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Throughout this paper we show that the method for describing finite-dimensional solvable 
Leibniz superalgebras with a given nilradical can be extended to infinite-dimensional ones, 
or so-called residually solvable Leibniz superalgebras. Prior to that, we improve the solvable 
extension method for the finite-dimensional case obtaining new and important results. 
Additionally, we fully determine the residually solvable Lie and Leibniz superalgebras 
with maximal codimension of pro-nilpotent ideals the model filiform Lie and null-
filiform Leibniz superalgebras, respectively. Moreover, we prove that the residually solvable 
superalgebras obtained are complete.
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1. Introduction

In general, algebraic tools are very useful in the study of elementary particles in quantum mechanics, in analyzing the 
properties of solids and crystals and also they can be found in problems of population biology for instance. In particular and 
since associative algebras defined by a certain identity were started after revealing the property of being closed relative to 
the usual multiplication of square matrices, their further intensive development led to the creation of the theory of alterna-
tive, Lie, Jordan algebras and superalgebras, which are closely intertwined with each other and have numerous connections 
with various areas of mathematics.
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Remark that the study of solvable Lie algebras with special types of nilradicals is associated with various models of 
physics. The motivation for studying Lie superalgebras, on the other hand, arose from the properties of supersymmetry 
in mathematical physics. Moreover, the theory of Lie superalgebras has stablished itself as a universal object in modern 
algebra. Thus, similarly to the case of Lie algebras, the study of solvable Lie superalgebras with given nilradicals is an urgent 
problem.

First, we recall that in the 50s it was proved by A.I. Malcev that a solvable Lie algebra is fully determined by its nilradical 
[19], and after that was stablished the method for describing solvable Lie algebra in terms of its nilradical and its nil-
independent derivations [22]. Since then, the aforementioned method has been used in numerous papers to obtain the 
classification of solvable Lie algebras with different types of nilradical [5,6,23,26–28]. More recently, the solvable extension 
method was extended to Leibniz algebras and a great deal of papers have been devoted to it [9,12,13,18]. Special mention 
deserves the solvable Lie and Leibniz algebras with maximal codimension of a given nilradical, due to its properties, they are 
in some cases complete and cohomologically rigid [4]. The next natural step was to extend the method for superalgebras 
but let us note that the structures of solvable Lie and Leibniz superalgebras are more complex than structures of the 
corresponding solvable algebras [25]. In fact, Lie’s theorem is not true for solvable Leibniz superalgebras and even the square 
of a solvable superalgebra can be non-nilpotent [24]. Despite all the difficulties, recently in [10,11] the solvable extension 
method for Leibniz superalgebras was stablished. Of special relevance are those superalgebras of maximal codimension of 
nilradical in the same way as occurs for algebras.

Thus, having analyzed the structure of solvable finite-dimensional Leibniz superalgebras with a given nilradical and the 
maximal complementary subspace to it, we wonder if this structure can be extended to the infinite-dimensional case, or so-
called residually solvable Leibniz superalgebras. With respect to the nilradical we consider the infinite-dimensional analog 
of nilpotent superalgebras, that is, pro-nilpotent superalgebras. Recall that pro-nilpotent superalgebras are defined by two 
properties: the intersection of all members of the lower central series is zero (so-called residually nilpotent property), and 
the quotient algebra by any member of the central series is finite-dimensional.

In this paper firstly, we obtain some important results regarding the solvable extension method for the finite-dimensional 
case. After, we give an explicit structure of residually solvable Lie superalgebras whose maximal pro-nilpotent ideal is 
infinite-dimensional model filiform Lie superalgebra. Recall that, on one hand, the filiform Lie superalgebra is one of most 
relevant nilpotent Lie superalgebra [8] and on the other hand, Lie superalgebras are particular cases of Leibniz superalgebras. 
Next, we consider residually solvable Leibniz non-Lie superalgebras obtaining all the residually solvable Leibniz superalgebras 
whose maximal pro-nilpotent ideal is infinite-dimensional null-filiform Leibniz superalgebra. Additionally, we prove that the 
residually solvable superalgebras obtained, Lie and non-Lie Leibniz, are complete.

2. Preliminary results

In this section both notions and results which are the same for Lie and Leibniz superalgebras will be given only for 
Leibniz superalgebras.

A vector space V is said to be Z2-graded if it admits a decomposition into a direct sum, V = V 0̄ ⊕ V 1̄ , where 0̄, ̄1 ∈Z2. 
An element x ∈ V is called homogeneous of degree ī if it is an element of V ī, ̄i ∈Z2. In particular, the elements of V 0̄ (resp. 
V 1̄) are also called even (resp. odd). For a homogeneous element x ∈ V we denote |x| the degree of x (either 0̄ or 1̄).

Definition 2.1. A Lie superalgebra (see [15]) is a Z2-graded vector space g = g0̄ ⊕ g1̄ , with an even bilinear commutation 
operation (or “supercommutation”) [·, ·], which for an arbitrary homogeneous elements x, y, z satisfies the conditions

1. [x, y] = −(−1)|x||y|[y, x],
2. (−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0 (super Jacobi identity).

Thus, g0̄ is an ordinary Lie algebra, and g1̄ is a module over g0̄; the Lie superalgebra structure also contains the sym-
metric pairing S2g1̄ −→ g0̄ .

Definition 2.2. [3]. A Z2-graded vector space L = L0̄ ⊕ L1̄ is called a Leibniz superalgebra if it is equipped with a product [·, ·]
which for an arbitrary element x and homogeneous elements y, z satisfies the condition

[x, [y, z]] = [[x, y], z] − (−1)|y||z|[[x, z], y] (super Leibniz identity).

Note that if a Leibniz superalgebra L satisfies the identity [x, y] = −(−1)|x||y|[y, x] for any homogeneous elements x, y ∈
L, then the super Leibniz identity becomes the super Jacobi identity. Consequently, Leibniz superalgebras are a generalization 
of Lie superalgebras. Also and in the same way as for Lie superalgebras, isomorphisms are assumed to be consistent with 
the Z2-graduation.

Definition 2.3. For a Leibniz superalgebra L = L0̄ ⊕ L1̄ we define the right annihilator of L as the set Annr(L) := {x ∈ L :
[L, x] = 0}.
2



L.M. Camacho, R.M. Navarro and B.A. Omirov Journal of Geometry and Physics 172 (2022) 104414
It is easy to see that Annr(L) is a two-sided ideal of L and [x, x] ∈ Annr(L) for any x ∈ L0̄ . This notion is compatible with 
the right annihilator in Leibniz algebras. If we consider the ideal I := ideal < [x, y] + (−1)|x||y|[y, x] >, then I ⊂ Annr(L) and 
we have a Lie superalgebra L/I .

Let us now denote by Rx the right multiplication operator, i.e., Rx : L → L given as Rx(y) := [y, x] for y ∈ L, then the 
super Leibniz identity can be expressed as R[x,y] = R y Rx − (−1)|x||y| Rx R y .

It should be noted that in the case of Lie (super)algebras, instead of the operator of right multiplication Rx it is consid-
ered the operator of left multiplication denoted by adx .

If we denote by R(L) the set of all right multiplication operators, then R(L) with respect to the following multiplication

< Ra, Rb >:= Ra Rb − (−1)|a||b| Rb Ra (2.1)

forms a Lie superalgebra.
Let us recall the definition of superderivations for Leibniz superalgebras [15,17]. A superderivation of degree s of a Leibniz 

superalgebra L, s ∈Z2, is an endomorphism d ∈ Ends(L) with the property

d([x, y]) = (−1)s|y|[d(x), y] + [x,d(y)]
If we denote Ders(L) ⊂ Ends(L) the space of all superderivations of degree s, then Der(L) = Der0(L) ⊕ Der1(L) is the Lie 
superalgebra of superderivations of L, with Der0(L) composed by even superderivations and Der1(L) by odd ones.

Note that for any z ∈ L the operator Rz is a superderivation (such kind of superderivations are called inner). It follows 
from the following equality

Rz([x, y]) = (−1)|z||y|[Rz(x), y] + [x, Rz(y)],
which can be rewritten as the super (graded) Leibniz identity

[[x, y], z] = (−1)|z||y|[[x, z], y] + [x, [y, z]].
Recall, the descending central sequence of a Leibniz superalgebra L = L0̄ ⊕ L1̄ is defined in the same way as for Leibniz alge-

bras: C0(L) := L, Ck+1(L) := [Ck(L), L] for all k ≥ 0, [7]. Consequently, if Ck(L) = {0} for some k, then the Leibniz superalgebra 
is called nilpotent. Then, the smallest integer k such that Ck(L) = {0} is called the nilindex of the Leibniz superalgebra L.

In the same way, the derived sequence of L is defined by D0(L) := L, Dk+1(L) := [Dk(L), Dk(L)] for all k ≥ 0. If this 
sequence is stabilized in zero, then the Leibniz superalgebra is said to be solvable. All nilpotent Leibniz superalgebras are 
solvable ones.

Engel’s theorem and its direct consequences remain valid for Leibniz superalgebras. In particular, a Leibniz superalgebra L
is nilpotent if and only if Rx is nilpotent for every homogeneous element x of L. Moreover, for solvable Leibniz superalgebras 
we have that a Leibniz superalgebra L is solvable if and only if its Leibniz algebra L0 is solvable. Nevertheless, we do not 
have the analog of Lie’s Theorem and neither its corollaries even for solvable Lie superalgebras.

Definition 2.4. A nilpotent Lie superalgebra is called characteristically nilpotent if all its superderivations are nilpotent.

Recall, a Leibniz superalgebra is said to be complete, if all its superderivations are inner and center of the superalgebra is 
trivial.

3. Solvable extensions of finite-dimensional nilpotent Lie and Leibniz superalgebras

In this section we establish some additional results on solvable Leibniz superalgebras obtained in [10] and we extend 
them to the infinite-dimensional analogous of solvable Leibniz superalgebras.

Firstly, we consider Lie superalgebras which are a particular case of Leibniz superalgebras. Note that structure of solvable 
Lie superalgebras is much more complicated than structure of solvable Lie algebras. Indeed, for solvable Lie superalgebras 
the analog of Lie’s theorem and its corollaries are not true. Moreover, for a solvable Lie superalgebra its derived superal-
gebra is not nilpotent, in general. It should be noted that imposing the constraint that derived superalgebra of solvable Lie 
superalgebra is nilpotent, we have the following results showed in [10].

Let L be a solvable Lie superalgebra such that L2 is nilpotent, then L2 ⊂ n, where n is the maximal nilpotent ideal of L, 
so-called nilradical. Under this condition any solvable Lie superalgebra over the real or complex field admits a decomposition

L = t
−→⊕n

where −→⊕ denotes the semidirect sum and satisfying the relations

[t,n] ⊂ n, [n,n] ⊂ n, [t, t] ⊂ n.

By means of the super Jacobi identity it can be seen that adz for any z ∈ t, acts as a derivation of the nilpotent superal-
gebra n.
3
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Since for the elements z /∈ n derivations adz are not nilpotent (otherwise we get a contradiction with maximality of n), 
for a given basis {z1, . . . , zn} of t and arbitrary non-null scalars α1, . . . , αn it is satisfied that

(α1adz1 + · · · + αnadzn )
k �= 0, k ≥ 1,

i.e., the derivation α1adz1 + · · · + αnadzn is not nilpotent. In the same way as for Lie algebras we say that the elements 
adz1 , . . . , adzn are nil-independent [22].

Thus, the solvable Lie superalgebra L can be always described by means of nil-independent derivations of the nilradical 
n. Hence the dimension of a solvable Lie superalgebra having a given nilradical is bounded by the maximal number of 
nil-independent derivations of the nilradical.

On the other hand and with respect to Leibniz superalgebras, we extend in a natural way the above results in the same 
way that it has been already done for Leibniz algebras [7,12].

We explore now the differences between even and odd superderivations with respect to solvable extensions of nilpotent 
Lie superalgebras.

Proposition 3.1. Let N = N0 ⊕ N1 be a nilpotent (non-characteristically nilpotent) Lie superalgebra with {x1, . . . , xn} a basis of N0 and 
{y1, . . . , ym} a basis of N1 . If D is a non-nilpotent even superderivation of N, then L = L0 ⊕ L1 with L1 := N1 and L0 := N0 ⊕ (Kz)
being adz := D, is a solvable Lie superalgebra with nilradical N.

Proof. Let D be an even superderivation of N , then replacing D by adz in the even superderivation condition we get

[z, [a,b]] = [[z,a],b] + [a, [z,b]]
for any a, b ∈ N . Taking into account that z is an even element we shall check that this equality is nothing but the super 
Jacobi identity for the triples {z, a, b}. Indeed, the general super Jacobi identity

(−1)|z||x|[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0

for the triple {z, a, b} remains

[a, [b, z]] + (−1)|a||b|[b, [z,a]] + [z, [a,b]] = 0.

Then [z, [a, b]] = −(−1)|a||b|[b, [z, a]] − [a, [b, z]] = −(−1)|a||b|[b, [z, a]] + [a, [z, b]].
Only rest to note that −(−1)|a||b|[b, [z, a]] = [[z, a], b]. If a is an even basis vector, then −(−1)|a||b|[b, [z, a]] =

−[b, [z, a]] = [[z, a], b]. If a and b are odd basis vectors then −(−1)|a||b|[b, [z, a]] = +[b, [z, a]] = [[z, a], b].
On the other hand, the super Jacobi identity for the triples {z, z, b}, {z, z, z} trivially vanishes for being z an even basis 

vector. Thus, we have a Lie superalgebra L and since adz is non-nilpotent we conclude the proof of the statement. �
A different situation happens if we involve an odd superderivation.

Remark 3.1. The above extension method described in Proposition 3.1 does not hold in the case of an odd superderivation 
D . Replacing D by adz in the odd superderivation condition we get

[z, [a,b]] = [[z,a],b] + (−1)|a|[a, [z,b]]
for any a, b ∈ N . Similarly as in the proof of Proposition 3.1, it can be seen that this condition is super Jacobi identity for 
the triples {z, a, b}. However, the super Jacobi identity for the triples {z, z, b}, {z, z, z} do not vanish on account of z is an 
odd basis vector. Thus, the super Jacobi identity does not hold, in general. As an example we consider the abelian (and 
then nilpotent) Lie superalgebra N = (Kx)0 ⊕ (Ky)1 and its odd superderivation D such that D(x) = y and D(y) = x. If we 
consider L0 ⊕ L1 with L0 := (Kx) and L1 := (Ky) ⊕ (Kz) being adz := D , then we have the bracket products

[z, x] = −[x, z] = y, [z, y] = [y, z] = x, [z, z] = ax for some a ∈K.

Then the super Jacobi identity for the triple {z, z, y} does not hold. Indeed, we have

[y, [z, z]] + [z, [z, y]] + [z, [y, z]] = 2[z, [y, z]] = 2[z, x] = 2y �= 0.

Therefore, L is not a Lie superalgebra.

Moreover, in the case when by adding only odd nil-independent superderivations the super Jacobi identity holds true
we get a nilpotent Lie superalgebra, that is, the resultant Lie superalgebra is always nilpotent. Thus, we have the following 
result.
4
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Lemma 3.1. Let N be a nilpotent Lie superalgebra N = N0 ⊕ N1 . If L is a solvable extension Lie superalgebra t−→⊕ N (with [t, N] ⊂
N, [N, N] ⊂ N, [t, t] ⊂ N) by means of odd superderivations (that is t = t1), then L is also nilpotent.

Proof. Suppose DerN = Der0N ⊕ Der1N the Lie superalgebra of superderivations of N , with Der0N composed by even 
superderivations and Der1N by odd ones. The product that provides DerN with Lie superalgebra structure is

< d1,d2 >:= d1d2 − (−1)|d1||d2|d2d1. (3.1)

It is known that a Lie superalgebra is nilpotent if and only if the adjoint operator is nilpotent for any homogeneous element 
of the superalgebra. Therefore, in order to prove the lemma we have show that for any z ∈ t1 the operator adz is a nilpotent 
odd superderivation of N . Let us assume that there exists z ∈ t1 such that adz is a non-nilpotent odd superderivation of 
N . From the structure of Lie superalgebra over DerL we have in particular that ad[z,z] = [adz, adz] = 2adzadz and then 
ad2

z = 1
2 ad[z,z] is a non-nilpotent even superderivation of N . At the same time the condition L2 ⊆ N implies that [z, z] ∈ N0. 

So, ad[z,z] is nilpotent. Thus we get a contradiction which completes the proof of the lemma. �
Theorem 3.1. Let N be a nilpotent Lie superalgebra N = N0 ⊕ N1 . If L is a solvable non-nilpotent Lie superalgebra t−→⊕ N with nilradical 
N, then t1 = {0}.

Proof. If t1 �= {0} then we have at least a non-null basis vector z ∈ t1. From the proof of Lemma 3.1 adz is always nilpotent. 
Therefore, N ′ = N ′

0
⊕ N ′

1
with N ′

0
:= N0 and N ′

1
:= N1 ⊕ (Kz) is a nilpotent Lie superalgebra verifying N ⊂ N ′ and dim(N ′) =

dim(N) + 1 which contradicts the maximality of N . �
On account of Theorem 3.1 from now on, we consider only solvable extensions by means of even superderivations. Next 

we explore under which conditions the solvable extension method developed by Mubarakzjanov [22] remains true for Lie 
and Leibniz superalgebras.

Suppose given a nilpotent and non-characteristically nilpotent Lie superalgebra N = N0 ⊕ N1 verifying [N1, N1] = {0}. 
Then from all the possible solvable extensions t−→⊕ N with nilradical N (t = t0), the maximal-dimensional one which satisfies 
the condition dim(t) = dim(N/N2) is unique and will be given by considering t0 the maximal torus T of even derivations 
(which is in particular, abelian and simultaneously diagonalizable).

Note that [N1, N1] = {0} implies that N is not only a Lie superalgebra but also a Z2-graded Lie algebra. Now if t
is composed only by even elements then for any z ∈ t the adjoint operator adz is an even superderivation of the Lie 
superalgebra N and, in particular, a Lie derivation of N regarded as Z2-graded Lie algebra. Therefore, the maximal solvable 
extensions under the condition dim(t) = dim(N/N2) can be described in explicit form in terms of the multiplication table 
obtained in [16].

Remark 3.2. In fact, under the condition dim(t) = dim(N/N2), that is the dimension of t = k is exactly the number of 
generators of the nilradical N , R = t

−→⊕ N admits a basis

{z1, z2, . . . zk1 , z′
1, . . . , z′

k2
, x1, . . . , xk1 , . . ., xn, y1, . . . , yk2 , . . ., ym}

where {x1, . . . , xk1 , y1, . . . , yk2 } are generators of N being k = k1 +k2 and such that the table of multiplications of R has the 
following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xi, x j] = −[x j, xi] =
n∑

t=k1+1

γ t
i, jxt, 1 ≤ i < j ≤ n,

[xi, y j] = −[y j, xi] =
m∑

t=k2+1

δt
i, j yt, 1 ≤ i ≤ n,1 ≤ j ≤ m,

[xi, zi] = −[zi, xi] = xi, 1 ≤ i ≤ k1,

[y j, z′
j] = −[z′

j, y j] = y j, 1 ≤ j ≤ k2,

[xi, z j] = −[z j, xi] = αi, j xi, k1 + 1 ≤ i ≤ n, 1 ≤ j ≤ k1,

[xi, z′
j] = −[z′

j, xi] = α′
i, j xi, k1 + 1 ≤ i ≤ n, 1 ≤ j ≤ k2,

[yi, z j] = −[z j, yi] = βi, j yi, k2 + 1 ≤ i ≤ m, 1 ≤ j ≤ k1,

[yi, z′
j] = −[z′

j, yi] = β ′
i, j yi, k2 + 1 ≤ i ≤ m, 1 ≤ j ≤ k2,

where the omitted products are zero and

• αi, j is the number of entries of a generator basis element x j involved in forming non generator basis element xi ,
5
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• α′
i, j is the number of entries of a generator basis element y j involved in forming non generator basis element xi ,

• βi, j is the number of entries of a generator basis element x j involved in forming non generator basis element yi ,
• β ′

i, j is the number of entries of a generator basis element y j involved in forming non generator basis element yi .

Remark 3.3. It should be noted that the above remark is also extendable for Leibniz superalgebras having been described 
the corresponding multiplication table in [1].

Note that the maximal solvable Lie (resp. Leibniz) superalgebras with model filiform nilradical, S Ln,m = t
−→⊕ Ln,m , obtained 

in [11] verifies the multiplication table of Remark 3.2. Moreover it was proved that this superalgebra is complete, that is, it 
is centerless and all the superderivations are inner.

Note, on the other hand, that maximal nilindex for Leibniz superalgebras is exactly (n + m) - a unit greater than the 
maximal nilindex for Lie superalgebras - and it is obtained by the null-filiform superalgebra. Note that the only one, up to 
isomorphism, null-filiform Leibniz superalgebra (non Leibniz algebra) is N F n,m , that can be expressed by the law:

N F n,m :

⎧⎪⎪⎨
⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n,

[xi, y1] = 1
2 yi+1, 1 ≤ i ≤ m − 1,

[y j, x1] = y j+1, 1 ≤ j ≤ m − 1,

[xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

where {x1, x2, . . . , xn} and {y1, y2, . . . , ym} are bases of the even and odd parts respectively. Moreover, in order to have a 
non-trivial odd part we have only two possibilities for m (m = n or m = n + 1). For more details it can be consulted [3]. In 
[10] the authors studied the maximal complex solvable Leibniz superalgebras with nilradical N F n,m , showing that there is 
only one, up to isomorphism, which corresponds exactly with t−→⊕ N F n,m:

S N F n,m :

⎧⎪⎪⎨
⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n, [y j, x1] = y j+1, 1 ≤ j ≤ m − 1,

[xi, y1] = 1
2 yi+1, 1 ≤ i ≤ m − 1, [xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xi, z] = 2ixi, 1 ≤ i ≤ n, [z, x1] = −2x1,

[y j, z] = (2 j − 1)y j, 1 ≤ j ≤ m, [z, y1] = −y1,

where the omitted brackets are equal to zero.
Moreover, a straightforward computation leads to the following result.

Proposition 3.2. S N F n,m is a complete Leibniz superalgebra.

Proof. By the multiplication table it is easy to check that S N F n,m is centerless. A straightforward computation leads to

Der0(S N F n,m) = 〈Rz〉 and Der1 S N F n,m = 〈R y1〉
which means that all superderivations are inner. �
4. Residually solvable extensions of infinite-dimensional Lie and Leibniz superalgebras

Throughout this section we explore the method to obtain an equivalent of the previous section for the case of infinite-
dimensional Lie and Leibniz superalgebras. In particular, we will obtain an infinite-dimensional version of the Lie and 
non-Lie Leibniz superalgebras t−→⊕ Ln,m and t−→⊕ N F n,m . Additionally we are going to study whether obtained superalgebras 
are complete.

The following definition was used in the paper [20] for Lie algebras and after was generalized for Leibniz algebras [2]. 
Now we introduce these definitions for superalgebras.

Definition 4.1. A superalgebra L is called residually nilpotent (respectively, solvable) if 
∞⋂

i=0
C i(L) = {0} (respectively, 

∞⋂
i=0

Di(L) = {0}).

Since Di(L) ⊂ C i(L) for any i we conclude that residually nilpotency implies residually solvability. The converse does not 
always hold, as an example let us consider the Lie superalgebra with even and odd basis {e0, e1} ⊕ {e2, . . . } such that it has 
the following multiplication table:

[e0, e1] = −[e1, e0] = e0, [e0, ei] = −[ei, e0] = ei−1, i ≥ 3,

where the omitted products are zero. Clearly, this superalgebra is residually solvable but not residually nilpotent.
6
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Other example which will be important in our study is the infinite-dimensional model filiform Lie superalgebra defined 
by the non-null bracket products that follows:

L :
{

[x1, xi] = −[xi, x1] = xi+1, i ≥ 2,

[x1, y j] = −[y j, x1] = y j+1, j ≥ 1,

where {x1, x2, . . . } are even basis vectors and {y1, y2, . . . } odd ones. Then one can check that L is residually nilpotent and 
then residually solvable. Remark also, that the infinite-dimensional Lie algebra even part of L was already considered in 
[14].

Let us introduce now the concepts of pro-nilpotent and pro-solvable for superalgebras, which was introduced in [21] for 
the Lie algebra case and after extended for Leibniz algebras [2].

Definition 4.2. A superalgebra L is said to be pro-nilpotent if

∞⋂
i=0

C i(L) = {0} and dim(C i(L)/C i+1(L)) < ∞ for any i ≥ 0

(respectively, pro-solvable if 
∞⋂

i=0
Di(L) = {0} and dim(Di(L)/Di+1(L)) < ∞).

It can be easily checked that the infinite-dimensional model filiform Lie superalgebra L is pro-nilpotent but not pro-
solvable. Note that dim(C i(L)/C i+1(L)) < ∞ is equivalent to dim(L/C i(L)) < ∞ (respectively, dim(Di(L)/Di+1(L)) < ∞ is 
equivalent to dim(L/Di(L)) < ∞).

Let us note that every quotient L/C i(L) of a pro-nilpotent Lie or Leibniz superalgebra is a finite-dimensional nilpotent 
Lie or Leibniz superalgebra. Moreover, any pro-nilpotent superalgebra is a finitely generated superalgebra.

Definition 4.3. A linear map ρ : L → L is called residually nilpotent, if 
∞⋂

i=1
Im ρ i = {0} holds.

Example: If we consider the infinite-dimensional model filiform Lie superalgebra L, then the adjoint operator adx2 , for 
instance, is clearly residually nilpotent.

Below we introduce the analog of the concept of nil-independency.

Definition 4.4. Derivations d1, d2, . . . , dn of a Lie (respectively, Leibniz) superalgebra over a field K are said to be residually 
nil-independent, if the map f = α1d1 +α2d2 + . . .+αndn is not residually nilpotent for any non-null scalars α1, α2, . . . , αn ∈
K. In other words, 

∞⋂
i=1

Im f i = {0} if and only if α1 = α2 = · · · = αn = 0.

4.1. Infinite-dimensional Lie superalgebras

Along this subsection we study residually solvable extension of maximal pro-nilpotent ideal the infinite-dimensional 
model filiform Lie superalgebra. Among all of them there will be of special interest those of maximal codimension of 
the infinite-dimensional model filiform Lie superalgebra, that is R = t

−→⊕ L with dim(t) maximal. This case is important 
because for the finite-dimensional case provides a complete Lie superalgebra. In particular, this problem was solved in 
[11] for the finite-dimensional case, obtaining the unique Lie superalgebra S Ln,m = t

−→⊕ Ln,m which is defined in a basis 
{x1, . . . , xn, t1, t2, t3} ⊕ {y1, . . . , ym} by the only non-zero bracket products

S Ln,m :

⎧⎪⎨
⎪⎩

[x1, xi] = −[xi, x1] = xi+1, 2 ≤ i ≤ n − 1, [t1, y j] = −[y j, t1] = jy j, 1 ≤ j ≤ m,

[x1, y j] = −[y j, x1] = y j+1, 1 ≤ j ≤ m − 1, [t2, xi] = −[xi, t2] = xi, 2 ≤ i ≤ n,

[t1, xi] = −[xi, t1] = ixi, 1 ≤ i ≤ n, [t3, y j] = −[y j, t3] = y j, 1 ≤ j ≤ m.

Thanks to Proposition 3.1, it is enough to study even derivations of L, the infinite-dimensional model filiform Lie super-
algebra. In particular we have the following result.
7
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Proposition 4.1. The space of even derivations of the superalgebra L is the following:

Der0(L) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d(x1) =
t∑

i=1
αi xi,

d(xk) = ((k − 2)α1 + β2)xk +
t∑

i=3
βi xi+k−2, where k ≥ 2,

d(y j) = (( j − 1)α1 + γ1)y j +
t∑

i=2
γi yi+ j−1, where j ≥ 1.

Proof. Since {x1, x2, y1} are the generators of L, we set

d(x1) =
l∑

i=1

αi xi, d(x2) =
m∑

i=1

βi xi, d(y1) =
n∑

i=1

γi yi .

If t := max{l, m, n}, then we can suppose

d(x1) =
t∑

i=1

αi xi, d(x2) =
t∑

i=1

βi xi, d(y1) =
t∑

i=1

γi yi .

Finally and by using the derivation condition, the expression desired is obtained. Note that in particular from the deriva-
tion condition applied over the pair {x2, x3} we get β1 = 0. �

Now, we search for a maximal set of residually nil-independent derivations. Then we have

Theorem 4.1. Let R = t
−→⊕ L be a residually solvable Lie superalgebra with maximal pro-nilpotent ideal L and maximal dimension of t. 

Then R can be expressed in a basis {z1, z2, z3, x1, x2, . . . , y1, y2, . . . } by the only non-zero bracket products

R(β,γ ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1, xi] = −[xi, x1] = xi+1, i ≥ 2,

[x1, y j] = −[y j, x1] = y j+1, j ≥ 1,

[z1, x1] = −[x1, z1] = x1,

[z1, xk] = −[xk, z1] = (k − 2)xk +
t∑

i=3
βi xi+k−2, k ≥ 2,

[z1, y j] = −[y j, z1] = ( j − 1)y j +
t∑

i=2
γi yi+ j−1, j ≥ 1,

[z2, xk] = −[xk, z2] = xk, k ≥ 2,

[z3, y j] = −[y j, z3] = y j, j ≥ 1,

with β = (β3, . . . , βt) ∈Ct−2 and γ = (γ2, . . . , γt) ∈Ct−1 , for some t ∈N .

Proof. In order to obtain a non-residually nilpotent derivation we get the condition (α1, β2, γ1) �= (0, 0, 0) (otherwise we 
have always a residually nilpotent derivation). Thus, the maximal number of derivations nil-independent and linearly inde-
pendent is equal to three. We denote them by d1 if (α1, β2, γ1) = (1, 0, 0), d2 for (α1, β2, γ1) = (0, 1, 0) and finally d3 with 
(α1, β2, γ1) = (0, 0, 1). After setting adzi := di for 1 ≤ i ≤ 3 we have the following products:

[z1, x1] = x1 +
t∑

i=2

αi xi,

[z1, xk] = (k − 2)xk +
t∑

i=3

βi xi+k−2, k ≥ 2,

[z1, y j] = ( j − 1)y j +
t∑

i=2

γi yi+ j−1, j ≥ 1,

[z2, x1] =
t∑

α′
i xi,
i=2

8



L.M. Camacho, R.M. Navarro and B.A. Omirov Journal of Geometry and Physics 172 (2022) 104414
[z2, xk] = xk +
t∑

i=3

β ′
i xi+k−2, k ≥ 2,

[z2, y j] =
t∑

i=2

γ ′
i yi+ j−1, j ≥ 1,

[z3, x1] =
t∑

i=2

α′′
i xi,

[z3, xk] =
t∑

i=3

β ′′
i xi+k−2, k ≥ 2,

[z3, y j] = y j +
t∑

i=2

γ ′′
i yi+ j−1, j ≥ 1,

[z1, z2] =
t∑

i=1

ai xi, [z1, z3] =
t∑

i=1

bixi, [z2, z3] =
t∑

i=1

ci xi .

Taking x′
1 = x1 + α2x2 we can suppose α2 = 0. After the following change:

z′
1 = z1 +

t−1∑
i=2

αi+1xi, z′
2 = z2 − a1x1 +

t−1∑
i=2

α′
i+1xi, z′

3 = z3 − b1x1 +
t−1∑
i=2

α′′
i+1xi,

one can assume [z1, x1] = x1, [z2, x1] = α′
2x2 and a1 = 0, and [z3, x1] = α′′

2 x2 and b1 = 0.
Now, by application of the super Jacobi identity in the following cases we get the constraints given in the table:

Super Jacobi identity Constraint

{x1, z1, z2} α′
2 = 0, ai = 0, 2 ≤ i ≤ t

{x2, z1, z2} β ′
i = 0, 3 ≤ i ≤ t

{x1, z1, z3} α′′
2 = 0, bi = 0, 2 ≤ i ≤ t

{x2, z1, z3} β ′′
i = 0, 3 ≤ i ≤ t

{xi , z2, z3}, 1 ≤ i ≤ 2 ci = 0, 1 ≤ i ≤ t

{y1, z1, zi}, 2 ≤ i ≤ 3 α′
i = α′′

i = 0, 2 ≤ i ≤ t

Thus, we obtain the multiplication table of the statement. �
Theorem 4.2. Any superalgebra of the family R(β, γ ) is complete.

Proof. By the multiplication table it is easy to check that R(β, γ ) is centerless. We re-write now the basis of R(β, γ ) by 
{z1, z2, z3, x1, y1, x2, y2, . . . }. Recall that all the basis vectors are even except for yi which are odd elements for all i ≥ 1. 
Let us note that {z1, z2, z3, x1, y1, x2} are generators and since a derivation is completely determined by its values over the 
generators then it will be sufficient to show the existence of a ∈ R(β, γ ) such that d(z) = ada(z) for z ∈ {z1, z2, z3, x1, y1, x2}.

Let us define now for each k ∈N , Lk := span{yk, xk+1, yk+1, xk+2, . . . } and the quotient algebra

Rk(β,γ ) := R(β,γ )/Lk = t
−→⊕ (L/Lk) = t

−→⊕ L

is finite-dimensional solvable Lie superalgebra (maximal extension) with nilradical the model filiform Lie superalgebra 
S Lk,k−1. By changing of basis it can be seen that the family Rk(β, γ ) is isomorphic to Rk(0, 0) which is itself isomorphic to 
S Lk,k−1. In [11] the authors showed that S Ln,m has all the derivations inner.

If d ∈ Der(R(β, γ )) we consider an induced derivation d ∈ Der(Rk(β, γ )) verifying d(v) = d(v) with v = v + Lk . Since 
d(Lk) ⊆ Lk , that is, Lk is invariant under d we have that d is well-defined. In fact, as [t, L] = L, we get for any even or odd 
derivation

d(L) = d([t, L]) = [d(t), L] + [t,d(L)] ⊆ L.

On account of the derivation property we get d(Lk) ⊆ Lk for any k ∈ N and then d is well-defined. Let us set for any 
even derivation d

d(x1) =
s∑

ai xi, d(x2) =
s∑

bi xi, d(y1) =
s∑

ci yi, d(z1) =
s∑

αi xi + α1,1z1 + α1,2z2 + α1,3z3,
i=1 i=1 i=1 i=1

9
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d(z2) =
s∑

i=1

ϕi xi + ϕ1,1z1 + ϕ1,2z2 + ϕ1,3z3, d(z3) =
s∑

i=1

ρi xi + ρ1,1z1 + ρ1,2z2 + ρ1,3z3.

We consider k ≥ max{s, t}, then we have d(v) = d(v) = adek
for some even element ek = ek + Lk and any v = v + Lk . We 

put then

ek =
k∑

i=1

λk
i xi + λk,1z1 + λk,2z2 + λk,3z3 + Lk.

From the expressions

d(x1) = [ek, x1], d(x2) = [ek, x2], d(y1) = [ek, y1].
We derive

s∑
i=1

ai xi −
k∑

i=2
λk

i xi+1 + λk,1x1 ∈ Lk,

s∑
i=1

bi xi + λk
1x3 + λk,2x2 ∈ Lk,

s∑
i=1

ci yi + λk
1 y2 + λk,3 y1 ∈ Lk.

Considering the coefficients over the basis vectors we have in particular that

λk,1 = −a1, λk,2 = −b2, λk,3 = −c1, λk
1 = −b3 = −c2, λk

i = ai+1 for 2 ≤ i ≤ s − 1

and finally λk
i = 0 for s ≤ i ≤ k, which leads to ek = ek+1 for any k ≥ max{s, t}. Therefore, let us set e := ek and Wk =

span{z1, z2, z3, x1, y1, x2, y2, . . . , yk−1, xk} then we get d(z)|Wk = ade(z)|Wk for any z ∈ {z1, z2, z3, x1, y1, x2} any k ≥ max{s, t}.
On account of ∪∞

k=1 Wk = R(β, γ ) we get d = ade . Analogously it can obtain the result for any odd derivation. �
4.2. Infinite-dimensional Leibniz superalgebras

Similarly as in the previous subsection, we study residually solvable extension with maximal pro-nilpotent ideal the 
infinite-dimensional null-filiform Leibniz superalgebra. In the same way as the case of infinite-dimensional Lie superalgebras 
we provide the completeness of the considered Leibniz superalgebra. In particular, this problem was solved in [10] for 
the finite-dimensional case, it obtains the unique Leibniz superalgebra S N F n,m = T

−→⊕ N F n,m which is defined in a basis 
{x1, . . . , xn, z} ⊕ {y1, . . . , ym} by the only non-zero bracket products

S N F n,m :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[yi, y1] = xi, 1 ≤ i ≤ n, [xi, y1] = 1
2 yi+1, 1 ≤ i ≤ m − 1,

[y j, x1] = y j+1, 1 ≤ j ≤ m − 1, [xi, x1] = xi+1, 1 ≤ i ≤ n − 1,

[xi, z] = 2ixi, 1 ≤ i ≤ n, [y j, z] = (2 j − 1)y j, 1 ≤ j ≤ m,

[z, x1] = −2x1, [z, y1] = −y1.

Now, we construct R = t
−→⊕ N F with dim(t) maximal and N F the infinite-dimensional null-filiform Leibniz superalgebra 

defined by the non-null bracket products that follows:

N F :
{ [yi, y1] = xi, i ≥ 1, [xi, y1] = 1

2 yi+1, i ≥ 1,

[y j, x1] = y j+1, j ≥ 1, [xi, x1] = xi+1, i ≥ 1,

where {y1, x1, y2, x2, . . . } are basis vectors. Then one can check that N F is residually nilpotent and then residually solvable.
Thanks to Proposition 3.1, it is enough to study even derivations. In particular we have the following result.

Proposition 4.2. The space of even derivations of the superalgebra N F is the following:

Der0(N F ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d(y1) =
t∑

i=1
αi yi,

d(yk) = (2k − 1)α1 yk +
t∑

i=2
αi yi+k−1, where k ≥ 2,

d(xk) = 2kα1xk +
t∑

i=2
αi xi+k−1, where k ≥ 1,

for some t ∈N .
10
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Proof. Since {y1} is the unique generator of N F , we set d(y1) =
t∑

i=1
αi yi for some t ∈N .

Finally and by using the even superderivation condition, the expression desired is obtained. �
Note that, the maximal set of residually nil-independent derivations has dimension 1. Then we have the following theo-

rem.

Theorem 4.3. Let R = t
−→⊕ N F be a residually solvable Leibniz superalgebra with maximal pro-nilpotent ideal N F and maximal dimen-

sion of t. Then t−→⊕ N F can be expressed in a basis {z, x1, x2, . . . , y1, y2, . . . } by the only non-zero bracket products

R(α) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, i ≥ 1, [xi, y1] = 1
2 yi+1, i ≥ 1,

[y j, x1] = y j+1, j ≥ 1, [xi, x1] = xi+1, i ≥ 1,

[xi, z] = 2ixi +
t∑

k=3

αkxk+i−1, i ≥ 1, [y j, z] = (2 j − 1)y j +
t∑

k=3

αk yk+i−1, j ≥ 1,

[z, x1] = −2x1, [z, y1] = −y1,

[z, z] = −2
t−1∑
k=2

αk+1xk,

with β = (α3, . . . , αt) ∈Ct−2 and for some t ∈N .

Proof. In order to have a non-residually nilpotent derivation we get the condition α1 �= 0 (otherwise we have always a 
residually nilpotent derivation). Thus, the maximal number of derivations nil-independent is equal to one. We denote it by 
d if α1 = 1. After setting Rz = d we have the following bracket products:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[yi, y1] = xi, i ≥ 1, [xi, y1] = 1
2 yi+1, i ≥ 1,

[y j, x1] = y j+1, j ≥ 1, [xi, x1] = xi+1, i ≥ 1,

[x1, z] = 2x1 +
t∑

i=2
αi xi, [xk, z] = 2kxk +

t∑
i=2

αi xi+k−1, k ≥ 2,

[y1, z] = y1 +
t∑

i=2
αi yi, [yk, z] = (2k − 1)yk +

t∑
i=2

αi yi+k−1, k ≥ 2.

Let [z, x1] =
t∑

i=1
βi xi + δz be. Application of the super Leibniz identity for the triple {x1, z, x1} we get δ = 0 and β1 = −2. 

Thus, [z, x1] = −2x1 +
t∑

i=2
βi xi .

Now the super Leibniz identity for the triple {z, x1, x1} leads to [z, x2] = 0 and by induction method it is easy to prove 
that [z, xi] = 0 with i ≥ 3.

Let z′ = z −
t−1∑
i=1

βi+1xi be, then it is easy to prove that [z, x1] = −2x1.

Consider now [z, y1] =
t∑

i=1
γi yi . Using the super Leibniz identity for the triple {z, y1, y1} leads to γ1 = −1 and γi = 0, 

2 ≤ i ≤ t , that is, [z, y1] = −y1.
Applying the super Leibniz identity for the triple {z, y1, x1} we have [z, y2] = 0 and using the induction method ⇒

[z, yi] = 0, i ≥ 3.

Let [z, z] =
s∑

i=1
ci xi + τ z be. Now, we impose the super identity and derive a set of constraints for the structure constants 

as follows

Super Leibniz identity Constraint
{z, z, z} c1 = τ = 0,
{z, z, x1} α2 = 0, ci = −2αi+1, 2 ≤ i ≤ t − 1, and ci = 0, i ≥ t.

Thus, we have the multiplication table of the statement. �
Similar to Lie superalgebra, we prove that any superalgebra of the above family is complete. This result is tested below.

Theorem 4.4. Any superalgebra of the family R(α) is complete.
11
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Proof. This proof is similar to corresponding proof of Theorem 4.2 for Lie superalgebra. Thus, we only give some notes.
It is easy to check that R(α) is centerless. Note that {z, y1} are the generators of R(α) and since a derivation is com-

pletely determined by its values over the generators then it will be sufficient to show the existence of a ∈ R(α) such that 
d(v) = Ra(v) for v ∈ {z, y1}.

Let us define now for each k ∈N , Lk := span{yk, xk, yk+1, xk+1, . . . } and the quotient algebra

Rk(α) := R(α)/Lk = t
−→⊕ (N F/Lk) = t

−→⊕ N F

is finite-dimensional solvable Leibniz superalgebra (maximal extension) with nilradical the null-filiform Leibniz superalgebra 
N F k−1,k−1. By changing of basis it can be seen that the family Rk(α) is isomorphic to Rk(0) which is itself isomorphic to 
S N F k−1,k−1. In Proposition 3.2 showed that S N F n,m has all the derivations inner.

Let us set for any even derivation d:

d(y1) =
s∑

i=1

ai yi, d(z) =
s∑

i=1

bi xi + bz.

We consider k ≥ max{s, t}, then we have d(v) = d(v) = Rek
for some even element ek = ek + Lk and any v = v + Lk . We 

put then

ek =
k−1∑
i=1

λk
i xi + λkz + Lk

From the expressions d(z) = [z, ek], d(y1) = [y1, ek] we derive

s∑
i=1

ai yi − λk
1 y2 − λk y1 − λk

t−1∑
i=3

αi yi ∈ Lk,

s∑
i=1

bi xi + bz + 2λk
1x1 + 2λk

t−1∑
i=2

αi+1xi ∈ Lk.

Considering the coefficients over the basis vectors we have in particular that λk
1 = a2, λk = a1. Thus, ek = a2x1 + a1z. 

Analogously to Lie superalgebra, we conclude that ek = ek+1 for any k ≥ max{s, t}. Let l be the smallest k satisfying this 
condition. Then setting e := ek we get d = Re .

Analogously it can obtain the result for any odd derivation. �
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