyze the term: 

s 2 2 − σ 2 
2 

σ2 

P (C 2 ) . (B.7) 

n the one hand, the whitening condition (2) allows us to write 

 = z † �z = 

2 ∑ 

k =1 

P (C k ) s 2 k ⇒ s 2 2 P (C 2 ) = 1 − P (C 1 ) s 2 1 (B.8)

nd, by the same token, 

2 
2 P (C 2 ) = 1 − P (C 1 ) σ 2 

1 . (B.9) 

nvoking these results, we get 

s 2 2 − σ 2 
2 

σ2 

P (C 2 ) = − (s 2 1 − σ 2 
1 ) 

σ2 

P (C 1 ) . (B.10) 

ence, substituting in (B.6) , it follows that 

 

† �2 
w 

L z = 

√ 

2 

π
(s 2 1 − σ 2 

1 ) 
(

1 

σ1 

− 1 

σ2 

)
P (C 1 ) . (B.11) 

et v 1 , . . . , v p be the eigenvectors of �1 , with λ1 > λ2 > . . . > 

p the corresponding eigenvalues. Hence, let us consider several 

ases: 

1. If w = v 1 is the dominant eigenvector of �1 , then, from the 

properties of the Rayleigh quotient [40] , 

w = argmax z z 
† �1 z , (B.12) 

and, therefore, σ1 > s 1 and σ1 > σ2 . It follows that 

z † �2 
w 

L z > 0 , (B.13) 

and therefore w is a minimum of the L1 norm cost function. 

2. Similarly, if w = v p is the least dominant eigenvector of �1 (the 

eigenvector associated with the smallest eigenvalue), then, from 

the Rayleigh quotient again [40] , σ1 < s 1 and σ1 < σ2 . It follows 

that z † �2 
w 

L z > 0 and w p is still a minimum. 

3. If w = v i , 1 < i < p, is any of the remaining eigenvectors, the

sign of (B.11) when z = v 1 is different from that when z = v p , 
and both v 1 and v p fulfill (B.4) because the eigenvectors are 

mutually orthogonal. That is, in the vicinity of w = v i the ob- 

jective function increases in one direction and decreases in an- 

other. Therefore, w is a saddle point. Having said that, if w is 

constrained to be orthogonal to v 1 and v p , then it can be 

easily shown that v 2 and v p−1 are the new minima of the L1- 

cost and so on . Hence, all the eigenvectors can be actually cal- 

culated by minimization techniques, constrained to be orthogo- 

nal to the previously calculated ones. 

Finally note that Eq. (15) also has the solution σ1 = σ2 . Let us 

riefly show that this solution corresponds to the absolute max- 

mum of the L1-objective function. Let b = (σ1 , σ2 ) 
† , 1 = (1 , 1) † 

nd D = diag (P (C 1 ) , P (C 2 )) . Define the weighted inner product

b , 1 ) D = b † D 1 . Then, by the Cauchy-Schwarz inequality, 

b , 1 ) D ≤
√ 

(b , b) D ( 1 , 1 ) D = 

√ ∑ 

i =1 , 2 

P (C i ) σ 2 
i 

= 1 . 

here the final equality follows from (2) . It is then easy to show

he following inequality that restricts (A.3) , i.e., 

 {| Y |} = 

√ 

2 

π

2 ∑ 

k =1 

P (C k ) σk = 

√ 

2 

π
(b , 1 ) D ≤

√ 

2 

π
, 

ith equality iff b is proportional to 1 , implying σ1 = σ2 . This com- 

letes the proof. 
9 
ppendix C. Upper bounds on approximation (18) 

To discuss the approximation (18) , where η ∈ R 

+ is a small pos- 

tive constant, let us find an upper bound on the remainder. The 

xponential matrix is defined in classic textbooks as follows (e.g. 

ee [40] ) 

 = exp (−η S ) = I + 

∞ ∑ 

k =1 

(−η S ) 
k 

k ! 

here I is the identity matrix and subscript n is omitted for sim- 

licity. Consider approximating the exponential by ˆ U = I − ηS . The 

pproximation error is computed as 

 = U − ˆ U = 

∞ ∑ 

k =2 

(−η S ) 
k 

k ! 
. 

y the triangle inequality property of matrix norms: 

 R ‖ ≤ ∑ ∞ 

k =2 η
k ‖ S ‖ k 

k ! 
= η2 ‖ S ‖ 

2 
∑ ∞ 

k =0 
ε k 

( k +2 ) ! 

< η2 ‖ S ‖ 

2 
∑ ∞ 

k =0 
ε k 

k ! 
= η2 ‖ S ‖ 

2 exp ( ε ) 

here ε = η ‖ S ‖ . Consequently, the approximation error norm is 

pper bounded by 

 R ‖ ≤ η2 ‖ S ‖ 

2 exp ( η‖ S ‖ ) . 

hich is dominated by a term of the order of η2 ‖ S ‖ 2 for small

< 

1 
‖ S ‖ . 

ppendix D. The gradient in the Stiefel manifold 

For the reader’s interest, let us summarize briefly the most re- 

arkable properties of orthogonality constraints. Consider the set 

f all n -tuples of orthonormal vectors in R 

p . This set is known as

he Stiefel manifold and is denoted by V p,n [26] . Alternatively, as 

n n -tuple ( w 1 , . . . , w n ) of vectors in R 

p can be regarded as a ma-

rix W = [ w 1 , . . . , w n ] ∈ R 

p×n , the manifold can be also expressed 

s V p,n = { W ∈ R 

p×n : W 

† W = I n } , where I n is the n -dimensional

dentity matrix. 

Let Q (t) be a differentiable curve on V p,n with Q (0) = W ∈ V p,n .

he derivative ˙ Q (0) can be regarded as the ‘tangent vector’ at W 

o the curve. The use of the term ‘tangent’ is justified because, in- 

uitively, ˙ Q (0) has the same direction as an infinitesimal displace- 

ent d Q (0) along the manifold. The tangent vectors calculated in 

his way, from each possible curve passing through W , form a vec- 

or space called the tangent space at W . 

As Q (t) † Q (t) = I p for all t, we readily find, after differentiat- 

ng, that ˙ Q (0) † Q (0) + Q (0) † ˙ Q (0) = 0 . From here, it follows that 

he tangent space at W is the set of matrices defined by 

 W 

V p,n = { S ∈ R 

p×n : S † W + W 

† S = 0 } . 
imilarly, given any p × n matrix Z , it can be also shown (see 

.g. [26] ) that 

T W ( Z ) = 

(
I p − W W 

† 
)
Z + 

1 

2 

W 

(
W 

† Z − Z 

† W 

)
(D.1) 

s the projection of Z onto T W 

V p,n . Now, consider the problem 

min 

 ∈ R p×n 
J( W ) s.t. W 

† W = I n . 

iven the derivative ∂ J( W ) of J( W ) at W in the Euclidean 

pace, calculated element-wise, i.e., (∂ J( W )) i j = 

∂ J( W ) 
∂ W i j 

, the gradi- 

nt of J( W ) on the Stiefel manifold is obtained as the projection 

T W 

(∂ J( W )) given by Eq. (D.1) . In the particular case of square 

atrices, p = n, W 

† W = W W 

† = I p and 

T W (∂ J( W )) = 

1 

(
∂ J( W ) − W ∂ J( W ) † W 

)
. 
2 
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bserve finally that this formula is the same (up to the 1 / 2 con-

tant) to the gradient that appears in Eq. (20) . Therefore, the algo- 

ithm proposed in Section 5.2 computes the gradient-descent min- 

mization of criterion J in the Stiefel manifold. 
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