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a b s t r a c t 

In this paper, we tackle the problem of enhancing the interpretability of the results of Cluster Analy- 

sis. Our goal is to find an explanation for each cluster, such that clusters are characterized as precisely 

and distinctively as possible, i.e., the explanation is fulfilled by as many as possible individuals of the 

corresponding cluster, true positive cases, and by as few as possible individuals in the remaining clus- 

ters, false positive cases. We assume that a dissimilarity between the individuals is given, and propose 

distance-based explanations, namely those defined by individuals that are close to its so-called proto- 

type. To find the set of prototypes, we address the biobjective optimization problem that maximizes the 

total number of true positive cases across all clusters and minimizes the total number of false positive 

cases, while controlling the true positive rate as well as the false positive rate in each cluster. We develop 

two mathematical optimization models, inspired by classic Location Analysis problems, that differ in the 

way individuals are allocated to prototypes. We illustrate the explanations provided by these models and 

their accuracy in both real-life data as well as simulated data. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

With the growing popularity of machine learning methods in 

ata driven decision making, their complexity is increasing too. 

his may harm interpretability, a desirable property that is sought 

n many domains, e.g., credit scoring, medical diagnosis, and reg- 

latory benchmarking [1–7] , but also imposed in the European 

nion’s new General Data Protection Regulation (GDPR) [8] when 

itizens are subject to algorithmic decision making. There have 

een some attempts to enhance the interpretability of Supervised 

earning methods [9,10] , e.g., an interpretable version of random 

orest [11] , support vector machines [12] , and deep learning [13] . 

his paper is devoted to the interpretability of one of the most 

opular Unsupervised Learning methods, namely, Cluster Analysis 

14] . The need of interpretability in Cluster Analysis arises in many 

pplications, such as security [15] , internet traffic [16] , finance [17] , 

ales profiling [18] , and astronomy [19] . 
� Area: Data-Driven Analytics. This manuscript was processed by Associate Editor 

oe Zhu. 
∗ Corresponding author. 

E-mail addresses: ecarrizosa@us.es (E. Carrizosa), kk.eco@cbs.dk (K. Kur- 

shchenko), amarin@um.es (A. Marín), drm.eco@cbs.dk (D. Romero Morales). 

f

b

d

i

p

d

ttps://doi.org/10.1016/j.omega.2021.102543 

305-0483/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article u
There are two ways of enhancing interpretability in Cluster 

nalysis: intrinsic models and post-hoc models. Intrinsic models 

uild simultaneously clusters and their explanations [20,21] , while 

ost-approaches are needed to interpret existing clusters, that have 

een built in the past, and for which we only have a label for each

ndividual. Throughout this section, we will use a running exam- 

le with clusters given, namely the real-world dataset containing 

2 countries about the opinions of political science students, see 

able 1 . In [22] , three clusters are given for this dataset, cluster 

 composed by Belgium, Egypt, France, Israel, and USA; cluster 2 

ith Brasil, India, and Zaire; and cluster 3 with China, Cuba, USSR, 

nd Yugoslavia. 

There are some works in the literature on post-hoc approaches. 

n [23] , the authors assume that the individuals have been eval- 

ated on a set of features and propose rule-based explanations. 

here are also ad-hoc approaches as those in, e.g., [24–26] , for spe- 

ific types of data. In this paper, we propose a post-hoc approach 

or interpreting clusters via means of prototypes. 

Our starting point is the predefined clusters in C, which have 

een obtained applying a clustering procedure to the set of in- 

ividuals N [27–33] . We propose a methodology to improve the 

nterpretability of the results of Cluster Analysis, by giving an ex- 

lanation to each cluster c ∈ C that characterizes as precisely and 

istinctively as possible c. In other words, the explanation is to be 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

Dissimilarities on opinions of political science students between the 12 countries in our running example, [22] . 

Country Dissimilarities to other countries 

Belgium Brasil China Cuba Egypt France India Israel USA USSR Yugoslavia 

Brasil 5.58 

China 7.00 6.50 

Cuba 7.08 7.00 3.83 

Egypt 4.83 5.08 8.17 5.83 

France 2.17 5.75 6.67 6.92 4.92 

India 6.42 5.00 5.58 6.00 4.67 6.42 

Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 

USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 

USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 

Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 

Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 
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ulfilled by as many as possible individuals of c (and these will be 

eferred to as true positive cases) and by as few as possible indi- 

iduals in the remaining clusters (which will be referred to as false 

ositive cases). 

Our explanations are distance-based, as in clustering procedures 

ttempting to partition the set of individuals such that individu- 

ls that are close to each other are allocated to the same cluster, 

hereas individuals that are far from each other are expected to be 

n different clusters. It is then natural to explain cluster c following 

 distance-based explanation such as 

 is the set of ind i v id uals of N that are close to 

a gi v en ind i v id ual i. 

To define distance-based explanations, we assume we are given 

 dissimilarity δ to measure the closeness between individuals 

34] . The dissimilarity between the 12 countries in our running ex- 

mple is given in Table 1 . Note that, in general, δ does not need to

e the dissimilarity used to construct the clusters in C. Actually, 

hat dissimilarity may not be available to us. 

How well this explains cluster c depends on the choice of indi- 

idual i to which we will refer as the prototype of cluster c [35,36] ,

n other words, the “face” chosen for the cluster. Our aim is to se- 

ect the set of prototypes that maximizes the total number of true 

ositive cases across all clusters and minimizes the total number 

f false positive cases while controlling the true positive rate as 

ell as the false positive rate in each cluster. With the methodol- 

gy proposed in this paper, the chosen prototypes for our exam- 

le are: France for cluster 1, Brasil for cluster 2, and Yugoslavia for 

luster 3. For cluster 1, all 5 countries are true positive cases, while 

one of the 7 countries in the other two clusters are false positive 

ases, yielding to the ideal quality of the explanation, namely 100% 

rue positive rate and 0% false positive rate. The same holds for the 

ther two clusters. 

In general, one cannot expect to find perfect explanations. In 

ig. 1 , we can see that by trying to improve the number of true

ositive cases of an explanation we may harm the number of false 

ositive cases. There we have two clusters, cluster 1 with 5 individ- 

als represented by a red star and cluster 2 with 4 individuals rep- 

esented by a blue star. If we look at the explanation in Fig. 1a for

luster 1, the circle in red containing 4 of the individuals from clus- 

er 1 and none from cluster 2, we see that there are 4 true positive

ases (or, equivalently, an 80% true positive rate) and 0 false pos- 

tive cases (or, equivalently, a 0% false positive rate), while for the 

lternative explanation for cluster 1 in Fig. 1b , the number of true 

ositive cases has increased to 5 (achieving a 100% true positive 

ate) but the number of false positive cases has gone up to 1 (25%

alse positive rate). 

To find the set of prototypes, we propose two mathematical 

ptimization models, the covering and the partitioning ones, in- 

pired by classic Location Analysis problems, namely the covering 
2 
37] and the p-median problems [38,39] . In the covering model, a 

luster is explained as the individuals whose distance to its pro- 

otype is below a threshold value, i.e., the explanation of cluster 

can be visualized as the ball in the distance δ centered at its 

rototype and radius equal to the corresponding threshold value. 

nstead, in the set-partitioning model, cluster c is explained as the 

ndividuals that are the closest to the prototype of c than to the 

rototypes of the other clusters. In this case, the explanations can 

e visualized as Voronoi diagrams. For both models, we provide 

 Mixed Integer Linear Programming (MILP) formulation, where in 

he covering one, in addition to the prototypes, we need to decide 

he size of the radii. 

The remainder of the paper is organized as follows. 

ection 2 presents the covering model, while Section 3 the 

artitioning model. Section 4 provides numerical results for real- 

ife data as well as simulated data. Section 5 summarizes the 

aper and proposes future lines of research. 

. The covering model 

In this model, given a cluster c, a prototype i , an individual will 

e considered covered by cluster c if it is close enough to i . By 

lose enough we mean that their dissimilarity is below a threshold 

alue r c , which is the coverage radius. Our aim is thus to find the

rototypes and the cluster radii. Observe that, with this approach, 

n individual could be covered by more than one cluster if some 

f the radii are large, while some individuals may not be covered 

y any cluster when the radii are small. We obtain an MILP for- 

ulation for this problem, which is separable on the clusters. We 

how how the radii can only take on a discrete amount of values, 

nd give an alternative Integer Programming (IP) formulation for 

 fixed radius. We focus on the most interpretable case in which 

nly one prototype per cluster is to be selected. The extension to 

ore than one prototype is straightforward. 

Let us introduce the problem more formally. We are given a 

lustering C obtained from splitting the individuals in N , N = 

 

c∈C N c . The prototype of cluster c is chosen from set I c ⊆ N c , with

 = 

⋃ 

c∈C I c . We are also given the dissimilarity between prototype 

 and individual n , δin , for every i ∈ I and n ∈ N . This dissimilarity

oes not need to be the one that was used to construct the clus- 

ers. As pointed out in the introduction, we may have been given 

nly clusters, and neither the method nor the dissimilarity used to 

uild them. 

Let r c be the radius of the explanation chosen for cluster c. For 

 ∈ I c , let πin be the binary decision variable which takes on the 

alue 1 if n ∈ N lies in the ball of radius r c centered at prototype

 ∈ I , and 0 otherwise. Moreover, let z i be the binary decision vari-

ble which takes on the value 1 if i is chosen as prototype and 0

therwise. Throughout the paper, we use bold typesetting to de- 

ote the vectors, e.g., r = (r c ) c∈C . 
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Fig. 1. Illustration of the trade-off between true positive and false positive cases. 
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With these variables, the number of true positive cases in cluster 

is equal to 
∑ 

i ∈I c 
∑ 

n ∈N c πin z i and the True Positive Rate ( TPR c ) 

s 

PR c = 

∑ 

i ∈I c 

∑ 

n ∈N c 
πin z i 

| N c | , (1) 

hile the number of false positive cases in cluster c is equal to 
 

i ∈I c 
∑ 

n ∈N\N c πin z i and the False Positive Rate ( FPR c ) is 

PR c = 

∑ 

i ∈I c 

∑ 

n ∈N\N c 
πin z i 

|N \ N c | . (2) 

The covering model reads as follows: 

ax 
z , π, r 

∑ 

c∈C 

∑ 

i ∈I c 

∑ 

n ∈N c 
πin z i − θ

∑ 

c∈C 

∑ 

i ∈I c 

∑ 

n ∈N\N c 
πin z i (3) 

.t. 
∑ 

i ∈I c 
z i = 1 , ∀ c ∈ C (4) 

 c ≥ δin πin , ∀ ( i, n ) ∈ I c × N c , ∀ c ∈ C (5) 

 c ≤ δin + ( r max 
c − δin ) πin , ∀ ( i, n ) ∈ I c × N \ N c , ∀ c ∈ C (6) 

 

i ∈I c 

∑ 

n ∈N c 
πin z i ≥ � λc |N c |	 , ∀ c ∈ C (7) 

 

i ∈I c 

∑ 

n ∈N\N c 
πin z i ≤ 
 μc | N \ N c | � , ∀ c ∈ C (8) 

 

min 
c ≤ r c ≤ r max 

c , ∀ c ∈ C (9) 

 i ∈ { 0 , 1 } , ∀ i ∈ I c , ∀ c ∈ C (10) 

in ∈ { 0 , 1 } , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C. (11) 

he objective function is equal to the total number of true posi- 

ive cases across all clusters minus the total number of false posi- 

ive cases weighted by the trade-off parameter θ ≥ 0 . Constraints 

4) ensure that one single prototype is chosen for each cluster. 

onstraints (5) and (6) ensure that the decision variables πin are 

ell defined. Note that because of the shape of the objective 

unction, for n ∈ N c , we only need to ensure that if r c < δin then

= 0 , which is done by constraint (5) . For n ∈ N \ N c , we only
in 

3 
eed to ensure that if r c > δin then πin = 1 , which is done by con-

traints (6) . Note that if r c = δin then πin = 1 for individuals in-

ide the cluster c and πin = 0 for individuals outside the cluster 

. It is easy to see that constraints (7) control the true positive 

ate in cluster c, TPR c , via the parameter λc ∈ [0 , 1] . Similarly, con-

traints (8) control the false positive rate in cluster c, FPR c , via the 

arameter μc ∈ [0 , 1] . Finally, constraints (9) –(11) define the na- 

ure of the decision variables. The radius of cluster c is bounded 

rom below and above by r min 
c and r max 

c , respectively. Straightfor- 

ard values for these parameters are r min 
c = min (i,n ) ∈I c ×N c ,i � = n δin 

nd r max 
c = max (i,n ) ∈I c ×N c δin . 

Note that the objective function contains the total number of 

rue and false positive cases across all clusters, while constraints 

7) –(8) allow us to control these two criteria in each cluster. These 

onstraints can be useful when we want to prioritize how well we 

xplain certain clusters, or when the clusters are of very different 

ize and we want to ensure a good performance independently of 

heir size, as we do in the numerical section for the real-world 

ataset. 

In formulation (3) –(11) , we have the product of two decision 

ariables, i.e., πin and z i , which makes the problem bi-linear. We 

an obtain an equivalent MILP formulation, by applying the Fortet 

ransformation [40] . Let us introduce the new decision variable 

 in = πin z i and the following constraints to ensure y in is well- 

efined: 

 in ≤ πin , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C (12) 

 in ≤ z i , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C (13) 

 in ≥ πin + z i − 1 , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C (14) 

 in ∈ { 0 , 1 } , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C. (15) 

he covering model (3) –(15) has been formulated as an MILP with 

 |I| × |N | + |I| binary and |C| continuous decision variables, and 

 |I| × |N | + 4 |C| linear constraints. Note that this MILP formula- 

ion is separable on the clusters. Indeed, the objective function 

onsists of a summation across the clusters of the number of true 

ositive cases minus the number of false positive cases weighted 

y θ . Similarly, the constraints relevant to c only involve decision 

ariables relating to c. 

We have modeled the radius of cluster c, r c , as a continuous 

ariable. However, it is easy to show that we only need to consider 

 discrete amount of values, namely, r c ∈ { δin , ∀ (i, n ) ∈ I c × N c } .
uppose that we solve the covering model for one of these val- 

es. Since the radius is fixed, the values of π are known and can 
in 
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Fig. 2. The Canadian weather data grouped into four clusters by climate’s type: Atlantic - blue, Continental - pink, Pacific - red, Arctic - green. Days are along the horizontal 

axis, temperatures are along the vertical axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Simulated data in R 2 with three clusters. 
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a∑

T

e calculated in a preprocessing step, as well as the true positive 

ases and false positive cases associated with i if i is chosen as a 

rototype. 

Let us denote by π r 
in 

the value of πin when the radius of cluster 

, r c , is fixed to r. Let us define 

r 
ic = 

∑ 

n ∈N c 
π r 

in , 

 

r 
ic = 

∑ 

n ∈N\N c 
π r 

in . 

ith this, the covering model for cluster c and radius r c = r can be 

ormulated as follows: 

ax 
z 

∑ 

i ∈I c 
φr 

ic z i − θ
∑ 

i ∈I c 
ψ 

r 
ic z i (16) 

.t. 
∑ 

i ∈I c 
z i = 1 (17) 

∑ 

i ∈I c 
φr 

ic z i ≥ � λc |N c | 	 , (18) 

∑ 

i ∈I c 
ψ 

r 
ic z i ≤ 
 μc |N \ N c | � , (19) 

 i ∈ { 0 , 1 } , ∀ i ∈ I c . (20) 

ote that the set of candidates to prototype for cluster c, I c , can

e reduced to I ′ c ⊂ I c . Some candidates can be removed because 
r 
ic 

< � λc |N c | 	 and others because ψ 

r 
ic 

> 
 μc |N \ N c | � . After reduc- 

ng the set of candidates from I c to I ′ c , we can eliminate con-

traints (18) and (19) , and the problem is equivalent to choosing 

he prototype from I ′ c with the largest φr 
ic 

− θψ 

r 
ic 

. 

To tackle large instances of the problem, i.e., with many indi- 

iduals, we can combine our covering model with a sampling pro- 

edure from the set of individuals and/or the set of candidates to 

rototype. Indeed, we can sample from the set of candidates to 

rototype for cluster c, yielding ˜ I c ⊂ I c , for all c, and/or sample 

rom the set of individuals from cluster c, yielding ˜ N c ⊂ N c , and 

olve the reduced covering model. Let z R 
i 

and r R c , i ∈ 

˜ I c and c ∈ C,

e the chosen prototypes and the chosen radii of the reduced prob- 

em if this is feasible. We can use this partial solution to find a 

easible solution to the original problem, (z O , πO , r O ) with z O = z R 
4 
nd r O = r R , satisfying constraints (7) , imposing a lower bound on 

PR c , and constraints (8) , imposing an upper bound on FPR c . Need- 

ess to say that this approach may not yield a feasible solution to 

he original problem, and we may need to sample more or make 

he values of λc and μc less restrictive. 

. The partitioning model 

An alternative way of explaining clusters by means of proto- 

ypes is the partitioning model. In this case, each individual is as- 

igned to exactly one prototype, namely the closest one. To do this, 

n addition to the z i variables defined as before, we also need the 

inary variables ρin that allocate individuals to prototypes. Let ρin 

ake on the value 1 if prototype i is the closest one to individ- 

al n from the chosen ones, and 0 otherwise. With these vari- 

bles, the number of true positive cases in cluster c is equal to 
 

i ∈I c 
∑ 

n ∈N c ρin and 

PR c = 

∑ 

i ∈I c 

∑ 

n ∈N c 
ρin 

| N c | , (21) 
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Fig. 4. For each cluster of the Canadian weather data, the true positive ratio and 

false positive ratio given by the covering model when λ and μ vary on a grid in 

[0 , 1] × [0 , 1] . 
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hile the number of false positive cases in cluster c is equal to 
 

i ∈I c 
∑ 

n ∈N\N c ρin and 

PR c = 

∑ 

i ∈I c 

∑ 

n ∈N\N c 

ρin 

|N \ N c | . (22) 

The partitioning model reads as follows: 

ax 
z , ρ

∑ 

c∈C 

∑ 

i ∈I c 

∑ 

n ∈N c 
ρin − θ

∑ 

c∈C 

∑ 

i ∈I c 

∑ 

n ∈N\N c 
ρin (23) 

.t. 
∑ 

i ∈I c 
z i = 1 , ∀ c ∈ C (24) 
5 
∑ 

j∈I c : δjn ≤δin 

z j + 

∑ 

j∈I: δjn >δin 

ρjn ≤ 1 , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C (25) 

in ≤ z i , ∀ ( i, n ) ∈ I × N (26) 

 

i ∈I 
ρin = 1 , ∀ n ∈ N (27) 

 

i ∈I c 

∑ 

n ∈N c 
ρin ≥ � λc | N c | 	 , ∀ c ∈ C (28) 

 

i ∈I c 

∑ 

n ∈N\N c 
ρin ≤ 
 μc | N \ N c | � , ∀ c ∈ C (29) 

 i ∈ { 0 , 1 } , ∀ i ∈ I (30) 

in ∈ { 0 , 1 } , ∀ ( i, n ) ∈ I × N . (31) 

he objective function (23) is as in the covering model, as well as 

onstraints (24) ensuring that we choose exactly one prototype for 

luster c and constraints (28) - (29) controlling TPR c and FPR c for all 

 ∈ C. Constraints (25) are the closest assignment constraints and 

einforce [41] using the fact that, for each cluster, only one pro- 

otype is chosen. These constraints make sure that if individual n 

s assigned to a prototype, then there cannot be another proto- 

ype closer to n . Constraints (26) ensure that individuals are as- 

igned to prototypes that have been selected. Constraints (27) im- 

ose that the model assigns each individual to a single prototype. 

onstraints (30) –(31) define the nature of the decision variables. 

ote that the integrality constraint on variable ρin can be relaxed 

o ρin ≥ 0 without loss of optimality, while in the objective func- 

ion it is enough to maximize 
∑ 

c∈C 
∑ 

i ∈I c 
∑ 

n ∈N c ρin thanks to con- 

traints (27) . The partitioning model (23) - (31) has been written as 

n MILP problem with |I| × |N | + |I| binary decision variables and 

 |I| × |N | + 3 |C| + |N | linear constraints. 

In the model above we have chosen one prototype per cluster. 

f we were to choose more than one, we will obviously need to 

hange the right-hand side of constraints (24) , as well as replace 

25) by the original [41] constraints 

 i + 

∑ 

j∈I: δin <δjn 

ρjn ≤ 1 , ∀ ( i, n ) ∈ I c × N , ∀ c ∈ C. 

Note that there is a clear difference between the partitioning 

odel (23) - (31) and the covering model introduced in the previous 

ection. To define the explanations in the partitioning model, we 

eed to know the prototypes for all clusters, while with the cover- 

ng model, due to its separability on the clusters, we can obtain ex- 

lanations for one single cluster without knowing prototypes from 

ther clusters. Nevertheless, to tackle large instances of the prob- 

em with many individuals, we can use a similar approach as in 

ection 2 , namely, we can reduce the size of the model that finds 

he prototypes by sampling in the set of individuals and/or the set 

f candidates to prototype. 

. Numerical results 

In this section, we illustrate the quality of the cluster expla- 

ations provided by the covering and the partitioning models us- 

ng both real-life data and simulated data. We measure the good- 

ess of cluster explanations by the true positive ratio TPR c and 

he false positive ratio FPR c in each of the clusters, defined in 

1) and (2) for the covering problem and in (21) and (22) for 
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Fig. 5. The chosen prototypes for the Canadian weather dataset highlighted in boldface, with λ = 0 . 80 and μ = 0 . 20 , for the covering model. The lines of the same color as 

the cluster denote true positive cases; the lines of color different from the one of the cluster denote false positive cases; the dashed lines of the same color as the cluster 

denote false negative cases. 
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he partitioning problem. The explanations are obtained assuming 

hat λ = λ1 = . . . = λ|C| and μ = μ1 = . . . = μ|C| . This means that 

hroughout this section, and with loss of generality, we impose the 

ame requirements on TPR c to all clusters, as well as on FPR c . 

We have set the parameter in the objective function of the cov- 

ring model, θ , which weighs between the total number of true 

ositive cases and false positive ones, equal to 1. This parameter 

oes not play a role in the partitioning model as pointed out in 

ection 3 , where we maximize the total number of true positive 

ases subject to the performance constraints on TPR c and FPR c . To 

llustrate the tradeoff between TPR c and FPR c , we vary the param- 

ters λ and μ on a grid in [0 , 1] × [0 , 1] . 

As real-life data, we use functional data relating to Canadian 

eather data, see Fig. 2 and Section 4.1 , publicly available in the R

ackage f da [42] . 

With this data we illustrate that our approach can generate 

ood explanations, i.e., with high TPR c and with low FPR c , and 

hat for some of the clusters we even obtain perfect explanations, 

.e., with TPR c = 1 and FPR c = 0 . Our grid results illustrate how 

y increasing the requirements on TPR c through the parameter λ, 

e have to compromise the FPR c of some clusters. In terms of 

imulated data, we use synthetic clusters in R 

2 , see Fig. 3 and 
a

6 
ection 4.2 , and illustrate how our approach achieves good expla- 

ations in terms of TPR c and FPR c , even for large number of indi- 

iduals |N | . 
To solve the mathematical optimization models arising we use 

urobi [43] with P ython [44] on a PC Intel®Core TM i7-8665U, 

6GB of RAM. We have imposed a time limit of 300 seconds to 

ach optimization model. Within this time limit, in our numerical 

esults below, we have been able to prove optimality or to show 

hat the problem is infeasible. 

.1. Results for real-life data 

The Canadian weather data contains 365 days of tempera- 

ure observations for |N | = 35 cities grouped into |C| = 4 types 

f climates: Atlantic ( |N Atlantic | = 15 ), Continental ( |N Continental | =
2 ), Pacific ( |N Pacific | = 5 ), and Arctic ( |N Artic | = 3 ). The data are

epicted in Fig. 2 , where the clusters are identified by a color, 

amely, blue for Atlantic, pink for Continental, red for Pacific, 

nd green for Arctic. To build the dissimilarity measure, we use 

 vectorial representation of each observation with the 365 daily 

emperatures. We measure the dissimilarity between n and i 

s the Euclidean distance between the corresponding vectors of 
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Fig. 6. For each cluster of the Canadian weather data, the true positive ratio and 

false positive ratio given by the partitioning model when λ and μ vary on a grid in 

[0 , 1] × [0 , 1] . 
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emperatures. In both the covering and the partitioning mod- 

ls, we consider I = N , i.e., all individuals are candidates to 

rototype. 

To illustrate the tradeoff between TPR c and FPR c for each clus- 

er, we vary λ and μ on a grid in [0 , 1] × [0 , 1] , namely, λ, μ ∈
 0 . 0 , 0 . 1 , 0 . 2 , . . . , 1 . 0 } . Recall that we impose the same require-

ents on TPR c as well as on FPR c to all clusters independently 

f their size, avoiding thus that our approach is significantly bi- 

sed towards those clusters with most individuals. The results for 

he covering model can be found in Fig. 4 , where we report the

PR c and the FPR c for each cluster, separately. We use a white 

ackground to denote a combination of (λ, μ) for which the cor- 

esponding model is infeasible, i.e., no explanation can be found 

nsuring a TPR c of at least λ and a FPR c of at most μ, for each 
7 
f the clusters. In general, the covering model finds good ex- 

lanations, i.e., explanations that have an attractive tradeoff be- 

ween TPR c and FPR c for all the clusters. This is the case for 

λ, μ) = (0 . 80 , 0 . 20) , for which TPR Atlantic = 0 . 80 , TPR Continental =
 . 92 , TPR Pacific = 0 . 80 and TPR Artic = 1 . 00 , while FPR Atlantic = 0 . 00 ,

PR Continental = 0 . 13 , FPR Pacific = 0 . 03 and FPR Artic = 0 . 00 . 

The explanations of the covering model for (λ, μ) = 

0 . 80 , 0 . 20) are depicted in Fig. 5 . 

In Fig. 5a we highlight in boldface the selected prototypes for 

ach of the clusters. Figs. 5b - 5e zoom in on each of the proto-

ypes and the individuals explained by them (true positive and 

alse positive), as well as the ones that should have been ex- 

lained but were not (false negative). To visualize this, we use 

ines of the same color as the prototype to denote true positive 

ases; the lines with a color different from the one of the pro- 

otype denote false positive cases; while the dashed lines of the 

ame color as the prototype denote false negative cases. For in- 

tance, in Fig. 5c , we can see that the prototype of the Continen-

al climate cluster is Uranium City (in boldface pink), Dawson is 

 true positive (pink line), Inuvik is a false positive (green line), 

hile Calgary is a false negative (dashed line in pink). We can 

ee that the covering model can find more than one explanation 

or an individual, e.g., Inuvik is explained by the prototypes from 

he Continental and the Arctic clusters, or not explained at all, e.g., 

algary. 

To end with the covering model we briefly discuss the range 

f values of TPR c and FPR c in Fig. 4 . By definition, the higher the 

alue of λ, i.e., the stricter we are on the minimum requirement 

n TPR c for all clusters, the worse the FPR c . For instance, for μ = 

 . 10 , FPR Continental worsens from 0.04 to 0.09 when increasing λ. 

imilarly, the lower the value of μ, i.e., the stricter we are on the 

aximum requirement on FPR c for all clusters, the worse the TPR c . 

or instance, for λ = 0 . 70 , TPR Continental worsens from 0.92 to 0.75 

hen decreasing μ. 

We now briefly discuss the results of the partitioning model for 

he Canadian weather data in Fig. 6 . Note that in this case, the 

artitioning model gives for each cluster the same TPR c and the 

ame FPR c for all combinations of (λ, μ) in the chosen grid for 

hich there is a feasible solution, i.e., for λ ≤ 0 . 80 and μ ≥ 0 . 10 .

ore detailed information on this solution can be found in Fig. 7 . 

here we can see that, as expected, the partitioning model gives a 

nique explanation for each individual. 

.2. Simulated data 

In this section we consider simulated data in R 

2 . The simulated 

ata consist of three clusters, see Fig. 3 where cluster 1 is depicted 

n blue, cluster 2 in green, and cluster 3 in red. The coordinates of 

he individuals in cluster c are randomly drawn from a multivariate 

ormal distribution, N 

(
β

c 
, 	c 

)
, with 

1 = (1 . 45 , 1 . 5) β
2 = (1 . 8 , 1 . 6) β

3 = (1 . 4 , 2 . 0) 

1 = 

(
0 . 01 0 . 00 

0 . 00 0 . 02 

)
	2 = 

(
0 . 02 0 . 00 

0 . 00 0 . 02 

)

3 = 

(
0 . 03 0 . 00 

0 . 00 0 . 04 

)
. 

e split the individuals in N roughly equally across the three clus- 

ers. 

The goal of this experiment is to show that our method- 

logy is scalable, i.e., it can handle datasets with large num- 

er of individuals and it can obtain good explanations in terms 

f TPR c and FPR c for all the clusters with both the cover- 

ng and the partitioning models. For this we consider instances 
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Fig. 7. The chosen prototypes for the Canadian weather dataset highlighted in boldface, with λ = 0 . 80 and μ = 0 . 10 , for the partitioning model. The lines of the same color 

as the cluster denote true positive cases; the lines of color different from the one of the cluster denote false positive cases; the dashed lines of the same color as the cluster 

denote false negative cases. 
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ith |N | ∈ { 10 4 , 10 5 , 10 6 } , and we vary λ and μ on a grid

n [0 , 1] × [0 , 1] , namely, λ ∈ { 0 . 85 , 0 . 86 , 0 . 87 , 0 . 88 , 0 . 89 , 0 . 90 } and

∈ { 0 . 05 , 0 . 06 , 0 . 07 , 0 . 08 , 0 . 09 , 0 . 10 } . 
To obtain the explanations, we apply the reduction technique 

escribed in Sections 2 and 3 for the covering and the partitioning 

odels, respectively. This consists of three steps, namely, (i) defin- 

ng the data for the reduced model, (ii) finding the explanations 

ith this new model, and (iii) evaluating the quality of the expla- 

ations in the original data. When performing (i), we select ˜ N c ⊂
 c using hierarchical clustering with the Euclidean distance as the 

issimilarity between the individuals in N c . We then choose the 

hreshold that yields | ˜ N c | groups of individuals. From each of these 

roups, we choose a representative randomly, which becomes an 

ndividual of ˜ N c . The selected individuals, with weights ˜ w n equal 

o the size of their group, across the three clusters compose ˜ N . 

e apply a similar approach to select the individuals in 

˜ I c ⊂ I c , 
or each c, by using as starting point ˜ I c and then partition it into 

 ̃

 I c | groups, and select a representative randomly that becomes a 

ember of ˜ I c . In (ii), we solve the covering and the partitioning 

odels with individuals in 

˜ N c weighted by ˜ w n and candidates to 

rototype in 

˜ I c . Third, for the obtained explanations, we calculate 
8 
PR c and FPR c on the original dataset N , with |N | ∈ { 10 4 , 10 5 , 10 6 } .
n the numerical results below, we take | ˜ N c | = 125 and | ̃  I c | = 25 ,

 = 1 , 2 , 3 . 

We now discuss the results for the covering model, see 

igs. 8 and 9 . We can see that the explanations obtained with 

he reduced problem show a good performance on the original 

ataset even when the number of individuals is very large, namely 

N | = 10 6 . To illustrate this, let us start with (λ, μ) = (0 . 90 , 0 . 10) .

n terms of true positive cases, for |N | ∈ { 10 4 , 10 5 , 10 6 } , we have

PR c equal to 0.91, 0.90, 0.90, for c = 1 , 2 , 3 . In terms of false pos-

tive cases, for |N | = 10 4 , we have FPR c equal to 0.08, 0.05, 0.05,

or c = 1 , 2 , 3 , while for |N | = 10 5 and 10 6 , FPR 1 worsens to 0.09.

his means that with the optimal solution of the reduced problem, 

e have been able to find explanations to the clusters that satisfy 

onstraints (7) for λ = 0 . 90 and (8) for μ = 0 . 10 . For other com-

inations of λ and μ, the quality of the explanations provided by 

he reduced problem is also good, with possible minor violations 

f constraints (7) or (8) . 

For the partitioning model, we use a similar procedure and the 

esults can be found in Figs. 10 and 11 . We can see from those

gures that the conclusions are similar. 
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Fig. 8. For each cluster of the simulated data, the true positive ratio given by the covering model when λ and μ vary on a grid in [0 . 85 , 0 . 90] × [0 . 05 , 0 . 10] , for the reduced 

problem as well as the original problem with |N | ∈ { 10 4 , 10 5 , 10 6 } . 

9 
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Fig. 9. For each cluster of the simulated data, the false positive ratio given by the covering model when λ and μ vary on a grid in [0 . 85 , 0 . 90] × [0 . 05 , 0 . 10] , for the reduced 

problem as well as the original problem with |N | ∈ { 10 4 , 10 5 , 10 6 } . 

10 
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Fig. 10. For each cluster of the simulated data, the true positive ratio given by the partitioning model when λ and μ vary on a grid in [0 . 85 , 0 . 90] × [0 . 05 , 0 . 10] , for the 

reduced problem as well as the original problem with |N | ∈ { 10 4 , 10 5 , 10 6 } . 

11 
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Fig. 11. For each cluster of the simulated data, the false positive ratio given by the partitioning model when λ and μ vary on a grid in [0 . 85 , 0 . 90] × [0 . 05 , 0 . 10] , for the 

reduced problem as well as the original problem with |N | ∈ { 10 4 , 10 5 , 10 6 } . 

12 
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. Conclusions 

In this paper, we have proposed a methodology to derive ex- 

lanations for the clusters obtained from a Cluster Analysis proce- 

ure. The explanations are distance-based and defined as the set 

f individuals that are close to the so-called prototypes. To find 

xplanations that are as accurate as possible, we select the proto- 

ypes that maximize the total number of true positive cases across 

ll clusters and minimize the total number of false positive cases, 

hile controlling the true positive rate as well as the false posi- 

ive rate in each cluster. We have introduced two prototype opti- 

ization models, namely, the covering and the partitioning mod- 

ls. Both models can be formulated as MILPs. We illustrate the ex- 

lanations provided by these models using both real-life data and 

imulated data. 

There are two interesting lines of future research. The first one 

s to strengthen the mathematical optimization formulations pro- 

ided in this paper, while the second one is to study the problem 

f building the clusters and explain them simultaneously. 
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