
1

We’re Not Gonna Break It!
Consistency-Preserving Operators for Efficient

Product Line Configuration
Jose-Miguel Horcas, Daniel Strüber, Alexandru Burdusel, Jabier Martinez, and Steffen Zschaler

Abstract—When configuring a software product line, finding a good trade-off between multiple orthogonal quality concerns is a
challenging multi-objective optimisation problem. State-of-the-art solutions based on search-based techniques create invalid
configurations in intermediate steps, requiring additional repair actions that reduce the efficiency of the search. In this work, we introduce
consistency-preserving configuration operators (CPCOs)—genetic operators that maintain valid configurations throughout the entire
search. CPCOs bundle coherent sets of changes: the activation or deactivation of a particular feature together with other (de)activations
that are needed to preserve validity. In our evaluation, our instantiation of the IBEA algorithm with CPCOs outperforms two state-of-the-art
tools for optimal product line configuration in terms of both speed and solution quality. The improvements are especially pronounced in
large product lines with thousands of features.

Index Terms—Software product lines, feature model configuration, search-based software engineering

F

1 INTRODUCTION

SOFTWARE Product Lines (SPL) aim to capture a range
of related software products by dividing them into

features and giving an explicit model of how features can
be combined to form valid products [1]. Such a feature
model [2] captures features as well as constraints about which
features must be part of every product, which features are
mutually exclusive, or which features require other features
to also be part of the same product. A feature model, thus,
can easily describe a very large set of products. Extended
feature models [3], which annotate features with additional
quantitative information, ask for configurations that are not
only valid, but also optimal with regard to a set of non-
functional attributes, for example, maximizing performance
and minimizing energy consumption. Since each feature
contributes to multiple, orthogonal objectives, the resulting
search spaces are complex with many local optima, rendering
the problem NP-complete [4].

Optimization for configurable software is a widely-
studied activity [5] and automated optimal configuration
has been studied for 15 years now [3]. Recent experimental
evaluations show that the most scalable approaches are
search-based ones that rely on metaheuristic algorithms,
specifically, the genetic algorithm IBEA [6], [7], [8], [9],
[10]. Solutions typically encode feature selection information
into a binary genotype and use standard genetic operators
for mutation and crossover [4], [6], [7]. They also support

• J. M. Horcas is with the CAOSD Group, ITIS, Universidad de Málaga,
Spain. E-mail: horcas@lcc.uma.es

• D. Strüber is with Chalmers | University Gothenburg, Sweden, and
Radboud University Nijmegen, The Netherlands.

• A. Burdusel is with the Department of Informatics, King’s College London,
United Kingdom.

• J. Martinez is with Tecnalia, Basque Research and Technology Alliance
(BRTA), Derio, Spain.

• S. Zschaler is with the Department of Informatics, King’s College London,
United Kingdom.

multi-objective optimisation, which is useful for supporting
extended feature models with multiple orthogonal objectives.

The standard genetic operators currently used tend to
create invalid configurations, which need to be repaired
during the search. For example, MODAGAME [8] includes
a dedicated “fix” operator, and SATIBEA [11] introduces
an additional mutation operator for repairing violations.
This has two main drawbacks: First, computing a repair
action during the search can be costly and impair the search
performance. Second, when the repair is not linked to a
particular change that introduced the violation, it becomes
somewhat arbitrary, thus potentially steering the search into
some non-optimal direction.

In this paper, we explore the idea that significant improve-
ments can be achieved if the search never produces invalid
solutions by design, removing the need for any form of repair
during the search. No previous work has investigated this: it
requires a method for ensuring validity when applying the
genetic operators, which was previously not available.

We propose the concept of consistency-preserving configura-
tion operators (CPCOs) for automated optimal configuration.
A CPCO is a mutation operator that bundles coherent sets
of changes, specifically, the activation or deactivation of a
particular feature with other changes that are needed to
preserve validity. CPCOs address the drawbacks of repair-
based approaches as follows: First, the need to compute
repair steps during search runs is removed; the operator
suite is generated “offline” before the search. Second, since
CPCOs encode minimal sets of changes required to preserve
validity, they allow to explore the search space in a systematic
way. As a further benefit, we can naturally define a crossover
operator, by splicing together parts of the sequences of CPCO
applications that led to the two parent solutions.

Implementing the generation of CPCOs naïvely leads
to scalability issues as it requires searching through a
substantial space of possible repair actions, which grows

2

very quickly in the size of the underlying feature model.
We introduce an efficient a lgorithm f or e ncoding CPCOs
as variability-based transformation rules [12], which can
represent multiple operators in a single compact rule. The
algorithm and encoding allow us to build on the substantial
advances made in SAT solving to help address the scalability
challenge underlying CPCO generation.

Our experimental evaluation shows that CPCOs lead
to highly efficient search operators for automated optimal
configuration, in two dimensions: First, we find significant
improvements in the quality of the obtained solutions
compared to the state of the art. Second, we find improve-
ments in the execution time of optimisation runs when
they are executed with generated CPCOs. The offline CPCO
generation adds a performance overhead, whose effect on the
overall execution time depends on the application scenario:
In “one-shot” scenarios where CPCOs are used only once,
the overall total execution time can become higher than with
conventional approaches, whereas the overhead becomes less
important in dynamic scenarios. For example, in dynamic
scenarios where the monitoring of quality attributes over
time can trigger periodic re-configurations b ased o n new
optimisation runs, CPCOs can be reused at no extra cost.

We make the following contributions:

1) We introduce CPCOs, bundling coherent sets of changes
that are required to preserve configuration validity.

2) We introduce an efficient algorithm for generating CP-
COs, as a naïve implementation of the formal procedure
would not be scalable.

3) We formally prove the soundness of the CPCO suite
defined by the algorithm. In other words, CPCOs always
lead to valid configuration changes.

4) We present a new tool based on our concepts called
aCaPulCO [13], implementing the IBEA algorithm with
mutation and crossover operators that apply CPCOs to a
binary vector-based encoding of configurations. CPCOs
are represented as transformation rules in the model
transformation language Henshin [14].

5) We evaluate our technique on ten standard benchmark
feature models, comparing the performance of aCa-
PulCO against two state-of-the-art tools. This evaluation
shows that our CPCOs support a more efficient search,
producing better solutions in faster time than state-of-
the-art tools. This observation is even more pronounced
for larger feature models with thousands of features.
Our evaluation artifacts are available online [13].

To the best of our knowledge, the only work that has pre-
viously explored search-based optimal feature configuration
with only valid solutions is Guo et al. [10]. They explore
validity preservation by adjusting the rate with which
SATIBEA uses the SAT solver solution repair, including a
parametrization in which every violation is repaired. Their
results suggest that using distinct repair steps based on SAT
solving does not generally improve search performance. We
speculate that this is because invalid solutions are fixed
without reference to the mutation or crossover that created
the solution. As a result, it is possible that a repair may
undo beneficial changes and may lead to large parts of the
search space remaining unexplored. In contrast, in this paper
we explore the use of SPL-specific mutation operators (the

CopyMedia SMSTransferPhoto Favourites

ViewFavourites

Screen2 Screen3Screen1

MobileMedia

Music Video

ReceivePhoto SendPhoto

MediaManagement ScreenSize

SetFavourites

MediaSelection

⇒SMSTransfer CopyMedia

Legend:

Mandatory

Optional

Or Group

Alternative Gr...

Feature

Fig. 1: Example feature diagram of Mobile Media.

CPCOs), which combine a mutation with the corresponding
repair so that invalid solutions are never created in the first
place. CPCOs also ensure that the repair does not directly
undo the intended change in feature activation.

The remainder of this paper is structured as follows:
We first introduce CPCOs in the context of an example
in Sect. 2, before describing a naïve algorithm for CPCO
generation in Sect. 3. Section 4 presents an efficient algorithm
for generating CPCOs. Section 5 explains how they can
be used in the context of evolutionary search for optimal
feature-model configuration, and introduces our tool that
implements this idea. Section 6 describes our evaluation,
including a discussion of the results and their validity. We
discuss related work and conclude in Sect. 7 and 8.

2 CPCOS BY EXAMPLE

Extended feature models and configurations. Feature mod-
els [2] allow specifying the variant space of a variant-
rich system in a hierarchical form, graphically commonly
represented as a feature diagram. A feature model comprises
a set of features and various relations, such as parent-to-child,
alternative groups, and exclusion between features. Each pos-
sible variant of the system arises from one configuration of
the feature model, that is, a subset of its features. The features
in the subset are called active in the given configuration.

The feature diagram in Fig. 1 represents the MobileMedia
SPL, a standard example for variability-rich systems [15].
MobileMedia is the root feature and has three mandatory
children, of which MediaSelection is an “or” group, Screensize
is an “xor” group, and MediaManagement has three optional
children. The implication cross-tree constraint at the bottom
represents a requires relationship exposing the need of select-
ing CopyMedia when SMSTransfer is selected. An example
for a valid configuration is c1 = {MobileMedia, MediaSelection,
Music, MediaManagement, ScreenSize, Screen3}. Adding Screen1
to c1 leads to an invalid configuration, because having
two active children of the same “xor” group violates an
underlying validity constraint of feature models.

Optimal configuration. In extended feature models [3], features
are augmented with attributes specifying the features’ contri-
butions to non-functional attributes. For example, consider
that each feature in Fig. 1 is annotated with two attributes:
• a cost, specified as a non-negative integer value, and
• a benefit, specified as a float between 0 and 10.
Optimal configuration is a multi-objective problem with

several objective functions, formulated over the quality
attributes (e.g., maximal benefit, minimal cost). Solutions
are Pareto fronts of non-dominated solutions. A solution is
non-dominated if there is no other solution at least as good
in all objectives and better in at least one objective.

3

<<preserve>>

SMSTransfer
active=false->true

<<preserve>>

ReceivePhoto
active<<set>>=true

<<preserve>>

SendPhoto
active<<set>>=true

<<preserve>>

CopyMedia
active<<set>>=true

Rule Act_SMSTransfer

<<preserve>>

Screen3
active=true->false

<<preserve>>

Screen1
active<<set>>=true

Rule De_Screen3

<<preserve>>

Screen2
active<<set>>=false

Screen1

<<preserve>>

Screen1
active<<set>>=false

<<preserve>>

Screen2
active<<set>>=true

Screen1 Screen2

Screen2

root

Constraint: root

Screen1 Screen2

Screen1 xor Screen2

Fig. 2: Example CPCOs: Activation operator for SMSTransfer;
deactivation operator for Screen3. The latter is a variability-
based rule (VB rule) with a rule-specific feature model and
presence conditions, shown with a light-grey background.

<<preserve>>

Screen3
active=true->false

Rule De_Screen3 with configuration {Root, Screen2}

<<preserve>>

Screen1
active<<set>>=false

<<preserve>>

Screen2
active<<set>>=true

<<preserve>>

Screen3
active=true->false

<<preserve>>

Screen1
active<<set>>=true

Rule De_Screen3 with configuration {Root, Screen1}

<<preserve>>

Screen2
active<<set>>=false

Fig. 3: Two CPCO variants for the deactivation of Screen3.

Automated configuration is an NP-complete problem [4]
with complex fitness landscapes. Available approaches to this
problem [4], [6], [7] rely on conventional genetic encodings
which are manipulated with standard operators. For example,
configurations of MobileMedia can be represented by a bit
vector of length 22, where each element represents the status
of a particular feature. A standard mutation involves the
toggling of a random element. In general, toggling a random
element—e.g., deactivating Screen3 in c1—leads to an invalid
solution that needs to be repaired. Computing the repair can
be computationally expensive and, depending on the repair
strategy, lead to certain regions of the search space being
neglected. Both factors can limit the efficiency of the search.

Consistency-preserving configuration operators (CPCOs).
To avoid these issues, we introduce CPCOs. These bundle
coherent sets of changes: the activation or deactivation of
a particular feature and other changes that are required to
retain validity. In general, each CPCO supports multiple
different sets of changes. For example, in response to deac-
tivating Screen3, either Screen1 or Screen2 can be activated.
Executing a CPCO involves randomly selecting one of these
change sets. In contrast to a conventional mutation operator,
each possible selection leads to a valid solution.

We define CPCOs using Henshin [14], a rule-based model
transformation language. Our reason for using Henshin is
twofold: (i.) it facilitates the inspection of CPCOs in a visual
syntax; (ii.) it provides natural support for rule variants
(discussed later). In Henshin, changes to an input model
(in our case, a configuration) are expressed as graphical
rules over a given metamodel (in our case, a configuration
metamodel). We generate this metamodel automatically for
the feature model. The metamodel has a singleton meta-
class for each feature with a single Boolean attribute active
representing the activation status of the feature.

For example, Fig. 2 shows two rules specifying CPCOs
for MobileMedia. Each rule contains a set of labeled nodes
and edges, where labels represent a type (e.g., SMSTransfer)

and an action (e.g., preserve1). Nodes can have attributes,
which have a type, an action (e.g., set), and a value. Rule
Act_SMSTransfer activates the feature SMSTransfer, which
necessarily includes the activation of its mandatory chil-
dren ReceivePhoto and SendPhoto, and, due to the cross-tree
constraint, feature CopyMedia. Therefore, the value of the
attribute active of these features is set to true. The two used
attribute notations specify that the SMSTransfer feature needs
to be inactive for the rule to be applicable, whereas the other
features are allowed to be already active.

Recall that most CPCOs encapsulate multiple possible
repairs, leading to several CPCO variants. To avoid having
many, largely redundant rules, we use a Henshin concept
called variability-based (VB) rules [12]. VB rules are a compact,
single-copy representation of several similar “flat” rules.
Elements of a VB rule are annotated with presence condi-
tions (PCs) over a rule-specific feature model. A PC is a
propositional formula, specifying a condition under which
the annotated element is present. To derive the encoded flat
rules, the feature model VB rule is configured; that is, each
feature is bound to true or false, and elements whose PC
evaluates to false are removed.

Rule De_Screen3 in Fig. 2 shows an example of a VB
rule that captures all the different options for repairing
a deactivation of feature Screen3. The rule-specific feature
model is shown in the top-right corner of the rule. Note that it
is significantly simpler than the original MobileMedia feature
model. It only contains an, always active, root feature and two
optional features labelled Screen1 and Screen2. In addition,
there is a cross-tree constraint specifying that either Screen1
or Screen2 must be selected.2 The rule explicitly sets the status
of Screen3 from active to inactive. In addition, depending
on the configuration of the rule-specific feature model, the
rule ensures exactly one of Screen1 and Screen2 is activated
instead. Figure 3 shows the two regular “flat” rules (a.k.a.
CPCO variants) that can be derived from the De_Screen3 VB
rule, corresponding to the two valid configurations of the
rule-specific feature model.

Note that CPCOs and their generation do not refer to
the attributes from the input feature model. CPCOs are to
be executed within mutation and crossover operators of
a genetic algorithm (see Sect. 5). The attribute values are
considered by the selection operator of that algorithm. This
leads to a key advantage of CPCOs: when the attribute values
change, generated CPCOs can be reused at no extra cost.

3 GENERATING CPCOS: BACKGROUND, PRINCI-
PLES AND NAÏVE GENERATION PROCEDURE

In this section, we explore the automated generation of
consistency-preserving configuration operators (CPCOs).
First we present background and assumptions on feature
models and the considered constraints. Then we present
and illustrate a procedure for generating CPCOs naïvely,
which does not yet scale to large feature models—an issue
we address later in this paper.

1. In general, Henshin supports additional actions such as delete and
create for expressing more complex transformations.

2. The included constraint could have been expressed by an xor-group
in the rule-specific feature model. We are showing it as a separate
constraint in line with the structure of VB rules our rule-generation
algorithm (described in Sect. 4) actually produces.

4

3.1 Background and assumptions
We start by defining the notion of feature model addressed
by our CPCO generation procedure, including a feature hier-
archy and cross-tree constraints. Graphically, these concepts
are typically represented in feature diagrams [1].

Definition 1 (Feature m odel, C onfiguration). A feature
model fm is a set of literals called “features” with a strict
partial order defining a parent–child relation over the fea-
tures. There exists one feature that does not have a parent
and is, therefore, called the “root” feature. Child features can
be mandatory or optional. Features can be group features,
specifically, “ or” a nd “ xor” g roups; t hen t hey m ust have
at least two children. In addition, a feature model may
define cross-tree constraints capturing further “requires” or
“excludes” relationships between features.

Let a feature model fm be given. A configuration c i s a
subset of fm’s features. Given a configuration c, a feature f is
active iff f ∈ c. A configuration c is called valid if for all pairs
of features f, g ∈ fm, the following constraints are fulfilled:

1) CMAND: If g is a mandatory child of f and f ∈ c, g ∈ c.
2) CPAR: If g is the parent of f and f ∈ c, g ∈ c.
3) CREQ: If f requires g and f ∈ c, g ∈ c.
4) CEXCL: If f excludes g and f ∈ c, g 6∈ c.
5) COR: If f is an “or” group and f ∈ c, at least one of f ’s

children is active.
6) CXOR: If f is an “xor” group and f ∈ c, exactly one of

f ’s children is active.
7) CROOT: If f is the root feature of fm, f ∈ c.

Fig. 1 shows an example feature model. The discussion
at the start of Sect. 2 gives examples of valid configurations
for this feature model.

A feature f is either a core feature (i.e., every valid
configuration includes f), a dead one (i.e., no valid config-
uration includes f), or a real-optional one (i.e., there exist
valid configurations c1, c2 s.t. f ∈ c1, f /∈ c2; aka, variant
features [16]). The classification of a feature into core, real-
optional or dead might not necessarily align with whether the
feature is an optional child of its parent feature. For example,
SetFavourites is a mandatory child, but real-optional, since its
parent is not mandatory.

A feature model is called satisfiable iff there is at least one
valid configuration for it.

We assume that the feature model is satisfiable, that
it does not contain dead features, and that core and real-
optional features have been computed. This can be estab-
lished with available tool support [17] with help of SAT
solvers, which are known to be efficient for problem instances
in the size of feature models in practice. Satisfiability analysis
can be formulated as one SAT solver call per feature model.
The other analyses lead to one SAT solver call per feature [1].

3.2 Principle-based generation procedure
In the following, we will use the term ‘feature decision’
to refer to an individual decision about the activation or
deactivation of a specific feature.

We present a naïve procedure for generating a CPCO
for a given feature decision. To generate a full CPCO suite
for a given feature model, we apply this procedure to each
possible feature decision for a real-optional feature. That is,

we generate two CPCOs for each real-optional feature: one
for its activation and one for its deactivation.

Our procedure is based on a notion of principles, which
are applied recursively, as long as one of them is applica-
ble, starting from the given feature decision. A principle
formulates a set of actions to be performed in response to a
previous feature decision. Each action avoids that a constraint
violation (see constraints 1–7) arises. Since a considered
feature decision can be either an activation or deactivation,
we formulate a set of activation and deactivation principles:

Activation principles. Given a feature f to be activated:
1) ACTMAND: Activate all mandatory children of f .
2) ACTPAR: If g is f ’s parent feature and g is not a core

feature, activate g.
3) ACTREQ: If f requires another feature g (via a requires

relation) and g is not a core feature, activate g.
4) ACTGROUP: If f is an “or” or “xor” group, activate one

of f ’s children.
5) ACTXOR: If f is a feature in an “xor” group, deactivate

all of f ’s siblings.
6) ACTEXC: If f excludes or is excluded by a feature g,

deactivate g.
Deactivation principles. Given a feature f to be deacti-

vated:
1) DECHILD: If f has a non-empty set of active children

G (including group members, optional, and mandatory
children), deactivate each child in G.

2) DEXOR: If f is a feature in an “xor” group, activate one
of f ’s siblings or deactivate f ’s parent unless it is core.

3) DEOR: If f is a feature in an “or” group, activate one of
f ’s siblings or deactivate f ’s parent unless it is core.

4) DEPARENT: If f is a mandatory feature, deactivate f ’s
parent.

5) DEREQ: If a feature g requires f (via requires relation),
deactivate g.

In general, a CPCO can consist of several variants that
arise from multiple ways of applying a particular principle
(e.g., multiple siblings to choose from or deactivating the
parent in DEXOR). Therefore, the output of the generation
procedure is a collection of variants. Executing the generated
CPCO involves randomly picking and applying one variant.
To produce all variants, the recursion is branched: each way
of addressing a principle is explored in a new call of the
recursive procedure. When a branch ends (i.e., no further
principle applications possible), the result is added to the
collection of produced variants.

Consider the generation of the CPCO Act_SMSTransfer
from Fig. 2. The initial solution contains only the activation
node for SMSTransfer. During successive, recursive calls, the
ACTMAND and ACTREQ principles are applied, leading
to partial and eventually full solutions that incorporate
activation nodes for ReceivePhoto, SendPhoto, and CopyMedia.

Let us consider a CPCO with multiple variants. When
generating De_Screen3, there are two possible ways of im-
plementing principle DEXOR: we can activate either Screen1
or Screen2. To ensure completeness, we fork the generation
process and generate two separate rules, one of them leading
to the activation of Screen1, the other to the activation of
Screen2. These rules are equivalent to those shown in Fig. 3.

If multiple groups and cross-tree constraints are involved,
combinatorial effects quickly make this approach infeasible

5

for large feature models. For example, for 2 alternative
groups f, g that each have 100 leaf children, the activation
operator for f comprises 1002 variants if f requires g. In the
next section, we present an efficient g eneration algorithm
that relies on the (de)activation principles, but addresses the
problems highlighted here.

4 EFFICIENTLY GENERATING CPCOS

Generating CPCOs for realistic feature models becomes
challenging quickly:

1) Applying one of the (de)activation principles creates
new feature decisions, requiring recursive application
of the principles. This can lead to potentially long se-
quences of feature decisions. Due to cyclic dependencies,
a naïve generation approach might not terminate.

2) Application principles like ACTGROUP or DEOR offer
alternative options for repair. As the number of feature
groups grows, the number of repair options multiplies.

It may, therefore, not always be possible in practice to
generate complete CPCOs that encode all possible variants of
sustaining consistency in response to a given feature decision.
Moreover, explicitly enumerating even a subset of variants
may be inefficient. In this section, we present an efficient
technique for representing and generating a CPCO for a
given feature decision. We aim to generate ‘minimal’ CPCOs
capturing minimal configuration changes required to ensure
consistency of the configuration.

Our solution relies on the set of principles of feature
activation and deactivation introduced in Sect. 3. In addition,
three key ideas underlie our solution:

1) To efficiently compute the dependencies between all
feature decisions for a given feature model, avoiding
the need to encode each possible path individually, we
introduce the new concept of a feature-activation diagram;

2) To minimise the size of the generated operators, we
compactly encode CPCOs as VB rules (cf. Sect. 2, [12]);

3) To generate VB rules encoding a minimal CPCO for each
feature decision, we efficiently analyse sub-diagrams of
feature-activation diagrams.

Figure 4 gives an overview of the overall algorithm as an
activity diagram. We will discuss the various steps in more
detail below, starting with the notion of feature-activation
diagrams and how they can be computed.

4.1 Feature-activation diagrams
A feature-activation diagram is a compact representation
of all the implications of every feature decision for a given
feature model. These diagrams allow us to encode, in a graph,
many often overlapping repair paths. The graph grows
linearly with the number of real-optional features. Analysing
feature-activation diagrams can efficiently produce CPCOs
encoded as variability-based rules.

Definition 2 (Feature-activation diagram). A feature-
activation diagram is a directed graph where the vertices
are either: 1) feature decisions, or 2) or-nodes introducing
alternative repairs. The edges of a feature-activation diagram
indicate direct consequences of a given feature decision.
Edges from feature decisions can lead to any kind of vertex.
Edges from or-nodes can lead to feature decisions only.

act generateOperator

feature

activate

addFeatureDecision FASD Analysis

<<datastore>>
Feature

Activation
Diagram

fd

feature decisions,
presence conditions

followOrs VB features

Constraint
Encoding

Or-Overlaps Or-Cycles

constraints constraints

constraints VB features

Dead Feature Removal

constraints PCs VB features

VB-Rule Encoding
VB rule

Fig. 4: Overview of CPCO generation algorithm. This algo-
rithm is invoked twice for every non-core, non-dead feature,
with activate set to true and false, respectively. Grey
activities are used to produce more efficient CPCO encodings
by discarding unnecessary VB-rule instances.

F1+

F2+ F3+

F1-

F2- F3-

F4-
OR0

OR1

OR2

OR3

OR4

OR5

OR6

F5+

F5- F6- F7-

F4+

F7+F6+

F1 requires F4

F3 excludes F5

ACTPAR

DECHILD

DEOR DEOR

ACTPAR

ACTGROUP

ACTREQ

DEREQ

ACTEXC

ACTPAR

ACTPAR

ACTPAR

ACTGROUP

ACTXOR ACT
XOR

ACT
XOR

DEXOR

DEXOR

DEXOR

DECHILD

DECHILD

D
E
C
H
IL
D

ACTEXC

Fig. 5: Example feature-activation diagram. The bottom-left
corner shows the feature model in FODA notation. The
remainder of the figure shows the corresponding complete
feature-activation diagram. +/− in feature-decision nodes
indicates feature activation / deactivation, respectively. Ar-
rows indicate the direct implications of a feature decision
as a result of applying the (de)activation principles. Two
example paths are indicated in green (regular dashes) and
orange (dash–dot)—see text for details.

A complete feature-activation diagram for a given feature
model contains exactly 2N feature decisions, where N is
the number of real-optional features in the feature model.
Figure 5 shows an example feature-activation diagram for a
simple feature model. For example, the diagram shows that
deactivating feature F1 requires the deactivation of features
F2 and F3. Deactivating F2 requires either the deactivation
of feature F1 or the activation of feature F3 and so on.

For a given feature decision, all feature decisions that
can be reached on a path describe one possible way of
ensuring a consistent configuration as a result of the given
feature decision. Multiple edges from a feature decision
indicate that all vertices reachable in this way must be

6

part of the path.3 Edges from an or-node indicate that only
one of the consequences needs to be part of the path. As
a result, or-nodes induce multiple valid paths through a
feature-activation diagram. In Fig. 5, two example paths for
F 1− are shown with the green and orange dashed arrows,
respectively. The green path indicates that one way of legally
deactivating F 1 is to also deactivate both F 2 and F 3 (and,
as a transitive consequence, F 1 again). The orange path also
indicates this, but states that there is the option to attempt to
make the deactivation of F 3 legal by activating both F 2 and
F 1 (and further consequences from this, which we are not
showing here explicitly).

Clearly, this path contains contradictory decisions about
the activation and deactivation of features. We will not
remove such paths from the feature activation diagram, be-
cause this would require explicitly exploring every possible
path. Instead, we will later (cf. Sect. 4.2) add constraints that
ensure only consistent paths can be selected.

Feature-activation diagrams can be efficiently computed
in an incremental fashion using Algorithm 1. This cor-
responds to the activity labelled addFeatureDecision
in Fig. 4. Starting from an arbitrary feature decision, we
recursively apply the appropriate activation and deactivation
principles from Sect. 3 (Line 7). At each step, we add edges to
represent all the newly computed consequences (Lines 13–18).
If a feature decision reached in this way is already part of the
feature-activation diagram, the edge connects to that feature-
decision node (Lines 2–4). Otherwise, we create a new feature-
decision node in the feature-activation diagram (Lines 5–11).
‘Or’ nodes are generated only for principles ACTGROUP,
DEXOR, or DEOR. All consequences generated in this manner
are added to the activation diagram (Line 17).

4.2 Analysing feature-activation sub-diagrams to gen-
erate CPCOs
Once we have a feature-activation diagram, individual
CPCOs can be generated by analysing the set of paths from
a specific feature decision (the CPCO’s “root” feature deci-
sion). Enumerating all paths explicitly can be prohibitively
expensive. However, we can collect a compact encoding of all
paths in a single depth-first search of the feature-activation
diagram, starting at the root feature decision:

1) All CPCO variants for the same root decision are
encoded in one VB rule. The VB rule’s feature model
expression captures the different possible repairs; every
valid configuration conforms to one possible repair. The
structure of the feature-model expression is designed to
avoid enumerating the repair options explicitly.

2) All information required for the construction of the VB
rule encoding is collected in a single, linear-time depth-
first traversal of the feature-activation diagram.

3) We discard unnecessary VB-rule instances by improv-
ing the VB-rule feature constraints, aiming to achieve
minimality of the CPCO encoded by a VB rule.

We discuss each of these steps in more detail below.
Encoding CPCOs as VB rules. Figure 6 shows an example
of a VB rule we would generate from a feature-activation

3. Note that this deviates from the common understanding of paths,
which does not support forks. In the appendix, we define a notion of
“toggle graph” that precisely captures our idea of paths.

Algorithm 1 Generating feature-activation diagrams.
Require: feature: feature to be (de)activated.
Require: activate: Boolean indicating whether to activate or deactivate feature.
Require: diagram: the global feature activation diagram.
Ensure: Returns a FeatureDecision object that is contained in diagram and repre-

sents the specified feature decision.
1: function ADDFEATUREDECISION(feature, activate)
2: fdNode← FIND(diagram, <feature, activate>)
3: if fdNode found then return fdNode
4: end if
5: decisionNode← new FeatureDecision(feature, activate)
6: diagram← diagram + decisionNode

. APPLYPRINCIPLES computes the direct consequences of the given feature
decision using the principles from Sect. 3.

7: immediateConsequences← APPLYPRINCIPLES(decisionNode)
8: for each consequence ∈ immediateConsequences do
9: ADDCONSEQUENCESTO(decisionNode, consequence)

10: end for
11: return decisionNode
12: end function

Require: node: a FeatureDecision contained in the global feature-activation dia-
gram, possibly not yet linked to its consequences.

Require: consequence: set of or- and and-connected feature decisions.
Ensure: node is correctly linked to its consequences and all paths from it are

included in the global feature-activation diagram.
13: procedure ADDCONSEQUENCESTO(node, consequence)
14: for each fd : FEATUREDECISION ∈ consequence do
15: consequence←

(consequence \ {fd})∪{ADDFEATUREDECISION(fd.feature, fd.activate)}
16: end for
17: diagram← diagram + edges from consequence
18: end procedure

diagram. The feature-activation diagram is shown on the left
of the figure and is a subset of the diagram in Fig. 5 where,
for illustration purposes, we ignore the cross-tree constraints
from the original feature model. The VB rule implements the
operators for the deactivation of feature F1.

The key idea here is that we encode only the start of
a path and the implications at each decision node in the
feature-activation diagram rather than encoding every path
individually. We encode CPCO variants using the following
elements (the Roman numerals super-imposed over the
rule in Fig. 6 correspond to the numbers in the following
enumeration): (i) we include every feature decision from
the activation sub-diagram (the root decision is marked up
to check the original activation state of the feature and all
other decisions are marked to simply change the state to the
desired target state irrespective of the initial state); (ii) we
associate each feature decision with a presence condition,
a disjunction of VB-rule features associated to paths that
lead to the decision; (iii) we add a top-level, optional VB-rule
xor-group feature for every or-node in the feature-activation
sub-diagram with a child VB-rule feature for every edge
leaving the or-node4; (iv) we add cross-tree constraints
to the VB rule that enforce an implication between each
or-alternative and its next or-node in the feature-activation
diagram; and (v) we add cross-tree constraints to the VB
rule that disallow conflicting feature decisions (e.g., F1+ and
F1−) to be selected at the same time (the constraints specify
a mutual exclusion between the presence conditions of both
feature decisions). Point (iv) about or-implication constraints
is particularly important: by only encoding the links between
each or-alternative and the next or-node, we avoid having to
explicitly enumerate all paths. These are instead induced by

4. Note that or-alternatives are labelled Onm, where n corresponds to
the index identifiying the or-node andm is an index uniquely identifying
the alternative among the alternatives for or-node n.

7

R
u

le
 D

e
_F

1

F2
active<set>=false

rootO21O31

F2
active<set>=true

O11O32
F3

active<set>=true

O12O22

F3
active<set>=false

rootO21O31

F1
active<set>=true

O11O32O12O22

F1
active=true->false

rootO21O31(i)
(ii)

root

O31 O32

OR3

O11 O12

OR1

O21 O22

OR2

(rootO21O31)  (OR2OR3)
 (O22O32O11O12)  OR1

((rootO21O31)(O11O32O12O22))
((rootO21O31)(O11O32))
((rootO21O31)(O12O22))

(iii) (iv)

(v)

F1+

F2+F3+

F1-

F2- F3-

OR1

OR2 OR3

root

O21 O31

O22 O32

O12 O11

Legend

follow-or relations (colours cor-
respond to constraints in (iv))

O11O32
Presence condition (colours
correspond to constraints in (v))

O21

Numbered or-alternative – corresponds
to feature name in VB-rule feature model

(iv)
CPCO encoding element (numbers cor-
respond to numbers in text)

Fig. 6: Example VB rule generated for deactivating feature F1 given the feature-activation diagram on the left.

the transitivity property of the implication operator.
While the rule in Fig. 6 does indeed capture all possible

variants for this case, it is unnecessarily complicated. For
example, the exclusion constraints (v) mean none of the
feature activations in the bottom row can ever be used,
so they could be removed from the rule. In fact, the only
possible configuration of the rule-specific feature model in
this case is root ∧O21 ∧O31. We will return to this insight at
the end of the section and describe how we generate more
concise VB rules. First, we describe how the information
required can be efficiently extracted from a feature-activation
diagram. Note that encoding is done after the information
has been collected; Fig. 4 shows this as an activity labelled
Constraint Encoding.
Collecting CPCO information from feature-activation dia-
grams. We collect all information required for building the
VB-rule encoding in a single sweep of the feature-activation
sub-diagram. The key insight is that we can read off presence
conditions by tracking the last or-nodes encountered and the
branch taken out of those or-nodes, and we can read off the
or-implications by tracking the next or-nodes we reach going
forward through the feature-activation diagram. This can
be done in a depth-first sweep: when we encounter a node
we have previously visited, the information about any paths
beyond that node is already available and we only need to
add information about the new path through which the node
can be reached (i.e., an additional presence condition). To
be able to take this additive approach and still propagate
presence conditions through the graph, we track presence-
conditions by proxy (pc(x) standing in for the actual final
presence condition at node x, regardless of whether we have
already collected all information required). These proxies can
then be resolved after the depth-first sweep.

This corresponds to the activity labelled FASD
Analysis in Fig. 4. Algorithm 2 shows the core visit
function invoked as part of the depth-first search. Starting
from the root feature decision (Line 2), as we descend from
a node to its follower nodes, we pass along the currently
computed presence condition. As we return back up the
graph, we return the last or-node seen; this is later used to
construct the VB-rule or-implication constraints.

As discussed, or-implications and presence conditions
are initially collected as proxies (Lines 7 and 11, respectively)
that require resolution after the traversal of the feature-

activation sub-diagram is complete. Resolving proxies re-
quires a traversal of the underlying graph of proxies for
each feature-decision node (not shown here). Cycles in the
feature-activation diagram lead to cycles in the proxy chain,
which are broken by removing any occurrence of a proxy in
its own definition.

We, next, use the information thus gathered in the
following way: (i) for every entry in globalFollowOrs, we
generate an implication orAlternative⇒ orFeature stating
that or-node orFeature must be activated as a result of
activating orAlternative, because there is a path from
orAlternative to orFeature; and (ii) for every entry in
featureDecisions where both a positive and a negative
feature decision have been included in the VB rule, we
generate a mutual exclusion of the presence conditions of
the two feature decisions.

Discarding unnecessary VB-rule instances. The algorithm
described will generate VB rules where every instance is
a valid CPCO variant. However, the resulting VB rules
are unnecessarily large and the VB rule feature model
allows an unnecessarily large number of rule instances,
many of which are duplicates of other rule instances. We
apply three improvements to the generated VB rule to
address these problems. These improvements correspond
to the activities labelled Or-Overlaps and Or-Cycles
in Fig. 4 as well as Dead Feature Removal. The first
two of these improvements add additional constraints to
the VB rule, while the third improvement makes the VB
rule encoding more compact by removing parts of the
rule that can never be instantiated. These additional steps
can significantly improve the efficiency of the VB rules
generated. For example, in WeaFQAs [18], the initial VB
rule generated for the deactivation of the Security feature
allows more than 98,000 individual operators. After blocking
self-activating cycles (see below), this is reduced to 320 rule
instances. Removing dead features, removes 295 VB rule
features, significantly reducing the rule size. We give only
a high-level overview here, the full details are given in the
supplementary material (Appendix A).

Constraints for or-overlaps. Consider the excerpt of the feature-
activation diagram from Fig. 5 that is shown in Fig. 7. Note
how many or-nodes lead to the same feature decisions. For
example, O61, O31, O01 all lead to (F5+). This information is

8

Algorithm 2 Traversing feature-activation sub-diagrams.
. Collects the nodes in the feature-activation sub-diagram.

1: subdiagramNodes ∈ P(ActivationDiagramNodes)← ∅
. Traverse the feature-activation diagram starting from the current root

feature decision.
2: rootImplications← VISIT(root, PC(‘root’))

Require: node: feature-activation-diagram node to visit.
Require: pc: presence condition collected so far (an object).
Ensure: presenceConditions: global map from feature decisions to list of presence-

condition objects; initially empty.
Ensure: featureDecisions: global map from features to the feature-decisions en-

countered; initially empty.
Ensure: globalFollowOrs: global map from feature decisions to the or-nodes

following them in the feature-activation diagram; initially empty.
Ensure: Returns the set of or-nodes (or proxies) following node in the feature-

activation diagram.
3: function VISIT(node, pc)
4: if node is feature decision then
5: presenceConditions[node] += pc

6: if node ∈ subdiagramNodes then
. Return a proxy object representing all or-nodes following the feature de-

cision. This avoids having to explore from node again by reusing information
collected in other parts of the traversal.

7: return PROXYORIMPLICATION(node)
8: end if
9: subdiagramNodes← subdiagramNodes ∪ {node}

10: featureDecisions[node.feature] += node

. Return a proxy object representing all presence conditions collected for
node. Other parts of the traversal may reach node and will add to the full
presence condition represented by the proxy object.

11: newPC← PROXYPC(node)
. Step down. FLATMAP combines the sets returned into a single set.

12: followOrs = node.cons.FLATMAP(n | VISIT(n, newPC))

13: globalFollowOrs[node] += followOrs
14: return followOrs
15: else if node is or-node then
16: if node ∈ subdiagramNodes then
17: return FEATUREFOR(node) . Find and return the VB-rule

. feature created for node
18: end if
19: subdiagramNodes← subdiagramNodes ∪ {node}

20: orFeature← CREATEFEATURES(node) . Create VB-rule feature for node
. as an or-group with sub-features for each alternative

. Step down
21: for each c ∈ or.cons do
22: feature← FEATUREFOR(c)
23: followOnOrs← VISIT(c, PC(feature))
24: globalFollowOrs[c] += followOnOrs
25: end for

26: return orFeature
27: end if
28: end function

not captured in the VB rule we are currently generating and,
as a result, the current VB rule feature model allows multiple
configurations that lead to the same generated rule. For
example, selecting O61 and O02 selects the same set of feature
decisions as selecting O62 and O01. In addition to producing
such redundant rule instances, we are also generating unnec-
essarily large repairs for a feature decision. For example, if
OR0 is indirectly reached via O62, then we have already made
the decision to activate F6. Activating F5 in addition to F6
does not improve the repair for the deactivation of F7 (which
directly triggered OR0), it just makes our operator larger—
potentially a lot larger depending on the consequences of
activating F5. We avoid such situations by adding explicit
constraints that correlate decisions by different or-nodes.
Continuing our example above, we would add a constraint
O62 ∧OR0 =⇒ O02 to say that we will always choose O02

(and thus F6+) if we activate OR0 and have already activated

O62. Generating the additional data needed for constructing
these constraints can be done as part of Algorithm 2. The
key idea here is that we are already collecting data about the
last or-alternative seen as part of collecting information for
presence conditions. This information can be further analysed
to identify or-overlaps.

F2+ F3+

F1-

OR1

OR5

O11 O12

O51

O52

OR0

OR2

OR3

OR6

F5+

F5- F6- F7-

F4+

F7+F6+

O61 O62 O63

O21 O22

O01 O02

O31 O32

Fig. 7: Example or-overlap.

Blocking of self-activating cy-
cles. Figure 7 also demon-
strates another problem:
self-activating cycles. In
generating the VB-rule fea-
ture model, we have been
able to avoid having to
enumerate all repair paths
by only encoding direct
implications between or-
alternatives and the directly
following or-nodes and re-
lying on the transitive na-
ture of the logical implica-
tion to correctly reconstruct
the paths on rule instanti-
ation. However, this con-
struction allows some su-
perfluous rule instances to
be constructed, too, namely,
where there are cycles in

the or-implications. For example, O22 requires activation
of OR6 (because F7+ leads to F4+) and, in turn, O62 requires
activation of OR2 (because F6+ leads to F5−). With the
VB-rule feature model so far, activating or-alternatives in
a cycle is always possible, even without a path from the
root decision. This produces unnecessary repairs, making
the operator unnecessarily complex. Because there are many
cycles in a feature-activation diagram, and every cycle can be
activated freely, we end up producing an unnecessarily large
number of rule instances. To fix this, we add constraints to
ensure cycles can only be activated if there is a path from the
root decision into the cycle.
Removal of dead VB rule features. We identify dead VB rule
features and remove them from the VB rule. As a result, some
feature decisions will have an empty presence condition,
indicating they can never be part of any instance of the VB
rule. We remove these feature decisions from the VB rule.

4.3 Properties
We discuss three key properties of the generated CPCO suite.
Soundness. Soundness is vitally important for us: Since our
goal is to avoid the computation of fixes “online” during the
optimization run, applying any generated CPCO to a valid
configuration must not introduce constraint violations. In
appendix B, we provide a detailed and precise soundness
argumentation. Here, we give a summary of the main ideas.

During the first step (Algorithm 1), we recursively include
fixes for all violations that might arise. In consequence, each
path of the feature activation diagram encapsulates a sound
set of changes. In the second step (Algorithm 2), we show
that each instance of each generated CPCO represents a
complete path from the feature-activation diagram. Finally,
we show that the additional activities (gray part of 4) do not

9

threaten soundness, as they only remove potential CPCO
instances, but do not add new ones.

Completeness. A noteworthy question is whether the gen-
erated CPCO suite is complete: starting from a given initial
configuration, can an exhaustive search over the entire search
space be performed by applying generated CPCOs? While
we are optimistic that this is the case for our algorithm, a
formal proof is outside the scope of this work. However,
in our experimentation, we limit the number of generated
instances per CPCO, which in some cases could lead to a loss
of completeness: one CPCO instance might undo changes
performed by another instance that would be required to
reach a certain configuration. I n S ect. 6 , w e w ill s ee that
our approach still improves over the current state of the art,
which does not offer any completeness guarantees either.

Performance. We now discuss key performance aspects,
referring to appendix C for a more detailed argumentation.
In the first step (Algorithm 1), feature-activation diagrams
assume that the consequences of a feature decision are
independent of the context in which this feature decision
was made (i.e., the specific p ath t hrough w hich w e have
reached a feature decision does not affect the relevant
consequences). Therefore, a feature decision only occurs
in a feature-activation diagram once and its consequences
only need to be computed once. Generating a full feature-
activation diagram, then, requires the equivalent of one
complete traversal of the diagram—in effect, like a depth-
first search through the graph. Thus, the complexity is
bounded by O

(
F + C +G ·A2

g +X ·A2
x

)
, where F is the

number of real-optional features, C the number of cross-tree
constraints, G the number of group features, Ag the average
size of feature groups, X the number of xor-groups, and
Ax the average size of xor-groups in the feature model. The
computational complexity of constructing feature-activation
diagrams is, thus, dominated by the average size of group
features, but polynomial overall.

In the second step (Algorithm 2), reading off the in-
formation required for a CPCO is, at worst, another full
depth-first traversal of the feature-activation diagram. In
addition, we have to resolve proxies, which may require
an iteration over all features, and we generate two CPCOs
for every real-optional feature. This leads to an overall
complexity approximately cubic in the number of real-
optional features. In the additional activities (gray part of 4),
the computationally most expensive step is the dead-feature
removal, which relies on SAT solving. However, dead-feature
removal does not significantly impact the efficiency of the
generated CPCOs and we could remove it—trading space of
CPCO representation against speed of CPCO generation.

5 TOOL SUPPORT FOR CPCO-BASED AUTOMATED
OPTIMAL CONFIGURATION

To support optimal multi-objective product line configuration
based on our generated CPCOs, we developed a tool called
aCaPulCO. The distinguishing feature of aCaPulCO are its
mutation and crossover operators, which are completely
based on CPCOs, and guarantee solution validity throughout
the search. We use the genetic algorithm IBEA, based on an
available implementation from the jMetal framework [19]. In

aCaPulCO’s implementation, we reuse code fragments from
SATIBEA [11], specifically, parts of its solution encoding, ini-
tial solution generation, and selection. We replace SATIBEA’s
most significant components—specifically, its mutation and
crossover operators—with CPCO-based ones.

Solution encoding. Our encoding consists of two variables:
The main variable is a bit vector, in which each bit represents
the activation status of a particular feature. This variable is
based on the available encoding from IBEA. Additionally,
we maintain a history of CPCO rules that were previously
applied to produce the solution. The history variable enables
the use of CPCOs during crossover (explained below).

CPCO generation. We generate CPCOs using the algorithm
outlined in Sect. 4. As argued there, our generation algorithm
is efficient. Still, there is a performance bottleneck further
down the pipeline, as the generated CPCOs need to be
instantiated (via VB-rule configuration) to derive the encoded
CPCO variants. For this task, we rely on a SAT solver,
which can rapidly produce individual configurations, but
not all configurations. To keep the overall computational
load tractable, we made two design choices: we limited the
number of generated variants per CPCO to 1, and used a
time limit for CPCO generation, set to 10 minutes in our
experiment. Both design choices may affect the performance
of the resulting CPCO suite. Having more variants per CPCO
leads to more alternatives to choose from in each iteration
and, therefore, to a trade-off: in well-performing runs, it may
improve solution quality, while, across several runs, it may
negatively affect robustness. The time limit primarily affects
completeness: for any features for which no (de)activation
CPCO was generated before the time limit, that CPCO would
be missing. However, the (de)activation of these features
could still be contained in other features’ CPCOs.

Mutation and crossover. To mutate a given solution, we
randomly pick one of its real-optional features and apply
the corresponding activation or deactivation CPCO variant.
We map elements from the CPCO variant to bits from our
encoding based on feature names (which we maintain as
additional meta-information for the encoding). For crossover,
to derive two “children” from two given “parents”, we copy
each parent and apply the CPCO variants from the history
of the other parent. We only apply those CPCO variants not
already included in the child’s history.

Further components. To keep our comparative evaluation
as fair as possible, we kept the other components close to
SATIBEA’s implementation. For initial population generation,
we incorporated SATIBEA’s and MODAGAME’s strategies of
generating solutions by randomly applying one of multiple
SAT solving strategies. We reuse SATIBEA’s method for
comparing and evaluating solutions based on the problem-
specific objectives, formulated over the quality attributes
of the problem instance, plus a heuristic “helper” objective
(number of deactivated features). Finally, we use SATIBEA’s
binary tournament selection operator.

Quality assurance. We extensively tested our implementa-
tion on small test models as well as on all models from
our evaluation, with up to 14K features. In our test runs,
our implementation behaved in line with the soundness
guarantee: it never produced an invalid solution.

10

6 EVALUATION

Our evaluation is based on ten standard benchmark feature
models. We studied the solution quality and execution time
of automated configuration in our tool aCaPulCO, compared
to two state-of-the-art approaches and their associated tools.
All experiment results and artifacts to replicate the evaluation
are available as an online appendix [13].

6.1 Experimental setup

Considered approaches. We compare against two state-
of-the-art approaches for multi-objective optimization in
SPLs and their associated tools: MODAGAME [8] and
SATIBEA [11]. Both implement IBEA, which previously has
been found to be the best-performing genetic algorithm
for automated configuration [6], [7], [8], [9], [10]. Both
approaches rely on repair strategies, rather than avoiding
invalid configurations. To enable a fair comparison, we made
the following adaptations:
Quality attributes. Both existing tools consider three fixed qual-
ity attributes. MODAGAME uses the floating-point attributes
usability, battery consumption and memory footprint. SATIBEA
uses the attributes used before (boolean), known defects (float)
and cost (float). To c ompare a ll t ools o n a c ommon s et of
attributes, we decided to use those of MODAGAME, and
replace the three of SATIBEA; we modified SATIBEA’s im-
plementation accordingly. We generated the attribute values
for each feature in the same ranges as in MODAGAME’s
case studies based on a random uniform distribution, using
MODAGAME’s random quality attribute generator. This
type of distribution is a common practice in prior works for
attribute values generation [20].
Algorithm and parameter settings. MODAGAME supports
several optimization algorithms. From analyzing the eval-
uation results reported in [8], we identified I BEA a s the
algorithm producing the best results for feature models
with characteristics comparable to our evaluation models.
Hence, we used the IBEA implementation of MODAGAME.
SATIBEA and aCaPulCO are also both based on IBEA. We
used the default parameters values for all tools (e.g., mutation
and cross-over probability for MODAGAME and SATIBEA),
reported in the relevant papers [8], [11].
Termination criteria. MODAGAME stops after a given number
of evolutions (i.e., generations), while SATIBEA uses a
timeout, and aCaPulCO supports both. To ensure a fair com-
parison, we use the number of evolutions in our experiments.
We extended SATIBEA accordingly.
Evaluation corpus. We selected a set of ten feature models
(Table 1), varying in size and complexity. These feature
models have been described and used in papers published
within the software product line community, and they are
often used for evaluation purpose [8], [21], [22]. By design,
our technique is geared towards feature models with basic
cross-tree constraints (“requires” and “excludes”). Hence,
we preprocessed the feature models to remove constraints
representing more general boolean formulas. We later discuss
the implications of this preprocessing. The quality attribute
values were the same across the experiments for all tools.
Metrics. We compare aCaPulCO, MODAGAME, and SATI-
BEA on two quality criteria: solution quality and performance.

TABLE 1: Feature models corpus used for evaluation, with
number of features, group features (“or” and “xor”), core
features, cross-tree constraints (CTCs), number of configura-
tions (size of the search space), number of CPCOs generated,
and time to generate all CPCOs.

Feature model #Features #Groups #Core #CTCs #Configs #CPCOs Time

Wget [21] 17 1 2 0 8,192 30 0.24 s
Tank war [21] 37 8 7 0 580,608 60 0.41 s
Mobile media [15] 43 7 10 3 2,128,896 66 0.35 s
WeaFQAs [18] 179 36 1 7 2.93e24 356 130.61 s
Busy Box [22] 854 8 20 67 2.1e201 1,338 1.48 s
EMB ToolKit [22] 1179 70 78 1 2.6e118 426 10 min
CDL ea2468 [22] 1408 12 4 1281 3e136 2,560 20.23 s
Linux Distribution [22] 1580 10 6 247 2.85e419* 3,148 43.08 s
Linux 2.6 [22] 6353 137 51 3208 3.90e1672* 3,844 10 min
Automotive 2.1 [22] 14009 1135 1394 531 4.7e1260 1,600 10 min

* upper bound estimation.

Our quality measurement relies on hyper-volume (HV) [23],
a standard metric for evaluating multi-objective approaches.
Due to its desirable theoretical properties, HV is widely
accepted and used as a metrics for evaluating optimization
approaches [24], including the papers that introduced the
two compared tools [8], [11]. HV measures the volume in
the objective space covered by the members of a Pareto front
wrt. a given reference point [23]. The reference point can
be found by constructing a vector with the best objective
function values running the algorithm for a high number
of evolutions (e.g., 10000). In our experiments, we rely on
the jMetal framework [19] to normalize and calculate HV.
Higher values for HV are desirable, because a wider set of
non-dominated solutions can be obtained. Our measure of
performance is execution time.

A further metric of interest is the percentage of invalid
solutions in relation to the overall solution set. Both SATIBEA
and MODAGAME can produce invalid solutions. However,
while SATIBEA yields invalid solutions as part of its solution
set, MODAGAME only provides the valid solutions it found
as part of the solution set (for large feature models like
Linux and Automotive MODAGAME is unable to report
any solutions). For SATIBEA, we report the ratio of produced
valid solutions from the overall solution set. For aCaPulCO,
we have a check ensuring that indeed no invalid solutions
are reported (e.g., due to implementation bugs).
Set-up. For each tool and feature model presented in Table 1,
we performed 30 runs, and calculated the means, medians
and standard deviations for HV and execution time quality
indicators. We use a population of 100 solutions and a
termination criterion of 50 generations (5000 evolutions),
respectively, for each of our experiments. The experiments
were performed on a desktop computer with Intel Core
i9-9900K, 3.6 GHz, 32 GB RAM, Windows 10, and Java 13.

For hypothesis testing, we applied the Mann-Whitney
U test [25], commonly used with randomized algorithms
in software engineering. This allows us to check that the
differences between the three tools are statistically significant
rather than being due to the inherent stochastic nature of
the search process. We apply the test to compare both the
HV-values and the runtime of the three algorithms. The null
hypothesis is that the values of aCaPulCO are equal to the val-
ues of the other tools, while for the alternative hypothesis we
used a standard library: the scipy.stats.mannwhitneyu
package of SciPy.org. which supports the valuation of one-

11

sided alternative hypothesis (“greater”, “less”). Therefore,
our alternative hypothesis is that the values of aCaPulCO
exceed the values of the other tools in case of the HV metric,
and that the values of aCaPulCO are lower than the other
tools in case of the runtime metric. We report p-values, where
a value below 0.05 means that the comparison is statistically
significant a t t he 9 5% c onfidence le vel. We al so assessed
the effect size of our comparisons by using the A12 score
(calculated using the R package effsize), following Vargha
and Delaney’s original interpretation [26]: A12 ≈0.56 = small;
A12 ≈0.64 = medium; and A12 &0.71 = large.

6.2 Results
Table 2 gives an overview of the results of our experimental
evaluation. The table shows the results on HV and time
for the full run of 50 evolutions, providing the median
values over 30 runs, the standard deviation, as well as p-
values for the comparison between the tools. Figures 8–10
provide a more detailed analysis of the search process for
three exemplary cases—all other cases are similar to at least
one of the selected ones. Detailed data for the other cases
are available in the online materials [13]. Sub-figures (a)
contrast how the different tools converge to solutions over
multiple evolutions, while sub-figures (b) contrast the wall-
clock execution time required by the tool to compute this
number of evolutions. The diagrams show median values
calculated over the 30 runs.

Solution quality. As shown by the HV data in Table 2, aCa-
PulCO generally finds better solutions than MODAGAME
and SATIBEA. In the three smallest cases, the median quality
of the solutions found is similar to those of MODAGAME.
In the larger cases, it appears that aCaPulCO is able to cover
a larger part of the objective space than the other tools.
The difference in HV becomes greater as the search space
of the feature model grows in size, as occurs for WeaFQAs
(Fig. 9): 0.38 covered by aCaPulCO against 0.24 covered by
MODAGAME and by SATIBEA (45% of difference); and
for Linux (Fig. 10): 0.33 covered by aCaPulCO against 0.29
covered by SATIBEA (13% of difference). MODAGAME is
unable to find and report any solution for the Linux feature
model. In the case of Automotive 2.1, SATIBEA only reports 3%
valid solutions and a substantially lower HV than aCaPulCO.

All three tools show small standard deviations between
solutions, indicating a high robustness [27]. That is, the
variance between the solutions found in different runs is
small—an important criterion for practical use where it is
not feasible to execute many runs and select the best results.

The observed quality differences are statistically signif-
icant, with the exception of the smallest case Wget. The
differences between the tools are particularly pronounced in
terms of effect sizes. Except for case Wget, every comparison
between aCaPulCO and one of the compared tools exhibits a
large effect size (0.86 ≤ A12 ≤ 1.0, see Appendix D).

To ensure that the observed difference does not come from
a conveniently chosen termination criterion, we performed
additional experiments in which all tools were executed
with 20,000 instead of 5,000 evolutions (see Appendix E).
Yet, in these new experiments, the solutions found by
MODAGAME and SATIBEA are still outperformed by the
solutions found by aCaPulCO. We conclude that aCaPulCO

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Modagame

Satibea

(a) Hypervolume.

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Modagame

Satibea

(b) Execution time.

Fig. 8: Results for Mobile Media feature model.

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Modagame

Satibea

(a) Hypervolume.

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Modagame

Satibea

(b) Execution time.

Fig. 9: Results for WeaFQAs feature model.

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Satibea

(a) Hypervolume.

1,000 2,000 3,000 4,000 5,000
0

1

2

3

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Satibea

(b) Execution time.

Fig. 10: Results for Linux 2.6 feature model.

produced improved solutions in terms of quality, even more
so for larger feature models.
Convergence speed. Figures 8–10 allow us to compare
the convergence behavior of the three tools. We see that
aCaPulCO generally converges faster than SATIBEA. The
initial advantage can be explained because even at the
beginning, all solutions reported by aCaPulCO are valid,
giving a greater HV than SATIBEA’s HV with partially
invalid solutions. The same applies for MODAGAME, which
behaves almost identically to aCaPulCO in the smallest
case, MobileMedia. On the two larger cases, the drawbacks
of MODAGAME’s strategy become more manifest, as it
stagnates close to the initial HV for the case of WeaFQAs,
and cannot find any solutions for Linux 2.6.

Our tool aCaPulCO never produces an invalid configu-
ration. As a result, it can start exploring the search space
rather than spend time repairing the candidate solutions in its
population, as MODAGAME and SATIBEA have to. Similarly,
aCaPulCO has good potential for moving out of local optima
because its mutation and crossover operators contain self-
contained sets of changes that inherently lead to other valid
solutions. Overall, we observe improved convergence for
aCaPulCO especially for large feature models.
Execution time. aCaPulCO statistically significantly yields
the best execution times of all three tools for almost all
cases. The only exceptions are Wget and CDL ea2468,
where MODAGAME and SATIBEA, respectively, are faster.

12

TABLE 2: Comparison of hypervolumes (HV) and execution times (in seconds) of the three tools for each feature model.
Results show median (MD) and standard deviation (SD) values over 30 runs. Right hand side shows the results of applying
the Mann-Whitney U test comparing aCaPulCO with MODAGAME and SATIBEA, for HV and time, respectively.

aCaPulCO MODAGAME SATIBEA aCaPulCO HV is greater aCaPulCO time is faster
HV Time HV Time HV Time Invalid MODAGAME SATIBEA MODAGAME SATIBEA

Feature model MD SD MD SD MD SD MD SD MD SD MD SD Sols. p-value p-value p-value p-value

Wget 0.49 7.43e-4 0.23 0.05 0.49 7.64e-4 0.22 0.04 0.43 1.51e-2 0.35 0.05 1% 0.47 1.43e-11 0.99 2.42e-10
Tank war 0.55 1.63e-3 0.24 0.05 0.55 4.96e-3 0.25 0.04 0.39 3.79e-2 0.37 0.04 5% 6.15e-10 1.44e-11 8.31e-8 2.42e-10
Mobile media 0.47 1.23e-3 0.24 0.05 0.46 2.46e-3 0.26 0.04 0.35 2.11e-2 0.34 0.04 1% 4.59e-7 1.44e-11 1.28e-9 2.42e-10
WeaFQAs 0.38 1.90e-3 0.29 0.05 0.24 1.61e-2 0.52 0.05 0.24 2.18e-2 0.39 0.04 27% 1.44e-11 1.44e-11 2.42e-10 2.42e-10
Busy Box 0.37 2.32e-3 0.36 0.07 0.32 3.47e-3 1.14 0.06 0.29 1.23e-2 0.53 0.05 15% 1.44e-11 1.44e-11 1.44e-11 2.42e-10
EMB ToolKit 0.35 2.10e-3 0.61 0.08 0.27 4.52e-3 1.81 0.09 0.29 1.07e-2 0.80 0.08 26% 1.44e-11 1.44e-11 1.44e-11 2.42e-10
CDL ea2468 0.35 1.03e-3 0.82 0.08 0.17 5.91e-3 4.16 0.07 0.29 0.01 0.69 0.06 23% 1.44e-11 1.44e-11 1.44e-11 0.99
Linux Distrib. 0.34 2.33e-3 0.52 0.07 0.31 2.26e-3 2.44 0.08 0.30 1.17e-2 0.65 0.07 17% 1.44e-11 1.44e-11 1.44e-11 2.42e-10
Linux 2.6 0.33 3.73e-3 1.45 0.14 - - - - 0.29 9.50e-3 1.88 0.12 35% - 1.44e-11 - 2.20e-10
Automotive 2.1 0.30 1.01e-2 19.49 0.89 - - - - 0.02 6.34e-2 31.25 0.78 97% - 1.44e-11 - 1.44e-11

Runs: 30. Population: 100. Generations: 50 (5000 evolutions). Highlighted the best results for hypervolume (highest value) and execution time
(lowest value). If the values are equal, we highlight those with the lowest standard deviation. For p-values, we shaded cells below 0.05, i.e., the
alternative hypothesis is true and the comparison is statistically significant at the 95% confidence level.

The difference in time is significant in medium and large
search spaces as for WeaFQAs (Fig. 9): 0.29 seconds spent
by aCaPulCO against 0.52 seconds spent by MODAGAME
(57% of difference), and 0.39 seconds spent by SATIBEA
(29% of difference). MODAGAME, in particular, has been
highly optimised to be executable in a resource-limited
mobile environment [8], and this is clearly visible in the
execution-time results for the smaller feature models like
Wget, Tank War, and Mobile Media. However for larger
feature models, MODAGAME spends most of its execution
time fixing invalid solutions. Its repair operator randomly
toggles features until a valid configuration is found [8]. Thus,
for large-scale feature models like Linux and Automotive
the operator is not efficient or even unable to find a valid
configuration. The observed effects are strong: in 16 out of
18 comparisons, aCaPulCO outperforms the compared tools
with a large effect size (0.89 ≤ A12 ≤ 1.0; see Appendix D).

6.3 Discussion

Online vs. offline. A key feature of our approach is that
the operator generation is performed “offline”, before the
actual search, compared to the existing approaches that
compute repair steps during the search. This saves redun-
dant computation effort both during the search and across
multiple search runs. The latter is beneficial especially if the
search is to be run repeatedly, for example, in a dynamic
reconfiguration context in which the quality attribute values
are monitored and change constantly, making it necessary to
adapt the configuration to the changed values.

In a static application context where the search is executed
only once, the offline step can constitute a substantial part
of the total execution time. The total execution time of aCa-
PulCO can then be worse than that of the compared tools. For
example, when interpreting our results under the assumption
of such a “one-shot” optimization context, the total execution
of SATIBEA (31 seconds max.) is generally shorter than
aCaPulCO’s offline step alone, which in three cases took the
specified maximum time of 10 minutes (see the generation
times in Table 1). However, our approach still produces
substantially better solutions. In the largest considered case
Automotive 2.1, aCaPulCO clearly outperforms SATIBEA with

a HV of 0.30 instead of 0.02, whereas MODAGAME is not
even able to produce a solution.

Expressiveness. We assume a basic feature model dialect
with all FODA [2] concepts, namely: mandatory, optional,
“or” and “xor” group features, and basic cross-tree constraints
(“requires” and “excludes”). In practice, the usage frequency
and types of cross-tree constraints vary significantly between
projects. For instance, in Berger et al.’s industry study [28],
80% of the surveyed participants confirmed the existence of
constraints in their projects, and 45% state that on average
only a minority (less than 25%) of features is affected by
constraints. Constraints also may aim at different use cases
(e.g., enforcing correctness vs. improving user experience
during configuration [29]), which might require different
levels of expressiveness.

The most significant constraint type we do not address
explicitly are complex constraints based on arbitrary proposi-
tional formulas. Such constrains are important, for example,
in the automotive and embedded systems domains [22]. This
limitation does not apply to our compared tools SATIBEA
[11] and MODAGAME [8], whose repair operators are geared
to support arbitrary propositional constraints.

Knüppel et al. [22] provide an algorithm for transform-
ing complex constraints into additional features and basic
constraints. While this algorithm could render our method
applicable to the relevant feature models, it significantly
increases the number of features and constraints, creating a
scalability challenge. In additional exploratory experiments,
we applied our CPCO generation algorithm to versions of
our evaluation models created by that algorithm. The CPCO
generation scaled up to most considered cases, including the
largest considered one Automotive 2.1, but not to Linux 2.6.
To support complex constraints in such cases, we propose a
hybrid search strategy: use CPCOs for all basic constraints
and SATIBEA’s fix operator [11] to repair violations of
remaining constraints. Such a technique might yield a “sweet
spot” by relying much less on arbitrary repair and its
associated drawbacks than the compared tools do, while still
using repair for those constraints that cannot be addressed
with CPCOs yet. This is especially promising for feature
models that predominantly include basic constraints. For
example, Knüppel et al. report over 80% of all constraints in

13

the automotive domain to be basic [22].
Feature attributes. We do not make any assumptions about
feature attributes. In our evaluation, we focused on the
attribute model supported by the tools we compare against,
which does not address feature interactions. Studying the
impact of CPCOs on problems with interacting features is an
important avenue for future work, since feature interactions
lead to different fitness landscapes than orthogonal ones [9].
Since CPCOs lead to improved results in cases with basic
attributes, an NP-complete problem [4], we hypothesize that
we will see improved results for problems with feature
interactions as well. Further extensions not addressed by
our approach include clonable features [30], numerical
features [31], as well as constraints over quality attributes
[32]. We aim to consider these extensions in the future.

6.4 Threats to validity

Internal validity. A threat to internal validity is our choice
of configuration p arameters f or t he d ifferent t ools. I n the
experiments, for the considered tools, we used the default
parameter values as documented in the associated papers [8],
[11]. We believe that this setup ensures a fair comparison,
since all approaches are treated in the same way. While a
detailed evaluation of the optimization tool configuration is
out of the scope of this paper, we plan, as our future work,
to study how the tools’ configuration parameters affect the
search, and to perform a sensitivity analysis to study the
robustness of the tools wrt. configuration parameters.

External validity. Threats to external validity concern the
generalization of the results to other cases and tools. First,
the generalization to other cases might be limited by the ex-
pressiveness limitations identified and discussed in Sect. 6.3.
Second, like various state-of-the-art works [6], [7], [20],
we rely on randomly generated attribute values based on
a uniform distribution, leaving a study of the impact of
different distributions to future work. The closest work in this
direction is Siegmund et al.’s [9] performance comparison
of a single method on different problem instances (attribute
values sampled from a normal distribution vs. a randomized
distribution derived from empirical data). Our scenario
is different as we compare different methods on the same
problem instance, so that the impact of the chosen attribute-
value distribution is controlled for. Third, comparing our
technique to a wider selection of tools would lead to more
comprehensive results. Still, our considered tools are widely
used; specifically SATIBEA has inspired follow-up studies
fine-tuning aspects of its parametrization [10], [20], [33].

Construct validity. Implementation details can largely affect
the performance of a tool. Since MODAGAME is focused on
reducing execution time to be executed in mobile devices [8],
its implementation relies on performance-optimized data
structures from the High Performance Primitive Collections
(HPPC) instead of the Java built collection library. To address
this potential noise variable, we intend to experiment with
HPPC in the future as well.

Conclusion validity. Conclusion validity relates to the relia-
bility and robustness of our results. We address conclusion
validity by executing 30 independent runs of each experiment
and applying standard statistical analysis techniques (e.g.,

Mann-Whitney U test). Moreover, all the code, artifacts, and
data used in these experiments are available for replication
and further analysis [13].

7 RELATED WORK

Manual configuration. Configuration of SPLs is a process
that has been extensively studied. Some approaches on
feature model configurations are based on support for the
manual selection of features based on automated recom-
mendations. These suggestions can be based on heuristics
exploiting structural characteristics of the feature model (e.g.,
the most constrained variables first) [34], information from
existing configurations [34], [35], [36], or on how features
impact non-functional properties [35]. Despite that the initial
objective is to speed up the manual selection process, these
recommendation systems can often be used to automatically
complete the configuration process.

Repair approaches, such as range-fixes [37] and FaMa [38],
both take an invalid configuration as input, and generate a
list of possible fixes for the configuration. The user selects
the preferred fix. Both approaches assume a given faulty
configuration, and compute repair actions for it. In contrast,
our approach generates an operator suite that preserves
validity when applied to any given valid configuration.

To support users in making correct choices during manual
configuration, Krieter et al. [39] present a technique for prop-
agating the consequences of feature selection and deselection,
based on modal implication graphs (MIGs). Similar to us,
this approach tries to guide the configuration process to
avoid invalid configurations, rather than fixing them. An
important difference is that this technique does not aim to
preserve validity. A technical reason why this is challenging
is that MIGs represent group constraints in a coarse-grained
way: MIGs have an edge type for modeling that two features
are dependent “under certain conditions”, which includes
group constraints. Consequently, propagation may lead to
violations of group constraints that have to be fixed manually
by the user, leading to a semi-automated configuration
process. In our approach, we explicitly model the different
options for dealing with group constraints using OR nodes.
This allows full automation addressing all constraints while
avoiding repair actions.
Automated optimal configuration. Ochoa et al. [4] present
a systematic literature review on automated configuration.
The seminal approaches in the field relied on constraint-
satisfaction problem (CSP) solvers [3], [40] and custom
heuristics [41]. Examples of the now predominant search-
based paradigm are MODAGAME [8], SATIBEA [11], and
ClaferMoo [42]. To deal with validity constraints, these works
rely on repair strategies being computed during the search.
MODAGAME includes a custom “fix” operator, whereas
SATIBEA uses a SAT solver within a “smart” mutation
operator whose purpose is to remove violations introduced in
previous mutations. Xiang et al. vary SATIBEA by studying
the impact of different SAT solving techniques and configu-
rations during repair [20], [33]. We discuss the positioning of
our work in this line of research in Sect. 1.

Preserving valid configurations is a desired property in
automated optimal configuration. Guo and Shi [10] perform
an experimental evaluation of different search strategies

14

that differ in their handling of invalid solutions. For their
experiments, they developed several variants of the SATI-
BEA [11] tool. While they did not consider operators that
ensure validity of candidate solutions as we do, they find
favorable results for strategies that preserve valid solutions.

We assume that the quality attribute values are available.
Inferring these values (that is, building a performance
model) is a research direction by itself [21], and an accurate
performance model can help to significantly i mprove the
performance of a given optimisation framework [43]. As an
alternative to building a performance model, it has been
proposed [44], [45] to use random sampling to directly infer
configurations, and optimise them by identifying features
contributing to improved performance. This solution offers
performance benefits when the attribute values are unknown.
The authors also report improved accuracy when finding
optimal solutions during single-objective optimization. In
the present work, we consider multi-objective optimisation,
and a situation where the attribute values are known.

Further automated analyses. Beyond the optimisation con-
text, a related problem is to find arbitrary valid configurations
(as opposed to optimal ones)—a non-trivial issue for large
feature models. The standard approach for finding an
arbitrary configuration is to translate the feature model into a
propositional formula and feed it to a SAT solver. SAT solvers
scale up to millions of variables [46]. As an alternative when
all valid configurations need to be enumerated, BDDs are
known to be particularly efficient [3], a lthough t hey only
support cases with thousands of features, which excludes the
linux and automotive cases from our evaluation. SMT solvers
have been proven useful for a case with more than half a
million features [47]. While our approach has similarities to
the internal workings of a solver, SAT, BDD and, for that
matter, CSP and SMT solving are complementary to our
approach, since they produce concrete valid configurations,
instead of providing bundles of changes that guarantee
validity during reconfiguration. W e r euse s tandard SAT
solvers for instantiating the VB rules we generate for CPCOs.

A related concept to our operators are atomic sets [16],
which bundle several features that are always activated
together. The main use case of atomic sets is to make
automated analysis of SPLs more efficient by treating each
atomic set as a single, abstracted feature. However, in the
context of configuration, toggling entire atomic sets on or
off would not be an adequate alternative to our operators,
as it might lead to constraint violations: For example, a
feature f1 in the atomic set might require another feature
f2 which is not part of the atomic set, as it does not require
f1 as well. Lienhardt et al. [47] evaluated the benefits of
using feature model interfaces [48] in the performance of
valid configurations discovery. Slicing the feature model in
feature model fragments, that hide some of the features and
dependencies, can be a direction of future work to further
optimize our approach.

Prioritizing of user needs. Configuration processes usually
involve several stakeholders with their own needs and non-
functional expectations. To support this, staged configura-
tions of feature models [49], multi-views with configuration
work flows [50], and one-dimensional approximations [51]
have been proposed. In our work, we focus on complete

automatic configuration based on non-functional properties,
and provide a set of solutions with their trade-offs. This
allows stakeholders to make their own choice without requir-
ing stakeholder preferences to be captured and encoded; a
difficult and fragile process.

Consistency-preserving model transformation. In a line of
research on combining model transformation with search-
based software engineering [52], [53], [54], several works deal
with validity during generation and analysis of transforma-
tion rules. Kosiol et al. [55] support a consistency notion and
associated analysis to reason about the validity impact of a
particular rule; however, they do not consider rule generation.
Kehrer et al. [56] introduced an approach for generating
sound and complete set of edit rules for a given metamodel.
The supported notion of validity is focused on a certain
type of multiplicity constraints (closed multiplicities on both
sides of a reference). Burdusel et al. [57], [58] generalized this
approach to support arbitrary multiplicity constraints, albeit
without a completeness guarantee. They also applied the
generated rules to search-based optimization, in the context
of their MDEOptimiser tool [54]. For our considered problem,
we cannot benefit from these earlier works: Since they are
only tailored towards simple metamodels and not towards
feature models with their complex configuration spaces, they
do not include any means for addressing the combinatorial
effects that we tackle with our technique.

8 CONCLUSIONS

We have introduced consistency-preserving configuration
operators (CPCOs), which capture the changes required for
a feature configuration to maintain consistency whenever a
feature is activated or deactivated. We have shown that
CPCOs are useful for improving the search for optimal
configurations of product lines whose features are annotated
with additional quality information. CPCOs enable the search
to converge significantly faster than standard mutation oper-
ators used in state-of-the-art genetic algorithms. While gen-
erating CPCOs introduces a certain performance overhead,
that overhead becomes less important in scenarios where
the optimal configuration changes over time (e.g., because
of attribute value changes), in which the generated CPCOs
can be reused at no extra cost. Our work also helps address
a general lack of cross-tool comparisons in the SPL field.
Our evaluation-experiment infrastructure should be useful
for other researchers attempting cross-tool comparison of
optimization approaches. Providing such a common interface
and dataset to allow comparison of SPL optimization tools is
a key technical challenge in the community [59].

We envision the following directions of future work: First,
we plan to broaden the scope of our experiments, especially
to also take into account feature interactions, different
distributions of attribute values, and tool parametrizations.
Second, we aim to further improve the efficiency of crossover
by avoiding rule sequences in which previous configuration
decisions in a sequence of rule applications are reverted.
This requires that the CPCO sequences are non-conflicting,
which can be determined using an existing efficient static
analysis [60]. This analysis should also get easier because of
the specialised nature of our rules.

15

Finally, we foresee additional use cases for CPCOs beyond
optimisation: CPCOs might facilitate formal analysis of prod-
uct lines [61] by enabling a more efficient exploration of the
variant space that focuses on valid variants. CPCOs can also
be used to easily implement configuration editors that ensure
any (partial) configuration selected is valid by construction
(e.g., for staged configuration [49]). B oth u se-cases would
benefit f rom t he s oundness g uarantee i ntroduced i n the
present work. That way, CPCOs pave the way for a variety
of new research efforts in product line engineering.

ACKNOWLEDGMENT

The work of Jose-Miguel Horcas was supported by the
Spanish SRUK/CERU International Mobility Programme
(On the Move) 2018/2019, and the projects MEDEA RTI2018-
099213-B-I00 (co-financed b y F EDER f unds), R hea P18-FR-
1081 (MCI/AEI/FEDER, UE), LEIA UMA18-FEDERIA-157,
DAEMON H2020-101017109, and OPHELIA RTI2018-101204-
B-C22. The work of Daniel Strüber was partially supported
by the Deutsche Forschungsgemeinschaft (DFG), grant
413074939. The work of Alexandru Burdusel was supported
by the EPSRC with award reference 1805606. We would like
to thank Jens Kosiol for his comments on an earlier draft.

REFERENCES

[1] S. Apel, D. S. Batory, C. Kästner, and G. Saake, Feature-Oriented
Software Product Lines - Concepts and Implementation, 2013.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon University Software Engineering Institute, Tech.
Rep., 1990.

[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reason-
ing on feature models,” in CAISE, 2005, pp. 491–503.

[4] L. Ochoa, O. G. Rojas, J. A. Pereira, H. Castro, and G. Saake, “A
systematic literature review on the semi-automatic configuration
of extended product lines,” Journal of Systems and Software, vol. 144,
pp. 511–532, 2018.

[5] J. A. Pereira, M. Acher, H. Martin, J.-M. Jézéquel, G. Botterweck,
and A. Ventresque, “Learning software configuration spaces: A
systematic literature review,” Journal of Systems and Software, vol.
182, p. 111044, 2021.

[6] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable
product line configuration: A straw to break the camel’s back,” in
ASE, 2013, pp. 465–474.

[7] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user
preferences in search-based software engineering: a case study in
software product lines,” in ICSE, 2013, pp. 492–501.

[8] G. G. Pascual, R. E. Lopez-Herrejon, M. Pinto, L. Fuentes, and
A. Egyed, “Applying multiobjective evolutionary algorithms to dy-
namic software product lines for reconfiguring mobile applications,”
Journal of Systems and Software, vol. 103, pp. 392–411, 2015.

[9] N. Siegmund, S. Sobernig, and S. Apel, “Attributed variability
models: outside the comfort zone,” in FSE, 2017, pp. 268–278.

[10] J. Guo and K. Shi, “To preserve or not to preserve invalid solutions
in search-based software engineering: a case study in software
product lines,” in ICSE, 2018, pp. 1027–1038.

[11] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon, “Combining
multi-objective search and constraint solving for configuring large
software product lines,” in ICSE, 2015, pp. 517–528.

[12] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and
J. Plöger, “Variability-based model transformation: formal founda-
tion and application,” Formal Aspects of Computing, vol. 30, no. 1,
pp. 133–162, 2018.

[13] J.-M. Horcas, D. Strüber, A. Burdusel, J. Martinez, and
S. Zschaler, “Online appendix,” 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.6457582

[14] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
and M. Tichy, “Henshin: A usability-focused framework for emf
model transformation development,” in ICGT, 2017, pp. 196–208.

[15] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho et al.,
“Evolving software product lines with aspects,” in ICSE, 2008, pp.
261–270.

[16] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis
of feature models 20 years later: A literature review,” Information
systems, vol. 35, no. 6, pp. 615–636, 2010.

[17] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An extensible framework for feature-oriented software
development,” Science of Computer Programming, vol. 79, pp. 70–85,
2014.

[18] J. M. Horcas, “WeaFQAs: A software product line approach for
customizing and weaving efficient functional quality attributes,”
phdthesis, Universidad de Málaga, Jul. 2018. [Online]. Available:
https://hdl.handle.net/10630/17231

[19] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760–771, 2011.

[20] Y. Xiang, X. Yang, Y. Zhou, Z. Zheng, M. Li, and H. Huang,
“Going deeper with optimal software products selection using
many-objective optimization and satisfiability solvers,” Empirical
Software Engineering, vol. 25, no. 1, pp. 591–626, 2020.

[21] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
and S. S. Kolesnikov, “Scalable prediction of non-functional proper-
ties in software product lines: Footprint and memory consumption,”
Information and Software Technology, vol. 55, no. 3, pp. 491–507, 2013.

[22] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer, “Is
there a mismatch between real-world feature models and product-
line research?” in FSE, 2017, pp. 291–302.

[23] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
Nov 1999.

[24] A. P. Guerreiro, C. M. Fonseca, and L. Paquete, “The hypervolume
indicator: Problems and algorithms,” CoRR, vol. abs/2005.00515,
2020. [Online]. Available: https://arxiv.org/abs/2005.00515

[25] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineering,”
Softw. Test., Verif. Reliab., vol. 24, no. 3, pp. 219–250, 2014.

[26] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of McGraw and Wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[27] A. Sülflow, N. Drechsler, and R. Drechsler, “Incorporating user pref-
erences in many-objective optimization using relation ε-preferred,”
in EMO, 2007, pp. 715–726.

[28] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wąsowski, “A survey of variability modeling in industrial
practice,” in VaMoS, 2013, pp. 1–8.

[29] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where do
configuration constraints stem from? an extraction approach and an
empirical study,” IEEE Transactions on Software Engineering, vol. 41,
no. 8, pp. 820–841, 2015.

[30] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[31] D. Munoz, J. Oh, M. Pinto, L. Fuentes, and D. S. Batory, “Uniform
random sampling product configurations of feature models that
have numerical features,” in SPLC, 2019, pp. 289–301.

[32] J. García-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés,
“Automated configuration support for infrastructure migration to
the cloud,” Future Generation Computer Systems, vol. 55, pp. 200–212,
2016.

[33] Y. Xiang, Y. Zhou, Z. Zheng, and M. Li, “Configuring software
product lines by combining many-objective optimization and SAT
solvers,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 26, no. 4, pp. 1–46, 2018.

[34] R. Mazo, C. Dumitrescu, C. Salinesi, and D. Diaz, “Recommenda-
tion heuristics for improving product line configuration processes,”
in Recommendation Systems in Software Engineering, 2014, pp. 511–
537.

[35] J. A. Pereira, J. Martinez, H. K. Gurudu, S. Krieter, and G. Saake,
“Visual guidance for product line configuration using recommenda-
tions and non-functional properties,” in SAC, 2018, pp. 2058–2065.

[36] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Klein, and Y. L.
Traon, “Feature relations graphs: A visualisation paradigm for

https://doi.org/10.5281/zenodo.6457582
https://hdl.handle.net/10630/17231
https://arxiv.org/abs/2005.00515

16

feature constraints in software product lines,” in VISSOFT, 2014,
pp. 50–59.

[37] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range
fixes for software configuration,” in ICSE, 2012, pp. 58–68.

[38] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “FAMA:
tooling a framework for the automated analysis of feature models,”
in VaMoS, 2007, pp. 129–134.

[39] S. Krieter, T. Thüm, S. Schulze, R. Schröter, and G. Saake, “Propa-
gating configuration decisions with modal implication graphs,” in
ICSE, 2018, pp. 898–909.

[40] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel,
and G. Saake, “SPL conqueror: Toward optimization of non-
functional properties in software product lines,” Software Quality
Journal, vol. 20, no. 3-4, pp. 487–517, 2012.

[41] J. A. Pereira, “Search-based product configuration in software
product lines,” 2014.

[42] R. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside, “Modelling
and multi-objective optimization of quality attributes in variability-
rich software,” in NFPinDSML, 2012, pp. 2:1–6.

[43] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Faster discovery
of faster system configurations with spectral learning,” Automated
Software Engineering, vol. 25, no. 2, pp. 247–277, 2018.

[44] J. Oh, D. Batory, M. Myers, and N. Siegmund, “Finding near-
optimal configurations in product lines by random sampling,” in
FSE, 2017, pp. 61–71.

[45] D. Batory, J. Oh, R. Heradio, and D. Benavides, Product Optimization
in Stepwise Design, 2021, pp. 63–81.

[46] D. S. Batory, “Feature models, grammars, and propositional
formulas,” in SPLC, vol. 3714, 2005, pp. 7–20.

[47] M. Lienhardt, F. Damiani, E. B. Johnsen, and J. Mauro, “Lazy
product discovery in huge configuration spaces,” in ICSE, 2020, pp.
1509–1521.

[48] R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake, “Feature-
model interfaces: the highway to compositional analyses of highly-
configurable systems,” in ICSE, 2016, pp. 667–678.

[49] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configura-
tion through specialization and multilevel configuration of feature
models,” Software Process: Improvement and Practice, vol. 10, no. 2,
pp. 143–169, 2005.

[50] E. K. Abbasi, A. Hubaux, and P. Heymans, “A toolset for feature-
based configuration workflows,” in SPLC, 2011, pp. 65–69.

[51] K. Peng, C. Kaltenecker, N. Siegmund, S. Apel, and T. Menzies,
“VEER: Disagreement-Free Multi-objective Configuration,” 2021.
[Online]. Available: https://arxiv.org/abs/2106.02716

[52] Á. Hegedüs, Á. Horváth, and D. Varró, “A model-driven frame-
work for guided design space exploration,” Automated Software
Engineering, vol. 22, no. 3, pp. 399–436, 2015.

[53] M. Fleck, J. Troya, and M. Wimmer, “Search-based model transfor-
mations with momot,” in ICMT, 2016, pp. 79–87.

[54] A. Burdusel, S. Zschaler, and D. Strüber, “MDEoptimiser: a search
based model engineering tool,” in MODELS, 2018, pp. 12–16.

[55] J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler, “Sustaining and
improving graduated graph consistency: A static analysis of graph
transformations,” Sci. Comput. Program., vol. 214, 2022. [Online].
Available: https://doi.org/10.1016/j.scico.2021.102729

[56] T. Kehrer, G. Taentzer, M. Rindt, and U. Kelter, “Automatically
deriving the specification of model editing operations from meta-
models,” in ICMT, 2016, pp. 173–188.

[57] A. Burdusel, S. Zschaler, and S. John, “Automatic generation of
atomic consistency preserving search operators for search-based
model engineering,” in MODELS, 2019, pp. 106–116.

[58] A. Burdusel and S. Zschaler, “Towards automatic generation of
evolution rules for model-driven optimisation,” in STAF Workshops,
2017, pp. 60–75.

[59] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer,
J. Martinez, and T. Berger, “Facing the truth: Benchmarking the
techniques for the evolution of variant-rich systems,” in SPLC, 2019,
pp. 177–188.

[60] L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Huebert, “Multi-
granular conflict and dependency analysis in software engineering
based on graph transformation,” in ICSE, 2018, pp. 716–727.

[61] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A
classification and survey of analysis strategies for software product
lines,” ACM Computing Surveys, vol. 47, no. 1, pp. 1–45, 2014.

[62] D. B. Johnson, “Finding all the elementary cycles of a digraph,”
SIAM Journal of Computing, vol. 4, no. 1, pp. 77–84, 1975.

José Miguel Horcas is a postdoc researcher
at the University of Málaga, Spain, where he
received his PhD in Computer Sciences in 2018.
His main research areas are related to software
product lines, including variability and config-
urability, and quality attributes. He carried out
a postdoc stay at King’s College London, UK,
in 2019 within the SRUK/CERU International
Mobility Programme (On the Move). More infor-
mation available at https://sites.google.com/view/
josemiguelhorcas.

Daniel Strüber is a senior lecturer at Chalmers |
University Gothenburg, Sweden, and an assistant
professor at Radboud University Nijmegen, The
Netherlands. His research is in model-driven engi-
neering, software product lines, and AI engineer-
ing. He has co-authored over 75 papers and is the
project lead of Henshin, a model transformation
language used in academia and industry in more
than 15 countries. Papers and more information
are available at www.danielstrueber.de.

Alexandru Burdusel received his PhD degree
in computer science from King’s College London
in 2021. Previously he worked as a software en-
gineer in industry. His current research interests
are in optimisation methods, model-driven engi-
neering and search-based software engineering.

Jabier Martinez is a research engineer in the
Digital Trust Technologies (TRUSTECH) area of
Tecnalia since 2018. His background is on pro-
viding methods and tools for systems modelling
and variability management. After several years
of industrial experience, he received his PhD from
the Luxembourg and Sorbonne Universities with
an awarded thesis about product line adoption
and analysis. He co-organizes the Reverse Vari-
ability Engineering workshops. His interests also
include non-functional properties.

Steffen Zschaler is Reader in Software Engi-
neering at King’s College London, UK. His re-
search focuses on the foundations, tools, and ap-
plications of model-driven engineering, including
search-based approaches to finding optimal mod-
els (through the MDEOptimiser tool) and mod-
elling languages for variability management (e.g.,
VML*). He obtained his doctoral degree from
Technische Universität Dresden, Germany. More
information is available at www.steffen-zschaler.
de.

https://arxiv.org/abs/2106.02716
https://doi.org/10.1016/j.scico.2021.102729
https://sites.google.com/view/josemiguelhorcas
https://sites.google.com/view/josemiguelhorcas
www.danielstrueber.de
www.steffen-zschaler.de
www.steffen-zschaler.de

17

APPENDIX A
CPCO GENERATION

In this appendix, we provide detailed information about our
activities for discarding unnecessary VB-rule instances (gray
parts of Fig. 4; described on a high level as part of Sect. 4.2).
This complements our presentation of the other steps (white
parts of Fig. 4), which are presented in detail in Sect. 4.2.

Specifically, we apply the following activities:

1) Constraints for or-overlaps. Consider the excerpt of the
feature-activation diagram from Fig. 5 that’s shown in
Fig. 7. Note how many or-nodes have paths that lead
to the same feature decisions. For example, O61, O71,
O01 all lead to (F5+). This information isn’t captured
in the VB-rule we are currently generating and, as a
result, the current VB-rule feature model allows multiple
configurations that lead to the same generated rule.
For example, selecting O61 and O02 selects the same
set of feature decisions as selecting O62 and O01. In
addition to producing such redundant rule instances,
we are also generating unnecessarily large repairs for a
feature decision. For example, if OR0 is reached via O62,
then we have already made the decision to activate F6.
Also activating F5 does not improve the repair for the
deactivation of F7 (which ultimately triggered OR0), it
just makes our operator larger—potentially a lot larger
depending on the consequences of activating F5. We
avoid such situations by adding explicit constraints that
correlate decisions by different or-nodes. Specifically, for
each direct follow-node of any or alternative that can
also be reached on another path, we generate a condition
that ties the decisions on both paths together. In our
example, we would, for example generate a condition
O61∧O0 ⇒ O01 stating that if we have selected O61 and
we have to make a decision about O0, we will always
choose O01.

2) Blocking of self-activating cycles. Figure 7 also demon-
strates another problem: self-activating cycles. In gen-
erating the VB-rule feature model, we have been able
to avoid having to enumerate all repair paths by only
encoding direct implications between or-alternatives
and the directly following or-nodes and relying on the
transitive nature of the logical implication to correctly
reconstruct the paths on rule instantiation. However, this
construction allows some superfluous rule instances to
be constructed, too, namely, where there are cycles in the
or-implications. For example, O22 requires a decision
to be made about OR6 and, in turn, O62 requires a
decision about OR2. With the VB-rule feature model
so far, activating or-alternatives in a cycle is always
possible, even without a path from the root decision.
This produces unnecessary repairs, making the operator
unnecessarily complex. Because there are many cycles
in a feature-activation diagram, and every cycle can be
activated freely, we end up producing an unnecessarily
large number of rule instances. This can be fixed if
we can add constraints to ensure cycles can only be
activated if there is a path from the root decision into
the cycle.
Collecting all cycles in a directed graph is computation-
ally complex [62]. However, we do not actually need

Algorithm 3 Breaking cycles in the or-implication graph
(a.k.a. Or-Cycles in Figure 4).
Require: rootFeature: the root feature of the VB-rule.
Ensure: Returns a map from VB-rule features that are on a cycle to sets of features

that are entry points to the cycle. For each mapping f 7→ s in this map, we
will generate constraints that require for f to be activated at least one feature
in s to be activated. As a result, cycles can only be activated if a path from
outside the cycle (and, thus, from the root feature) has been activated.

1: function COMPUTECYCLES()
2: visited← ∅ . Set of nodes visited.
3: stack← ∅ . Stack of nodes visited in current traversal branch.
4: cycleEntries← ∅ . Map from features to sets of (add,delete) tuples.

5: RECURSIVELYCOMPUTECYCLE(rootFeature, stack, visited, null)

. Resolve cycle entry data. MAPVALUES takes a map and produces a new
map with the given function applied to each value.

6: return cycleEntries.MAPVALUES[EFFECTIVESET]
7: end function

Require: addDeleteTupleSet: a set of tuples. The two elements of each tuple
represent or-nodes or or-alternatives to be added to, and deleted from, the
overall set, respectively. These two elements of each tuple can be accessed
through projection functions written below using standard OO dot notation
as x.add and x.delete, respectively.

Ensure: Returns a set of or-nodes and or-alternatives. This is the union of all
added elements minus the union of all deleted elements.

8: function EFFECTIVESET(addDeleteTupleSet)
9: return {a|x ∈ addDeleteTupleSet, a = x.add} \

{d|x ∈ addDeleteTupleSet, d = x.delete}
10: end function

to collect all nodes of all cycles. It is sufficient for us to
identify one link in each cycle to be broken unless a path
into the cycle is also active. It is enough for the entering
path to lead into the cycle from outside, we do not have
to check whether it starts at the root decision; this will
be taken care of by the transitive nature of the constraint
we are adding.
Algorithm 3 (and Algorithm 4) shows how we can use a
variation of the standard depth-first approach to cycle
breaking (searching for back-edges) in directed graphs
to collect the information we require. After running the
algorithm over the graph of or-implications (we remove
the specific feature-decisions for this analysis to improve
the efficiency of the depth-first search), we generate a
constraint for each breaking or-alternative requiring that
a cycle-entering path must also be active.
To understand how the algorithm works, let us consider
the example or-implication graph in Fig. 11. It contains
4 cycles (labelled I to IV), none of which contains the
‘root’ feature of the VB rule. VB-rule features in each
cycle should only be allowed to be activated if one of
the features connecting the cycle to the root feature has
been activated. For example, the two features in Cycle I
should only be activated if OA3 has also been activated.
Similarly, Cycle II should only be activated if OA3, OA8,
or OA9 have been activated.
The Arabic numerals in Fig. 11 show one possible
sequence in which the nodes in the or-implication
graph might be visited by a depth-first search. Visits 1
to 8 are fairly straightforward and do not trigger
any special conditions. As OR4 is visited in Step 9,
stack = (OR1, OR4, OR3) and comingFrom = OA6. This
triggers the condition in Line 6 of Algorithm 3. We note
the fact that we have found a cycle and will break it at
feature OR4 by adding an entry to the global cycleEntries
map. This entry states that OR4 should be activated

18

Algorithm 4 Computing the effective set of cycle entries.
For compactness, we use += and -=, respectively, to add
and remove elements to/from sets and maps. Individual
mappings in a map are represented using the standard 7→
operator.
Require: feature: the VB-rule feature being visited.
Ensure: stack tracks or-features on the path from root that we are currently on.
Ensure: visited globally tracks visited VB-rule features.
Ensure: comingFrom tracks the or-alternative visited directly before, if any.

1: function RECURSIVELYCOMPUTECYCLE(feature, stack, visited, comingFrom)
2: if feature ∈ visited then
3: if feature is ‘root’ or feature is or-alternative then
4: return ∅
5: else . feature is an or-feature
6: if feature ∈ stack then . We’ve found a cycle

. preAlternatives is a map from or-features to all the or-alternatives that
imply them in the VB-rule (the inversion of the edges in the or-implication
graph).

7: cycleEntries += feature 7→
(add : preAlternatives[feature], del : comingFrom)

8: return {feature}
9: else

10: return ∅
11: end if
12: end if
13: end if

14: visited +=feature
15: if feature is or-alternative then

. Remove feature from cycle entries for any or-feature on stack

. for which we have already recorded a cycle.
16: for each of ∈ {orF ∈ stack | orF 7→ X ∈ cycleEntries} do
17: cycleEntries += orF 7→ (add : ∅, del : feature)
18: end for
19: else if feature is or-feature then
20: stack += feature
21: end if

. Step down
22: result← feature.edges.FLATMAP[
23: RECURSIVELYCOMPUTECYCLES(stack, visited, feature)]

24: if feature is or-feature then
25: stack -= feature

. Update incoming edges
26: if feature 7→ X ∈ cycleEntries then

. cycleEntries contains at least one mapping for feature, which means we
have encountered a cycle containing and to be broken by feature.

. Ensure we add incoming edges only for features we have visited except
for feature.

27: result← result \ {feature} . Also mark cycle completed
28: for each f ∈ result do
29: cycleEntries += f 7→ X
30: cycleEntries += f 7→ {add : ∅, del : comingFrom}
31: end for
32: else

. feature isn’t involved in any cycles as an "endpoint", so all entries, except
the one we came in on, need to be added as potential entry points for any
cycle we have found during descent.

. At this point result cannot contain feature, so there is no need to remove
it.

33: for each f ∈ result do
34: cycleEntries += f 7→
35: (add : preAlternatives[feature], del : comingFrom)
36: end for
37: end if
38: end if

39: return result
40: end function

1

2

3 4

5

6

7

8

9

10

11

root

OR1

OA1

OR4 OR2

OA2 OA3

OA9 OA8 OA4

OA5

OA7

OA6

OR3

Legend

VB-rule feature

VB-rule Or-feature

Or-Implication

OA1

OR1

I

II

III

IV

12

13

14

15

16

17

18

19

Fig. 11: Example or-implication graph with 4 cycles

when any of the or-alternatives pointing at it (to this
end, preAlternatives is the inversion of the edges in the
or-implication graph) except for OA6, which we know to
be part of the cycle because that was the way we reached
the current node. In terms of the classic depth-first
search algorithm for breaking cycles, we will eventually
break the edge between OA6 and OR4 by making the
activation of the or-node dependent on a path from ‘root’
being active, too. Note that we have to keep activating
and deactivating entry points separate to handle over-
lapping cycles. When we calculate the final set of cycle
entry points using EFFECTIVESET (Line 6), we will only
consider nodes that are in the add set but not in the
accumulated delete set.
An example of the need for this can be seen as the
algorithm progresses. First, we backtrack to OR3, where
we find another alternative to explore. This eventually
leads us to a similar place when we visit OR3 again
in Step 13. Here, stack = (OR1, OR4, OR3, OR2) and
comingFrom = OA4. We record the new cycle by adding
an entry to cycleEntries for OR3 allowing activation
when OA9 or OA8, but not OA4 have been activated.
Next we back track to OR2, where we explore the
second alternative (Steps 14 and 15) and find a nested
cycle. When we visit OR2 again in Step 15, stack =
(OR1, OR4, OR3, OR2) and comingFrom = OA5. We
record the new cycle by adding an entry to cycleEntries
for OR2 allowing activation when OA7 or OA3, but not
OA5 have been activated. We backtrack to the beginning
of Cycle I and enter the code on Lines 24–38. This code
is needed because cycles may have entry points at any
node along the way (it is enough to track entries into
or-nodes as every or-alternative will have to have a

19

preceding or-node). For example, we need to record the
fact that Cycle II can be reached via OA3. We do this by
adding all entry paths for every or-node to all cycles that
we are currently working back from (because these are
the end points of cycles for which we have yet to back
track to the beginning of the cycle again). We distinguish
two situations (see the condition on Line 26): Where the
current or-node is also the “end point” of a cycle we
make sure to only add those paths that aren’t part of
any cycle found so far. Otherwise, we add all incoming
paths. In either case, we explicitly disallow activation
via the or-alternative through which we have reached
the current or-node (because we know we are in a larger
cycle). In our case, this asserts that Cycle II may be
activated by OA3 in addition to what we have recorded
previously in Step 13. This correctly collects all entry
points to Cycle II. We are not adding any additional
entry points to Cycle I because we recognised that we
have found the starting point for this cycle and, as a
result, have removed OR2 from result.
We need to consider one final scenario: When visiting
OR3 in Step 17, we immediately return because we
have already visited this node before. As a result, we
never fully explore Cycle III and would not record the
correct way of breaking this cycle. This is good because
it keeps the computational complexity of the algorithm
to the standard complexity of depth-first search, but we
need a way of recording the fact that OA9 should not
be allowed to activate OR4. The code on Lines 16–18
does exactly that. As we go forward through the graph,
at each or-alternative we visit, we check the or-nodes
that we have visited so far (i.e., they are in stack) and
for which we have identified a cycle at some previous
point (i.e., they already have an entry in cycleEntries). At
Step 16, this is precisely {OR4}. For each such or-node,
we add an entry to cycleEntries to exclude the current
or-alternative. As a result, in Step 16 we add an entry
forbidding OR4 to be activated by an activation of OA9

alone, which effectively breaks Cycle III.
3) Removal of dead VB-rule features. We identify dead VB-

rule features and remove them from the VB-rule. As
a result, some feature decisions will have an empty
presence condition, indicating they can never be part of
any instance of the VB-rule. We remove these feature
decisions from the VB-rule.

APPENDIX B
SOUNDNESS ARGUMENTATION

In this appendix, we provide a detailed and precise argumen-
tation for the soundness of our CPCO generation algorithm.
We provide three theorems corresponding to activities shown
in the overview in Fig. 4, and explained in Sect. 4 and
the previous appendix: Theorem 1 focuses on Algorithm 1,
Theorem 2 addresses Algorithm 2, and Theorem 3 deals with
our measures for removing unnecessary CPCO instances
(gray parts of the figure, including Algorithms 3 and 4 from
the previous appendix).

We first provide a definition of variability-based rules,
our chosen representation of CPCOs. Compared to previous
work [12], our definition is simplified, as it precisely matches

the structure of rules that we generate as part of our approach.
Where necessary, we refer back to previous definitions from
the main paper body.

Definition 3 (Rules and VB rules). A rule r = (Nr, ar)
consists of a set of nodes Nr and a function ar : Nr →
(String,Option(B),B) that maps each node from Nr to an
attribute value change a = (namea, olda, newa). The attribute
name namea and the new value newa must be non-null,
whereas the old value olda may be null.
A variability-based rule (VB rule) r̂ = (rr̂,Fr̂, pcr̂) consists
of a rule rr̂, a feature model Fr̂ (Def. 1), and a function
pcr̂ : Nr → Bool(Fr̂) that maps each node in Nr to a
propositional formula over features from Fr̂ .
A configuration c of Fr̂ induces a rule r, called flattened rule,
that is obtained by replacing in all presence conditions the
feature names with the values from c, and removing nodes
whose presence condition evaluates to false.
The set Flat(r̂) is the set of all flattened rules that can be
obtained by possible configurations of a VB rule r̂.

For example, Fig. 3 shows two rules, both with three
nodes, each of which contain one attribute value change. In
both rules, a node labeled Screen3 specifies the value of the
attribute active to be changed from true to false, whereas the
other nodes just specify a new value. Together, both rules
form the set Flat(r̂) for the rule shown in Fig. 2, which shows
the feature model and the PCs (in gray, dashed boxes) as part
of the figure.

To reason about the semantics of changes expressed as
VB rules, we now define the notion of toggle graph. Recall
the term feature decision, which refers to one individual
decision to either activate or deactivate a specific feature.
Toggle graphs capture our intuition of paths—a set of feature
decisions that, if executed in concert, preserve validity.

Definition 4 (Toggle graph). Let a feature activation diagram
Gd = (Vd, Ed) (Def. 2) and a feature decision f! for a feature
f ∈ F be given. A toggle graph for f!, written Gf! = (Vf! , Ef!),
is a subgraph of Gd with the following properties:
The edge set Ef! is a subset of Ed where

1) Ef! contains all outgoing edges of f!, and
2) for each edge e ∈ Ef! , the following applies: if the

target node of e, written trg(e), is a feature decision, Ef!

contains all outgoing edges of trg(e); else, trg(e) is an
or-node and Ef! contains exactly one outgoing edge of
trg(e).

The vertex set Vf! is the union of the source and target nodes
of the edges in Ef! .
A toggle graph is valid if it contains at most one feature
decision for every feature f ∈ F . A toggle graph is applied to
a configuration c by applying all of its feature decisions to c.

In general, there are multiple toggle graphs for a particu-
lar feature decision, since there are multiple ways to choose
the outgoing edge for or-nodes. For an example, consider the
feature activation diagram in Fig. 5, and the explanations of
the green and orange paths (a.k.a. toggle graphs) in the text.

The following theorem shows the soundness of Algo-
rithm 1, by ensuring that the toggle graphs that can be
derived from the generated feature activation diagrams
indeed represent sets of changes that together preserve
validity.

20

Theorem 1 (Soundness of Algorithm 1). Let the following
be given: a feature model F , a configuration c ∈ cfg(F), and
the feature activation diagram Gd generated by Algorithm 1.
Applying a valid toggle graph Gf! of Gd to c leads to a valid
configuration c ′ ∈ cfg(F).

Proof sketch: Applying a toggle graph Gf! to c as per
Def. 4 yields another configuration. Let us call this config-
uration c′. The validity of c′ follows from the application
of principles during the generation of the feature activation
diagram (line 7 in Algorithm 1) and from the definition of
toggle graph (Def. 4), which encodes the idea of recursively
including consequences of feature decisions. In more detail:

For all feature model constraints, we show that they are
still fulfilled after the activation and deactivation of particular
features. Let f be a feature that is activated by Gf! .
CMAND, CPAR, CREQ: These constraints require a particular
feature to be activated if f is activated, i.e., all mandatory
children, parent features, and required features of f . They
are addressed by the principles ACTMAND, ACTPAR and
ACTREQ: the feature activation diagram contains an activa-
tion vertex for all such features. From Def. 4, we know that
if the activation of f is included, these activation vertices are
included as well, ensuring that the constraints are satisfied.
COR, CXOR: These constraints require one sub-feature to be
activated if a group feature f is activated. For each activation
of a “or” and “xor” group, the feature activation diagram
contains an “or” node, via application of ACTGROUP. Per
definition, the toggle graph contains an outgoing edge for
the “or” node, and contains the target feature decision of
that edge. That leads to the activation of a feature g in the
graph, and hence, to the satisfaction of COR in c′. For CXOR,
we need to ensure that g is the only feature activated in this
group. This is the case because applying ACTXOR ensures
that all sibling features of g will be deactivated. By definition,
the relevant decision is also contained in the toggle graph.
CEXCL: This constraint requires certain features to be deac-
tivated if f is activated, which is ensured via ACTEXC, also
included into the toggle graph.
CROOT: This constraint requires that the root is always acti-
vated. In c′, this is the case because only real-optional features
are deactivated or activated via principle applications.

For the deactivation of a feature f, the argumentation for
the constraints is completely dual. �

The following theorem and corollary show the soundness
of Algorithm 2, by ensuring that the information represented
in a generated CPCO is a set of changes that together preserve
validity (a.k.a. a toggle graph).

Theorem 2 (CPCO variants represent valid toggle graphs).
Let the following be given: a feature model F , the feature
activation diagram Gd = (Vd, Ed) generated by Algorithm 1,
a feature decision f!, and the CPCO cf! generated for f!
using the basic CPCO generation algorithm (white parts
of Fig. 4, including Algorithm 2). For every CPCO variant
r ∈ F lat(cf!), there exists a valid toggle graph Gf! ⊆ Gd
with the same feature decisions as r.

Proof sketch: We argue over the structure of the gener-
ated CPCOs, which are generated in the form of VB rules
(Def. 3, based on the information collected in Algorithm 2 (see
the one shown in Fig. 6). Recall the following components: (i)

Each rule node generated corresponds to a feature decision
f! ∈ Vd. For simplicity, we refer to a rule node and the
corresponding feature decision as the same entity (for full
accuracy, one could define a mapping function). (ii) Each
rule node f! is annotated with presence conditions, written
pc(f!), that arises from a disjunction over rule feature names—
specifically, the root feature and or-group alternatives–which
represent different other nodes from which this node can
be reached. The rule feature model consists of: (iii) a root
feature with several or-group children, each of which with
multiple alternatives representing choices of switching one
out of several features on; (iv) implications that represent
the transition from one node to another, and (v) additional
constraints enforcing that there cannot be an activation and
deactivation node for the same feature.

A CPCO rule variant r is one rule obtained by configuring
a VB rule r̂. Given a particular CPCO rule variant r, we have
to show the existence of a toggle graph with the same feature
decision nodes as r. As a candidate for this toggle graph, we
define a graph Gf! = (Vf! , Ef!) as follows:

Vf! = Nr ∪ orSucc

Ef! = {e ∈ Ed|src(e), trg(e) ∈ Vf!}

orSucc = {o ∈ Vd | o is an or-node,
∃(e, n) ∈ (Ed, Nr) s.t. src(e) = n, trg(n) = o}

That is, the vertex set Vf! is the union of the set Nr of
feature decisions from r and the set orSucc of or-nodes from
Gd succeeding any of these feature decisions. The edge set
Ef! consists of all edges from Gd that connect two of Vf! ’s
elements.

We need to show that Gf! is a valid toggle graph, as
per Def. 4. To this end, we argue over the structure of the
generated rules.

Def. 4, condition 1: To show that all outgoing edges of the
feature decision f! are in Gf! , we first show that f! itself is
in Gf! . That is the case because, due to component (ii), the
presence condition pc(f!) is a disjunction that, as one clause,
includes the feature root. Per component (iii), the feature
root is mandatory, rendering pc(f!) true in all configurations.
Consequently, f! is contained in any of the rules in Flat(cf!),
including r.

We need to show that all direct successors of f!—i.e.,
all nodes reachable via an outgoing edge from f!—are
included in Vf! . Consider one such node g ∈ {n ∈ Nd|∃e ∈
Ed s.t. src(e) = f!, trg(e) = n}. If g is a feature decision,
consider that the VB rule r̂ includes all nodes reached
in the traversal of Algorithm 2 (recursive call in line 12),
including g. Moreover, g has a presence condition, which
arises from a disjunction that includes f!’s presence condition
(line 5), including the root feature. Recall that root is always
active, and hence, g is always included in Vf! . If g is an
or-node, g ∈ Gf! holds via the definition of Vf! . Finally, via
the definition of Ef! , all edges connecting f! to one of its
successors are included in Ef! , leading to condition 1 being
fulfilled.

Def. 4, condition 2: For a given edge e ∈ Ef! , we consider
the target node g := trg(e). Via Ef! ’s definition, g is in Vf! .

If g is a decision node, we need to show that all outgoing
edges of g are contained in Ef! . Let us consider any such

21

edge e′ ∈ {e ∈ Ed|src(e) = g}. The target of e′ can be
an or-node or a feature decision. If it is an or-node, the
definition o f G f! e nsures t hat e ′ i s c ontained i n Ef! . Else,
we argue in the same way as for condition (i), except for
the details of the presence-condition handling. Specifically,
Alg. 2 propagates the presence conditions of feature decisions
to direct successor feature decisions via a disjunction (line
5). Therefore, the presence condition of g is stricter than
the presence condition of all of its direct successor feature
decisions, and all CPCO variants that contain g also contain
all of its successor feature decisions. Hence, direct successors
of g (and, via the definition of, Ef! , the edge that connects
them) are also contained in Nf! (and Ef!).

Otherwise, if g is an or-node, we need to show that exactly
one outgoing edge of g is contained in Ef! . For or-nodes,
Alg. 2 creates an xor-group feature ORi (line 20), and, for
each edge leaving the or-node, a feature Oij (lines 21-22)
which becomes a child feature of ORi in component (iii).
In addition, Alg. 2 collects a map of feature decisions to
succeeding or-nodes (line 23), which is used in component
(iv) to generate constraints of the form “pc(egin) =⇒ ORi”,
meaning that the presence condition of the edge from which
we arrive at the or-node implies that the xor-group generated
for the or-node has to be activated. Therefore, if g is included
in Vf! , Oi is activated, and exactly one of the edges leaving g
is included in Ef! , leading to condition 2 being fulfilled.

Def. 4, condition for validity: Since conditions 1 and 2 are
fulfilled, G f! is a toggle graph. It remains to be shown that it
is a valid one. This is the case because, due to the constraints
generated in component (v), there is one constraint for
each pair of activation and deactivation nodes of the form
“pcf−

=⇒ !pcf+
”, ensuring that both nodes can never be

included in the same CPCO variant and hence, also not in
the toggle graph Gf! . As a result, Gf! is valid. �

Corollary 1 (Soundness of Algorithm 2). Applying a CPCO
variant from a CPCO generated by the basic CPCO genera-
tion algorithm (white parts of Fig. 4, including Algorithm 2)
to a valid configuration yields a valid configuration again.

Proof sketch: This corollary follows directly from Theo-
rems 1 and 2.

Please note that we avoid a particular soundness-related
complication in Algorithm 2 by representing presence con-
ditions of nodes temporarily as proxies that are resolved in
a later post-processing step (described in Sect. 4.2). Without
this post-processing step, we might propagate incomplete
presence conditions (e.g., in line 5), since the full presence
condition of a node (arising from the different ways in which
we can reach it) is generally not known the first t ime we
touch the node. By instead propagating “proxy” presence
conditions and resolving them later, we ensure that the
definite presence conditions are only set when all information
about reachability of nodes is available, leading to consistent
information. �

The follow theorem shows that our measures to discard
unnecessary VB rule instances (simplifications, see gray
parts of Fig. 4) do not threaten the soundness of the overall
algorithm.

Theorem 3 (Valid simplification). Let the following be given:
a feature decision f!, the CPCO cf! generated by the basic

CPCO generation algorithm (white parts of Fig. 4), and the
CPCO c′f! generated by the full algorithm (full Fig. 4). The
set of CPCO variants Flat(c′f!) is a subset of Flat(cf!).

Proof sketch: We consider the three activities that extend
the basic generation algorithm:

(1.) Or-overlaps & (2.) Or-cycles. These two activities
alter the generated CPCO exclusively by extending the
generated feature model constraints, i.e., conjoining them
with additional terms. In consequence, the altered constraints
are stricter than the original ones. Both activities do not alter
the presence conditions in the generated CPCOs.

Making the constraints in a feature model stricter can
lead to some configurations being discarded, but it cannot
lead to new configurations. Hence, the following holds for
the sets of configurations: configs(c′f!) ⊆ configs(cf!), where
c′f! indicates the altered CPCO and cf! the original one.

CPCO variants are obtained by configuring a given CPCO.
Since each configuration of cf! is a configuration of cf! ,
and c′f! and cf! are identical except for their feature model
constraints, each CPCO variant of c′f! is one of cf! as well.

(3.) Dead feature removal. This activity alters the generated
feature sets, constraints and presence conditions in such way
that dead features are not included (effectively, replacing
them with the value false). Dead features necessarily take
on the value false, rendering the resulting constraints and
presence conditions equivalent to the original ones. Therefore,
the set of CPCO variants that can be generated remains
identical. For determining the set of dead features, we rely
on standard dead feature analysis [16] via SAT solving, which
is known to be sound. �

Corollary 2 (Soundness of CPCO generation algorithm).
Let a CPCO variant r from a CPCO generated by the full
CPCO generation algorithm be given. Applying r to a valid
configuration yields a valid configuration again.

Proof sketch: Follows directly from Theorems 3 and
Corollary 1. �

APPENDIX C
ALGORITHMIC COMPLEXITY

A high-level summary of the computational complexity has
already been given in the main body of the paper (Sect. 4.3).
This appendix provides more detail on the computational
complexity of our algorithm. We start with an analysis of the
computational complexity of the construction of a feature-
activation diagram (FAD) in Sect. C.1. Constructing CPCOs
is based on a traversal of a sub-diagram of the FAD for each
real-optional feature, and we analyse the implications of this
in Sect. C.2.

C.1 FAD construction

The feature-activation diagram is constructed incrementally,
by adding feature decisions and their consequences into an
existing feature-activation diagram. Where a feature decision
already exists in the diagram, no new node is added. Instead,
the existing node is reused and its consequences are not
explored again. As a result, constructing a complete feature-
activation diagram is equivalent in complexity to performing

22

a full depth-first search (DFS) over the final feature-activation
diagram.

The computational complexity of DFS is O(N + E)
where N is the number of nodes in the graph and E is the
number of edges in the graph. Therefore, we can determine
the computational complexity of constructing a feature-
activation diagram by asking, for a given feature model,
how many nodes and edges does the full feature-activation
diagram have? We can determine this by analysing the
(de)activation principles from Sect. 3 and determining how
many nodes and edges each adds to the feature-activation
diagram.

Feature-activation diagrams contain two types of nodes:
feature-decision nodes and or-nodes. For a feature model
with F real-optional features, the full feature-activation
diagram will contain 2F feature-decision nodes (for each
feature an activation and a deactivation decision). Or-nodes
are added by some activation principles, as are all the
edges in the feature-activation diagram. Table 3 shows the
contribution of each (de)activation principle. It assumes the
following values:

• F – the number of real-optional features in the feature
model.

• G < F – the number of group features (either or or xor
groups) in the feature model.

• Ag < F – the average size of group features (average
number of features in a group).

• X ≤ G – the number of xor-groups in the feature model.
• Ax < F – the average size of xor-groups (average

number of features in an xor-group).
• Ex – the number of exclude constraints in the feature

model.
• R – the number of requires constraints in the feature

model.
Overall, the size of the complete feature-activation dia-

gram, and therefore the computational complexity of con-
structing it is

O ((2F +G (1 +Ag))+(
4F + 2R+ Ex+G+G ·Ag (3 +Ag) +X ·A2

x

))
= O

(
F +R+ Ex+G+G ·A2

g +X ·A2
x

)
Given G ≤ F and assuming C = R + Ex the number of
cross-tree constraints, we can further simplify this to

O
(
F + C +G ·A2

g +X ·A2
x

)
C.2 Creation of CPCOs

CPCOs are created by depth-first search over the feature-
activation sub-diagram starting at the root feature decision
for the CPCO. We construct 2F such CPCOs and, worst case,
need to do a complete traversal of the feature-activation
diagram for each one. After the traversal, we also need to
resolve proxies for presence conditions and follow-ors. In the
worst case, this requires touching the presence conditions of
all feature decisions in the CPCO (2F worst case).

Thus, the computational complexity of constructing one
CPCO is

O
(
F ·

(
F + C +G ·A2

g +X ·A2
x

))

and for all CPCOs it is

O
(
F · F ·

(
F + C +G ·A2

g +X ·A2
x

))
One aspect that is not considered in the above complexity

analysis is dead feature removal. This step applies a SAT
solver on the full constraint generated to represent the VB-
rule feature model. This is used once for each feature in the
VB-rule feature model (of which there are O (G+G ·Ag)).
SAT is NP-complete, so even though modern SAT solvers
are very efficient, in principle the dead-feature removal step
can be very costly. It is worth noting that it is not an essential
step, however: our CPCOs would work equally effectively if
we did not make their representation more compact through
the dead-feature removal step.

APPENDIX D
EFFECT SIZES

This appendix provides supplementary information for our
discussion of results (Section 6.2). Table 4 shows the observed
effect sizes of our evaluation comparison by using the A12

score (calculated using the R package effsize), following
Vargha and Delaney’s original interpretation [26].

APPENDIX E
ADDITIONAL EXPERIMENTS

This appendix provides further supplementary information
for our discussion of results (Section 6.2), specifically, the
results of additional experiments with modified termination
criteria (20,000 insteaf of 5,000 evolutions). Table 5 gives an
overview of the results for all feature models. Figures 12,
13, and 14 illustrate the results for the three representative
feature models also chosen for illustration in Section 6.2.
Please note that the hypervolume scores shown here cannot
be directly compared to those with 5,000 evolutions, because
they were computed based on different reference Pareto
fronts (see description in Sect. 6.1).

23

Number of Number
or-nodes of edges
added added Comment

ACTMAND F Over-approximation: only mandatory children are activated, but there cannot be more
than F of those.

ACTPAR F Over-approximation: not every feature is a parent, but there cannot be more than F of
those.

ACTREQ R Over-approximation: we only add an edge for real-optional targets.
ACTGROUP G G (1 +Ag) One or-node for each group with one edge into the or-node and one edge from the

or-node to the feature decision for each feature in the group.
ACTXOR (X ·Ax) ·Ax There are X ·Ax features that are in an xor-group and each one of these needs an edge to

each of it’s neighbours—Ax edges on average.
ACTEXC Ex Over-approximation: we only add an edge for real-optional targets.

DECHILD F All features are child features of at most one parent feature, so at most one edge is added
for them.

DEXOR / DEOR G ·Ag G ·Ag (2 +Ag) Both principles do the same thing for or-groups and xor-groups, respectively. In total,
they do this for all G groups. Add one or-node per feature in a group with 1 edge coming
into the or-node, 1 edge from the or-node to the parent feature, and Ag edges to all the
sibling features.

DEPARENT F Every feature has at most one parent so adds at most one edge as a result of this principle.
DEREQ R Over-approximation: we only add an edge for real-optional targets.

TABLE 3: Contribution of (de)activation principles to the size of the feature-activation diagram.

0.5 1 1.5 2

·104
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Modagame

Satibea

(a) Hypervolume.

0.5 1 1.5 2

·104
0

0.5

1

1.5

2

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Modagame

Satibea

(b) Execution time.

Fig. 12: Additional experiments: results for Mobile Media.

0.5 1 1.5 2

·104
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Modagame

Satibea

(a) Hypervolume.

0.5 1 1.5 2

·104
0

1

2

3

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Modagame

Satibea

(b) Execution time.

Fig. 13: Additional experiments: results for WeaFQAs.

0.5 1 1.5 2

·104
0

0.2

0.4

0.6

Evolutions

H
yp

er
vo

lu
m

e

Acapulco
Satibea

(a) Hypervolume.

0.5 1 1.5 2

·104
0

2

4

6

8

10

Evolutions

Ex
ec

ut
io

n
ti

m
e

(s
)

Acapulco
Satibea

(b) Execution time.

Fig. 14: Additional experiments: results for Linux 2.6.

TABLE 4: Effect sizes in terms of A12 [26].

Result Quality (HV) Execution time (sec.)

Feature model aCaPulCO vs.
SATIBEA

aCaPulCO vs.
MODAGAME

aCaPulCO vs.
SATIBEA

aCaPulCO vs.
MODAGAME

Wget 1 0.504 0.968 0.068
Tank war 1 0.957 0.968 0.893
Mobile media 1 0.869 0.968 0.948
WeaFQAs 1 1 0.968 0.968
Busy Box 1 1 0.968 1
EMB ToolKit 1 1 0.968 1
CDL ea2468 1 1 0.322 1
Linux Distrib. 1 1 0.968 1
Linux 2.6 1 - 0.968 -
Automotive 2.1 1 - 1 -

A12≈0.56 = small; A12≈0.64 = medium; and A12&0.71 = large.

24

TABLE 5: Additional experiments with termination criteria of 20,000 evolutions.

aCaPulCO MODAGAME SATIBEA aCaPulCO HV is greater aCaPulCO time is faster
HV Time HV Time HV Time Invalid MODAGAME SATIBEA MODAGAME SATIBEA

Feature model MD SD MD SD MD SD MD SD MD SD MD SD Sols. p-value p-value p-value p-value

Wget 0.44 3.52e-4 0.92 0.08 0.44 2.38e-4 0.88 0.06 0.42 5.83e-3 1.32 0.07 2% 0.98 1.10e-11 0.99 1.13e-10
Tank war 0.46 9.04e-4 0.94 0.08 0.46 1.06e-3 1.01 0.06 0.41 0.01 1.38 0.07 2% 0.01 1.44e-11 2.66e-10 2.37e-11
Mobile media 0.48 2.40e-3 0.96 0.07 0.48 5.56e-4 1.06 0.06 0.42 0.02 1.50 0.09 15% 0.03 0.99 2.42e-10 1.44e-11
WeaFQAs 0.40 2.02e-3 1.15 0.08 0.25 0.01 2.06 0.07 0.29 0.02 1.65 0.07 31% 1.44e-11 1.44e-11 1.44e-11 1.44e-11
Busy Box 0.42 2.10e-3 1.31 0.10 0.34 2.01e-3 4.70 0.18 0.35 4.31e-3 2.25 0.09 24% 1.44e-11 1.44e-11 1.44e-11 1.44e-11
EMB ToolKit 0.37 2.19e-3 2.30 0.11 0.29 2.29e-3 7.85 0.23 0.32 4.46e-3 3.87 0.11 62% 1.44e-11 1.44e-11 1.44e-11 1.44e-11
CDL ea2468 0.36 1.38e-3 3.17 0.13 0.17 4.87e-3 14.72 0.26 0.30 6.91e-3 3.42 0.10 75% 1.44e-11 1.44e-11 1.44e-11 4.66e-10
Linux Distrib. 0.34 2.33e-3 0.52 0.07 0.31 2.26e-3 2.44 0.08 0.30 1.17e-2 0.65 0.07 37% 1.44e-11 1.44e-11 1.44e-11 1.44e-11
Linux 2.6 0.36 9.06e-4 5.66 0.18 - - - - 0.31 3.34e-3 9.95 0.24 89% - 1.44e-11 - 1.44e-11
Automotive 2.1 0.34 4.20e-3 74.63 2.30 - - - - 0.01 5.17e-3 151.73 5.71 98% - 1.44e-11 - 1.44e-11

Runs: 30. Population: 100. Generations: 200 (20,000 evolutions).

	1 Introduction
	2 CPCOs by Example
	3 Generating CPCOs: Background, principles and naïve generation procedure
	3.1 Background and assumptions
	3.2 Principle-based generation procedure

	4 Efficiently Generating CPCOs
	4.1 Feature-activation diagrams
	4.2 Analysing feature-activation sub-diagrams to generate CPCOs
	4.3 Properties

	5 Tool support for CPCO-based automated optimal configuration
	6 Evaluation
	6.1 Experimental setup
	6.2 Results
	6.3 Discussion
	6.4 Threats to validity

	7 Related Work
	8 Conclusions
	References
	Biographies
	José Miguel Horcas
	Daniel Strüber
	Alexandru Burdusel
	Jabier Martinez
	Steffen Zschaler

	Appendix A: CPCO Generation
	Appendix B: Soundness argumentation
	Appendix C: Algorithmic Complexity
	C.1 FAD construction
	C.2 Creation of CPCOs

	Appendix D: Effect sizes
	Appendix E: Additional experiments

