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Abstract

In this paper, we propose an extension of the uncapacitated hub location problem where the potential posi-
tions of the hubs are not fixed in advance. Instead, they are allowed to belong to a region around an initial
discrete set of nodes. We give a general framework in which the collection, transportation, and distribution
costs are based on norm-based distances and the hub-activation setup costs depend not only on the location
of the hub that are opened but also on the size of the region where they are placed. Two alternative mathemat-
ical programming formulations are proposed. The first one is a compact formulation while the second one
involves a family of constraints of exponential size that we separate efficiently giving rise to a branch-and-cut
algorithm. The results of an extensive computational experience are reported showing the advantages of each
of the approaches.
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1. Introduction

Hub-and-spoke networks have attracted the attention of the location analysis community in the
recent years since they allow to efficiently route commodities between customers in many trans-
portation systems. In these networks, the flow between customers, rather than being sent directly
user to user, is routed via some transshipment points, the hubs nodes. Arcs between hubs nodes are
cheaper than normal ones and thus the overall transportation costs are reduced due to the economy
of scale induced by sending a large amount of flow through the hub arcs. Hub location problems
combine two types of decisions: (1) the optimal placement of the hub facilities and (2) the best
routing strategies on the induced hub-and-spoke network, that is, the amount of flow sent through
the spoke-to-hub and the hub-to-hub links. The interested reader is referred to Alumur and Kara
(2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras and O’Kelly (2019), and
Alumur et al. (2021) for recent surveys on hub location problems.
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1.1. State of the art

The literature of single-allocation hub location problems usually distinguishes between capacitated
and uncapacitated problems. In the latter case, one may consider either that a given number of
hubs, p, must be located, dealing with the p-hub location problem (see O’Kelly, 1987) or that a
setup cost for each of the potential hubs is provided, and the optimal number of hubs is part of
the decision process. Here, we deal with a new version of the uncapacitated hub location prob-
lem with fixed costs (UHLPFC). The first formulation for UHLPFC was presented in O’Kelly
(1992). There, a mixed integer programming problem with quadratic (nonconvex) objective func-
tion was proposed for the problem. Such a difficulty was overcome by solving different p-hub lo-
cation problems for different values of p. In Abdinnour-Helm and Venkataramanan (1998), a dif-
ferent formulation was proposed based on modeling how the flow between each pair of nodes is
sent between them. In Labbé and Yaman (2004), the authors presented different linearizations for
the quadratic terms in the objective function using a family of 4-index variables and projecting
them out. All the above papers deal with exact methods but also some heuristics and metaheuris-
tic approaches have been proposed for the problem (see, for instance, Abdinnour-Helm, 1998;
Topcuoglu et al., 2005). One can also find several extensions of the UHLPFC, as the incorpora-
tion of congestion and service time (Alumur et al., 2018), modular capacities (Hoff et al., 2017),
incomplete but graph-structured backbone networks (Contreras et al., 2009, 2010; Martins de Sá
et al., 2015; Blanco and Marín, 2019) flow-dependent transportation costs (Tanash et al., 2017),
robust and uncertain versions (Habibzadeh Boukani et al., 2016; Peiró et al., 2019), extensions to
r-allocation rules (Peiró et al., 2018; Brimberg et al., 2022), or covering models (Ernst et al., 2017).
Also, a flexible approach based on ordered median functions have been incorporated to differ-
ent hub location problems (Puerto et al., 2011, 2013, 2016), which is particularly useful to obtain
robust solutions in hub problems by applying k-centrum, trimmed-mean, or antitrimmed-mean
criteria.

When designing a (discrete) hub-and-spoke network, one usually assumes that the positions of a
set of potential hubs are known, that is, one makes the decision on the optimal location of the hubs
based on the assumption that they have to be located on a set of nodes whose exact placement on a
given space is provided. In many cases such an assumption becomes highly restrictive, especially in
those cases in which some flexibility is allowed for the location of the hubs, as in telecommunication
networks or in case some imprecision affects the positions of the nodes. An alternative to this
assumption is the consideration of a continuous framework in which the hubs are allowed to be
located (see O’Kelly, 1986b). Nevertheless, it is unrealistic in practice to assume that hubs can be
located at any place. An intermediate perspective, which is the one that we explore in this paper,
comes from modeling such an issue via neighborhoods. This framework allows us to provide a
potential set of (exact) positions for the hub nodes, but in the decision process the decision maker
is allowed to place the hubs not only at their potential original geographical coordinates but in a
region around them, namely, their neighborhoods. This approach is particularly useful in networks
in which the decision maker sets preferred regions where the nodes can be located, instead of an
exact set of positions for them. Moreover, the continuous and the discrete cases of this problem
are just particular cases of this more general form of the problem by adjusting adequately the
parameters describing the neighborhoods. For instance, defining neighborhoods as singletons, the
uncapacitated single-allocation hub location problem with variable-size neighborhoods (UHLPN)
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coincides with the discrete UHLPFC, while using big enough neighborhoods (and zero costs for
their size) results in the continuous version of the problem.

This approach of considering neighborhoods in other combinatorial optimization problems is
not totally new and some previous attempts can be found in the literature as for instance the min-
imum cost spanning tree problem (Dorrigiv et al., 2015; Blanco et al., 2017), traveling salesman
problem (Löffler and van Kreveld, 2010; Gentilini et al., 2013; Disser et al., 2014; Váňa and Faigl,
2015; Carrabs et al., 2017; Yang et al., 2018), shortest path problem (Disser et al., 2014), Cross-
ing postman problem (Puerto and Valverde, 2020), or different facility location problems (Blanco,
2019). However, as far as we know, there is no previous attempt on the simultaneous determination
of the location and optimal size of the neighborhoods. Observe that neighborhoods may represent
location imprecision and some constraint over the full flexibility on the placement of the objects
under analysis. Thus, fixing a prespecified neighborhood size implies losing one degree of freedom,
which reduces the ability of the model to choose the right neighborhood size. This is particularly
convenient in the hub-and-spoke network model under analysis. Note also that the information on
the optimal size of the neighborhood may help the decision maker to adjust the original positions
of the nodes or to restrict the sizes conveniently.

1.2. Contributions

In this paper, we analyze hub location problems allowing some flexibility on the underline net-
work design problem in a very general framework. In particular, we introduce an extension of
the classical uncapacitated single-allocation hub location problem, which we call the UHLPN.
As far as we know, this problem has not been previously addressed in the literature. Actu-
ally, only a few papers have analyzed hub location problems in the continuous framework (see
O’Kelly, 1986a, 1986b; Aykin, 1988; Aykin and Brown, 1992; Aykin, 1995). We provide a gen-
eral mathematical programming formulation for the problem and propose two different mixed
integer nonlinear programming (MINLP) reformulations of the problem where the nonlineari-
ties come from the products of binary variables with binary and/or continuous variables and
the constraints modeling the membership of hubs to their neighborhoods. While both reformu-
lations have, initially, a polynomial number of constraints, the latter is rewritten as an MINLP with
a smaller number of variables but exponentially many constraints. A branch-and-cut approach
is derived for solving this model. The results of our computational experiments show that the
branch-and-cut approach is more convenient in terms of the required CPU time for solving the
problems.

The rest of the paper is organized as follows. In Section 2, we introduce the elements describing
the UHLPN and fix the notation for the rest of the sections. Section 3 provides a mathematical
programming formulation for the problem as well as two different reformulations. While the first
reformulation is based on linearizing the bilinear and trilinear terms in the original formulation,
the second reformulation consists of replacing some of the nonlinear constraints by a family of
linear constraints of exponential size. Based on the latter, in Section 4 we derive a branch-and-
cut approach to solve the HLPN. In Section 5, we report the results of our extensive computational
experience based on the usual hub location datasets. Finally, in Section 6 we draw some conclusions
and further research on the topic.
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2. Uncapacitated single-allocation hub location problem with neighborhoods

In this section, we formally introduce the UHLPN and fix the notation for the rest of the paper.
We describe here the input data, the feasible solutions of the UHLPN, and the objective function
of the problem that allows us to evaluate the feasible alternatives.

For the UHLPN, we are given a set of demand points, a set of potential hubs (as coordinates in
R

d ), an OD flow matrix between demand points, a setup cost for opening each potential hub, a cost
measure in R

d , and for each potential facility, a neighborhood shape that represents some piece of
information on the placement of the hub, and an additional cost based on the size of the neigh-
borhood. The goal of UHLPN is to set up a hub-and-spoke network minimizing transportation,
collection, distribution, and setup costs making decisions on

• How many and which hubs must be opened and the assignment pattern of demand points to
hubs.

• The size of the neighborhood for each one of the open hubs. The activation cost of a neigh-
borhood may depend on the volume of the region that it defines. Smaller neighborhoods incur
smaller activation costs.

• Finding for each demand point the location of its hub server within the neighborhood where it
must be served.

In what follows, we provide further details on this problem and the elements involved in its defi-
nition.

2.1. Input data

We are given an undirected connected (nonnecessarily complete) graph, G = (N, E ), with nodes
N = {1, . . . , n} and set of edges E . The graph is assumed to be embedded in R

d , in the sense
that each node i ∈ N is identified with a point ai ∈ R

d and edges are segments connecting its two
extremes in R

d . For each pair of nodes i, j ∈ N there is a known demand, wi j ≥ 0, which rep-
resents the amount of flow that must be sent (routed) from origin i to destination j. Each ori-
gin/destination pair of nodes with positive demand will be referred to as an OD pair. We denote by
W = (wi j )i, j∈N the OD flow matrix, by Oi = ∑

j∈N:
{i, j}∈E

wi j the overall flow with origin at i ∈ N, and

by Dj = ∑
i:

{i, j}∈E
wi j the total flow with destination at j ∈ N.

2.2. Feasible actions

Like in other hub location models, in the UHLPN a set of hubs must be selected, among the nodes
in N, to be used as potential intermediate points when routing the flows associated with OD pairs.
In particular, the flow associated with a given OD pair (i, j) is assumed to be physically routed via a
feasible path of the form (ai, xk, xm, a j ), where k and m are the indices of the open hubs associated
with locations xk and xm, respectively, and it is possible that k = m (so xk = xm). When nodes i and
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j are both selected to host hubs, these paths reduce to (xi, xi, xj, xj ) and consist of one single arc.
Otherwise, if i is not a hub then xk �= ai; similarly, xm �= a j if j is not a hub.

We assume single allocation of nodes to open hubs. That is, for each node i ∈ N all the flows
leaving and entering i must be routed via a single (unique) hub node, which represents the access
and exit point of i to and from the distribution system.

Contrary to classical hub location models, in the UHLPN there is not a discrete set of points
where hubs may be located at, even if the problem is stated on a graph with a discrete set of nodes.
In particular, when node k ∈ N is selected to host an open hub, the actual position of the hub is not
known in advance and must be set within a neighborhood of the selected node k. For this, associated
with each potential hub k ∈ N we are given a basic neighborhood, Sk ⊆ R

d , which is assumed to be
a second-order cone (SOC) representable set containing the origin. The neighborhood set for ak,
then, is assumed to be in the form

Nk(r) = ak + {r · z : z ∈ Sk},

for r ≥ 0, that is, the ak-translation of the r-dilation of the set Sk. The choice of r, together with the
specific location of the hub, xk, is part of the decision-making process.

Thus, we assume that feasible paths are in the form (ai, xk, xm, a j ), where ai and a j correspond
to OD pairs and xk and xm belong to the dilated neighborhoods of nodes k and m in the graph G.
Observe that in case G is a complete graph, this assumption is no longer needed since the triangle
inequality assures its verification.

In summary, for determining a feasible UHLPN solution the following decisions must be made:
(1) the nodes that host the open hubs into their neighborhoods; (2) the dilation factor applied to the
basic neighborhood of each selected node, as well as the actual position of its associated hub within
its dilated neighborhood; and (3) the (single) allocation of nonhub nodes (spokes) to open hubs.

A possible choice for modeling different SOC-representable neighborhoods is by means of unit
balls of norms, that is, when Sk = {z ∈ R

d : ‖z‖ ≤ 1} for some norm ‖ · ‖ in R
d , which belong to

the class of �p-norm or polyhedral norms (Blanco et al., 2014). For instance, if the basic neigh-
bors are Euclidean unit balls, dilations by r consist of Euclidean balls of radius r and center ak,
while for polyhedral norms, the resulting neighborhoods are dilations of symmetric polytopes. One
may also consider more sophisticated shapes for the basic neighborhoods, as for instance polyellip-
soids (Blanco and Puerto, 2021). We assume that for every potential hub location k ∈ N, there is an
upper bound, Rk ∈ R+, on the maximum size of the dilation factor of its associated neighborhood.

In Fig. 1, we show a feasible solution of our problem. Black dots are the spoke nodes. Gray
disks (�2-balls on the plane) are the dilated neighborhoods centered at the initial position of the
active hub nodes (asterisks). The position on the neighborhoods of the hubs are the triangles in the
picture. Finally, dotted lines represent allocation between spoke and hub nodes and the solid lines
form the hub backbone network.

2.3. Costs

The cost of a feasible solution is the sum of the setup costs of the activated hubs plus the trans-
portation costs for routing the commodities, through the allocated hubs.
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Fig. 1. Feasible solution for the UHLPN.

Setup costs: Activating a hub associated with node k ∈ N brings a setup cost Fk(r), which depends
on k and the dilation factor, r, that is applied to the basic neighborhood. In particular, we con-
sider setup costs of the form:

Fk(r) = fk + gk(r),

where the term fk represents a fixed cost for establishing a hub at node k, whereas gk : R+ → R

is a SOC-representable function of the dilation factor, verifying that gk(r) ≥ 0, for all r ≥ 0, and
gk(0) = 0 (null dilations have zero cost). Some possible choices of gk are those in which the cost
of installing a hub with r-dilation increases linearly with r, being then gk(r) = �kr for a given
coefficient �k ≥ 0; or a polynomial function gk(r) = �krd , which may represent the per unit
(area/volume) installation cost of a neighborhood associated with node k.

The above setup costs allow to measure, on the one hand the fixed cost of constructing the
necessary infrastructure to locate a hub around the given initial position of the hub node, but
also the cost of moving from such an initial position to the border of its neighborhood region in
order to better attend the demand of the customers (gk(r)).

Routing costs: Sending flow though the path (ai, xk, xm, a j ) incurs a unit routing cost dC (ai, xk) +
dH (xk, xm) + dD(xm, a j ), where dC, dH , dD : R

d × R
d → R+ are given cost/distance functions

for the collection, transportation and distribution of unitary flows, respectively . To reflect
economies of scale between hub nodes, we assume that dH (x, y) < dC (x, y) and dH (x, y) <

dD(x, y), for all x, y ∈ R
d , that is, the cost of sending a unit of flow through two hub node po-

sitions (in the hub backbone network) is smaller than the one using spoke-to-hub links between
the same positions. Moreover, we assume that in all cases, dC (x, x) = dH (x, x) = dD(x, x) = 0 for
all x ∈ R

d . A very interesting case that generalizes the usual practices for economies of scale in
hub location problems is to consider that dC = dD and dH = αdC, for some α ∈ (0, 1) for some
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Fig. 2. Routing costs in the UHLPN.

distance measure dC in R
d . Also, using the relationship between different �p-norm-based dis-

tances (d�p1
< d�p2

whenever p1 > p2 ≥ 1), one could also choose dC = dD = d�p1
and dH = d�p2

for any p1, p2 ≥ 1 (here d�p stands for the distance induced by the �p norm). In Fig. 2, we illus-
trate the different routing costs considered in the UHLPN, in a case in which dC = dD = d�1 and
dH = d�2 . The costs of routing a unit flow from node i to node j are highlighted with dotted lines
(dashed lines correspond with collection and distribution connections while solid lines are hub
links).

The UHLPN is to find a feasible solution of minimum total cost. Thus, the UHLPN gener-
alizes classical hub location problems with facility setup costs where neighborhoods are not al-
lowed (upper bound for the dilations R = 0), and hubs must be necessarily located at their associ-
ated points ai, i ∈ N. These problems can also be obtained as particular cases of the UHLPN by
setting to an arbitrarily large value all the coefficients �k, k ∈ K, thus enforcing all the dilations
to be 0.

Figure 3 shows the solution of a 10-node instance from Ernst and Krishnamoorthy (1996) in
two different situations: without neighborhoods (left) and with �2-norm neighborhoods. Dashed
lines represent spoke allocations to open hubs and solid lines interhub connections. Observe that
the optimal design of the network changes if some flexibility is allowed on the location of the
hubs.
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Fig. 3. Solutions of an instance of the AP dataset.

3. Mathematical programming formulations

In this section, we develop alternative mathematical programming formulations for the UHLPN.
The first is an MINLP formulation, which includes bilinear and trilinear terms in the objective
function. These terms come from the products of binary variables with binary and/or continuous
variables. In addition, it also includes nonlinear terms in the constraints modeling the membership
of hubs to their dilated neighborhoods. Then we present two reformulations. The first reformulation
introduces additional decision variables in order to linearize the nonlinear terms of the original
formulation, whereas the second reformulation is obtained from the aggregation of some of the
decision variables introduced for the first reformulation.

3.1. Decision variables

All our formulations use the following common sets of decision variables:

• Location-allocation variables. They determine the nodes selected for locating hubs, as well as the
allocation of nodes to open hubs. For every edge {i, k} ∈ E :

zik =
{

1 if node i is allocated to hub k, for i �= k,

0 otherwise,

and

yk =
{

1 if node k is an open hub,

0 otherwise.

• Radii of the neighborhoods of the selected hubs. We consider variables ri ∈ R+, for i = 1, . . . , n.
Each ri determines the dilation factor applied to the neighborhood of the potential hub node i if
it were activated (and 0 otherwise).
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• Positions of hubs within the dilated neighborhoods associated with the open hubs. The position of
hub k ∈ N is given by xk ∈ R

d .

Using the above decision variables, the routing costs can be expressed as

frout(z, x) =
∑

{i,k}∈E

(OidC (ai, xk) + DidD(ai, xk))zik +
∑

k,m∈N

∑
i, j∈N:

{i,k},{ j,m}∈E

wi jdH (xk, xm)zikz jm.

The term
∑

{i,k}∈E OidC (ai, xk)zik accounts for the collection costs induced for sending flows from
nonhub nodes (spokes) to their allocated hubs. The term

∑
{i,k}∈E DidD(ai, xk)zik accounts for the

distribution costs due to sending flows from hubs to the (final) spokes assigned to them. The last
term determines the interhub transportation costs: each flow wi j associated with the OD pair (i, j)
incurs an interhub cost, which depends on the hubs to which i and j are allocated. Note that the
interhub transportation cost of an OD pair (i, j) in which i and j are allocated to the same hub is 0.

Furthermore, the setup costs for the activated hubs, taking into account the radii of their associ-
ated dilated neighborhoods is given by

fsetup(y, r) =
∑
k∈N

Fk(rk)yk.

Thus, the overall objective function of the problem is

f (z, y, r, x) = frout(z, x) + fsetup(y, r).

A mathematical programming formulation for the problem, based on the one proposed by O’Kelly
(1987) is

min f (z, y, r, x)

s.t.
∑
k∈N:

{i,k}∈E

zik = 1, ∀i ∈ N, (1)

zik ≤ yk, ∀{i, k} ∈ E, (2)

xk ∈ Nk(rk), ∀k ∈ N, (3)

zik, yk ∈ {0, 1}, ∀{i, k} ∈ E,

0 ≤ rk ≤ Rk, ∀k ∈ N.

Constraints (1) ensure that each spoke is assigned to a single hub node, while constraints (2) state
that allocations are only permitted to open hubs. Finally, constraints (3) establish that the access
points of assignments to hubs belong to their dilated neighborhoods. Observe that if node k ∈ N is
not selected as a hub node, its dilation factor rk becomes zero since otherwise it would incur in a
positive setup cost.
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The above model is an MINLP formulation, not only because the products of z-variables in the
objective function ( frout) but also because the terms gk(rk)yk in fsetup, the distances between nodes
and the membership to the neighborhoods (Constraint 3).

Some observations are in order concerning the r-variables and their representation in the objec-
tive function. First, observe that the nonlinear term gk(rk)yk appears in the objective function to
represent the cost induced by the actual size of the dilated neighbourhood associated with hub k.
However, in case gk is a nondecreasing function, one can replace the term gk(rk)yk by just gk(rk).
This can be done because the minimization criterion and the nonnegativity of gk guarantee that in
case hub k is not open, gk(rk) will take the smallest possible value, that is, 0. Otherwise, yk = 1, so
gk(rk)yk = gk(rk). Thus, for the sake of simplicity, we assume from now on that gk is a nondecreas-
ing function, although one could apply similar strategies for general choices of gk.

As mentioned above, different shapes are possible for the functions gk. In case gk is a linear
function, the overall function fset−up is linear. If gk(r) = �krd , the term rd

k in the objective function
can be adequately rewritten as a linear function by adding a new auxiliary variable and representing
it as a set of SOC constraints. In particular, denoting by γk the dth power of rk, that is, γk = rd

k , we
get that fsetup(y, r) = ∑

k∈N fkyk + ∑
k∈N �kγk. Then, constraints in the form γk ≥ rd

k allows us to
represent such a term in the mathematical programming model as a small number of rotated SOC
constraints. The next result reformulates the dth powers in the objective function by means of a set
of O(nd ) new variables and SOC constraint.

Lemma 3.1. Let α = (α0, . . . , αq−1) ∈ {0, 1}q be the coefficients of the binary decomposition of d −
1, that is, d − 1 = α020 + α121 + · · · , +αq−12q−1 with q ∈ Z+ such that 2q−1 ≤ d < 2q. Then, for
each k ∈ N, constraint γk ≥ rd

k can be equivalently represented as the following set of q SOC/linear
constraints:

r2
k ≤ ωq−1 · r(1−αq−1 )

k ,

ω2
i+1 ≤ ωi · r(1−αi )

k , for i = 1, . . . , q − 2,

ω2
1 ≤ γk · r(1−α0 ),

where ω1, . . . , ωq−1 are nonnegative auxiliary variables.

Proof. The proof follows using Lemma 1 in Blanco et al. (2014) to represent constraint r2q ≤ γ r2q−d

(which is equivalent to the one to be represented). First, the binary representations of 1, d − 1 and
2q − 1 are computed, that is,

1 = 1 × 20 + 0 × 21 + · · · + 0 × 2q−1,

d − 1 = α0 × 20 + α1 × 21 + · · · + αq−1 × 2q−1,

2q − d = β0 × 20 + β1 × 21 + · · · + βq−1 × 2q−1.

Observe that the above decompositions allow to represent 2q not only as 1 + ∑q−1
i=1 2i but also as

2q = (1 + α0 + β0) + (α1 + β1) × 2 + (α2 + β2) × 22 + · · · + (αq−1 + βq−1) × 2q−1.
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Following similar arguments to those explicitly detailed in Blanco et al. (2014), we get that αi + βi =
1 for all i = 0, . . . , q − 1. Thus, one can represent constraint r2q ≤ γ r2q−d by concatenating the q
rotated SOC constraints stated in the result and then

r2q ≤ w2q−1

q−1r2q−1(1−αq−1 ) ≤ w2q−2

q−2r2q−1(1−αq−1 )+2q−2(1−αq−2 ) ≤ · · · ≤ w2
1r2q−1(1−αq−1 )+2q−2(1−αq−2 )+···+2(1−α1 )

≤ γ r2q−1(1−αq−1 )+2q−2(1−αq−2 )+···+21(1−α1 )+20(1−α0 ) = γ r2q−1r− ∑q−1
i=0 αi2i = γ r2q−1r−(d−1)

= γ r2q−d .

Thus, it implies that rd ≤ γ . �
Using the above result, one can easily represent volumes of the neighborhoods. For instance,

for d = 3 and d = 4, the terms r3
k or r4

k can be represented by means of the following set of SOC
inequalities and auxiliary variables:

(d = 3)

{
γkrk ≥ ω2

1

ω1 ≥ r2
k

(d = 4)

⎧⎪⎨
⎪⎩

γk ≥ ω2
1

ω1 ≥ ω2
2

ω2rk ≥ r2
k

.

The following result states a geometrical property of the optimal solutions of the UHLPN.

Proposition 3.1. Optimal locations of the hubs (x-variables) must belong to the boundary of the
selected neighborhoods.

Proof. Let (x∗, r∗, z∗) be the optimal solution for UHLPN with objective value f ∗. Assume that
there is some k ∈ N such that z∗

kk = 1 and x∗
k ∈ int(Nk(r∗

k)). Thus, there exists 0 < εk < r∗
k such

that x∗
k ∈ N (r∗

k − ε). Let us define r′ = (r∗
1, . . . , r∗

k−1, r∗
k − εk, r∗

k+1, . . . , r∗
n ). Clearly, (x∗, r′, z∗) is still

feasible and its objective function is smaller than f ∗ since it only affects the term gk and gk(r∗
k) ≥

gk(r′
k), contradicting the optimality of (x∗, r∗, z∗). �

3.2. First reformulation

Next, we present a reformulation of the UHLPN described in the section above based on the lin-
earization of the nonlinear terms of the objective function.

Indeed, the bilinear and trilinear terms in the objective function can be linearized by introducing
auxiliary decision variables. In particular, for all {i, k}, { j, m}, {k, m} ∈ E let

ηC
ik = dC (ai, xk)zik, ηD

ik = dD(ai, xk)zik and νikjm = dH (xk, xm)zikzjm.

Using the new set of decision variables, the UHLPN reduces to

min
∑

i,k∈N

(Oiη
C
ik + Diη

D
ik) +

∑
i, j∈N

wi j

∑
{i,k},{ j,m},{k,m}∈E

νik jm +
∑
k∈N

fkyk +
∑
k∈N

gk(rk)

s.t. (1), (2), (3),

ηC
ik ≥ dC (ai, xk) − D̂C

ik(1 − zik), ∀{i, k} ∈ E, (4)
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ηD
ik ≥ dD(xk, ai) − D̂D

ik(1 − zik), ∀{i, k} ∈ E, (5)

νik jm ≥ dH (xk, xm) − D̂H
km(2 − zik − z jm), ∀{i, k}, { j, m}, {k, m} ∈ E, (6)

ηC
ik, η

D
ik, νik jm ≥ 0, ∀{i, k}, { j, m}, {k, m} ∈ E,

zik, yk ∈ {0, 1}, ∀{i, k} ∈ E, k ∈ N,

0 ≤ rk ≤ Rk, ∀k ∈ N,

where constraints (4)–(6) are linearizations of the products dC (ai, xk)zik, dD(ai, xk)zik and
dH (xk, xm)zikz jm, in which the constants D̂C

ik, D̂C
ik, and D̂H

ik are upper bounds on the distance from
nodes ai to xk for the collection, distribution and transportation cost functions, respectively. These
bounds depend on the distances used for the cost functions. In particular, for Euclidean distances,
one can choose D̂C

ik = dC (ai, ak) + 2Rk, D̂D
ik = dD(ai, ak) + 2Rk and D̂H

km = dH (ak, am) + Rk + Rm.
Observe that the set of constraints (6) can be alternatively rewritten as

νik jm ≥ dH (xk, xm) − D̂H
km(1 − zik), ∀{i, k}, { j, m}, {k, m} ∈ E, (7)

νik jm ≥ dH (xk, xm) − D̂H
km(1 − z jm), ∀{i, k}, { j, m}, {k, m} ∈ E . (8)

However, the above formulation is not suitable to be solved directly by any of the available mixed
integer SOC optimization (MISOCO) solvers (e.g., CPLEX, Gurobi, or FICO Xpress) since (4)–
(6) are not rigorously speaking SOC constraints. Nevertheless, one can introduce adequate sets
of nonnegative auxiliary variables for the distances, dC (ai, xk), dD(xk, ai) and dH (xk, xm) in those
constraints, dC

ik, dD
ik and dH

km, respectively, for {i, k}, {k, m} ∈ E , and then rewrite (4)–(6) as

dC
ik ≥ dC (ai, xk),∀{i, k} ∈ E, (9)

dD
ik ≥ dD(ai, xk),∀{i, k} ∈ E, (10)

dH
km ≥ dH (xk, xm),∀{i, k} ∈ E, (11)

ηC
ik ≥ dC

ik − D̂C
ik(1 − zik),∀{i, k} ∈ E, (12)

ηD
ik ≥ dD

ik − D̂D
ik(1 − zik),∀{i, k} ∈ E, (13)

νik jm ≥ dH
km − D̂H

km(2 − zik − z jm),∀{i, k}, { j, m}, {k, m} ∈ E, (14)

dC
ik, dD

ik , dH
km ≥ 0,∀{i, k}, {k, m} ∈ E .

where now, (9)–(11) are SOC-representable (see, e.g., Blanco et al., 2014) and (12)–(14) are lin-
ear constraints.

The above formulation has O(|E |2) variables, O(|E |2) linear constraints, and O(|E |) nonlin-
ear constraints.

Note that in case dC = dD, a single set of η-variables, instead of ηC and ηD, can be used to
linearize the formulations.
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In Abdinnour-Helm and Venkataramanan (1998), the authors propose a multicomodity flow
based formulation for the uncapacitated hub location problem together with a branch-and-bound
strategy to solve it. This formulation directly applies to our problem after introducing the following
set of binary variables:

pi jkm =
{

1 if the arc (k, m) is used to route the flow between i and j,
0 otherwise,

for {k, m} ∈ E .
Thus, inducing a formulation with O(|E |2) binary variables in contrast to the O(|E |) binary

variables in our formulation.

3.3. Second reformulation

As in the previous formulation, we consider, again, variables ηC
ik and ηD

ik to represent the products of
the collection/distribution distances and the allocation variables. Now, instead of the 4-index vari-
ables νik jm, we consider 2-index variables μkm, which represent the aggregated value of the overall
cost flow on a given interhub arc (k, m), that is,

μkm =
∑
i, j∈N:

{i,k},{ j,m}∈E

wi jdH (xk, xm)zikz jm,

for all {k, m} ∈ E .
The resulting equivalent reformulation is as follows:

min
∑

{i,k}∈E

(Oiη
C
ik + Diη

D
ik) +

∑
{k,m}∈E

μkm +
∑
k∈N

fkyk +
∑
k∈N

gk(rk)

s.t. (1), (2), (3), (4), (5),

μkm ≥
∑

i, j∈N

wi jdH (xk, xm)zikz jm, ∀{k, m} ∈ E, (15)

ηC
ik, η

D
ik ≥ 0, ∀{i, k}, { j, m} ∈ E,

zik, yk ∈ {0, 1}, ∀{i, k} ∈ E, k ∈ N,

0 ≤ rk ≤ Rk, ∀k ∈ N,

μkm ≥ 0, ∀{k, m} ∈ E .

Observe that, taking into account the nonnegativity of variables and coefficients, and the minimiza-
tion objective function, it is guaranteed that for optimal solutions equality will hold for constraints
(15), which establishes the objective function value for the routing of interhub flows.

Note also that the trilinear terms of constraints (15) make them difficult to handle algorithmi-
cally. Next, we propose an equivalent set of linear constraints, which can be used for modeling the
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values of variables μkm. First, in Proposition 3.2 we give a linearization of the bilinear products of
z-variables.

Proposition 3.2. The set of nonlinear constraints (15) is equivalent to the following set of inequalities:

μkm ≥ dH (xk, xm)
∑

(i, j)∈S

wi j (zik + z jm − 1), ∀S ⊆ Nkm, ∀{k, m} ∈ E . (16)

where Nkm = {(i, j) ∈ N × N : {i, k}, { j, m} ∈ E}.
Proof. Let (z̄, μ̄) ∈ {0, 1}|E | × R

|E |
+ . Assume first that (z̄, μ̄) satisfies (15). Let {k, m} ∈ E and S ⊆

Nkm. Then

μ̄km
(15)≥ dH (xk, xm)

∑
(i, j)∈Nkm

wi j z̄ikz̄ jm = dH (xk, xm)
∑

(i, j)∈Nkm :
z̄ik=z̄ jm=1

wi j (z̄ik + z̄ jm − 1)

≥ dH (xk, xm)
∑
(i, j)∈S:

z̄ik=z̄ jm=1

wi j z̄ikz̄ jm ≥ dH (xk, xm)
∑

(i, j)∈S

wi j (z̄ik + z̄ jm − 1).

Hence, (16) is verified.
On the other hand, if (z̄, μ̄) satisfies (16), for all {k, m} ∈ E and S ⊆ Nkm, then, in particular,

choosing S = {(i, j) ∈ Nkm : z̄ik = z̄km = 1}, we have that

μ̄km
(16)≥ dH (xk, xm)

∑
(i, j)∈S

wi j (z̄ik + z̄ jm − 1) = dH (xk, xm)
∑

(i, j)∈S

wi j

= dH (xk, xm)
∑

(i, j)∈Nkm

wi j z̄ikz̄ jm,

so (15) is also verified. �

Observe that family (16) may have an exponential number of constraints (as in complete hub-
and-spoke networks), namely |E | × 2|E | inequalities, which are nonlinear because of the products
dH (xk, xm) × zik. Note that since constraint (16) is only active in case the sets S are adequately
chosen as the whole pairs of users, i and j in N, linked to k and m, respectively, for {k, m} ∈ E
(which are unknown), one cannot avoid the use of the exponentially many constraints.

As stated in the following result, those terms can be suitably linearized by introducing additional
decision variables and applying the McCormick transformation (McCormick, 1976).

Proposition 3.3. Nonlinear constraints (16) can be replaced by the following set of inequalities:

μkm ≥
∑

(i, j)∈S

wi j (θikm + θ jmk − dH (xk, xm)), ∀{k, m} ∈ E, ∀S ⊆ Nkm, (17)
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θikm ≥ dH (xk, xm) − D̂H
km(1 − zik), ∀{i, k}, {k, m} ∈ E, (18)

θikm ≥ 0, ∀{i, k}, {k, m} ∈ E, (19)

where the new variables θikm model the routing cost of the flow through the interhub arc (k, m) with
origin at i and the coefficient D̂H

km is an upper bound on the distance between the positions of hubs k
and m.

This reformulation has O(|N||E |) variables, O(|E |) nonlinear constraints and exponentially
many linear constraints. Then, to take advantage of the smaller number of nonlinear constraints
of this representation we propose an incomplete formulation, in which constraints (16) are added
on-the-fly, embedded in a branch-and-cut scheme, as described in the next section.

4. Branch-and-cut solution algorithm

In this section, we develop a branch-and-cut solution algorithm for the UHLPN, based on the
reformulation introduced in Section 3.3 where the routing costs of access and distribution flows are
linearized via constraints (4) and (5), and the costs of interhub flows are linearized using constraints
(17)–(19). Given that the set of constraints (17) is of exponential size, only a small number of them
is considered initially, and the remaining ones are handled as lazy constraints, so they are only
separated at the nodes of the enumeration tree where a solution is found with binary values for the z.

Initial set of constraints: We incorporate initially the following constraints in the form of (4):

μkm ≥ wi j (θikm + θ jmk − dH (xk, xm)), ∀{k, m} ∈ E, ∀i, j ∈ N : {i, k}, { j, m} ∈ E,

that is, choosing singleton S-sets in the form S = {(i, j)}.
Lazy constraints: As we show next, once an integer feasible solution for the z-variables is found

in the branch-and-bound search tree, separation can be carried out by inspection. Moreover, it is
also possible to apply a more sophisticated strategy in which, instead of generating all violated
constraints, only the most violated constraint is identified and added.

For all S ⊆ N × N, we use the following notation in our approach:

• S+ = {i ∈ N : ∃ j ∈ N with (i, j) ∈ S},
• S+(i) = { j ∈ N : (i, j) ∈ S} for all i ∈ S+,
• S− = { j ∈ N : ∃i ∈ N with (i, j) ∈ S},
• S−( j) = {i ∈ N : (i, j) ∈ S} for all j ∈ S−.
• Oi(S) =∑ j∈S−(i)wi j is the overall flow with origin i and destination in S, for all i ∈ S+,
• Dj (S) =∑i∈S+( j)wi j is the overall flow with origin in S and destination j, for all j ∈ S−,
• w(S) =∑

(i, j)∈S wi j is the overall flow over the connections in S.

With such a notation, for two potential hubs k, m ∈ N with {k, m} ∈ E , and S ⊆ Nkm, constraint
(17) reads as

μkm ≥
∑
i∈S+

Oi(S)θikm +
∑
j∈S−

Dj (S)θ jmk − w(S)dH (xk, xm). (20)
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Algorithm 1. Branch-and-cut solution approach

In Algorithm 1 we describe the pseudo-code of the proposed solution scheme. There, we de-
note by UHLPN(S ) the problem formulated as in Section 3.3 but where only the constraints (16)
involving the sets in the pool S ⊆ {S : S ⊂ N × N} are added.

Observe that to check the violation of constraint (20) for fixed {k, m} ∈ E with ȳk = ȳm = 1 for a
given feasible solution (x̄, z̄, r̄; θ̄ , μ̄), we consider the following choice for the S-set:

S = {(i, j) ∈ Nkm : z̄ik = z̄ jm = 1}.

Then, (20) is active only whenever
∑

i∈S+ Oi(S)θ̄ikm = ∑
j∈S− Dj (S)θ̄ jmk = w(S)dH (x̄k, x̄m) (in that

case μ̄km = w(S)dH (x̄k, x̄m)) or if x̄k and x̄m coincide. Otherwise, since θ̄ikm = dH (x̄k, x̄m)z̄ik and
θ̄ jmk = dH (x̄k, x̄m)z̄ jm one would have that

∑
i∈S+ Oi(S) �= ∑

j∈S− Dj (S) being then the overall flow
generated at the origins of S different from the overall flow with destination at the destinations of
S. Furthermore, in case

∑
i∈S+ Oi(S) = ∑

j∈S− Dj (S), this flow must coincide with the overall flow
given by the origins and destinations in S.

Clearly, constraint (17) with a maximum right-hand side value for the solution (x̄, z̄, r̄; θ̄ , μ̄), is
the one associated with set S. Hence, in order to solve the separation problem one only has to check
whether constraint (17) associated with S is violated, or equivalently, whether:

μ̄km < d̄kmw(S),

where d̄km = dH (x̄k, x̄m) is the routing cost of the interhub flows through arc (x̄k, x̄m).
If the above condition is not met, then constraint (17) associated with S is violated, so the fol-

lowing cut is added:

μkm ≥
∑
i∈S+

Oi(S)θikm +
∑
j∈S−

Dj (S)θjmk − w(S)dH (xk, xm).

One can also easily check for the most violated inequality, that is, find {k̄, m̄} in arg maxk,m∈N
{d̄kmw(S) − μ̄km} with dk̄m̄w(S) > μ̄k̄m̄.
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5. Experiments

We have performed a series of experiments to test and compare the formulations. We have used
the most common datasets in hub location: Australia Post (AP) (Ernst and Krishnamoorthy, 1996)
and Civil Aeronautics Board (CAB) (O’Kelly, 1987) with n ∈ {10, 20} in R

2 in which the network
is complete. The coordinates, a, the OD flows, w, and the setup costs, f , are taken from these
instances. We have implemented the HLPN formulation with distances dC, dD, and dH induced
by the �1, �2, and the �∞ norms such that dH ≤ dC = dD, that is, the combination of norms for
(dC = dD, dH ) in {(�p, �q) : p ≤ q, p, q ∈ {1, 2, ∞}}. We also apply an economy of scale factor α ∈
{0.2, 0.5, 0.8, 1}. In case α = 1, we use only the combination of hub-to-hub distances and hub-to-
spoke distances such that dH < dD, that is, a pair of norms in the form (�p, �q) with p > q.

We consider unit-ball norm-based neighborhoods. In particular, we choose as basic neighbor-
hoods the sets {z ∈ R

2 : ‖z‖p ≤ 1} for p ∈ {1, 2, ∞}. Different upper bounds have been consid-
ered for the dilations of the neighborhoods. In particular, we fix Rk = τ min i∈N:

i �=k
dC (ai, ak) for

k ∈ N, with τ ∈ {0.25, 0.5}. The radius-dependent setup costs are linear and such that fset−up(y, r) =∑
k∈N fkyk + ∑

k∈N �krk, where �k = ρ fk with ρ ∈ {0.01, 0.1, 1}.
With these choices, for each value of n we solved 864 instances. Thus, moving n and considering

the two datasets, we solved 5184 instances, each of them with the two reformulations. A time limit
of two hours was set for all the problems.

The two approaches were coded in Python, and solved using Gurobi 8.0 in a Mac OSX Mojave
with an Intel Core i7 processor at 3.3 GHz and 16 GB of RAM. For the branch-and-cut approach,
we use the default lazy callbacks implemented in Gurobi. We denote by (F 1) the solution approach
based on solving the compact formulation described in Section 3.2 and by (F 2) the branch-and-cut
approach proposed in Section 3.3.

In Tables 1 and 2, we report the average results of our computational experience in the following
layout:

• Measures of the required CPU time (in seconds) required for solving the problem with the two
approaches: minimum (Min1 and Min2), mean (Av1 and Av2), maximum (Max1 and Max2), and
standard deviation (Dst1 and Dst2) of the CPU times of the instances in the row.

• Average percentage gaps with respect to the relaxation obtained in the root node (GapR1 and
GapR2).

Each row in Tables 1 and 2 summarizes the results obtained for the six instances in combination of
the τ and ρ parameters described above.

From the results, one can observe that except in a few of the small instances, the branch-and-cut
approach (F2) requires less CPU time to solve the problems for polyhedral neighborhoods (�1 and
�∞ neighborhoods). For disk-shaped neighborhoods, we note that the small instances are solved
in smaller times using the compact approach (F1), but as the sizes of the instances increase, the
branch-and-cut performs slightly better in CPU time. While all the small (n = 10) instances were
easily solved for �1- and �∞-norm-based neighborhoods in a few seconds with both procedures (a
maximum of 42 seconds was required), the �2-norm-based neighborhoods needed much more CPU
time, in particular with the branch-and-cut approach in which close to 30 minutes were needed to
solve a single instance. For these small instances and polyhedral neighborhoods, the branch-and-cut
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Table 3
Percentage of unsolved instances and MIP gaps for the n = 20 instances

�1 �2 �∞

Dataset α dC dH MipGAP1 US1 MipGAP2 US2 MipGAP1 US1 MipGAP2 US2 MipGAP1 US1 MipGAP2 US2

AP 0.2 �1 �2 1.96 16.67 - - 13.81 100 - - 3.29 16.67 - -
�2 �∞ - - - - - - 10.95 25 - - - -

0.5 �1 �2 10.15 66.67 - - 18.66 100 3.42 50 5.63 50 - -
�∞ - - - - 2.09 33.33 - - - - - -

�2 �∞ - - - - - - 8.63 25 - - - -
0.8 �1 �2 7.92 50 0.13 16.67 22.82 100 6.34 83.33 11.42 66.67 - -

�∞ - - - - 2.90 33.33 2.14 33.33 - - - -
�2 �∞ - - - - - - 9.41 25 - - - -

1 �1 �2 7.35 66.67 0.99 16.67 24.85 100 8.20 66.67 10.47 66.67 - -
�∞ 0.60 16.67 - - 3.57 33.33 4.97 50 - - - -

�2 �∞ - - - - - - 12.55 50 - - - -
Average AP 2.33 18.06 0.09 2.78 8.32 46.88 4.95 34.38 2.57 16.67 - -

CAB 0.2 �1 �2 - 16.67 - - 4.89 50 - - 2.39 16.67 - -
0.5 �1 �2 1.89 16.67 - - 9.22 83.33 1.33 33.33 5.24 66.67 - -

�2 �∞ - - - - - - 1.68 20 - - - -
0.8 �1 �2 5.26 33.33 1.34 16.67 14.39 83.33 11.73 83.33 7.18 33.33 1.05 16.67

�∞ - - - - 2.23 33.33 - - - - - -
�2 �∞ - - - - 0.61 20 5.97 60 - - - -

1 �1 �2 5.62 66.67 3.67 50 18.32 100 30.35 100 6.48 66.67 4.18 33.33
�∞ - - - - 2.90 33.33 2.81 33.33 - - - -

�2 �∞ 0.81 16.67 - - 3.30 40 8.83 80 - - - -
Average CAB 1.13 12.50 0.42 5.56 4.87 38.24 5.29 33.82 1.78 15.28 0.44 4.17

Average 1.73 15.28 0.26 4.17 6.54 42.42 5.12 34.09 2.17 15.97 0.22 2.08

Table 4
Average number of cuts

n = 10 n = 20

AP CAB AP CAB

Neighborhoods

α dC dH �1 �2 �∞ �1 �2 �∞ �1 �2 �∞ �1 �2 �∞

0.2 �1 �2 128 103 130 37 34 34 137 59 109 240 225 267
�∞ 134 185 135 34 49 33 132 140 116 357 353 350

�2 �∞ 124 79 107 17 30 26 78 44 60 259 160 220

0.5 �1 �2 179 151 172 31 34 35 204 127 174 323 459 503
�∞ 156 226 158 36 50 39 208 263 211 439 560 502

�2 �∞ 194 130 166 17 30 27 163 75 131 322 418 382

0.8 �1 �2 201 206 199 31 46 41 353 172 252 637 486 785
�∞ 200 289 190 44 61 54 354 435 241 781 826 838

�2 �∞ 226 174 195 19 27 29 254 150 196 570 725 695

1 �1 �2 201 194 215 36 49 40 376 141 327 972 463 891
�∞ 164 254 191 48 55 53 478 636 331 935 1324 1116

�2 �∞ 257 235 205 18 26 24 272 208 256 772 598 931
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Fig. 4. Solutions for the same AP (n = 10) instance and different costs and neighborhood shapes.

approach required half of the time for solving the problems than the compact approach. However,
for disk-shaped neighborhoods, the situation is the opposite. For the n = 20 instances, the branch
and cut outperforms, in average, for any type of neighborhood, the compact approach in terms
of the CPU times needed for solving the problem. For polyhedral neighborhoods, the compact
approach need more than four times more CPU time to solve the problem than the branch and
cut, and for Euclidean neighborhoods, the compact formulation needed twice the CPU time used
by the branch and cut. This fact clearly justifies the use of formulation (F2) for solving the HLPN
problem.

Regarding the gap with respect to the relaxation of the root node, we obtain similar results with
both formulations, with slightly higher (less than 2% in average) bounds for the compact formu-
lation (F1). Note that one may expect that (F2) is, at the root node, much weaker than (F1) since
only a few cuts have been added at that node.
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Furthermore, in Table 3 we report the results concerning the unsolved instances, for any of the
formulations (F1) or (F2):

• Average percentage of MIP gaps (MIPGap1 and MIPGap2) obtained within the time limit.
• Percentage of unsolved instances with the two approaches: US1 and US2.

As can be seen from the average results shown in the table (where we have highlighted in boldface
the best global average results for all the instances), the branch-and-cut approach was able to solve
more instances than the compact formulation. The solutions obtained for the instances for which
none of the approaches was able to certify optimality, the best obtained solutions were also better
with the branch-and-cut approach.

Finally, in order to analyze the performance of the branch-and-cut approach, we show in Table 4
the number of cuts needed to solve the problem with such an algorithm. The first observation that
comes from the results is that the number of cuts is small. Note that the complete formulation of
the branch-and-cut approach requires an exponential (in |E | = n2) number constraints. However,
on average, the overall number of cuts is rather small (103 cuts for the n = 10 instances and 401
for the n = 20 instances). Moreover, although the shape of the neighborhoods seems to affect the
difficulty of the problem, the number of cuts is similar for the three different neighborhoods con-
sidered in these experiments. Finally, we remark that the CAB dataset with n = 10 nodes requires,
significantly, much less cuts than the AP dataset for the same number of points.

Finally, in Fig. 4 we draw some of the solutions for the AP dataset for n = 10 and different
choices for the costs dC and dH and neighborhoods shapes. Observe that both the shapes of the
neighborhoods and the distance-based costs affect the optimal position of the hubs and the alloca-
tion pattern of the hub-and-spoke network. In particular, in case that the neighborhood shapes are
based on the �2-norm only two facilities are required, whereas for other shapes three facilities seem
to be necessary.

6. Conclusions

We analyze in this paper, a new version of the UHLPFC where geographical flexibility is allowed
for locating the hub nodes. We propose a general framework for the problem by modeling the
geographical flexibility using neighborhood SOC-representable regions around the original posi-
tions of the nodes and measuring distribution, collection, and transportation costs by means of
�p-norm distances. We propose an MINLP formulation for the problem and we provide two differ-
ent formulations that make it tractable using commercial MISOCO solvers. The first formulation
consists of a linearization of some bilinear and trilinear terms while the second one is based on
introducing a novel set of exponentially many constraints for which an efficient separation oracle
and a branch-and-cut approach is presented.

Future research on the topic includes the incorporation of preferences onto the neighborhoods
allowing the decision maker to determine his most favorite regions. Also, some different models of
hub location as those with incomplete backbone networks or covering objective functions can be
extended to be analyzed with neighborhoods.
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