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Abstract
Given an m-periodic link L ⊂ S3, we show that the Khovanov spectrum XL con-
structed by Lipshitz and Sarkar admits a group action.We relate the Borel cohomology
of XL to the equivariant Khovanov homology of L constructed by the second author.
The action of Steenrod algebra on the cohomology of XL gives an extra structure
of the periodic link. Another consequence of our construction is an alternative proof
of the localization formula for Khovanov homology, obtained first by Stoffregen and
Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology
of the quotient link in terms of equivariant Khovanov homology of the original link.

Mathematics Subject Classification Primary 57M25

1 Introduction

1.1 Overview

Khovanov homology [27] is a link invariant that assigns to any diagram D ⊂ R
2 of

a link L ⊂ S3 a bigraded cochain complex CKh∗,∗(D), whose homology groups,
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Kh∗,∗(D), are a link invariant. Inspired by the construction of Cohen et al. [10],
Lipshitz and Sarkar [33] constructed a spatial refinement of Khovanov homology.

Theorem 1.1 [33, Theorem 1.1] Let D be a diagram representing an oriented link L ⊂
S3. For any q ∈ Z there exists a CW-complex X q

Kh(D) such that the reduced cellular
cochain complex ˜C∗(X q

Kh(D);Z) is a copy of the Khovanov complex CKh∗,q(D;Z).
In particular ˜Hi (X q

Kh(D);Z) is equal toKhi,q(D;Z). Moreover, the stable homotopy
type of X q

Kh(D) is an invariant of the link L.

Define XKh(D) = ∨

q X
q
Kh(D). We will often write XKh(L) instead of XKh(D)

noting that XKh(L) is defined up to stable homotopy. The space XKh(L) is called the
Khovanov homotopy type of a link L . There are various constructions of the Khovanov
homotopy type, see [15,22,28,33], we refer to [32] for a survey.

Given a link in S1×D2, in [1] Asaeda et al. (see also [41]) showed that thewrapping
number around the S1 factor induces a filtration of the Khovanov complex

0 ⊂ · · · ⊂ CAk−1 ⊂ CAk ⊂ CAk+1 ⊂ · · · ⊂ CKh∗,∗(L). (1.1)

The annular Khovanov homology of L , denoted AKh∗,∗,∗(L), is the homology of the
associated graded cochain complex CAKh∗,∗,∗(L). Lifting the annular grading to the
Khovanov flow category, leads to a construction of the annular Khovanov homotopy
type XAKh(L) = ∨

j,k∈Z X j,k
AKh(L), i.e. a spatial refinement of the annular Khovanov

homology.
A link L in S3 is said to be m-periodic if there exists an orientation-preserving

action of a cyclic group Zm on S3 such that L is an invariant subset of S3 and the fixed
point set is an unknot disjoint from L . A diagram D of a link L is called m-periodic
if 0 /∈ D and D is invariant under rotation ρm of order m of the plane about the point
0 ∈ R

2. The Khovanov complex of an m-periodic link admits an induced action of
Zm [8,38].

Removing a tubular neighborhood of the fixed point axis F of the rotation of S3

produces an annular link L ⊂ S1 × D2 invariant under a fixed point-free rotation of
S1 × D2. Such links in S1 × D2 are also called m-periodic. The Zm-action on the
Khovanov complex preserves the filtration (1.1), hence it descends to a Zm-action on
the annular Khovanov chain complex.

The primary purpose of this paper is to study the Khovanov homotopy type and
the annular Khovanov homotopy type of periodic links. The following two theorems
constitute the central geometric part of the present article.

Theorem 1.2 (a) Let Dm be an m-periodic diagram of an annular link L.

(1) For any q, k ∈ Z, X q,k
AKh(Dm) admits an action of the finite cyclic group of

order m which is compatible with the action of Zm on the annular Khovanov
complex of Dm.

(2) The equivariant annular stable homotopy type of X q,k
AKh(Dm) is an invariant of

the associated annular m-periodic link.

(b) Let Dm be a m-periodic link diagram.
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Khovanov homotopy type, periodic links and localizations 1235

(1) For any q ∈ Z, X q
Kh(Dm) admits an action of the finite cyclic group of order

m which is compatible with the action of Zm on the Khovanov complex of Dm.
(2) The equivariant stable homotopy type of X q

Kh(Dm) is an invariant of the asso-
ciated m-periodic link.

If we set m = p a prime number, we have the following result.

Theorem 1.3 (Geometric fixed point theorem)

(a) Let Dp be a p-periodic diagram of an annular link L and let D be the associated
quotient diagram. For any q, k ∈ Z

X q ′,k
AKh(Dp)

Zp = X q,k
AKh(D),

where q ′ = pq − (p − 1)k.
(b) If Dp is a p-periodic link diagram and D is the associated quotient diagram. Then

for any q ∈ Z

X q
Kh(Dp)

Zp =
∨

q ′,k′∈Z
pq ′−(p−1)k′=q

X q ′,k′
AKh (D).

FromTheorems1.2 and1.3,we can obtain nontrivial relations between the (annular)
Khovanov homology of a periodic link and the annular Khovanov homology of the
quotient thereof. The simplest forms of the relation are the following versions of the
Smith inequality.

Theorem 1.4 Let p be a prime and let L p be a p-periodic link with associated quotient
link L. Then, for every q, k ∈ Z the following holds

∑

i

dimFp AKh
i,pq−(p−1)k,k(L p;Fp) ≥

∑

j

dimFp AKh
j,q,k(L;Fp).

Theorem 1.5 For any p-periodic link L p ⊂ S3 and any q ∈ Z we have

∑

i

dimFp Kh
i,q(L p;Fp) ≥

∑

j,q ′,k′
pq ′+(p−1)k′=q

dimFp AKh
j,q ′,k′

(L p;Fp)

≥
∑

j

dimFp Kh
j,q(L;Fp).

Lipshitz and Sarkar [34] showed that the action of stable cohomology operations on
the Khovanov homologymight lead to substantially stronger link invariants. Similarly,
in our case, stable cohomology operations can be used to strengthen Theorems 1.4 and
1.5. As a corollary of our construction, we obtain Theorem 8.10, which gives a func-
torial way to determine the annular Khovanov homology of the quotient link from the
equivariant (annular) Khovanov homology of a periodic link. To be more precise, we

123



1236 M. Borodzik et al.

show in Theorem 8.3 that equivariant (annular) Khovanov homology is isomorphic to
the Borel equivariant cohomology ofXKh (respectivelyXAKh). Careful analysis of the
action of the Steenrod algebra on appropriately localized Borel cohomology, see [14],

recovers the cohomology of the fixed point set XZp
Kh (XZp

AKh, respectively). Finally, by

Theorem 1.3 we know thatXZp
Kh (andXZp

AKh) are determined byXKh (andXAKh) of the
corresponding quotient link. This gives a passage from the Khovanov homology of a
p-periodic link to the Khovanov homology of the quotient (with coefficients in Zp).
For details we refer to Sect. 8.4. Furthermore, a careful study of stable cohomology
operations leads to a refinement of the periodicity criterion of [5], for which we refer
the reader to a separate paper [39].

1.2 General context

Since the advent of various homological invariants for three-manifolds or knots in
three-manifolds, there has been a question on the behavior of these invariants under
passing to the quotient by a group action. One direction of the research was in the
Floer theory. Early results in knot Floer homology include Levine’s paper [30], which
was later used by Hendricks to obtain a rank inequality for knots in double branched
covers (see [18]). More recent advances in this direction include another paper of
Hendricks [19], and finally, a paper by Lidman and Manolescu [31], where Smith-
type inequalities are obtained for monopole Floer and Heegaard Floer homologies.

For Khovanov homology theory, the first localization results were obtained by
Seidel and Smith [44], where the authors used their own definition of Khovanov
homology based on the Lagrangian Floer theory [43]. Note that the equivalence of the
Seidel-Smith Khovanov homology with the original one is still conjectural in positive
characteristic. Motivated by their results, Hendricks et al. [20] constructed equivariant
Lagrangian Floer theory for more general groups.

The classical combinatorial definition of Khovanov homology enables an equivari-
ant version [38], generalizing earlier constructions of Chbili [8].

In order to study Khovanov homology using techniques from algebraic topology,
it is convenient to realize Khovanov homology of a link as the singular homology of
a topological space. In a series of papers, Lipshitz and Sarkar, later also with Lawson,
defined and studied the so-calledKhovanov homotopy type [28,33–35] (see also [9] for
a review in a language of algebraic topology) with the property that cohomology of the
space is the Khovanov homology of a link. A question remained whether Khovanov
homotopy type (sometimes called ‘Khomotopy type’) that they constructed admits a
group action if the underlying link is periodic.

The affirmative answer was given in the first version of this paper, and, indepen-
dently by Stoffregen and Zhang [46]. The updated version of this paper contains
proofs of fixed point results, which were not present in the first version. In particular,
Theorems 1.2 and 1.3 were proved first by Stoffregen and Zhang. Note that the two
constructions, even though they lead to the same result, are of substantially different
nature. Stoffregen and Zhang use the approach to Khovanov homotopy type via the
Burnside category [28]. Conceptually, this approach seems to require more case-by-
case analysis. On the other hand, Burnside rings have deep connections with ordinary
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homology theory and Mackey functors; see the book of Costenoble and Waner [11].
Therefore, the construction of equivariant Khovanov homology via Burnside rings has
the potential of revealing deeper structure in the equivariant Khovanov homology.

On the contrary, our approach is very concrete and down-to-earth. Most of the
arguments reduce either to the Riemann–Hurwitz formula or to Counting Moduli
Lemma 6.6, which is a direct application of relations in Cob3•/l . Moreover, we give a
specific and conceptual reason why the fixed point category of the Khovanov flow cat-
egory is the annular Khovanov flow category and not just the Khovanov flow category;
see Sect. 7, especially Lemma 7.5.

Even more important is that we get an explicit cell decomposition of geometric
realizations. Consequently,withoutmuch effortwe obtain an identification of the chain
complexC∗(XKh)with theKhovanovchain complexCKh as R[Zm]modules (for some
ring R); seeProposition 8.2. It follows thatBorel homologyof the geometric realization
is the equivariant Khovanov homology defined by Politarczyk. Theorem 8.3 might
seem to have complicated proof, but this is becausewe have rather general assumptions
on the coefficient module. Finally, methods of algebraic topology, like the Dwyer–
Wilkerson theorem, allow us to recover the annular homology of the quotient link in
terms of the equivariant Khovanov homology of the original link; see Theorem 8.10.
The latter result is not present in the Stoffregen–Zhang paper. Furthermore, to the best
of our understanding, passing from the results of Stoffregen andZhang toTheorem8.10
might require a few steps.

We expect that the equivariant homotopy type of Stoffregen–Zhang is equivariantly
homotopy equivalent to our construction. We do not have proof of that fact.

The special case (p = 2) of Theorem 1.4 was proved by Zhang [51]. She also
proved Corollary 1.5 for p = 2 and certain classes of periodic links.

1.3 Outline of the paper

Our construction of the equivariant Khovanov homotopy type is based on the con-
struction of the Khovanow homotopy type via cubical flow categories [28], which is
a simplification of the original construction [33]. We consider an equivariant version
of cubical flow category, called equivariant cubical flow category (see Sect. 3.4). A
remarkable difference from the non-equivariant definition is that the grading function
gr is replaced by an equivariant grading function grG taking values in the representa-
tion ring RO(G). Consequently, the moduli spaces are expected to be of dimension
grG(x) − grG(y) (refer to Definition A.7 for the definition of “dimension” in this set-
ting). This approach is motivated by the construction of ordinary (Bredon) homology
theory [11], and it makes the construction of equivariant Khovanov homotopy type
significantly simpler.

After defining equivariant cubical flow categories and a suitable generalization of
the notion of a neat embedding to the equivariant case, we construct the equivariant
Khovanov homotopy type. Thanks to the choice of the grading function, this part of
the construction is straightforward.

To show invariance under the choice of link diagram, we need to do substantially
more work. The key tool is, as in [33], the Whitehead theorem, but in the equivariant
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case, the assumptions of theWhitehead theoremaremuchharder to verify. In particular,
before proving invariance, we have to study fixed points of the equivariant cubical flow
category; Sect. 3.8 is devoted to this study. Apart from that, the invariance of the group
action on the choice of the diagram is proved analogously as in the non-equivariant
case.

The fixed point theorem requires even more work. From Sect. 3.8, we know that the
fixed point category is a cubical flow category, but we need to show that this category is
the (annular) Khovanov flow category of the associated quotient link. This is the state-
ment of Theorem 7.1. The proof requires amore in-depth understanding of topological
and combinatorial properties of the morphism spacesM(x, y). The general idea is to
use Bar–Natan’s formulation of the Khovanov theory in terms of dotted cobordisms.
A moduli spaceM(x, y) is nontrivial if there exists a suitable cobordism � between
resolution configurations. Counting Moduli Lemma 6.6 expresses the number of con-
nected components of the moduli spaces in terms of the genera of the components
of �. If we pass to a cover, we can use the Riemann–Hurwitz Theorem to study the
genus of the cover of the cobordism. Then, Bar–Natan’s formalism allows us to relate
the moduli spaces of the periodic link and the moduli space of its quotient link.

Next, we pass to homological statements. Our primary tool is the BQAS (Borel–
Quillen–Atiyah–Segal) Localization Theorem [3,40] and a Smith-type inequality [45]
which relates the rank of the homology groups of a periodic knot with the rank of the
homology group of the quotient knot. As an immediate corollary of Theorem 1.2 we
obtain Smith inequalities for (annular) Khovanov homology.

While analogs of the BQAS Localization Theorem recover only the rank of the
homology of the quotient knot, by applying more refined tools from algebraic topol-
ogy we obtain a significantly stronger result. Indeed, using the result of Dwyer and
Wilkerson [14], it is possible to give a complete description of theKhovanov homology
of the quotient knot in terms of the equivariant Khovanov homology of a p-periodic
knot, for a prime p. By Theorem 8.3, the Borel cohomology of XKh(D) can be iden-
tified with the equivariant Khovanov homology EKh∗,∗(L;Fp) introduced by the
second author [38]. Repeating the construction of [38] one can obtain the equivariant
annular Khovanov homology EAKh∗,∗,∗(L;Fp), which, by an analog of Theorem 8.3,
is isomorphic to the Borel cohomology of XAKh(L). Therefore, EKh∗,∗(L;Fp) and
EAKh∗,∗,∗(L;Fp) admit an action of the cohomology algebra H∗(BZp;Fp), of the
classifying space of Zp and the action of the mod p Steenrod algebra Ap. These two
algebraic structures are sufficient to recover the annular Khovanov homology of the
quotient knot from equivariant annular Khovanov homology of the periodic knot, as
shown in Theorem 8.10.

The structure of the paper is as follows. Section 2 recalls the construction of Lipshitz
and Sarkar. The reader familiar with the construction can skim through this section,
maybe except Sect. 2.2, where the degree of the cover map f is expressed in terms of
maximal chains in suitably defined posets. Section 3 generalizes the construction of
a geometric realization of a cubical flow category to the construction of a geometric
realization of an equivariant cubical flow category. The results in this section are stated
for general equivariant flow categories and general finite groups.

Section 4 deals with Khovanov homotopy type. We construct the equivariant Kho-
vanov flow category as well as its annular analog. We show that passing to geometric
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realization yields a space that is independent of various choices up to equivariant stable
homotopy equivalence. This independence is proved in Sect. 5. In Sect. 6, we make
preparatory steps to prove the fixed-point theorems. We recall Bar–Natan’s construc-
tion of Khovanov homology via Cob3•/l -category and use this construction to establish
Counting Moduli Lemma 6.6, which computes the number of connected components
of the moduli space in terms of the genus of the cobordism in Bar–Natan’s setting.
Sect. 7 proves Categorical Fixed Point Theorem (Theorem 7.1).

In Sect. 8,we change the setting and dealwith homologies of geometric realizations.
We show thatBorel homology of the equivariant geometric realization of theKhovanov
category coincides with Politarczyk’s equivariant Khovanov homology of a periodic
link (Theorem 8.3). The Dwyer–Wilkerson theory allows us to calculate the Khovanov
homology of a quotient link in terms of the equivariant Khovanov homology of the
associated periodic link, see Theorem 8.10.

Some technical results are moved to the Appendix. In Appendix A, we review the
definitions of manifolds with corners, while in Appendix B, we review the definition
and basic properties of permutohedra. We also establish a technical result, Propo-
sition B.11, which essentially says that the intersection of a permutohedron with a
hyperplane is a permutohedron of lower dimension. To the best of our knowledge, it
is a result not known in the literature. A consequence of this technical fact is Proposi-
tion B.18. It states that if a group acts on R

n by permuting coordinates, a fixed point
set of a permutohedron is again a permutohedron.

Finally, we note that we present detailed examples of computations in a forthcoming
paper [4].

2 Flow categories and their geometric realizations

2.1 Flow categories

In this section we use the notion of an 〈n〉-manifold introduced in the Appendix A.
The necessary background on permutohedra is given in Appendix B.

Definition 2.1 A flow category is a topological category C such that the set of objects is
finite, discrete, and is equipped with a grading function grC : Ob(C) → Z. Morphism
spaces satisfy the following three conditions:

(FC-1) For any x ∈ Ob(C), homC(x, x) = {id}.
(FC-2) For any x, y ∈ Ob(C) with gr(x) − gr(y) = d, homC(x, y) is a (possibly

empty) (d − 1)-dimensional 〈d − 1〉-manifold.
(FC-3) If gr(x) − gr(y) = d, then the composition maps induce diffeomorphisms of

〈d − 2〉-manifolds

⊔

z∈Ob(C)\{x,y}
gr(z)−gr(y)=i

homC(z, y) × homC(x, z) ∼= ∂i homC(x, y).
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Moreover, for any x, y ∈ Ob(C) we define the moduli space from x to y as

MC(x, y) =
{

homC(x, y), if x �= y,

∅, otherwise.

If τ ∈ Z, we define the τ -th suspension of C, �τ (C), to be the flow category with
the same objects and morphisms and associated grading function

gr�τ (C)(x) = grC(x) + τ.

Definition 2.2 (see [28, Section 3.1]) The cube flow category Cube(n), for n ∈ Z+, is
the flow category such that:

(1) Ob(Cube(n)) = {0, 1}n with grading defined by

gr(u) = |u| =
∑

i

ui ,

where u = (u1, u2, . . . , un). The set of objects of Cube(n) can be partially
ordered:

u ≥ v, if ui ≥ vi for all 1 ≤ i ≤ n.

For two objects u > v of the flow category with gr(u) − gr(v) = d we define

MCube(n)(u, v) = �d−1 ⊂
∏

i : ui>vi

R,

where �d−1 is a (d − 1)-dimensional permutohedron as in Definition B.1.
(2) Composition of morphisms

MCube(n)(w, v) × MCube(n)(u, w) → MCube(n)(u, v) (2.1)

is defined with the aid of identification from Lemma B.4. Namely, for a triple of
objects u > w > v such that gr(u) − gr(w) = k, gr(w) − gr(v) = l, there exists
a1, a2, . . . , ak+l ∈ {1, 2 . . . , n} with a1 < a2 < · · · < ak+l , such that

ua1 = ua2 = · · · = uak+l = 1, va1 = va2 = · · · = vak+l = 0,

and u j = v j , for j �= a1, a2, . . . , ak+l . Let P be the subset of {1, 2, . . . , k + l}
consisting of indices s such that was = 1. By Lemma B.4 the facet (see Sect. B.1
for terminology) �P of �k+l−1 can be identified with

�l−1 × �k−1 = MCube(n)(w, v) × MCube(n)(u, w).
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The composition (2.1) is given by the embedding map

MCube(n)(w, v)×MCube(n)(u, w) = �l−1×�k−1 = �P ↪→ ∂MCube(n)(u, v).

(2.2)

We use the notation 0n = (0, . . . , 0) ∈ Ob(Cube(n)) and 1n = (1, . . . , 1) ∈
Ob(Cube(n)).

Example 2.3 In [33, Definition 3.14] there is described a method to assign a flow
category C f to every Morse-Smale function f : M → R, where M is a smooth
compact manifold. Objects of C f are critical points of f , the grading of an object is
the index of the associated critical point, and the morphism spaces are moduli spaces
of non-parametrized gradient flow lines of f .

Then-dimensional cube [0, 1]n can be equippedwith the structure of aCW-complex
with cells

Xu,v = {w = (w1, . . . , wn) ∈ [0, 1]n : ∀1≤i≤n vi ≤ wi ≤ ui },

where u = (u1, . . . , un) ∈ {0, 1}n , v = (v1, . . . , vn) ∈ {0, 1}n and vi ≤ ui for
every 1 ≤ i ≤ n. Let C∗([0, 1]n;F2) denote the cellular cochain complex of the cube
associated to the CW-structure described above.

Definition 2.4 A sign assignment ν is a cochain ν ∈ C1([0, 1]n;F2) such that ∂∗ν =
12, the cochain in C2([0, 1]n;F2) with constant value 1.

Since H1([0, 1]n;F2) is trivial, it is always possible to find a sign assignment.
Moreover, for any two sign assignments ν1 and ν2 we have ν1 − ν2 = ∂∗t for some
t ∈ C0([0, 1]n,F2). The standard sign assignment is given by the following formula

νst ((ε1, . . . , ε j−1, 1, ε j+1, . . . , εn), (ε1, . . . , ε j−1, 0, ε j+1, . . . , εn)) = ε1+· · ·+ε j−1,

(2.3)
where we use the shortened notation ν(Xu,v) = ν(u, v).

Definition 2.5 (See [28, Section 3.5]) A cubical flow category is a flow category C
equipped with a grading-preserving functor f : �τC → Cube(n), for some τ ∈ Z

and n ∈ N, such that for any pair of objects x, y of C the map fx,y : MC(x, y) →
MCube(n)(f(x), f(y)) is a covering map.

To conclude this subsection we recall a definition of [33, Section 3.4.2].

Definition 2.6 Let C be a flow category and let C′ be a subcategory of C. We say that
C′ is downward closed (respectively upward closed) if, for any x, y ∈ Ob(C) such
that MC(x, y) �= ∅, x ∈ Ob(C′) implies that y ∈ Ob(C′) (respectively, y ∈ Ob(C′)
implies that x ∈ Ob(C′)).

Given a downward closed subcategory C′ of C, we consider a full subcategory C′′
of C whose objects are objects not in C′. The category C′ is upward closed. We call it
the complementary upward closed category of C′. A complementary downward closed
category of an upward closed category is constructed similarly.

123
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2.2 Posets associated to cubical flow categories

The goal of this subsection is to calculate combinatorially the degree of the map
fx,y : MC(x, y) → MCube(f(x), f(y)). Proposition 2.13 is a step in establishing
Counting Moduli Lemma 6.6 below, which is needed to prove the Categorical Fixed
Point Theorem (Theorem 7.1).

Let P be a finite poset. A chain in P is a linearly ordered subset of P . A chain is
called maximal if it is maximal with respect to the inclusion relation. We denote by
max(P) the set of maximal chains of P .

Example 2.7 Let u, v ∈ Ob(Cube(n)). Define the poset

P(u, v) = {w ∈ Ob(Cube(n)) : u ≥ w ≥ v}.

If c = {w1 > w2 > · · · > wk} is a chain in P(u, v), then we say that c is a full chain
if w1 = u and wk = v. Every maximal chain is necessarily full.

We write P(Cube(n)) for the poset of all objects of Cube(n). While P(Cube(n)) =
Ob(Cube(n)), we use the notation P(Cube(n)) whenever we want to emphasize the
partial order on the objects of the cube category.

Choose u > v in Cube(n). Set s = gr(u) − gr(v). An element w ∈ P(u, v)

determines a facet of MCube(n)(u, v) = �s−1, which is the image of

MCube(n)(w, v) × MCube(n)(u, w) → MCube(n)(u, v).

More generally, every full chain in P(u, v) determines a face of �s−1. Namely, to a
full chain u > w1 > · · · > wk > v, we associate the face which is the image of the
composition map

MCube(n)(wk, v)×MCube(n)(wk−1, wk)×· · ·×MCube(n)(u, w1)
◦−→ MCube(n)(u, v).

(2.4)
A maximal chain in P(u, v) corresponds to a vertex of MCube(n)(u, v). Conversely,
to a vertex z = (z1, . . . , zs) of �n−1 we associate a maximal chain u = w1 > w2 >

· · · > ws = v such that wi+1 differs from wi at the zi -th coordinate. Denote this
maximal chain by Pz(u, v).

Suppose now C is a cubical flow category and f : C → Cube(n) is the cubical
functor. Until the end of this subsection, we will make the following assumption.

Assumption 2.8 For any x, y ∈ Ob(C) such that gr(x) − gr(y) = 1, the moduli space
MC(x, y) is either empty or it is a single point.

Note that this assumption is trivially satisfied in the case of the Khovanov, respec-
tively the annular Khovanov flow category, defined in Sects. 4.3 and 4.4.

Under Assumption 2.8 we can define the following relation on objects: we say that
x � y if gr(x) − gr(y) = 1 andMC(x, y) is non-empty. In general � is the transitive
closure of this relation.

Lemma 2.9 Given x, y ∈ Ob(C), x � y if and only if MC(x, y) is non-empty.
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Proof If x � y, there exists a chain x = x0 � x1 � · · · � xs = y and therefore
MC(x, y) containsMC(xs−1, xs)×MC(xs−2, xs−1)×· · ·×MC(x0, x1), so it is non-
empty. Conversely, ifMC(x, y) is non-empty, then it is a union of permutohedra�s−1.
Choose a vertex of one of these permutohedra, which corresponds toMC(xs−1, xs)×
MC(xs−2, xs−1) × · · · × MC(x0, x1) for some sequence x = x0, x1, . . . , xs = y of
objects in C. Then, gr(xi−1) − gr(xi ) = 1 and MC(xi−1, xi ) is non-empty. Hence
xi−1 � xi and therefore x � y ��
Remark 2.10 The map f : Ob(C) → Ob(Cube(n)) is order-preserving.

Let x, y ∈ Ob(C) and s = gr(x) − gr(y). Assume that MC(x, y) is non-empty.
The poset PC(x, y) is the poset of all x ′ ∈ Ob(C) such that x � x ′ � y. Any full
chain x = x0 � x1 � x2 � · · · � xs = y in PC(x, y) corresponds to a face
ofMC(x, y) defined via the composition mapMC(xs−1, xs) × · · · ×MC(x0, x1) ⊂
MC(x, y). is a codimension one face.We recall this distinction (present in LLSpapers)
in the appendix and we’ve checked all the instances of face/facet used in the paper. A
maximal chain in PC(x, y) corresponds to a single vertex inMC(x, y), because if the
chain is maximal, all the moduli spaces MC(xi , xi+1) consist of a single element by
Assumption 2.8.

Definition 2.11 For a maximal chain m ∈ PC(x, y), the associated vertex vm ∈
MC(x, y) is the vertex associated to m by the above construction.

The correspondence can be reversed. Each face ofMC(x, y) determines a chain in
PC(x, y) precisely as in the case of the cube flow category. The following result is a
special case.

Lemma 2.12 For every vertex v ∈ MC(x, y) there exists a maximal chain m ∈
PC(x, y) such that v = vm.

Proof By definition, a vertex v in MC(x, y) is an image of MC(xr , y) × · · · ×
MC(x, x1), where all moduli spaces are zero-dimensional. In particular, with x0 = x
and xr+1 = y, we have gr(xi ) − gr(xi−1) = 1, which implies that the chain
x0 � · · · � xr+1 is maximal. Clearly, the vertex associated to this chain is v. ��

Given u = f(x), v = f(y) two objects in Cube(n), the map fx,y : MC(x, y) →
MCube(n)(u, v) induces a map of posets

fPx,y : PC(x, y) → PCube(n)(u, v).

For any vertex z ∈ �n−1 we define Pz(x, y) ⊂ PC(x, y) to be the preimage of Pz(u, v)

under fPx,y .

Proposition 2.13 For any vertex z of �n−1,

# max Pz(x, y) = #π0(MC(x, y)).
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Proof Fix a vertex z ∈ �n−1. As the map f is a cover, we infer that #π0(MC(x, y)) =
#f−1

x,y(z). To show that # max Pz(x, y) = #f−1
x,y(z), let first v ∈ f−1

x,y(z), and denote
by m the maximal chain m in P(x, y) associated to v. Clearly m ∈ max Pz(x, y).
On the other hand, every maximal chain m ∈ max Pz(x, y) has an associated vertex
vm ∈ MC(x, y) such that f(vm) = z. This shows that there is a bijection between
max Pz(x, y) and f−1

x,y(z). ��

2.3 Neat embeddings

Recall that Lawson, Lipshitz and Sarkar described in [28, Section 3] a construction that
turns a cubical flow category into a CW-complex. The construction is a simplification
of the construction of Lipshitz and Sarkar in [33]. In Sects. 2.3, 2.4 and 2.5 we give a
brief review.

Let (C, f) be a cubical flow category, and fix d• = (d0, d1, . . . , dn−1) ∈ N
n and

R > 0. For any u > v in Ob(Cube(n)) define

Eu,v =
⎡

⎣

|u|−1
∏

i=|v|
[−R, R]di

⎤

⎦ × MCube(n)(u, v).

For any triple of objects u > v > w there is a map ϒ : Ev,w × Eu,v → Eu,w defined
as the composition:

Ev,w × Eu,v
∼=

|v|−1
∏

i=|w|
[−R, R]di × MCube(n)(v, w) ×

⎡

⎣

|u|−1
∏

j=|v|
[−R, R]d j

⎤

⎦ × MCube(n)(u, v)

∼=
|u|−1
∏

i=|w|
[−R, R]di × MCube(n)(v, w) × MCube(n)(u, v)

↪→
|u|−1
∏

i=|w|
[−R, R]di × MCube(n)(u, w) = Eu,w. (2.5)

A cubical neat embedding ι of a cubical flow category (C, f) relative to d• =
(d0, d1, . . . , dn−1) ∈ N

n is a collection of neat embeddings

ιx,y : MC(x, y) ↪→ Ef(x),f(y)

such that

(CNE-1) For each x, y ∈ Ob(C) the following diagram commutes
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(CNE-2) For any u, v ∈ Ob(Cube(n)) the map

⊔

f(x)=u,f(y)=v

ιx,y :
⊔

f(x)=u,f(y)=v

MC(x, y) ↪→ Eu,v

is a neat embedding (see Definition A.5).
(CNE-3) For any triple x > y > z ∈ Ob(C) the following diagram commutes

Here the verticalmaps are given by ι, the top horizontalmap is the compo-
sition of morphisms and the bottom horizontal map is as defined in (2.5).

2.4 Framed cubical neat embeddings

To perform the construction of Lawson, Lipshitz and Sarkar, we need to construct an
extension of ι to a framed cubical neat embedding ῑ, i.e a collection of embeddings

ῑx,y :
|f(x)|−1
∏

i=|f(y)|
[−ε, ε]di × MC(x, y) → Ef(x),f(y),

for some ε > 0, in such a way that the commutativity from (CNE-3) is preserved with
ῑ replacing ι. In general ῑ can be constructed as follows:

ῑx,y :
|f(x)|−1
∏

i=|f(y)|
[−ε, ε]di

× MC(x, y) → Ef(x),f(y) =
|f(x)|−1
∏

i=|f(y)|
[−R, R]di × MCube(n)(f(x), f(y))

(t, γ ) �→ (t + π R
u,vιx,y(γ ), πM

u,vιx,y(γ )), (2.6)

where

π R
u,v :

|u|−1
∏

i=|v|
[−R, R]di × MCube(n)(u, v) →

|u|−1
∏

i=|v|
[−R, R]di , (2.7)

πM
u,v :

|u|−1
∏

i=|v|
[−R, R]di × MCube(n)(u, v) → MCube(n)(u, v) (2.8)

are projections, with f(x) = u, f(y) = v.
If ῑ is a framed neat embedding of the cube flow category, then ῑ determines a sign

assignment. Namely, for u, v ∈ {0, 1}n such that gr(u)−gr(v) = 1, we set ν(u, v) = 0
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if ιu,v(MCube(n)(u, v)) is framed positively with respect to the standard framing of
[−R, R]d|v| , and ν(u, v) = 1 otherwise. In this case, we say that ῑ refines ν.

Lemma 2.14 Any sign assignment ν determines a framed cubical neat embedding of
the cube flow category which refines ν.

Proof The lemma follows directly from [33, Proposition 4.12]. ��
Any sign assignment for the cube flow category induces a sign assignment for

its cover in an obvious way. In particular, a framed neat embedding of a cubical flow
category induces a framed neat embedding of the underlying cube flow category, hence
a sign assignment on the cube flow category; see [28, Section 3.5] for more details.

2.5 Cubical realizations

Let us fix a cubical flow category (C, f), a cubical neat embedding ι of C relative to
a tuple d• = (d0, d1, . . . , dn−1) and fix ε > 0 in such a way that the map (2.6) is an
embedding. As in [28, Definition 3.29] we construct a based CW-complex (||C||, x0)
in the following way:

(1) For any x ∈ Ob(C), if u = f(x), we define the cell associated to x as

X(x) =
|u|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|u|
[−ε, ε]di × ˜MCube(n)(u, 0n), (2.9)

where ˜MCube(n)(u, 0n) is defined to be {0} if u = 0n and [0, 1]×MCube(n)(u, 0n)
otherwise.

(2) The cells X(x) are glued together inductively. First we start with a disjoint union
of cells X(y) for {y : f(y) = 0n ∈ {0, 1}n}. For arbitrary x ∈ Ob(C), the cell X(x)
is glued to the union

⋃

y : f(x)>f(y) X(y). The gluing map is described below.
(3) For any x, y ∈ Ob(C) with f(x) = u > v = f(y) the cubical embedding provides

an embedding θy,x : X(y) × MC(x, y) → X(x) given by

X(y) × MC(x, y) =

=
|v|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|v|
[−ε, ε]di × ˜MCube(n)(v, 0) × MC(x, y)

∼=
|v|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|u|
[−ε, ε]di × ˜MCube(n)(v, 0) ×

⎛

⎝

|u|−1
∏

i=|v|
[−ε, ε]di × MC(x, y)

⎞

⎠

↪→
|v|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|u|
[−ε, ε]di × ˜MCube(n)(v, 0) ×

⎛

⎝

|u|−1
∏

i=|v|
[−R, R]di × MCube(n)(u, v)

⎞

⎠

∼=
|u|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|u|
[−ε, ε]di × ˜MCube(n)(v, 0) × MCube(n)(u, v)
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↪→
|u|−1
∏

i=0

[−R, R]di ×
n−1
∏

i=|u|
[−ε, ε]di × ∂( ˜MCube(n)(u, 0)) ⊂ X(x). (2.10)

The first inclusion is given by the map ιx,y . The last inclusion comes from the
composition map if v �= 0, or the inclusion {0} ↪→ [0, 1] if v = 0. Denote by
Xy(x) ⊂ X(x) the image of the above map.

(4) The attaching map for X(x) sends Xy(x) ∼= X(y) × MC(x, y) to X(y) via the
projection onto the first factor. The complement of ∪y Xy(x) in ∂X(x) is mapped
to the base point.

Remark 2.15 It is proved in [28, Lemma 3.30] that the attachingmaps arewell-defined.
This boils down to showing that if x, y, z ∈ Ob(C) are such that f(x) > f(y) > f(z),
then there exists a map κx,y,z that makes the following diagram commute.

Xz(x) ∩ Xy(x)

κx,y,z

X y(x) X(y)

Xz(x) ∂X(y)

X(z) Xz(y)

(2.11)

Definition 2.16 The CW-complex ||C|| is called the cubical realization of the cubical
category C. The formal desuspension:

X (C) = �−τ−d0−d1−···−dn−1 ||C||,

where τ is as in Definition 2.5, is called the C-homotopy type.

We note that we deviate slightly from [28]. We want the cubical realization to be
a CW-complex, i.e. a topological space. After desuspension we obtain an object in
the Spanier–Whitehead category, for which we use different notation X (C). Thanks
to this distinction, many statements become more transparent, like the statement of
Proposition 3.27.

Remark 2.17 It follows directly from the construction that if C is a union of cate-
gories C1, . . . , Cs (in the sense that objects are set sums of objects, and there are no
morphisms between objects in different summands), then X (C) is the wedge sum of
X (C1), . . . ,X (Cs).

2.6 Chain complex associated with a cubical flow category

For completeness of the exposition,we recall how to compute the singular cohomology
of the cubical realization.A detailed account is given in [33, Section 3] and [28, Section
3.2].
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Let (C, f) be a cubical flow category with f : �τC → Cube(n). Choose a sign
assignment ν for Cube(n). Define a cochain complex C∗(C, f) in the following way:

• The group Ck(C) is freely generated over Z by the objects of C whose grading is
equal to k;

• If x ∈ Ob(C) has grading k, then we define

∂〈x〉 =
∑

y∈Ob(C)
gr(y)=k+1

nx,y〈y〉, (2.12)

where nx,y is the signed count of points in MC(x, y). In particular, if we choose
a framed cubical neat embedding which refines a sign assignment ν, then

nx,y = (−1)ν(f(x),f(y))#MC(x, y). (2.13)

The following result follows immediately from the construction of ||C||.
Lemma 2.18 C∗(C, f) is a cochain complex, that is, ∂2 = 0, and its associated coho-
mology is equal to the cohomology of X (C), the C-homotopy type.

3 Equivariant flow categories

In this section we adapt the construction from Sect. 2 to the equivariant setting. First,
we will introduce some terminology from equivariant differential topology. General
references include [37,47,49].

3.1 Terminology

Let G be a finite group. An orthogonal representation of G is a homomorphism
ρ : G → O(V ), where O(V ) denotes the group of orthogonal automorphisms of some
inner product space V . In particular, V is implicitly equipped with an inner product
which is preserved by G. In the present article, we consider only finite-dimensional
representations.

If it does not lead to confusion, we will refer to a representation ρ : G → O(V ) as
V . In particular, for a subgroup H ⊂ G, the notation V |H means the representation
ρ|H : H → O(V ). For two representations, V ,W we denote by homG(V ,W ) the
space of G-equivariant linear maps from V to W .

If W ⊂ V are two G-representations, then by V − W , we denote the orthogonal
complement ofW in V . This notation is extended to the casewhenW is not necessarily
a subrepresentation of V by introducing a Grothendieck group (actually a ring) of
representations. More specifically, the representation ring RO(G) is the ring whose
elements are formal differences V −W of orthogonal G-representations, where V1 −
W1 = V2 − W2 in RO(G) if V1 ⊕ W2 is equivalent to V2 ⊕ W1. Notice that if
W ⊂ V , then V − W is isomorphic in RO(G) to the orthogonal complement of W

123



Khovanov homotopy type, periodic links and localizations 1249

in V . The direct sum induces the addition, and the tensor product over R induces the
multiplication.

We pass to the definition and basic properties ofG-manifolds. Somemore technical
results are deferred to theAppendix.General references for group actions onmanifolds
include [26,47,49].

We say thatM is aG-manifold, if it is amanifold (possiblywith boundary) equipped
with a smooth action of G. Observe that for any x ∈ M , the isotropy group Gx acts
on the tangent space TxM . By abuse of notation, we will denote by TxM the tangent
representation of Gx . For any subgroup H ⊂ G define

MH = {x ∈ M : ∀h∈Hh · x = x} = {x ∈ M : H ⊂ Gx }.

We say that M is of dimension V − W ∈ RO(G), if for any x ∈ M there exists an
isomorphism of Gx -representations TxM ⊕ W |Gx

∼= V |Gx .
Let M be a compact G-manifold and let p : E → M be a vector bundle over M .

We say that E is a G-vector bundle if there exists an action of G on E by vector
bundle morphisms such that p commutes with the action of G on E and M . If V is a
G-representation, then a V -bundle is a G-vector bundle p : E → M such that for any
x ∈ M there exists an isomorphism of Gx representations between V |Gx and p−1(x).
We denote by V M the trivial V -bundle over M , i.e. V M = V × M .

Example 3.1 Let M be a G-manifold and let V be a G-representation. The tangent
bundle T M is a V -bundle if and only if M is of dimension V .

A framing of a V -bundle is a choice of an isomorphism of V -bundles φ : E → V M .
A stable framing is a choice of an isomorphism of V -bundles φ : E ⊕WM → V M ⊕
WM for some trivial bundleWM . Any framing of a V -bundle determines an orientation
of the bundle.

3.2 Equivariant cell complexes

In order to fix the terminology, we recall the notion of a G-cell and a G-cell complex.

Definition 3.2 Let H ⊂ G be a subgroup and letV be an H -representation.AG-cell of
type (H , V ), denoted by E(H , V ), is G ×H BR(V ), where BR(V ) denotes the closed
ball in V centered at 0 and of radius R > 0. Notice that if V is a G-representation,
then E(H , V |H ) ∼= G ×H BR(V ). A G-cell complex is a topological space X with a
filtration

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · ·

such that

• X0 is a disjoint union of orbits,
• for any n > 0, Xn = Xn−1 ∪ f E(Hn, Vn), where

f : ∂E(Hn, Vn) → Xn−1
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is an equivariant map,
• X = colimn Xn .

TheG-cell complex is called a Rep(G)-complex in [16, Section 1.13]. If we restrict
the class of cells allowed in the construction, we obtain the following special cases.

• If we assume that all representations Vn are of the form a V ⊕R
an , for some fixed

representation V and some integers an , we obtain a G-CW(V ) complex in the
sense of e.g. [11, Section 1.1.2] or [37, Section X.2].

• If, on the other hand, all V are trivial representations, we obtain a G-CW complex
as in [11, Section 1.1.3] or [37, Section 1.3].

Topological spaces we construct are usually G-cell complexes, while in Sect. 8, we
apply theorems for G-CW complexes. Therefore we need to translate from one object
to another. The following result is well-known to experts.

Proposition 3.3 Any G-cell complex has a G-homotopy type of a G-CW complex.

Proof There are essentially two ways of approaching this result. In [37, Proposition
X.2.8] it is proved that a G-CW(V ) complex is G-homotopy equivalent to a G-CW
complex, and the proof can be adapted to the case of general G-cell complexes.

Another way is to refine the cell structure, namely to find a triangulation of BR(V )

by cells such that G acts on BR(V ) by permuting cells. This can be done using the
results of Illman [24] (if G is a finite group, [23] suffices). ��

3.3 Equivariant Spanier–Whitehead category

For completeness of exposition we recall the definition of equivariant Spanier–
Whitehead category. Suppose X and Y are finiteG-CW complexes. A (G-)equivariant
homotopy of G-maps f , g : X → Y is an equivariant map

H : X × [0, 1] → Y ,

where G acts trivially on [0, 1]. We denote by [X ,Y ]G the set of homotopy classes
of maps f : X → Y . A G-map is called a (G-)equivariant homotopy equivalence if
it admits an equivariant homotopy inverse. A G-map f : X → Y is an equivariant
stable homotopy equivalence if there exists a G-representation V such that the map

f ∧ idSV : X ∧ SV → Y ∧ SV

is an equivariant homotopy equivalence. Here, SV is the one-point compactification
SV of V .

Definition 3.4 The equivariant Spanier–Whitehead category SWG is the category
whose objects are the pairs (X , V ), where X is a finite G-CW complex and V is
a virtual G-representation. Morphisms are defined by

HomSWG ((X , V ), (Y ,W )) = colimZ

[

X ∧ SV⊕Z ,Y ∧ SW⊕Z
]

G
,
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where Z runs through the family of finite-dimensional G-representations such that
both V ⊕ Z and W ⊕ Z are G-representations.

The equivariant Spanier–Whitehead category is a full subcategory of the equivariant
stable homotopy category, see [37, Proposition XII.7.3] and the preceding discussion.

3.4 Group actions on flow categories

We introduce now the definition of a group action on a flow category. To understand the
details, it might be helpful the reader to keep in mind that the construction is modeled
on the flow category associated with an equivariant Morse function.

Definition 3.5 Let G be a finite group and let C be a flow category. We say that C is
a G-equivariant flow category (as usual, we will omit G when it is clear from the
context) if it is equipped with the following data:

(1) for any g ∈ G there exists a grading preserving functor

Gg : C → C,

(2) there is an equivariant grading function

grG : Ob(C) →
⊔

H⊂G

RO(H).

Moreover, these data must satisfy the following conditions:

(EFC-1) Ge is the identity functor.
(EFC-2) For any g1, g2 ∈ G we have Gg1 ◦ Gg2 = Gg1·g2 .
(EFC-3) (Gg)x,y : MC(x, y) → MC(Gg(x),Gg(y)) is a diffeomorphism of

〈gr(x) − gr(y) − 1〉-manifolds, which satisfies the following property

(Gg)x,y |MC(z,y)×MC(x,z) = (Gg)z,y × (Gg)x,z,

for all z ∈ Ob(C) such that gr(y) < gr(z) < gr(x). Here we identify
MC(z, y) × MC(x, z) with the respective facet of ∂MC(x, y).

(EFC-4) grG(x) ∈ RO(Gx ), where Gx = {g ∈ G : Gg(x) = x}.
(EFC-5) dimR grG(x) = gr(x).
(EFC-6) If there exists g ∈ G such thatGg(x1) = x2, for some x1, x2 ∈ Ob(C), then

grG(x2) = υg(grG(x1)), where υg : RO(Gx ) → RO(Gg·x ) is induced
by the map

Gx � h �→ ghg−1 ∈ gGxg
−1 = Gg·x .

In particular, for any g1, g2 ∈ G, υg1 ◦ υg2 = υg1·g2 .
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(EFC-7) Let x, y ∈ Ob(C) and define Gx,y = {g ∈ G : Gg(MC(x, y)) ⊂
MC(x, y)} = Gx ∩ Gy . The moduli spaceMC(x, y) is a compact Gx,y-
manifold of dimension

grG(x)|Gx,y − grG(y)|Gx,y − R.

In the non-equivariant setting, it is possible to define the suspension �kC of a flow
category C by shifting the grading function by k ∈ Z. In the equivariant setting, we
define the suspension of a flow category C by any virtual representation V − W ∈
RO(G). The category�V−WC has the same objects and morphisms as C but different
grading function given by

(grG)�V−WC(x) = (grG)C(x) + (V − W )|Gx ∈ RO(Gx ).

Definition 3.6 Given two G-equivariant flow categories C1 and C2, a functor f : C1 →
C2 is said to be an G-equivariant functor if

• f commutes with group actions on C1 and C2,
• for any object x in C1 there is a Gx -equivariant map

fgrG (x) : grG(x) → grG(f(x)), (3.1)

such that for any g ∈ G, we have

υg ◦ fgrG(x)
= fgrG (Gg(x)) ◦ υg.

Definition 3.7 A G-equivariant functor f : C1 → C2 is called a (trivial) G-cover if
for any x, y ∈ Ob(C1) the map fx,y : MC1(x, y) → MC2(f(x), f(y)) is topolog-
ically a (trivial) covering map and for any object x , fgrG (x) is an isomorphism of
Gx -representations.

The notion of a cover will allow us to check easily some of the conditions (EFC-
1)-(EFC-7) for C1 if they are satisfied for C2. More precisely, we have the following
result.

Lemma 3.8 Suppose C2 is a G-equivariant flow category, C1 is flow category and
f : C1 → C2 is a trivial cover. Assume there is an action of G on C1 satisfying con-
ditions (EFC-1), (EFC-2) and (EFC-3), such that f commutes with the action. Then,
there is a unique structure of a G-equivariant flow category on C1 such that f is a
trivial G-cover.

Proof For an element x ∈ Ob(C1) we set grG(x) = grG(f(x)). Then (EFC-4)-(EFC-
6) are satisfied. Condition (EFC-7) follows from the fact that the G-dimension is
preserved under maps that are local G-diffeomorphisms. ��
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3.5 Equivariant cube flow category

Recall that objects of the cube flow category are elements of {0, 1}n . If σ ∈ Permn is a
permutation of an n-element set such that σm = id, then σ induces an action ofZm on
{0, 1}n . As in Appendix B.3 consider the action ofZm onRn defined by formula (B.3).
We will denote this representation by Vσ . For x ∈ Ob(Cube(n)) denote by (Zm)x the
isotropy group of x and consider the following (Zm)x -representation

Vx =
∏

i : xi=1

R ⊂ Vσ .

Proposition 3.9 Let σ ∈ Permn satisfy σm = id. The cube flow category Cube(n)

can be equipped with the structure of a Zm-equivariant flow category such that the
action on the set of objects is generated by σ . Moreover, for any object x we have
grZm

(x) = Vx .

Proof For x ∈ Ob(Cube(n)) and 1 ≤ k ≤ m we define Gσ k (x) = σ k(x). In order
to define Gσ k on morphisms (it is enough to define Gσ only), recall that we regard
MCube(n)(x, y) as a subset of

∏

i : xi>yi R ⊂ R
n . Now, σ yields a linear isomorphism

Therefore, we can define (Gσ )x,y = σ̄ |MCube(n)(x,y). Lemma B.17 implies that condi-
tions (EFC-1), (EFC-2) and (EFC-3) are satisfied.

In order to define the grading function

grZm
: Ob(Cube(n)) →

⊔

H⊂Zm

RO(H),

observe that Lemma B.17 implies that for any x ∈ Ob(Cube(n)), the space
MCube(n)(x, 0n) is a (Vx − R)-dimensional manifold. Therefore, in order to satisfy
condition (EFC-7), the only choice for grZm

(x) is grZm
(x) = Vx . to argue that EFC-7

holds. Conditions (EFC-4), (EFC-5) are satisfied automatically. Condition (EFC-6) is
satisfied, indeed, if g = σ k ∈ Zm and y = g · x , then the map

σ k : Vx → Vy

gives the required identification of the (Zm)x -representation grZm
(x) and the

(g(Zm)x g−1)-representation grZm
(y). ��

Corollary 3.10 Using the notation from Proposition 3.9, suppose that σ is a product of
n/m disjoint cycles of lenght m. Then, for any x ∈ Ob(Cube(n)) we have grZm

(x) =
R[(Zm)x ]gr(x)/|(Zm)x |.

Proof If σ is a product of n/m disjoint cycles of length m, then Vσ
∼= R[Zm]n/m . It is

easy to verify that Vx ∼= R[(Zm)x ]gr(x)/|(Zm)x |. ��
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Definition 3.11 Given σ ∈ Permn such that σm = id, we denote by Cubeœ(n) the
Zm-equivariant cube flow category for which the action on objects is generated by σ .

Let C be a Zm-equivariant flow category. We say that C is a Zm-equivariant cubical
flow category if it is a cubical flow category and, for some Zm-virtual representation
V−W and someσ ∈ Permn satisfyingσm = id, the functor f : �V−WC → Cubeœ(n)

is a Zm-equivariant cover.

Remark 3.12 In the construction of the equivariant Khovanov homotopy type it is
enough to restrict to categories Cubeœ(n), where σ is a product of n/m distinct cycles
of length m.

Remark 3.13 Note that the constructions in this section work equally well with any
fixed subgroup G ⊂ Permn . We restrict our attention to cyclic groups because this is
the only relevant case for us.

3.6 Equivariant neat embedding

Let G = Zm and let (C, f) be a G-equivariant cubical flow category. Fix a sequence
e• = (e0, e1, . . . , en−1) of positive integers. For an orthogonal G-representation V
and any u > v ∈ Ob(Cubeœ(n)) define

E(V )u,v =
|u|−1
∏

i=|v|
BR(Vu,v)

ei × MCubeœ(n)(u, v), (3.2)

where BR(V ) denotes the closed ball in V centered at 0 and of radius R. We abbre-
viate Vu,v = V |Gu,v , recalling that the symbol V |H denotes the restriction of the
representation to the subgroup H , the underlying linear space is the same.

Definition 3.14 An equivariant cubical neat embedding of a cubical flow category
(C, f) relative to e• and relative to the representation V , is a cubical neat embedding
(i.e. satisfying axioms (CNE-1), (CNE-2) and (CNE-3)). The maps ιx,y are required
to be Gx,y := Gx ∩ Gy-equivariant. Furthermore, any x, y ∈ Ob(C) and any g ∈ G
the following diagram is commutative

The right vertical arrow is labeled by g · (−), which should be read that the map is
induced by the group action. More specifically, G acts on V and g ∈ G takes Vu,v to
Vgu,gv . Moreover, g takes MCubeœ(n)(u, v) to MCubeœ(n)(gu, gv). Combining these
actions we have the map that takes E(V )f(x),f(y) to E(V )f(gx),f(gy). This is the right
vertical map in the above diagram.

Remark 3.15 From Definition 3.14 it follows that the diagrams of maps in (CNE-1)
and (CNE-3) are diagrams of Gx,y maps (in case of (CNE-1)), respectively Gx,y,z =
Gx ∩ Gy ∩ Gz (in case of (CNE-3)).
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Proposition 3.16 Any equivariant cubical flow category admits an equivariant cubical
neat embedding.

Proof Consider x, y ∈ Ob(C). The space MC(x, y) is, by (EFC-7) a compact
Gx,y-manifold of dimension grG(x)|Gx,y − grG(y)|Gx,y − R. In particular, by the
Mostow-Palais Theorem (see Theorem A.11) there exists a representation Wx,y such
that MC(x, y) embeds in Wx,y . Define V to be the direct sum of Wx,y over all pairs
x, y ∈ Ob(C).

We want to construct embeddings ιx,y : MC(x, y) → E(V )f(x),f(y). Recall we

have E(V )u,v = ∏|u|−1
i=|v| BR(Vu,v)

ei ×MCubeœ(n)(u, v). Themap ιx,y will be a product
jx,y × f, where

jx,y : MC(x, y) →
|f(x)|−1
∏

i=|f(y)|
BR(Vf(x),f(y))

ei

and f : MC(x, y) → MCubeœ(n)(f(x), f(y)) is given by the definition of the cubical
flow category (see Definition 2.5 above).

Our task is therefore to construct the map jx,y . We shall proceed by induction
on δ = |f(x)| − |f(y)|. For δ = 1, the space MC(x, y) is a finite set of points. The
construction of jx,y in this case is obvious. Conditions (CNE-1), (CNE-2) are satisfied,
while (CNE-3) is empty. The diagram in Definition 3.14 commutes.

Suppose the embedding has been constructed for all x, y with δ < k and we aim
to construct a map jx,y for |f(x)| − |f(y)| = k. By the induction assumption, the
map jx,y is defined already on the boundary of MC(x, y). We extend this map to a
G-equivariant map on the whole ofMC(x, y) by Lemma A.10, maybe increasing the
values of some of the ei . Conditions (CNE-1) and (CNE-2) for jx,y × f is trivially
satisfied.Condition (CNE-3) follows from the construction, because jx,z on the interior
of MC(x, z) is an extension of jx,z on the boundary. Commutativity of the diagram
in Definition 3.14 follows from equivariance of jx,y . ��

The next step in the construction of Lawson, Lipshitz, and Sarkar is the construction
of a framed cubical neat embedding. The notion of an equivariant framed cubical neat
embedding is a direct generalization of the notion of a framed cubical neat embed-
ding. Namely, given the set of maps ιx,y : MC(x, y) → E(V )f(x),f(y) constituting
an equivariant cubical neat embedding (see Definition 3.14), an equivariant framed
cubical neat embedding is an extension of ιx,y to equivariant maps

ιx,y :
|f(x)|−1
∏

i=|f(y)|
Bε(Vf(x),f(y))

ei × MC(x, y) → E(V )f(x),f(y).

We require that that (CNE-3) holds for ιx,y replaced by ιx,y and MC(x, y) replaced

by the product
∏|f(x)|−1

i=|f(y)| Bε(Vf(x),f(y))ei × MC(x, y).
In the non-equivariant setting, passing from a cubical neat embedding to a framed

cubical neat embedding is described in Sect. 2.4. In the equivariant setting, no adjust-
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ments are needed, because the projections π R
u,v and πM

u,v considered in Sect. 2.4 are
already equivariant by construction.

3.7 Equivariant cubical realization

Weconsider nowananalogof the constructionof aCW-complex ||C||given inSect. 2.5.
For each x ∈ Ob(C) such that u = f(x) we define:

EX(x) =
|u|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × ˜MCubeœ(n)(u, 0), (3.3)

where ˜M(u, 0) = [0, 1] × M(u, 0) if u �= 0 and ˜M(0, 0) = {0}. The group action
on the interval [0, 1] is assumed to be trivial. Note that EX(x) is homeomorphic to the
cell X(x) constructed in Sect. 2.5 (we need to set di = ei dim V ), the point is that the
present construction is equivariant.

For x, y ∈ Ob(C) such that f(x) = u > v = f(y) we construct a map
E`y,x : EX(y)×MC(x, y) ↪→ EX(x) by an analogous formula as (2.10) in Sect. 2.5,
namely

EX(y) × MC(x, y)

=
|v|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|v|
Bε(V )ei × ˜MCubeœ(n)(v, 0) × MC(x, y)

∼=
|v|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × ˜MCubeœ(n)(v, 0) ×

⎛

⎝

|u|−1
∏

i=|v|
Bε(V )ei × MC(x, y)

⎞

⎠

↪→
|v|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × ˜MCubeœ(n)(v, 0)×

×
⎛

⎝

|u|−1
∏

i=|v|
BR(V )ei × MCubeœ(n)(u, v)

⎞

⎠

∼=
|u|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × ˜MCubeœ(n)(v, 0) × MCubeœ(n)(u, v) ↪→

↪→
|u|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × ∂( ˜MCubeœ(n)(u, 0)) ⊂ EX(x). (3.4)

In fact, with the choice of di = ei dim V and an identification EX(x) ∼= X(x), E` is
exactly the same map as θ . Again the key point is that E`x,y is Gx,y-equivariant. Write
EXy(x) ⊂ EX(x) for the image of E`(y).

Analogously to the non-equivariant case, the complex ||C|| is constructed induc-
tively by taking the cells EX(x) and the attaching map taking EXy(x) to EX(y) via
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the projection EXy(x) ∼= EX(y) × MC(x, y) ↪→ EX(y). As in the non-equivariant
case, the remaining part ∂ EX(x) \ ⋃

y EXy(x) is mapped to the base point.

Remark 3.17 The map Eθy,x gives a well-defined attaching map, see item (4) in
Sect. 2.5 and equation (2.11). This is because, as we mentioned above, Eθ is essen-
tially the map θ from Sect. 2.5. Another possibility is to observe that the map
κx,y,z constructed in the proof of [28, Lemma 3.16] is equivariant because of the
axioms (EFC-1)–(EFC-3). We omit the details.

Proposition 3.18 The space ||C|| has the structure of a G-cell complex of Defini-
tion 3.2.

Proof If x1, x2, . . . , xk is an orbit of x1 ∈ Ob(C), then there exists an equivariant
homeomorphism

EX(x1)�EX(x2)�· · ·�EX(xk) ∼= Gx1 ×Gx

⎛

⎝

|u|−1
∏

i=0

BR(V )ei ×
n−1
∏

i=|u|
Bε(V )ei × BR(grG(x1))

⎞

⎠ ,

(3.5)
i.e. we obtain a G-cell of type (Gx , V e1+···+en−1 ⊕ grG(x1)). It is easy to verify that
the gluing maps are compatible with the homeomorphism from (3.5). ��
Definition 3.19 The equivariant cubical realization of C is defined to be the G-cell
complex ||C||. The formal desuspension X (C) := �−W−V e0+···+en−1 ||C||, where W
denotes a representation of G such that f : �WC → Cubeœ(n) is the cubical functor,
is called the equivariant C homotopy type.

Remark 3.20 By a formal desuspension �−W−V e0+···+en−1 ||C|| of ||C|| we mean the
object of the Spanier–Whitehead category SWG given by (||C||,−W − V e0+···+en−1);
compare Sect. 3.3. Note that Stoffregen-Zhang’s equivariantKhovanov homotopy type
belongs to the same category [46, discussion below Proposition 4.17].

The following result is a direct consequence of the construction: to explain the
notion of a G-CW-complex in more detail.

Proposition 3.21 Let (C, f : �WC → Cubeœ(n)) be a G-equivariant cubical flow
category. Let ι be an equivariant cubical neat embedding relative to e• =
(e0, e1, . . . , en−1) ∈ N

n and relative to an orthogonal G-representation V . There
exists a G-cell complex ||C||, such that every object x ∈ Ob(C) corresponds to a
single cell of ||C|| of dimension grG(x). Moreover, the forgetful functor (i.e. the one
which forgets the action of G) maps ||C|| to the stable homotopy type constructed by
Lawson et al. [33].

3.8 Fixed points of the cubical realization

Thepurpose of this subsection is to study thefixedpoint sets (with respect to a subgroup
H ) of the group action on the cubical realization. The results will play an essential
role in the proof of the invariance of the equivariant Khovanov homotopy type under
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Reidemeister moves. Recall that XH denotes the set of fixed points of H , that is,
XH = {x ∈ X | x · h = x,∀h ∈ H}.

Let C be an equivariant cubical flow category. For any H ⊂ G define the H-fixed
subcategory CH in the following way.

• The objects of CH are those objects of C that are fixed under the action of H , that
is Ob(CH ) = Ob(C)H ;

• The morphisms between objects are given by fixed point submanifolds, that is,

MCH (x, y) =
{

MC(x, y)H x �= y

{id} x = y;

• The grading of x ∈ Ob(C)H is dim grG(x)H .

Remark 3.22 If H is a normal subgroup of G (in the paper we work with G cyclic,
so any subgroup of G is normal), it is possible to endow CH with the structure of a
G/H -equivariant flow category.

We will now give an instance of an H -fixed subcategory that is the most important
in our approach.

Proposition 3.23 Let H be a subgroup of Zm and consider Cubeœ(n) for σ ∈ Permn

such that σm = id. Then there is a functor RH : Cubeœ(n)H → Cube(n′) that
induces an isomorphism of categories.

The integer n′ is calculated as follows. If σ is a product of p disjoint cycles
(ai1, . . . , aini ) with ni |m and

∑p
i=1 ni = n, then we set �i = gcd(ni ,m/|H |) and

n′
i = ni/�i . We have n′ = ∑

n′
i .

Proof The key idea is to use Theorem B.15. There is a technical difficulty namely
Theorem B.15 does not give us a canonical diffeomorphism. Therefore we first fix a
concrete diffeomorphism between MCube(n)(1n, 0n)H and MCube(n′)(1n′ , 0n′), next
we show that it can be used to define amap between all moduli spaces of the Cube(n)H

category and corresponding moduli spaces of the Cube(n′) category.
To begin with, if (v1, . . . , vn) is an object in Ob(Cubeœ(n)H ), then by definition

it is an object in Cubeœ(n) fixed by the action of H . This amounts to saying that, for
i = 1, . . . , p and j = 1, . . . , n′

i , we have

vi, j = vi, j+n′
i
= · · · = vi, j+(�i−1)n′

i
,

where to simplify the notationwewrite vi, j instead of vai, j . The functorRH on objects
is defined as
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RH (v1, . . . , vn) = (v1,1, . . . , v1,n′
1
, v2,1, . . . , vp,n′

p
). (3.6)

We now define RH on morphisms.
Consider first 0n, 1n ∈ Cubeœ(n). They are fixed under the action of any subgroup

H ⊂ G. The space MCubeœ(n)(1n, 0n) is, by definition, the permutohedron �n−1 ⊂
R
n . The setMCubeœ(n)(1n, 0n)H of fixed points under H is given by�n−1 ∩ L , where

L is a linear subspace of Rn given by

L =
p

⋂

i=1

n′
i

⋂

j=1

{xi, j = xi, j+n′
i
= · · · = xi, j+(�i−1)n′

i
},

wherewe also used the notation xi, j as a shorthand for xai, j .We note that the dimension
of L is precisely

∑

n′
i = n′.

By Theorem B.15 there is an identificationψ of�n−1 ∩ L with�n′−1. Choose one
such ψ . The map ψ identifies MCubeœ(n)(1n, 0n)H withMCube(n′)(1n′, 0n′).

Take now general u, v ∈ Ob(Cubeœ(n))H with u > v. We assume that u �= 1n ,
v �= 0n . The case where precisely one inequality holds is analogous and it is left to
the reader. Consider the product

�u,v = MCubeœ(n)(v, 0n) × MCubeœ(n)(u, v) × MCubeœ(n)(1n, u).

By the axioms of the cube category�u,v embeds as a codimension 2 face in themoduli
space MCubeœ(n)(1n, 0n) = �n−1.

In fact, consider the partition

p = P1n ,u ∪ Pu,v ∪ Pv,0n , (3.7)

and Pu′,v′ (with (u′, v′) = (1n, u), (u′, v′) = (u, v) and (u′, v′) = (v, 0n)) is the set
of indices i such that u′

i �= v′
i . Then �u,v corresponds to the face �p.

We define now the mapRH : MCubeœ(n)(u, v)H → MCube(n′)(RHu,RHv) as the
composition:

MCubeœ(n)(u, v)H → MCubeœ(n)(v, 0n)
H × MCubeœ(n)(u, v)H × MCubeœ(n)(1n, u)H →

ψ−→ MCube(n′)(RHv, 0n′ ) × MCube(n′)(RHu,RHv) × MCube(n′)(1n′ ,RHv) →
→ MCube(n′)(RHu,RHv).

The first map is an embedding to a fiber {pt} × MCubeœ(n)(u, v)H × {pt} for two
chosen points in MCubeœ(n)(v, 0n)H and MCubeœ(n)(1n, u)H , respectively. RH does
not depend on the choice. The lastmap is the projection onto the second factor. Themap
ψ was defined above as a map from�n−1∩L to�n′−1. It takes the face�p to the face
�′

pB , where �′ = �n′−1 and pB is a reduction of pwith B determined from the orbits

of σ ; see Proposition B.18. A straightforward calculation using (3.6) reveal that pB is
a partition into three subsets P ′

RH v,0n′ , P
′
RHu,RH v

and P ′
1n′ ,RHu

, where P ′·,· denotes
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the subset of indices at which the vectors in the subscripts differ. This means that �′
pB

is exactly MCube(n′)(RHv, 0n′) × MCube(n′)(RHu,RHv) × MCube(n′)(1n′ ,RHu);
we omit the details.

We sketch the proof of the fact that RH respects the compositions. Suppose that
u, w, v ∈ Ob(Cubeœ(n))H with u > w > v. Let RHu,RHw,RHv be the corre-
sponding objects in Cube(n′). We need to show that the following diagram commutes.

MCubeœ(n)H (w, v) × MCubeœ(n)H (u, w)

RH

MCubeœ(n)H (u, v)

RH

MCube(n′)(RHw,RHv) × MCube(n′)(RHu,RHw) MCube(n′)(RHu,RHv).

(3.8)
This commutativity is true if ψ takes

M1 = MCubeœ(n)(1n, u)H × MCubeœ(n)(u, w)H × MCubeœ(n)(w, v)H × MCubeœ(n)(v, 0n)
H

to

M2 = MCube(n′)(1n′ ,RHu) × MCube(n′)(RHu,RHw) × MCube(n′)(RHw,RH v)

×MCube(n′)(RH v, 0n′ ).

Consider the refinement pw of the partition p defined in (3.7) given as

pw = P1n ,u ∪ Pu,w ∪ Pw,v ∪ Pv,0n ,

where the subsetsP·,· are as above (below (3.7)). Let�u,w,v be the face corresponding
to this partition. Then M1 = �u,w,v ∩ L . By construction of ψ , it takes A to a face
�′

(pw)B
of �′, where (pw)B is the reduction of pw.

On the other hand, the reduction (pw)B is easily seen to be the partition

(pB)w = P ′
1n′ ,RHu ∪ P ′

RHu,RHw
∪ P ′

RHw,RH v
∪ P ′

RH v,0n′ .

But then the corresponding face is �′
(pw)B

= M2., which essentially boils down to
the statement that refinements commute with reductions. We can still add some more
details, but the proof might eventually become less readable. Making the morphismψ

in Proposition B.11 might be possible, but it would definitely required a much longer
proof.

Finally, the equivariant grading on Cubeœ(n) described in Proposition 3.9 has the
property that if x ∈ Ob(Cubeœ(n))H , then grG(x)H is equal to the grading ofRH (x).
This is a straightforward verification. ��
Lemma 3.24 The pair (CH , fH ), where fH = RH ◦ f|CH and RH is as in Proposi-
tion 3.23, is a cubical flow category.
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Proof In order to prove that CH is a flow category, we need to verify the axioms (FC-
1), (FC-2) and (FC-3). The axiom (FC-1) is obvious. The axiom (FC-2) follows
from the axiom (EFC-7) and Proposition B.11. The axiom (FC-3) follows from the
axiom (EFC-3). This shows that CH is a flow category. It remains to prove that the
functor fH makes CH a cubical flow category.

Since f commutes with the group action, it takes objects in C that are fixed under
H to objects of Cubeœ(n) that are fixed under H . In particular, fH is well-defined on
objects.

To show that it is well-defined on morphisms, observe that for any x, y ∈ Ob(C)H ,
the map

fx,y : MC(x, y)H → MCubeœ(n)(f(x), f(y))
H

is a diffeomorphism when restricted to any connected component of MC(x, y)H . In
particular RH ◦ fx,y is a covering map. Therefore, fH turns CH into a cubical flow
category. ��

Lemma 3.25 Let C be a framed cubical flow category and ι a neat embedding of C
relative to e• = (e1, e2, . . . , en−1) and relative to a representation V . Then, for any
H ⊂ G, ι yields a neat embedding of CH , denoted by ιH , relative to

eH• = (e1 + · · · + ek−1, ek + ek+1 + · · · + e2k−1, . . . , en−k + en−k+1 + · · · + en−1) and V H ,

where k denotes the order of H.

Remark 3.26 (Remark 3.22 continued). One can construct ιH in such a way that it is
a G/H -equivariant neat embedding.

Proof An equivariant neat embedding of C is given by a collection of equivariant maps
ιx,y : MC(x, y) → E(V )f(x),f(y) satisfying axioms (CNE-1), (CNE-2) and (CNE-3),
see Definition 3.14. An equivariant neat embedding

ιx,y : MC(x, y) → E(V )f(x),f(y),

where x, y ∈ Ob(C)H , yields an embedding

ιx,y |H : MC(x, y)H → E(V )Hf(x),f(y).

Observe that

E(V )Hf(x),f(y) =
|f(x)|−1
∏

i=|f(y)|

(

BR(V H
f(x),f(y))

)ei × MCubeœ(n)(f(x), f(y))
H ,
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because H ⊂ Gf(x),f(y). Since |f(x)| = k · |fH (x)| and |f(y)| = k · |f(y)|H , there exists
an equivariant linear embedding

ηH :
|f(x)|−1
∏

i=|f(y)|
BR(V H )ei ↪→

|fH (x)|−1
∏

i=|fH (y)|
BR′(V H )ek·i+ek·i+1+···+ek·(i+1)−1,

for some R′ > R. Using the mapRH from Proposition 3.23 we obtain a neat embed-
ding

ηH × RH : E(V )Hf(x),f(y) ↪→ E(V H )fH (x),fH (y).

We define ιHx,y = (ηH × RH ) ◦ (ιx,y |H ).
Properties (CNE-1), (CNE-2) and (CNE-3) for ιHx,y follow immediately from anal-

ogous properties of the maps ιx,y . ��

Proposition 3.27 Suppose ||C|| is an equivariant cubical realization of an equivariant
cubical flow category C. Then the fixed point set ||C||H is homeomorphic to the cubical
realization of the fixed point flow category CH .

Proof We need to show essentially two facts: the equality of cells, and the equality
of attaching maps. First, if x ∈ Ob(C)H , we can construct a cell XH (x) using the
construction of Sect. 2.5 taking CH as the starting category. This corresponds to a cell
used for constructing ||CH ||. Alternativelywe can take EX(x)H to be the set of H -fixed
points of the cell EX(x) constructed in Sect. 3.7. We claim that XH (x) ∼= EX(x)H

once we have set di = ei dim V H .
To see this recall that by (3.3) we have

EX(x)H =
|f(x)|−1
∏

i=0

BR(V H )ei ×
n−1
∏

i=|f(x)|
Bε(V

H )ei × ˜MCubeœ(n)(f(x), 0n)
H ,

XH (x) =
|fH (x)|−1

∏

i=0

BR(V H )e
H
i ×

n′−1
∏

i=|fH (x)|
Bε(V

H )e
H
i × ˜MCube(n′)(f

H (x), 0n),

where eHi = ek·i + ek·i+1 + · · · + ek·(i+1)−1 and k denotes the order of H . Discussion
in Proposition 3.23 implies that EX(x)H ∼= XH (x), for any x ∈ Ob(CH ).

In order to complete the proof of Proposition 3.27, we need to show that the attach-
ing maps coincide. This holds, provided that θH (y, x) = E`(y, x)H , where θH (y, x)
is the map θ of Sect. 2.5 constructed for CH , and E`(y, x)H is the restriction of E`
to the set of fixed points. Choose x, y ∈ Ob(C)H . Going through the construction of
θ and E` (given in (2.10) and (3.4)) we see that the equality E`(y, x)H = θH (y, x)
follows from the commutativity of the diagram
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whereRH is a map from the fixed point set of a permutohedron to a permutohedron of
lower dimensions, as described in detail in the proof of Proposition 3.23. Commuta-
tivity of the diagram follows from the construction of this map (see Propositions B.11,
B.18). ��

3.9 Equivariant chain complexes

In Sect. 2.6 we constructed a cochain complexC∗(C, f), whose cohomology was equal
to the cohomology of the cubical realization ||C||. Suppose now that the underlying
cubical flow category admits an action of the group G = Zm . In order to describe the
induced action of G on the chain complex, notice that, for any g ∈ G, we obtain a
homomorphism of abelian groups

Gg : C∗(C, f) → C∗(C, f),

yielding an action of G. This action, however, does not, in general, commute with the
differential on C∗(C, f).

The differential of the chain complex (2.12) depends on the sign assignment ν on
the cube flow category Cube(n)σ , see (2.13). We will denote, abusing the notation, a
generator of G by σ . The symmetry group acts on sign assignments via

σ(ν)(x, y) = ν(σ (x), σ (y)).

However, in general, σ(ν) �= ν, that is, the sign assignment ν is not necessarily
σ -invariant.

To remedy this, we recall that the sign assignments form a 1-chain in [0, 1]n with
values in F2 (see Sect. 4.1). The difference between any two sign assignments satisfies
a cocycle condition. Therefore, there exists a 0-cochain c ∈ C0([0, 1]n;F2) such that
σ(ν) − ν = ∂∗c. That is,

ν(σ (f(x)), σ (f(y))) − ν(f(x), f(y)) = c(f(x)) − c(f(y)). (3.9)

Lemma 3.28 Themap tσ : C∗(C) → C∗(C)givenby x �→ (−1)c(f(x))Gσ (x) commutes
with the differential and therefore it generates the G-action on the chain complex
C∗(C). is to define the group action on C∗(C).

Proof We need to check that the coefficient in ∂tσ (y) at tσ (x) is equal to the coefficient
in ∂ y at x . The latter is equal to

(−1)ν(f(x),f(y))#MC(x, y), (3.10)
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compare to (2.13).Wewant to compute now the former.Write y′ = Gσ (y), x ′ = Gσ(x).
By (2.13) the coefficient in ∂ y′ at x ′ is equal to

(−1)ν(f(x ′),f(y′))#MC(x ′, y′) = (−1)ν(f(x ′),f(y′))#MC(x, y), (3.11)

Given the definition of tσ , we have tσ (x) = (−1)c(f(x))x ′ and tσ (y) = (−1)c(f(y))y′.
Thus, in light of (3.11), the coefficient in ∂tσG(y) at tσ (x) is given by

(−1)c(f(x))+c(f(y))+ν(f(σ (x)),f(σ (y)))#MC(x, y). (3.12)

Finally, to show the equality of (3.10) and (3.12) we need to guarantee that

c(f(x)) + c(f(y)) + ν(f(σ (x)), f(σ (y))) = ν(f(x), f(y)) mod 2,

but this follows immediately from (3.9). ��
Remark 3.29 This sign problem is not uncommon. It appears in the construction of the
equivariant Khovanov homology [38, Section 2]. The approach in [38] is essentially
the same as the one we use here, but it is expressed in a different language.

3.10 Equivariant subcategories

Suppose that C′ is an equivariant downward closed subcategory of C. Let C′′ be the
complementary upward closed subcategory. As C′ is invariant under the group action,
the subcategory C′′ is also an invariant subcategory.

The following result is a direct generalization of [33, Lemma 3.32].

Proposition 3.30 If C, C′ and C′′ are as above, then there exist three equivariant maps,
an inclusion ι : ||C′|| → ||C||, a collapse κ : ||C|| → ||C′′|| and the Puppe map
ρ : ||C′′|| → �||C′||, that induce the following cohomology long exact sequence

· · · → ˜Hi (||C||) ι∗→ ˜Hi (||C′||) ρ∗
→ ˜Hi+1(||C′′||) κ∗→ · · · . (3.13)

Suppose C is an equivariant cubical flow category, C′ is a downward closed subcat-
egory, and C′′ is the complementary upward closed category, and let the maps ι, κ and
ρ be as in Proposition 3.30. We ask under which conditions one of these maps is an
equivariant homotopy equivalence. This holds under some extra assumptions that we
spell in Lemma 3.31. Although these assumptions are harder to verify, the methods
developed in Sect. 3.8 simplify the process.

Lemma 3.31 Let ι, κ and ρ be as described in Proposition 3.30.

(a) If for any subgroup H ⊂ G the reduced homology ˜H∗(||C′′||H ) is trivial, then the
map ι is an equivariant stable homotopy equivalence.

(b) If for any subgroup H ⊂ G the reduced homology ˜H∗(||C′||H ) is trivial, then the
map κ is an equivariant stable homotopy equivalence.
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(c) If for any subgroup H ⊂ G the reduced homology ˜H∗(||C||H ) is trivial, then the
map ρ is an equivariant stable homotopy equivalence.

Proof We prove only part (a) since the proofs for the other two statements are analo-
gous. Our assumptions imply that for any H ⊂ G,

ιH : ||C′||H → ||C||H

is a stable homotopy equivalence. Since ||C′|| and ||C|| are equivariantly homotopy
equivalent to G-CW-complexes by Proposition 3.3, the equivariant version of the
Whitehead Theorem (see e.g. [37, Section VI.3]) implies that ι is an equivariant stable
homotopy equivalence. ��

4 Khovanov homotopy type

In this section we introduce the equivariant Khovanov homotopy type. We start with a
short recollection of the construction of the Khovanov chain complex and the annular
Khovanov chain complex (Sects. 4.1, 4.2). Next, we give a rather brief review of the
construction of the Khovanov homotopy type and the annular Khovanov homotopy
type (Sects. 4.3, 4.4). Finally, in Sect. 4.5 we construct the equivariant Khovanov flow
category. The results from Sect. 3 lead immediately to the construction of the equivari-
ant Khovanov homotopy type and the equivariant annular Khovanov homotopy type.
Invariance of the equivariant homotopy types is proved in Sect. 5.

4.1 Khovanov chain complex

In this subsection we rely on [33, Section 2]. Let V be a two-dimensional vector space
over a field F with + and − as generators. We make it a graded space by assigning a
grading q(+) = 1, q(−) = −1, called the quantum grading.

A resolution configurationD is a pair (Z(D),A(D))where Z(D) is a set of pairwise
disjoint embedded circles in S2 and A(D) is a totally-ordered set consisting of disjoint
embedded arcs in S2 such that the boundary of every arc lies in Z(D). The index of
the resolution configuration D, denoted ind(D), is the cardinality of A(D). A labeled
resolution configuration is a pair (D, x) consisting of a resolution configurationD and
a map x assigning a label, + or −, to each element of Z(D).

Given two resolution configurations D1 and D2, we define the resolution configu-
ration D1 \ D2 by declaring, see [33]:

Z(D1 \ D2) = Z(D1) \ Z(D2), A(D1 \ D2) = {A ∈ A(D1) : ∀Z∈Z(D2)∂A ∩ Z = ∅}.

For a resolution configuration D we can choose a subset B ⊂ A(D) and obtain a
new resolution configuration sB(D), called the surgery of D along B, by performing a
surgery along the arcs in B.We use a shortened notation s(D) for the surgery sA(D)(D).
Another operation that we can perform on a resolution configuration D is taking the
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Fig. 1 Dual arcs

dual resolution configuration D∗: Z(D∗) = Z(s(D)) and A(D∗) consists of arcs dual
to arcs from A(D), as explained in Fig. 1.

We can define a partial ordering on the set of labeled resolution configurations. Let
(D, x) and (D′, y) be two resolution configurations such that ind(D) − ind(D′) = 1.
We say that (D, x) ≺ (D′, y) if D′ can be obtained from D by surgery along a single
arc in A ∈ A(D) and one of the following conditions holds:

(1) If ∂A is on a single circle Z which splits during the surgery into two circles Z1
and Z2, then

• If x(Z) = + then either y(Z1) = + and y(Z2) = − or y(Z1) = − and
y(Z2) = +.

• If x(Z) = − then y(Z1) = − and y(Z2) = −.

(2) If ∂A lies on two circles Z1 and Z2 which are merged during the surgery into a
single circle Z , then

• If x(Z1) = x(Z2) = +, then y(Z) = +.
• If x(Z1) = + and x(Z2) = − or x(Z1) = − and x(Z2) = +, then y(Z) = −.

For general labeled resolution configurations the partial order is defined as the transitive
closure of the above relation.

Definition 4.1 A decorated resolution configuration is a triple (D, x, y) where (D, y)
and (s(D), x) are labeled resolution configurations such that (D, y) ≺ (s(D), x).

Define P(D, x, y) to be the poset consisting of all labeled resolution configurations
(sA(D), y′), where A ⊂ A(D), such that

(D, y) � (sA(D), y′) � (s(D), x).

Fix a field F. Let D be an oriented link diagram with n = n+ + n− ordered
crossings, where n+ and n− denote the number of positive, respectively negative,
crossings. For every v ∈ {0, 1}n we can define a resolution configuration DD(v) =

1-resolution0-resolution

Fig. 2 Resolutions of a crossing
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(Z(DD(v)),A(DD(v))) obtained by smoothing the i th crossing of D according to
the i th coordinate of v, as depicted in Fig. 2. The arcs correspond to 0-resolutions;
in Fig. 2 the dotted line represents the arc associated to that particular resolution. To
avoid cumbersome notation, we will drop the subscript D when it is clear from the
context.

Let V (D(v)) be the vector space over F generated by all possible labeled resolution
configurations (D(v), x). Define the Khovanov complex of D in homological grading
i = |v| − n− as

CKhi (D;F) =
⊕

v∈{0,1}n
|v|=i+n−

V (D(v)).

The vector space CKhi inherits the quantum grading from V . To be more precise, to
a homogeneous element x = ε1 ⊗ · · · ⊗ εt ∈ V (D(v)), εi ∈ {+,−}, we associate the
grading q(x) = ∑

q(εi )+n+ −2n− +|v|. Then CKhi splits as a direct sum of spaces
CKhi,q , where the second index denotes the quantum grading.

In order tomakeCKh∗ into a cochain complex, we need to choose a sign assignment
ν. This done, we define the differential of an element (D(v), x) with homological
grading i as

∂i (D(v), x) =
∑

|u|=|v|+1
(D(v),x)≺(D(u),y)

(−1)ν(u,v)(D(u), y).

The cohomology groups of the complex CKh, that is Khi,q(D) = ker(∂i )/ Im(∂i−1),
are link invariants [27]. They are theKhovanovhomologygroups of the link represented
by D.

4.2 Annular Khovanov chain complex

Asaeda, Przytycki, and Sikora [1] gave a construction of a variant of Khovanov homol-
ogy for a link in the solid torus. This construction was later refined by Roberts [41].
Given L ⊂ S1 × R

2, we fix a diagram D of L so that D can be drawn on an annulus
S1 ×R

1. The starting point of the construction of Asaeda, Przytycki, and Sikora is to
assign an extra annular grading to each of the generators of the Khovanov complex of
D. For any v ∈ {0, 1}n and any labeled resolution configuration D = (D(v), x),
the annular grading of D, denoted Ann(D), is defined in the following way. Let
Z(D(v)) = {Z1, Z2, . . . , Zk}. We say that the circle Zi , for 1 ≤ i ≤ k is trivial,
if it is null-homotopic in S1 × D1, and nontrivial otherwise. For any 1 ≤ i ≤ k we
define

Ann(Zi , x) =

⎧

⎪

⎨

⎪

⎩

1, if Zi is nontrivial and x(Zi ) = +,

−1, if Zi is nontrivial and x(Zi ) = −,

0, if Zi is trivial,
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and

Ann(D, x) =
k

∑

i=1

Ann(Zi , x).

It is easy to check that for any decorated resolution configuration (D, x, y) we have

Ann(D, y) ≥ Ann(s(D), x).

Indeed, the above property is trivial for decorated resolution configurations of index
one. The general case follows from the transitivity of the relation �. Consequently,
there exists a filtration of the Khovanov complex

0 ⊂ · · · ⊂ CAk−1(D) ⊂ CAk(D) ⊂ CAk+1(D) ⊂ · · · ⊂ CKh∗,∗(D),

where CAk(D) is the subcomplex of CKh∗,∗(D) generated by those labeled resolution
configurations (D(v), x) such thatAnn(D(x), x) ≤ k. TheannularKhovanov complex
of D is the triply-graded cochain complex defined as

CAKhi, j,k(D) =
(

CKhi, j (D) ∩ CAk(D)
)

/
(

CKhi, j (D) ∩ CAk−1(D)
)

.

In this setting, the annular Khovanov homology of D, denoted by AKh∗,∗,∗(D), is
defined as the homology of CAKh∗,∗,∗(D). Annular Khovanov homology is an invari-
ant of an annular link.

4.3 Khovanov homotopy type

In this subsection we apply constructions described in Sects. 2 and 3 to a specific flow
category, the Khovanov flow category, which is at the heart of the Lipshitz–Sarkar
construction. Let D be an oriented link diagram with n = n+ +n− ordered crossings.
The starting point of the construction is to assign to every decorated resolution con-
figuration (D(v), x, y) the moduli space MKh(D(v), x, y), which is a disjoint union
of permutohedra �m−1, with m = ind(D(v)). If m = 1, MKh(D(v), x, y) consists
of a single point. If m = 2, the moduli space MKh(D(v), x, y) can be defined once
we choose another piece of data called the ladybug matching (for details refer to [33,
Section 5.1]). For m > 2 the moduli spaces MKh(D(v), x, y) can be constructed
inductively.

Definition 4.2 [33] The Khovanov flow category, CKh(D), is a cubical flow category
such that:

• Ob(CKh(D)) consists of all labeled resolution configurations (D(v), x), where v ∈
{0, 1}n . The grading of an object is equal to its homological grading i(D(v), x) =
|v| − n− (recall that each object has an additional quantum grading, as explained
in Sect. 4.1).
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• The morphism space is defined in the following way

MCKh ((D(v), x), (D(u), y)) =
{

MKh(D(u) \ D(v), x ′, y′), if (D(u), y) ≺ (D(v), x),

∅, otherwise,

where x ′ and y′ are the restrictions of x and y, respectively, to D(u) \ D(v) and
s(D(u) \ D(v)).

• The functor f : �n−CKh(D) → Cube(n) maps a labeled resolution configuration
(D(v), x) to v.

Remark 4.3 It is worth to stress that while MKh denotes the moduli space associated
with a pair of configurations (D(v), x, y), the morphism space for the Khovanov flow
category CKh is denoted by MCKh .

By definitionMKh(D(v), x, y) = ∅ unless the q-gradings of (D, y) and (s(D), x)
are equal. Consequently, for any j ∈ Z, we can distinguish the full subcategoryC j

Kh(D)

of CKh(D) consisting of objects whose q-grading is equal to j . It is easy to see that

CKh(D) =
⊔

j∈Z
C j
Kh(D). (4.1)

In this setting, and after making some choices (such as a framing and a neat embed-
ding of CKh(D)), we obtain the cubical realization of the Khovanov flow category
||CKh(D)||. This CW-complex is called the Khovanov space. The Khovanov homol-
ogy of D, as constructed in Sect. 4.1, is canonically isomorphic with the reduced
cohomology of ||CKh(D)||, up to grading shift. Finally, the stable homotopy type of
the formal desuspension of the Khovanov space �−n−||CKh(D)|| is the Khovanov
homotopy typeXKh(D) constructed in [28,33], where it was proven to be a link invari-
ant.

Notice that the decomposition (4.1) induces a decomposition

XKh(D) =
∨

j∈Z
X j
Kh(D),

where X j
Kh(D) denotes the cubical realization of C j

Kh(D).

4.4 Annular Khovanov homotopy type

Recall that any labeled resolution configurationD of a link L ⊂ S1×D2, has an asso-
ciated annular grading Ann(D). Define the annular Khovanov flow category CAKh(D)

to be the subcategory of CKh(D) with the same set of objects but with morphisms
preserving the annular grading.

For k ∈ Z, define the subcategories CkKh(D), C≥k
Kh (D) and C≤k

Kh (D) of the flow
category CKh(D) as the categories consisting of all labeled resolution configurationsD
such thatAnn(D) = k, Ann(D) ≥ k andAnn(D) ≤ k, respectively. Then, CAKh(D) =
⊔

k∈Z CkKh(D).
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For x, y ∈ Ob(CKh)wehaveMCAKh(x, y) = ∅unlessAnn(x) = Ann(y). In the lat-
ter caseMCAKh(x, y) = MCKh(x, y). For a labeled resolution configuration (D, x, y)
we also denote by MAKh(D, x, y) the moduli space MCAKh((s(D), x), (D, y)).

Lemma 4.4 The categories CAKh(D), C≥k
Kh (D), C≤k

Kh and CkKh are cubical flow cate-
gories.

Proof The cubical functor f : CKh(D) → Cube(n) restricts to a cubical functor on
each of these categories. Verifying the axioms of the cubical flow category is straight-
forward. ��

Given Lemma 4.4 we can define ||CAKh||, ||C≥k
Kh ||, ||C≤k

Kh || and ||CkKh|| as a cubi-
cal realization of the suitable categories and then the corresponding desuspensions
X (CAKh), X (C≥k

Kh ), X (C≤k
Kh ) and X (CkKh). Notice that the decomposition of the annu-

lar flow category CAKh(D) according to the quantum and annular gradings induces a
decomposition

XAKh(D) =
∨

j,k∈Z
X q,k
AKh(D),

where X q,k
AKh(D) is the cubical realization of Cq,k

Kh (D). Repeating the proof of the
invariance of the stable homotopy type of XKh(D) under Reidemeister moves, we
obtain the invariance of the stable homotopy type of XAKh(D) under Reidemeister
moves in the solid torus. Therefore, the stable homotopy typeXAKh(D) is an invariant
of an underlying link L . The following result relates the cohomology of the cubical
realization CAKh with the annular Khovanov homology.

Lemma 4.5 For any k ∈ Z, and any quantum grading q ∈ Z, there exists an isomor-
phism

H∗ (X (Cq,k
AKh(D))

) ∼= AKh∗,q,k(D).

Proof By construction of the category CAKh, the cochain complex associated with
AKh∗,q,k is precisely the cochain complex for ||Cq,k

AKh|| up to a shift. We conclude by
Lemma 2.18. ��

4.5 Equivariant Khovanov flow category

Our goal is to construct a group action on the Khovanov flow category of a periodic
link. Let m be an integer. Let Dm be a diagram of an m-periodic link and consider
G = Zm , which acts effectively on R

2 by rotations, preserving the diagram Dm . The
action of G permutes the crossings of Dm . Let σ be a permutation corresponding to
a generator of G. We have σm = id. The following proposition shows how to extend
the action of G on crossings of Dm to the action on the Khovanov flow category.
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(a) (b) (c)

Fig. 3 A diagram D of the trefoil knot with numbered crossings (a), the resolution D(1, 1, 0), (b), and its
image under the rotation of the group Z3, leading to the resolution D(1, 0, 1), (c)

Proposition 4.6 The action ofZm on Dm induces a group action on the Khovanov flow
category CKh(Dm). The assignment f : (D(v), x) �→ |v| can be extended to an equiv-
ariant cubical functor f : �R[Zm ]n−/mCKh(Dm) → Cubeœ(n); in particular CKh(Dm)

is an equivariant cubical flow category.

Proof The permutation σ induces an action of Zm on {0, 1}n (we will denote this
action by σ as well). In order to define the action of Zm on the set of objects of the
Khovanov flow category, consider (D(v), x), with v ∈ {0, 1}n , a labeled resolution
configuration, and define Gσ (D(v), x) = (D(σ (v)), x ◦ σ−1); see Fig. 3. Clearly, Gσ

induces an action of Zm on the set of objects of CKh(Dm). We need to describe the
action on morphisms, that is, on the moduli spaces MKh(D(v), x, y) (see Sect. 4.3
for the definition ofMKh and MCKh and the relation between the two).

Recall that the action of Zm on the cube flow category was linear when restricted
to any moduli spaceMCube(f(x), f(y)). Therefore, the group action on morphisms in
the cube category is completely determined by its restriction to the set of vertices of
the respective permutohedra. This indicates that the group action on the moduli spaces
MCKh(x, y) should be built inductively with respect to the dimension of the moduli
spaces.

We shall take care of axioms (EFC-1)–(EFC-3); Items (EFC-4)–(EFC-7) are taken
care by Lemma 3.8.

The construction of Gσ is straightforward for index 1 decorated configurations.
Namely, MKh(D(v), x, y) is a single point by construction (see the construction of
MKh(D(v), x, y) in [33, Section 5]). Thismeans that if x, y ∈ Ob(CKh) have ind(y) =
ind(x) − 1 and MCKh(x, y) is non-empty, the functor f induces a diffeomorphism
between the moduli spaces MCKh(x, y) and MCube(n)(f(x), f(y)), because each of
them consists of a single point. Therefore Gσ on zero-dimensional moduli space is
uniquely determined by the action of Gσ on the cube flow category Cube(n).

We now pass to the construction of Gσ for moduli spaces corresponding to index
k + 1 decorated configurations and k ≥ 1. The construction is inductive. That is, in
the construction we suppose Gσ has already been constructed for all moduli spaces
corresponding to resolution configurations of index k or less.

Consider an index k + 1 decorated configuration (D(u) \ D(v), x, y). Take the
moduli space MCKh(x, y) with x = (D(v), x), y = (D(u), y).

Assume that (D(u) \ D(v), x, y) is not a ladybug resolution configuration. By the
inductive assumption themapGσ is already defined on the boundary of each connected
component ofMCKh(x, y) = MKh(D(v)\D(u), x, y) and maps it onto the boundary
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ofMCKh(Gσ x,Gσ y) = MKh(D(σ (v)) \ D(σ (u)), x ◦ σ−1, y ◦ σ−1). Moreover, the
following diagram is commutative

The extension of Gσ can be defined onMCKh(D(v), x, y) as follows. Let

MCKh(x, y) = Y1 ∪ Y2 ∪ · · · ∪ Yk,

MCKh(Gσ x,Gσ y) = Y ′
1 ∪ Y ′

2 ∪ · · · ∪ Y ′
k

denote the respective connected components. Without loss of generality, we may and
will assume that Gσ maps ∂Yi onto ∂Y ′

i . For any 1 ≤ i ≤ k, we define

Gσ |Yi = (fσ(D(v),x,y)|Y ′
i
)−1 ◦ GCube

σ ◦ f(D(v),x,y)|Yi . (4.2)

The axioms (EFC-1) and (EFC-2) are trivially satisfied and (EFC-3) is guaranteed by
the fact that the construction is performed inductively.

To complete the proof we need to consider the case, when (D(u) \ D(v), x, y) is
a ladybug configuration. The action of Zm preserves the ladybug matching by [33,
Lemma 5.8]. Therefore, we again obtain a well-defined extension of f to the whole
MKh(D(v), x, y) and the extension of Gσ is given again by (4.2). This completes the
construction of the group action on the flow category CKh(Dm). Conditions (EFC-1)–
(EFC-3) are trivially satisfied.

We define the grading via Lemma 3.8. As this is an important step of the construc-
tion, we unfold the definition of the grading. Namely, for an element y = (D(v), x) ∈
Ob(CKh(Dm)) we define

grG(y) = grGf(y)
(f(y))|Gy − (R[Zm]|Gy )

n−/m

= (R[Gf(y)]gr(y)/|Gf(y)|)|Gy − R[Gy]n−/|Gy |

= R[Gy](gr(y)−n−)/|Gy |. (4.3)

In the last equality in (4.3) we have used the fact that R[G]|H = R[H ]|G|/|H |.
With this definition, the functor f : �R[Zm ]n−/mCKh(Dm) → Cubeœ(m) preserves

the grading. ��
Remark 4.7 We remark that shifting by R[Zm]n−/m is an overall shift corresponding
to the grading shift by n− in the non-equivariant setting.

Corollary 4.8 For a periodic link diagram Dm in a solid torus, the category CAKh(Dm)

is a Zm-equivariant cubical flow category.

Proof The action of Zm on the Khovanov flow category CKh(Dm) constructed in
Proposition 4.6 preserves the annular flow subcategoryCAKh(Dm) inducing the desired
structure. ��
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5 Proof of Theorem 1.2

We will prove only part (b) of the theorem, namely that X (CKh) is a well-defined
object in the equivariant Spanier–Whitehead category. The case of annular Khovanov
homology is completely analogous.

Suppose that Dm is an m-periodic diagram representing an m-periodic link L . By
Proposition 4.6, the Khovanov flow category CKh(Dm) admits a group action. Propo-
sition 3.21 shows that the cubical realization ||�V CKh(Dm)|| admits a Zm-action, for
an appropriate representation V . In particular, it ensures the existence of the Kho-
vanov homotopy type as an object in the equivariant Spanier–Whitehead category,
see Sect. 3.1.

To conclude the proof of Theorem 1.2, we need to show that the equivariant stable
homotopy type X (Dm) does not depend on the choices made. We prove invariance
step by step.

• Independence of R and ε. Arguing as in [33, Lemma 3.25], we see that different
choice of parameters R and ε yields equivariantly homeomorphic spaces.

• Independence of e•. Any cubical neat embedding ι of C relative to e• =
(e1, . . . , en−1) induces a cubical neat embedding ι′ relative to e′• = (e1, . . . , ei +
1, . . . , en−1). Arguing as in the proof of [33, Lemma 3.26] we conclude that

�V ||C||e• � ||C||e′• .

• Independenceof V . Let us introduce the followingnotation. Suppose ιV is a cubical
neat embedding relative to e• and relative to a representation V . Let V ↪→ W be
an equivariant embedding. Composing this embedding with ιV we obtain a neat
embedding relative to e• and W , which we denote by ιWV . We observe that if
W = V ⊕ V ′, then by construction

�V ′ ||C||ιV ∼= ||C||ιWV .

Suppose ιV and ιV ′ are two cubical neat embeddings relative to e•V and V and to
e•V ′ and V ′, respectively. By increasing the entries of e•V and e•V ′ and using inde-
pendence on e• discussed above, we may and will assume that e•V = e•V ′ = e•.
We will also assume that the entries of e• are sufficiently large.
Under the latter assumption, with W = V ⊕ V ′, the two embeddings ιWV and ιWV ′
a re equivariantly isotopic by the Mostow–Palais Theorem (Theorem A.11). By
this we mean that for any x, y ∈ Ob(C), there exists an equivariant isotopy ιtx,y

(t ∈ [0, 1]) such that ι0x,y = (ιWV )x,y and ι1x,y = (ιWV ′)x,y satisfying compatibil-
ity relations (EFC-1)–(EFC-3) for all t ∈ [0, 1]. Such isotopy is constructed by
defining j tx,y , once j0x,y and j1x,y have been defined (see proof of Proposition 3.16).
The construction of j tx,y is inductive as in Proposition 3.16, using Mostow–Palais
Theorem at each stage. We omit straightforward details.
Given the isotopy, we obtain that ||C||ιWV and ||C||ιW

V ′ are equivariantly homotopy

equivalent, and therefore ||C||ιV and ||C||ιV ′ are equivariantly stably homotopy
equivalent, as desired.
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(a) (b) (c) (d) (e) (f)

Fig. 4 The equivariant R2-move and the resolution configurations described in proof the independence of
XKh(Dm ) on Reidemeister moves

Proving the independence on the choice of the diagram and on the ladybug matching
is more complicated; we prove these results in Sects. 5.1 and 5.2, respectively.

5.1 Independence under equivariant Reidemeister moves

Let D1
m and D2

m be periodic link diagrams representing the same periodic link L .
Then C(D1

m) and C(D2
m) can be connected by a sequence of equivariant isotopies

and equivariant Reidemeister moves. Here by an equivariant Reidemeister move we
understand aZm orbit of a single Reidemeister move that is performed in a ball disjoint
from the rotation axis. See [46, Section 2.6, especially Figure 2.2] and [38, Proposition
2.6] for a more detailed discussion.

Proposition 5.1 The equivariant stable homotopy type ofXKh(Dm) is invariant under
the equivariant Reidemeister moves.

Proof Weprove the invariance under the equivariantR2-move, following the same idea
as in [33, Proof of Proposition 6.2]. The proof of the invariance under other equivariant
Reidemeister moves follows the same lines as in [33]; the necessary adjustments to
make these proofs work in the equivariant case are the same as the adjustments for
the proof of the invariance under equivariant R2-move, which we give in detail. For
all equivariant Reidemeister moves, the main difficulty in the proof is to verify the
assumptions of Lemma 3.31.

Let Dm be a diagram with crossings c1, . . . , cn . Let D′
m be the diagram

obtained after performing an equivariant R2-move on Dm , and let (cn+1, cn+2),

(cn+3, cn+4), . . . , (cn+2m−1, cn+2m) be the m pairs of new crossings created during
the process; see Fig. 4a.

For each v ∈ {0, 1}n+2m , write D′(v) = DD′
m
(v), and recall that vi , the i th coordi-

nate of v, corresponds to the type of resolution of the crossing ci of D′
m .

Consider now the subcategory of CKh(D′
m), denoted C1, consisting of those labeled

resolution configurations (D′(v), x) such that:

• either there exists a value of k with vn+2k−1 = 0 and vn+2k = 1, and x assigns a
label + to the extra circle created (see Fig. 4b);

• or there exists a value of k satisfying vn+2k−1 = vn+2k = 1 (see Fig. 4c).
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Fig. 5 The pairing illustrating
the proof of Lemma 5.2
(εi ∈ {+, −}, for i = 1, 2)

It is clear that C1 is an upward closed category. It corresponds to the upward closed
category C1 in [33, Proof of Proposition 6.3].

Lemma 5.2 The subcategory C1 is G-invariant, and for each subgroup H ⊂ G the
corresponding complex C∗(CH

1 ) is acyclic.

We defer the proof of Lemma 5.2 past the proof of Proposition 5.1.
Let C2 be the complementary downward closed subcategory of C1, consisting of

those labeled resolutions which do not satisfy any of the two previous conditions.
Next, we consider a subcategory C3 of C2. The objects of C3 are the labeled resolution
configurations (D′(v), x) such that there exists a value of k satisfying:

• either vn+2k−1 = 0 and vn+2k = 1, and the extra circle is labeled by −;
• or vn+2k−1 = 0 and vn+2k = 0;

see Fig. 4d, e. We observe that C3 is an upward closed category.

Lemma 5.3 The subcategory C3 is G-invariant, and for any subgroup H ⊂ G the
complex C∗(CH

3 ) is acyclic.

We omit the proof of Lemma 5.3, since it is analogous to the proof of Lemma 5.2.
Let C4 be the complementary category of C3 in C2; that is to say, C4 is the category

such that there exists a value of k satisfying vn+2k−1 = 1 and vn+2k = 0 (see Fig. 4f).
Moreover, observe that C4 is isomorphic to the category CKh(Dm) corresponding to
the original diagram Dm .

In this setting, we apply Lemma 3.31 twice to get the desired result. Namely, we
first state that ||CKh(D′

m)|| is equivariantly stably homotopy equivalent to ||C2|| and
then that ||C2|| is equivariantly stably homotopy equivalent to ||C4|| = ||CKh(Dm)||.
This concludes the proof of Proposition 5.1. ��
Proof of Lemma 5.2 For any a ∈ {0, 1}m , let C∗(a) denote the cochain complex gen-
erated by objects of C1 of the form vn+2k−1 = ai and vn+2k = 1. Notice that
C∗(1, 1, . . . , 1) is a subcomplex of C∗(C1). Moreover, the differential yields an iso-
morphism of chain complexes

C∗(a1, . . . , ai−1, 0, ai+1, . . . , am)
∼=−→ C∗(a1, . . . , ai−1, 1, ai+1, . . . , am);

see Fig. 5. Therefore, there exists an isomorphism of chain complexes

f : C∗(C1) ∼= C∗(1, . . . , 1) ⊗ C∗(Cube(m)).

123



1276 M. Borodzik et al.

Since C∗(Cube(m)) is acyclic, the Künneth Theorem implies that C∗(C1) is also
acyclic.

An analogous argument works for the fixed point sets categories. Namely, let H ⊂
G be a subgroup of order k and consider CH

1 . Let σ denote the permutation of crossings
of D′

m . Notice that the subset of crossings {cn+1, cn+2, . . . , cn+2m} consists of two
orbits of G

cn+1, cn+3, cn+5, . . . , cn+2m−1 and cn+2, cn+4, . . . , cn+2m .

Moreover, if σ(cn+2i−1) = cn+2 j−1 then σ(cn+2i ) = cn+2 j , for any 1 ≤ i ≤ m.
Let ci1 , ci2 , . . . , cim/k , for i1 < i2 < · · · < im/k , be representatives of orbits of the
action generated by σm/k restricted to the subset {cn+1, cn+3, cn+5, . . . , cn+2m−1}. If
(D′(v), x) belongs to C1, then v is constant on orbits of σm/k , and therefore values of
v on representatives of orbits determine its values on the whole subset of crossings
{cn+1, . . . , cn+2m}. Let a ∈ {0, 1}m/k . Define C∗

H (a) to be the submodule of C∗(CH
1 )

generated by labeled resolution configurations such that vi j = a j , for 1 ≤ j ≤ m/k.
Again, the components of the differential induce isomorphisms

C∗
H (a1, a2, . . . , ai−1, 0, ai+1, . . . , am/k)

∼=−→ C∗
H (a1, a2, . . . , ai−1, 1, ai+1, . . . , am/k),

and therefore we obtain an isomorphism of chain complexes

ψ : C∗(CH
1 )

∼=−→ C∗(1, 1, . . . , 1)H ⊗ C∗(Cube(m/k)).

We can apply once more the Künneth Theorem to conclude that C∗(CH
1 ) is acyclic. ��

5.2 Independence of the ladybugmatching

Before we give the proof of the independence of the ladybug matching, we introduce
some notation: given a link diagram Dm together with a Zm-action by rotations, we
write Dm for the link diagram with a Zm action by rotations in the opposite direction.
We write CKh(Dm) for the corresponding equivariant Khovanov flow category; the
underlying non-equivariant Khovanov flow category is the same, but the group action
is inverted.

Proposition 5.4 Let Dm be a periodic diagram and let CKh(Dm) (C#Kh(Dm)) be its
associated equivariant Khovanov flow category built using the right (respectively,
left) ladybug matching. Then ||CKh(Dm)|| and ||C#Kh(Dm)|| are stably equivariantly
homotopy equivalent.

Proof The proof is essentially the argument of [33, Proposition 6.5], but there is one
subtlety regarding the group action.

Let D′
m be the reflection of the diagram Dm along the y-axis after switching all

crossings (that is, D′
m is the result of rotating Dm by 180◦). The diagrams Dm and D′

m
represent the same link, but the rotation of the group action is inverted. In other words,
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Dm and D′
m represent the same equivariant link. Therefore these diagrams can be

related by a sequence of equivariant Reidemeister moves. By Proposition 5.1 we have
an equivariant stable homotopy equivalence between ||CKh(Dm)|| and ||CKh(D′

m)||.
There is also an equivariant stable homotopy equivalence between ||C#Kh(Dm)|| and

||CKh(D′
m)||. This is shown using the same argument as in the proof of [33, Proposition

6.5]: the isomorphism of framed flow categories C#Kh(Dm) and CKh(Dm) is equivariant,
if we revert the group action on one side.

The composition of the two equivariant stable homotopy equivalences yields the
desired equivariant stable homotopy equivalence. ��

6 Moduli spaces via the Cob3•/l category

In order to prove the Categorical Fixed Point Theorem 7.1 and, more generally, in
order to understand the fixed point set of XKh(D) when D is a periodic link diagram,
we need a deeper understanding of the structure of moduli spacesMKh. The key tool
is Bar-Natan’s cobordism category Cob3•/l reviewed in Sect. 6.1. The main result of
this section, which is used in the proof of the fixed point theorem, is the Counting
Moduli Lemma 6.6, which computes the number of connected components of the
moduli space MKh in terms of the genus of the associated cobordism.

6.1 Dotted cobordism category ofR3

As alluded to above, we begin with recalling Bar–Natan’s formulation of Khovanov
homology; see [2]. Let Cob3• denote the graded additive category whose objects set is
generated by finite collections of disjoint simple closed curves, i.e.,

(1) If Z ⊂ R
2 is a finite collection of pairwise disjoint simple closed curves, then

Z ∈ Ob(Cob3•),
(2) if Z ∈ Ob(Cob3•), then a formal shift of Z , denoted Z{�}, for some � ∈ Z, also

belongs to Ob(Cob3•),
(3) if Z1, Z2 ∈ Ob(Cob3•), then their formal direct sum Z1 ⊕ Z2 also belongs to

Ob(Cob3•).

As Cob3• is an additive category, it is enough to define morphisms on generators. If
Z1, Z2 are two finite collections of disjoint simple closed curves in R

2, elements of
HomCob3•(Z1, Z2) are represented by formal linear combinations of boundary preserv-
ing isotopy classes of dotted cobordisms

� ⊂ R
2 × [0, 1], ∂� = Z1 � −Z2.

For such a cobordism we define

deg� = χ(�) − 2#dots,
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= 0,

(a)

= 1,

(b)

= 0

(c)

= +

(d)

Fig. 6 Local relations in Cob3•/l . The neck cutting relation is depicted in Fig. 6d

where χ(�) denotes the Euler characteristic of �. Cobordisms are usually drawn
from left to right or from bottom to top. Dots can move freely within the connected
components of a given cobordism and decrease the degree of the respective map by 2.

The category Cob3•/l is the quotient of Cob
3• by local relations depicted in Fig. 6.

Particularly useful is the neck cutting relation depicted in Fig. 6d. Indeed, a recursive
application of the neck cutting relation quickly reduces any morphism in Cob3•/l to a
morphism given as a disjoint sum of unknotted surfaces of genus 0 and 1.

Lemma 6.1 [2] Let � be a dotted surface representing a morphism in HomCob3•/l

(Z1, Z2), for some Z1, Z2 ∈ Ob(Cob3•/l).

(1) If any connected component of � is of genus greater than 1, then

� = 0 ∈ HomCob3•/l
(Z1, Z2).

(2) If any connected component of � is a singly-dotted torus, then

� = 0 ∈ HomCob3•/l
(Z1, Z2).

Proof The lemma is a consequence of the relation drawn in Fig. 7, which follows
directly from the neck cutting relation shown in Fig. 6d and the fact that a double dot
annihilates every morphism, as shown in Fig. 6c. ��

= 2

Fig. 7 The relation used in the proof of Lemma 6.1
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Fig. 8 Caps generating
HomCob3•/l

(∅, S1) + = − =

Fig. 9 Caps and their duals, i.e.
cocaps (drawn on the right-hand
side of the equality sign)

∗
=

∗
=

Lemma 6.2 [2]Morphisms in Cob3•/l satisfy the following properties:

(1) A singly-dotted sphere generates

HomCob3•/l
(∅,∅) ∼= Z.

(2) If Z = S1, then

HomCob3•/l
(∅, Z) ∼= Z

2

is generated by dotted and undotted caps, i.e. by surfaces depicted in Fig. 8.
(3) If Z ∈ Ob(Cob3•/l) has c connected components, then

HomCob3•/l
(∅, Z) ∼= HomCob3•/l

(∅, S1)⊗c ∼= Z
2c

is generated by surfaces consisting of c disjoint dotted or undotted caps.
(4) For any Z ∈ Ob(Cob3•/l) the composition map

HomCob3•/l
(Z ,∅) × HomCob3•/l

(∅, Z)
◦−→ HomCob3•/l

(∅,∅)

is a nonsingular bilinear pairing, hence there exists an isomorphism

HomCob3•/l
(Z ,∅) ∼= HomCob3•/l

(∅, Z)∗ = HomZ(HomCob3•/l
(∅, Z),Z).

Consequently, HomCob3•/l
(Z ,∅) is generated by c disjoint surfaces dual to caps,

i.e. cocaps (see Fig. 9).
(5) If Z1, Z2 ∈ Ob(Cob3•/l) have c1 and c2 connected components, respectively, then

HomCob3•/l
(Z1, Z2) ∼= HomCob3•/l

(∅, Z2) ⊗ HomCob3•/l
(Z1,∅)

is generated by a disjoint union of c1 cocaps bounding Z1 and c2 caps bounding
Z2.

Proof Properties (1), (2) and (3) follow clearly from Lemma 6.1 and the neck cutting
relation (Fig. 6d). Point (4) follows from points (1) and (3) together with the sphere
and dotted sphere relations (Fig. 6a, b). The last point follows from points (3) and (4)
together with the neck cutting relation. ��
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Example 6.3 By Lemma 6.2(4), if Z ∈ Ob(Cob3•/l) consists of c connected compo-
nents, then HomCob3•/l

(∅, Z) is generated by c disjoint dotted or undotted caps. For

any field F, we can identify

HomCob3•/l
(∅, Z) ⊗ F ∼= V⊗c,

where V is the vector space used in Sect. 4.1. In order to do that enumerate circles of
Z by Z1, . . . , Zc. If c = 1, the identification is given in Fig. 8. The case c > 1 is a
simple extension. Indeed, if

C = C1 � C2 � · · · � Cc

is a disjoint sum of caps such that Ci bounds Zi , for 1 ≤ i ≤ c, then

C �→ ± ⊗ ± ⊗ · · · ⊗ ±
︸ ︷︷ ︸

c factors

∈ V⊗c,

where the sign of the i-th factor is + if Ci is undotted and − otherwise, for 1 ≤ i ≤ c.

For any Z1, Z2 ∈ Ob(Cob3•/l) a distinguished generator in HomCob3•/l
(Z1, Z2) is

a disjoint union of cocaps and caps as described Lemma 6.2(5). The distinguished
basis of HomCob3•/l

(Z1, Z2) is the basis consisting of distinguished generators. If � ∈
HomCob3•/l

(Z1, Z2) is a distinguished generator, denote by �◦ and �• the subsurface
of � consisting of undotted and dotted components, respectively.

Given a diagram D of a link L ⊂ S3, Bar–Natan [2] constructed a cochain com-
plex called the Bar–Natan bracket of D, denoted [[D]]BN. The Bar–Natan bracket is
obtained by resolving crossings of D, as depicted in Fig. 2. Vogel [48] later improved
the construction of Bar–Natan in such a way that the chain homotopy type of [[D]]BN
does not depend on the choice of the diagram D and is an invariant of L .

Lemma 6.4 [2] The functor TKh : Cob3•/l → ZMod given by

TKh(Z) = HomCob3•/l
(∅, Z)

is Khovanov’s TQFT. In particular, given any field F and a link diagram D, there is a
canonical isomorphism of cochain complexes

T ([[D]]BN) ⊗ F ∼= CKh∗,∗(D).

Lemma 6.4 gives us a translation between labeled resolution configurations (D, x)
and distinguished generators of HomCob3•/l

(∅,Z(D)).

Remark 6.5 The isomorphism in Lemma 6.2(5) can be described in the following way.
For two objects Z1, Z2 ∈ Ob(Cob3•/l), the composition in Cob3•/l induces a trilinear
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map

�Z1,Z2 : TKh(Z2)
∗ × HomCob3•/l

(Z1, Z2) × TKh(Z1) → HomCob3•/l
(∅,∅),

which yields an isomorphism

�Z1,Z2 : HomCob3•/l
(Z1, Z2)

∼=−→ TKh(Z2) ⊗ TKh(Z1)
∗.

If � ∈ HomCob3•/l
(Z1, Z2), then it is easy to check that

�Z1,Z2(�) =
∑

S1,S2

�Z1,Z2(S
∗
2 , �, S1)S2 ⊗ S∗

1 ∈ TKh(Z2) ⊗ TKh(Z1)
∗,

where the summation extends over distinguished generators S1 and S2 of TKh(Z1) and
TKh(Z2), respectively.

6.2 Countingmoduli lemma

Let (D, x, y) be a decorated resolution configuration of index n. Enumerate the arcs in
A(D) by A1, . . . , An . Let z = (z1, z2, . . . , zn) ∈ �n−1. Define the surface�(z,D) ⊂
R
2×[0, n+1] as a trace of the surgery onZ(D), where the surgery on the i-th arc occurs

at the level zi . As the arcs are pairwise non-intersecting, the surface is well defined
even if some of the coordinates zi of z are equal. Notice that the map TKh(�(u,D))

does not depend on the choice of z ∈ �n−1.
For any surface � ⊂ R

2 × [a, b] we define its bottom boundary ∂0� and the top
boundary ∂1� via

∂0� = � ∩ (R2 × {a}), ∂1� = � ∩ (R2 × {b}).

The result we present next is the key tool in the study of the fixed points of moduli
spaces.

Lemma 6.6 (Counting moduli lemma) Let (D, x, y) be a decorated resolution config-
uration of index n. Let S1 ∈ TKh(D) be the distinguished generator corresponding to
the surgery configuration (D, y) under the isomorphism from Lemma 6.4. Likewise,
let S2 ∈ TKh(Z(s(D))) be the distinguished generator corresponding to the labeled
resolution configuration (s(D), x) Then, for any z ∈ �n−1,

�Z(D),Z(s(D))(S2, �(z,D), S1) = #π0(MKh(D, x, y)).

In particular, ifMKh(D, x, y) �= ∅, then

MKh(D, x, y) ∼=
2c1
⊔

i=1

�n−1,
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where c1 is the number of genus 1 connected components of �(z,D).

Remark 6.7 The lemma can be deduced from the discussion at the end of [29, Section
2.11]. As the precise statement is absent in that paper, and the result is widely used in
the present paper, we present a sketch of the proof using Cob3•/l -categories and posets.

Proof For a resolution configuration (sA(D), x ′), where A ⊂ A(D), let SA,x ′ ∈
TKh(Z(D)) denote the distinguished generator corresponding to (sA(D), x ′).

Without loss of generality we can pick z = (1, 2, 3, . . . , n) ∈ �n−1. Proposi-
tion 2.13 implies that #π0(D, x, y) = # max Pz(D, x, y), so it is sufficient to prove
that

# max Pz(D, x, y) = �Z(D),Z(sA(D))(S1, �(z,D), S2). (6.1)

In order to prove (6.1), we proceed by induction on the index of the resolution
configuration. Let Z01, . . . , Z0sy be the circles in Z(D) and Z11, . . . , Z1sx be the
circles in Z(s(D))).

For an index 1 resolution configuration, the poset Pz(x, y) consists of a single chain
x � y and the surface � has genus 0. Then both sides of (6.1) are equal to 1.

Suppose now that (6.1) has been proved for all index n−1 resolution configurations,
and let (D, x, y) be a resolution configuration of index n. There are two cases. Either
A1 is a split, or it is a merge. We will deal only with the (harder) case, when A1 is a
split, leaving the other case to the reader., we give only the half of the proof.

Suppose Z01 splits into two circles Z011 and Z012. If y(Z01) = −, then there
is a unique y1 such that (D, y) ≺ (s{A1}(D), y1). We infer that # max Pz(x, y) =
# max Pz1(x, y1). The neck-cutting relation shows that

�(S2, �(z,D), S1) = �(S2, �(z1,D1), S3). (6.2)

Suppose finally that y(Z01) = +. Then there are two different assignments y1 and
y2 such that for y j = (s{A1}(D), y j ) we have y ≺ y j (with j = 1, 2): one assigns +
to Z011 and − to Z012, the other one does the opposite. In particular

max #Pz(x, y) = max #Pz1(x, y1) + max #Pz1(x, y2).

Let S3, S4 be the distinguished generators associated to y1 and y2, respectively. We
need to prove that

�(S2, �(z,D), S1) = �(S2, �(z1,D1), S3) + �(S2, �(z1,D1), S4), (6.3)

which follows from the neck-cutting relation (see Fig. 10). ��
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Σ(z,D)

Σ(z,D′)

=

Σ(z,D′)

+

Σ(z,D′)

=

=

Fig. 10 Proof of Lemma 6.6. The generator S1 is a single circle without dots (corresponding to +). The
new generators S3, S4 are two disks, one of them containing a dot

7 Categorical and geometric fixed points

7.1 Categorical fixed point theorem

Throughout this section, p denotes a fixed prime number. Define the map

πp : C∗ → C
∗, πp(ζ ) = ζ p,

where ζ denotes the complex coordinate onC\{0} = C
∗. IfD is a resolution configu-

ration inC∗, then define the p-lift ofD to be the p-periodic resolution configurationDp

such that Z(Dp) = π−1
p (Z(D)) and A(Dp) = π−1

p (A(D)). Analogously, for a labeled
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resolution configuration (D, x) and a decorated resolution configuration (D, x, y) we
define the p-lift (Dp, x p) and (Dp, x p, y p), where x p = x ◦ πp and y p = y ◦ πp.

Theorem 7.1 (Categorical fixed point theorem) Let Dp be a p-periodic annular link
diagram and let D denote the quotient diagram. For any q, k ∈ Z there exists an
isomorphism of cubical flow categories

Cq,k
AKh(D)

πp−→ C pq−(p−1)k,k
AKh (Dp)

Zp ,

which induces the following isomorphism of cubical flow categories, for any q ∈ Z,

⊔

q ′,k′
pq ′−(p−1)k′=q

Cq
′,k′

AKh (D)
πp−→ CqKh(Dp)

Zp .

As a corollary we obtain the statement equivalent to Geometric Fixed Point Theo-
rem 1.3.

Corollary 7.2 For any annular link diagram D we obtain

X q,k
AKh(D) = X pq−(p−1)k,k

AKh (Dp)
Zp , X q

Kh(Dp)
Zp =

∨

q ′,k′
pq ′−(p−1)k′=q

X q ′,k′
AKh (D).

Proof of Corollary 7.2 Notice that by Proposition 3.27 and Theorem 7.1 we have

X
(

Cq,k
AKh(Dp)

)Zp = X
(

Cq,k
AKh(Dp)

Zp
)

= X
(

C pq−(p−1)k,k
AKh (D)

)

.

The case of the Khovanov flow category is analogous. ��
Proof of Theorem 7.1 The desired isomorphism of cubical flow categories will be first
defined on objects, then on morphisms.

Lemma 7.3 The formula Fp(D, x) = (Dp, x p) induces a bijection

Fp : Ob(CAKh(D))
∼=−→ Ob(CAKh(Dp))

Zp .

The map Fp preserves the annular grading.

Proof of Lemma 7.3 The inverse map is given by taking the quotient of a respective
labeled resolution configuration. Moreover, invariance of the annular grading under
the map Fp is evident. ��

We will now pass to constructing the map on morphisms. The key property that we
will require is that for all resolution configurations (D, x, y) the following diagram
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Index one resolution configurations in R
2 \ {0}. The black dot is the fixed point set of the rotation

commutes:

(7.1)

where u = f(D, y), v = f(s(D), x), u p = f(Dp, y p) and vp = f(s(Dp), x p).
We begin with morphisms in CAKh(D) corresponding to index one configurations.

All these configurations are depicted in Fig. 11.We recall now a result of Zhang, which
is proved on a detailed case-by-case analysis.

Lemma 7.4 (See [51, Section 5.3]) For all configuration depicted in Fig. 11 we have

MAKh(D, x, y) �= ∅ ⇐⇒ MAKh(Dp, x p, y p) �= ∅.

Next result connects MAKh withMKh for index one configurations.

Lemma 7.5 Suppose (D, x, y) is one of the configurations of Fig. 11. If MKh(Dp,

x p, y p)
Zp is non-empty, Ann(Dp, y p) = Ann(s(Dp), x p).

Proof of Lemma 7.5 The proof is done on a case-by-case analysis. Cases (e) and (f) of
Fig. 11 are trivial, because no circles in Dp or s(Dp) is non-trivial (in the sense of
Sect. 4.2). Thus Ann(Dp, y p) = Ann(s(Dp), x p) = 0.

Case (b) is dual to (a), and case (d) is dual to (c), so it is enough to prove the lemma for
cases (a) and (c) only.Wewill deal with case (a) only, leaving case (c) (which is easier)
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Z1

Z2

A1

A2

A3

A4
A5

Z3

Z4

Z5

Z6

Z7

Fig. 12 Proof of Lemma 7.5

to the reader. The resolution configurationsDp and s(Dp) are depicted in Fig. 12. Note
that the annular grading of any resolution configuration on the right is zero, because
there are no non-trivial circles. Therefore, it is enough to show that if the resolution
configuration on the left has non-trivial annular grading, thenMKh(Dp, x p, y p)

Zp =
0. The configuration (Dp, y p) has non-trivial annular grading in precisely two cases:
either y p assigns − to both circles on the left, or it assigns + to both circles. In the first
case, as the surgery on any of the arcs merges two circles labeled with −, the moduli
space MKh(Dp, x p, y p) is empty.

The other case is that y p assigns + to both circles. After the surgery on one of the
arcs connecting the two circles, we obtain a single circle labeled with +. All other
p − 1 arcs are splits. Any split of an + labeled circle yields a circle labeled with +
and a circle labeled with −, while a split of a circle labeled with − has two circles
both labeled with −. It follows that x p assigns + to a positive number of circles and −
also to a positive number of circles. Such configuration (the underlying p circles are
drawn in Fig. 12 on the right) cannot be Zp-invariant. Hence MKh(Dp, x p, y p)

Zp is
empty. This concludes the proof of case (a). ��
Corollary 7.6 For any index one configuration, there is a bijection between
MAKh(D, x, y), MAKh(Dp, x p, y p)

Zp and MKh(Dp, x p, y p)
Zp .

Proof From Lemma 7.5 we immediately obtain a bijection between
MAKh(Dp, x p, y p)

Zp andMKh(Dp, x p, y p)
Zp . By Lemma 7.4, it is enough to con-

sider the case, when MAKh(D, x, y) is non-empty. Then it is a zero-dimensional
permutohedron �0, that is, a single point. Call it z. Let �(z,D) be the corresponding
surface. It has genus zero.

Let zp ∈ �
Zp
p−1 denote the unique fixed point of the Zp action. The surface

�(zp,Dp) is a p-fold cover of �(z,D) and it is easily seen to have genus zero
as well. From Counting Moduli Lemma 6.6 we deduce that MAKh(Dp, x p, y p) is
connected, hence it is diffeomorphic to �p−1. Therefore MAKh(Dp, x p, y p)

Zp is a
single point. ��
Remark 7.7 Since themoduli spaces in Corollary 7.6 are either empty or a single point,
the bijection of Corollary 7.6 is uniquely defined.
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Fig. 13 Ladybug configurations
in R2 \ {0}

(a) (b) (c)

Continuing the proof of Theorem 7.1, we extend Fp from objects to morphisms
corresponding to index one resolution configurations. We now discuss the index two
resolution configurations.

Assume first that (D, x, y) is not a ladybug andMAKh(D, x, y) is non-empty. Then
(D, x, y) is a genus zero resolution configuration. In particular,MAKh(D, x, y) = �1
is an interval with two boundary components. By dimension counting argument,
MAKh(Dp, x p, y p)

Zp is a union of some number of copies of one-dimensional permu-

tohedra�1.By the induction assumption ∂MAKh(Dp, x p, y p)
Zp

Fp∼= ∂MAKh(D, x, y).
Hence MAKh(Dp, x p, y p)

Zp is also an interval. Then f takes it diffeomorphically to

�
Zp
2p−1 = �1. We define Fp = f−1 ◦ FCube ◦ f, so (7.1) commutes.
If the genus of (D, x, y) is one, the moduli space is not connected. Decorated

resolution configurations of index twoandgenus one are called ladybug configurations,
they are depicted in Fig. 13.

We discuss these three cases separately.

Lemma 7.8 If (D, x, y) is as in Fig. 13a, then MKh(Dp, x p, y p) = ∅ and
MAKh(D, x, y) = ∅.
Proof For the first part note that the genus of (Dp, x p, y p) is equal to p > 1. Therefore,
the moduli space is empty, by Lemma 6.1(1).

For the second part note that (D, y) ≺ (s(D), x) if and only if y assigns + to the
unique circle in D and x assigns − to the unique circle in s(D). Then Ann(D, y) �=
Ann(s(D), x), soMAKh(D, x, y) = ∅. ��

The two other cases are dealt with in the following lemma, whose proof is deferred
to Sect. 7.2.

Lemma 7.9 Suppose (D, x, y) is a ladybug configuration depicted in Fig. 13b or
Fig. 13c. Then

MKh(D, x, y) ∼= MKh(Dp, x p, y p)
Zp .

The isomorphism makes the diagram (7.1) commutative.

Lemma 7.9 finishes the construction of Fp for index 2 resolution configurations.
Suppose ind(D, x, y) > 2. The map Fp : MAKh(D, x, y) → MAKh(Dp, x p, y p)

Zp

has already been constructed on the boundary. Now MAKh(D, x, y) and
MAKh(Dp, x p, y p)

Zp are disjoint union of disks of dimension ind(D, x, y) − 1.
The map Fp is already defined on the boundaries of these moduli spaces. As

123



1288 M. Borodzik et al.

ind(D, x, y) − 1 > 1, there is a unique (up to homotopy) extension of Fp to the
whole of MAKh(D, x, y). ��

7.2 Proof of Lemma 7.9

We will prove Lemma 7.9 only for the resolution configuration depicted in Fig. 13b.
The case of Fig. 13c is similar (and easier), we leave it to the reader.

Lemma 6.6 implies thatMKh(D, x, y) = �1
1��2

1 has two connected components.
Let Z denote the unique circle in D and let A1 and A2 denote the arcs, where A1 is
the arc lying inside Z . As x � y we must have y(Z) = + and x(Z ′) = − and in this
case the poset P(x, y) consists of four elements x � x̃ j � y, j = 1, . . . , 4, where:

x̃1 = (s{A1}(D), x1A1
), x̃2 = (s{A1}(D), x2A1

),

x̃3 = (s{A2}(D), x1A2
), x̃4 = (s{A2}(D), x2A2

).

Here x1A2
assigns+ to the inner circle and+ to the other circle and x2A2

the oppositeway.

The assignments x1A1
and x2A1

are such that (s{A1}(D), x1A1
) and (s{A2}(D), x1A2

) are
paired under right ladybug matching, that is, the vertices corresponding to posets x �
x̃1 � y and x � x̃3 � y belong to the same connected component of MKh(D, x, y);
see [33, Section 5.4].

Consider now the cover. Denote by Z1, Z2, . . . , Z p the circles in Dp and
A1
1, A

2
1, . . . , A

p
1 , A

1
2, . . . , A

p
2 the lifts of A1 and A2, respectively. The lifts of the

circles in s{Ai }(D), i = 1, 2 are denoted by Zs
i j where s = 1, . . . , p enumerates the

circles and j = 1, 2 corresponds to the left/right or inner/outer circle in the orbit. The
lifts of s{A1,A2}(Z) are denoted Z ′1, . . . , Z ′ p.

We need to introduce an extra piece of notation. Let σ1, σ2 ∈ Perm p be permu-

tations and fix j1, j2 ∈ {0, . . . , p}. Define the resolution configuration xi jσ1,σ2 whose
underlying set of circles is given by s{Aσ1(1)

1 ,...,A
σ1( j1)

1 ,A
σ2(1)
2 ,...,A

σ2( j2)

2 }. The assignment

xi jσ1,σ2 of +, − to each of the circles is given as follows. Let i ∈ {1, . . . , p}:
• if i ∈ {σ1(1), . . . , σ1( j1)} and i ∈ {σ2(1), . . . , σ2( j2)}, then the resolution config-
uration contains Z ′i and we assign − to it;

• if i ∈ {σ1(1), . . . , σ1( j1)} and i /∈ {σ2(1), . . . , σ2( j2)}, then Zi
1 j belong to the

resolution configuration ( j = 1, 2) and we assign x1A1
to it;

• if i /∈ {σ1(1), . . . , σ1( j1)} and i ∈ {σ2(1), . . . , σ2( j2)}, then Zi
2 j belong to the

resolution configuration ( j = 1, 2) and we assign x1A2
to it;

• if i /∈ {σ1(1), . . . , σ1( j1)} and i /∈ {σ2(1), . . . , σ2( j2)}, then Zi belong to the
resolution configuration and we assign + to it.

Every maximal chain containing x̃ p
1 is of the form

vσ1σ2 := (Dp, y) ≺ x10σ1σ2
≺ · · · ≺ x p0

σ1σ2
≺ x p1

σ1σ2
≺ · · · ≺ x p,p−1

σ1σ2
≺ (s(Dp), x).

(7.2)
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Likewise, every maximal chain containing x̃ p
3 is of form

wσ1σ2 := (Dp, y) ≺ x01σ1σ2
≺ · · · ≺ x0pσ1σ2

≺ x1pσ1σ2
≺ · · · ≺ x p−1,p

σ1σ2
≺ (s(Dp), x).

Recall that in Definition 2.11 and Lemma 2.12 we established a correspondence
between maximal chains and vertices in the moduli space. We will use this corre-
spondence in the rest of the proof. Our next aim is to prove the following result.

Lemma 7.10 The vertices vσ1σ2 and wσ1σ2 belong to the same connected component
of MCKh(xp, yp).

Proof of Lemma 7.10 Fix σ1 and σ2 and write xi j for x
i j
σ1σ2 . Denote by u

i j the maximal
chain

x00 ≺ x10 ≺ · · · ≺ xi0 ≺ xi1 ≺ xi j ≺ xi+1, j ≺ xi+1, j+1 ≺ · · · ≺ xi+1,p ≺ xi+2,p ≺ · · · ≺ x pp .

Wenote that u p0 = vσ1σ2 and u
0p = wσ1σ2 .Moreover, ui0 = ui+1,p by construction. It

is therefore enough toprove thatui j andui j+1 belong to the sameconnected component
of MCKh(x, y). To this end define

wstart = x00 ≺ · · · ≺ xi j ∈ MCKh(x
i j , y)

wend = xi+1, j+1 ≺ · · · ≺ xi+1,p ≺ xi+2,p ≺ · · · ≺ x p,p ∈ MCKh(x, x
i+1, j+1)

w1 = xi, j ≺ xi+1, j ≺ xi+1, j+1 ∈ MCKh(x
i+1, j+1, xi j )

w2 = xi, j ≺ xi, j+1 ≺ xi+1, j+1 ∈ MCKh(x
i j , xi+1, j+1).

Let ι : MCKh(xi j , y)×MCKh (xi+1, j+1, xi j )×MCKh(x, xi+1, j+1) ↪→ MCKh(x, y) be
the inclusion.Wehave thatui j = ι(wstart , w1, wend) andui j+1 = ι(wstart , w2, wend).
Therefore it is enough to prove that w1 and w2 belong to the same connected compo-
nent ofMCKh(xi+1, j+1, xi j ). There are two cases.

• σ1(i + 1) �= σ2( j + 1);
• σ1(i + 1) = σ2( j + 1).

In the first case the associated surface consists of two components, both being pair of
pants. As the genus is zero, by Lemma 6.6 MCKh(xi+1, j+1, xi j ) is connected.

The second case corresponds to the ladybug matching. Writing s = σ1(i + 1)
we obtain that MCKh(xi+1, j+1, xi j ) = MCKh(D

p
s , x p

s , y ps ), where Z(D p
s ) = Zs ,

A(D p
s ) = {As

1, A
s
2}, y ps (Zs) = −, x p

s (Z ′s) = +, that is, this is the moduli space
corresponding to a ladybug configuration. Our definition of assignments x p

s and y ps
implies that w1 and w2 belong to the same connected component of the moduli space.
This concludes the proof of Lemma 7.10. ��
Lemma 7.11 Let σ ′

1, σ
′
2 ∈ Perm p be another permutation and let vσ ′

1σ
′
2
be a chain

as in (7.2). Then the vertices corresponding to vσ1σ2 and vσ ′
1σ

′
2
belong to the same

connected component of MCKh(xp, yp).
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Proof It is enough to prove the result if σ1 = σ ′
1 and σ ′

2 differs from σ2 by swapping
two adjacent elements (or σ2 = σ ′

2 and σ1 differs from σ ′
1 by a single transposition of

elements). The proof in that case is essentially a repetition of the argument used in the
proof of Lemma 7.10 so we leave it to the reader. ��

Let � be the connected component of MCKh(xp, yp) that contains all of the vσ1σ2

and vσ1σ2 . Note that the group action takes vσ1σ2 to vσ ′
1σ

′
2
for some other permuta-

tion σ ′
1, σ

′
2, therefore the component �1 is preserved. The fixed point set �Zp is a

one-dimensional permutohedron �2, which is diffeomorphic with �
Zp
2p−1. The dif-

feomorphism is realized by the restriction of the cover map f : MCKh(xp, yp) →
MCubeœ(2p)(f(xp), f(yp)).

We define now the isomorphism MCKh(x, y) → MCKh(xp, yp)Zp in such a way
that the segment connecting the vertices x � x̃1 � y and x � x̃3 � y in MCKh(x, y)
is mapped to a segment in �Zp (which is a disjoint union of segments). The segment
connecting the vertices x � x̃2 � y to x � x̃4 � y is mapped to the other connected
component of MKh(xp, yp)Zp .

8 Equivariant Khovanov homology

We begin with a brief review of the construction of the equivariant Khovanov homol-
ogy [38]. Later on, we merge this construction with the construction of the equivariant
Khovanov homotopy type that we introduced in Sect. 4.

8.1 Review of the construction

Let D be an m-periodic diagram representing an m-periodic link L . The symmetry of
L can be realized by a cobordism in S3 × I in the following way. Suppose the rotation
center is at 0 ∈ R

2. Consider D × I ⊂ R
2 × I and twist it by the diffeomorphism

η : R2× I → R
2× I given by (x, t) �→ (�2π t/mx, t), where�θ is a counterclockwise

rotation by the angle θ . The image

�D = η(D × I ) (8.1)

is a cobordism from D to D. Note that this is a product cobordism, and there are no
handle attachments.

In [2] a map φ�D of Khovanov chain complexes was associated to each cobordism
of diagrams�. The chain homotopy class of this map was later shown to be functorial,
i.e., not depending on the isotopy type of �; see [48]. is well-defined and can be used
to show that the group action on the Khovanov chain complex is well-defined. In
fact, defining a group action is relatively easy, but many proofs of invariance can be
simplified, once we have a functorial map φ�D Notice that only the chain homotopy
type of φ�D is well-defined. However, since �D is a composition of Reidemeister
moves, it is possible to choose a representative for φ�D , which induces a group action
on the Khovanov complex.
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Proposition 8.1 [38, Section 2] Let R be a commutative ring with a unit. It is possible
to choose a representative of the cobordism map φ�D , which induces a group action
on the chain complex CKh(D; R).

The Khovanov complex CKh(D; R) admits an action of the cyclic group Zm .
Therefore CKh(D; R) can be regarded as a �-module, where � = R[Zm]. For an
R-module M , define the equivariant Khovanov homology of L in gradings k and q as

EKh j,q(L; M) = Ext j�(M;CKh∗,q(D; R)). (8.2)

Since Ext j�(M;CKh∗,q(D; R)) does not depend on the chosen diagram D, equivariant
Khovanov homology is an invariant of periodic links [38].

The construction of equivariantKhovanov homology alsoworks in the annular case.
The methods of [38] carry over to the annular case without significant modifications.
Namely, we observe that the annular chain complex CAKh∗,q,k(D; R) admits a Zm-
action, hence it is a �-module. Next, we define

EAKh j,q,k(L; M) = Ext j�(M;CAKh∗,q,k(D; R)).

Essentially the same argument as in [38] can be used to show that EAKh is an invariant
of an annular link.

8.2 Equivariant Khovanov homology as Borel cohomology

We now have two ways of getting equivariant homology from the Khovanov theory.
Oneway is to use the definition given in (8.2). Anotherway uses theBorel cohomology
of space XKh(D). We will now show that the two constructions agree. In the rest of
this section we denote by ˜C∗(XKh(D); R) the reduced cellular cochain complex of
XKh(D) associated to the CW-structure described in Sect. 3.7.

First we state a preparatory result.

Proposition 8.2 Let Dm be an m-periodic diagram of a link. There exists an identifi-
cation of cochain complexes of R[Zm]-modules

˜C∗(XKh(Dm); R) ∼= CKh∗(Dm; R). (8.3)

Here it should be understood that the structure of the R[Zm] cochain complex is given
by the Zm-action on ˜C∗(XKh(Dm); R) and on CKh(Dm).

Proof The statement is a consequence of the construction of the cochain complex of
˜C∗(XKh(Dm)). The cellular cochain complex ˜C∗(XKh(Dm); R) was constructed in
Sect. 2.6. The construction is that the generators of ˜C∗(XKh(Dm); R) correspond to
the generators of CKh∗(Dm; R). The differential on ˜C∗(XKh(Dm); R) is the same
as in CKh(Dm; R). In Sect. 3.9 it was shown that the induced group actions on
˜C∗(XKh(Dm); R) and CKh(Dm; R) coincide. ��
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In order to state and prove the next result, we need to set up some notation and
recall some basic facts from homological algebra. If C∗ is a chain complex, we will
associate to it a cochain complex C∗

r defined by C−n
r = Cn with the differential

d−n
r : C−n

r → C−n+1
r defined by d−n

r = (−1)ndn , where dn : Cn → Cn−1 is the
differential in C∗. For two cochain complexes C∗ and D∗ we define the Hom cochain
complex

Homn
R(C∗, D∗) =

∏

p∈Z
HomR(C p, Dp+n),

with the differential dnHom( f ) = d∗
D ◦ f −(−1)n f ◦d∗

C . If P
∗ is a projective resolution

of a cochain complex C∗ and I ∗ is an injective resolution of D∗, then

ExtnR(C∗, D∗) = Hn(Hom∗
R(P∗, I∗)) ∼= Hn(Hom∗

R(P∗, D∗)) ∼= Hn(Hom∗
R(C∗, I∗)).

(8.4)
Recall that to any discrete group G, we can associate a contractible space EG

equipped with the free action of G. By BG = EG/G we denote the classifying space
ofG. For aG-space X and any finitely generated R[G]-module M we define the Borel
equivariant cohomology of X

H∗
G(X; M) = H∗(EG ×G X; M) ∼= Ext∗R[G](C∗

r (X; R); M),

whereC∗
r (X) denotes the cochain complex associated to the cellular cochain complex

C∗(X) of X using the convention described above. In particular, we haveC∗(X; R) =
Hom∗

R(C∗
r (X); R).

There is a natural G-map EG × X → EG which, after taking quotient of both
sides, yields a map

EG ×G X
p−→ BG.

We define the reduced Borel cohomology of X , to be

˜H∗
G(X; M) = coker

(

H∗(BG; M)
p∗
−→ H∗

G(X; M)

)

.

It is easy to check that

˜H∗
G(X; M) ∼= Ext∗R[G]

(

˜C∗
r (X; R); M)

.

Theorem 8.3 Let Dm be an m-periodic link diagram of a link Lm and fix a field F.
For any F[Zm]-module M, the equivariant Khovanov homology EKhi,q(Lm; M) is
isomorphic to the reduced Borel cohomology of XKh(Dm)

EKhi,q(Lm; M) ∼= H∗
Zm

(XKh(Dm),HomF(M,F)),

where g ∈ G acts on HomF(M,F) via (g · f )(x) = f (g−1 · x).
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Proof To begin with, observe that

EKh∗,q(Lm; M) = Ext∗
F[G](M,CKh∗,q(Dm;F)) = Ext∗

F[G]
(

M, ˜C∗(X q
Kh(Dm);F)

)

.

Here the first equality is the definition of equivariant Khovanov homology while the
second equality follows from Proposition 8.2.

Next, let P∗
M be a projective resolution of M . We have

Ext∗
F[G](M, ˜C∗(X q

Kh(Dm);F))
(1)∼= Ext∗

F[G](M,HomF(˜C∗
r (XKh(Dm)q ;F),F)) ∼=

(2)∼= H∗(Hom∗
F[G](P∗

M ,HomF(˜C∗
r (X q

Kh(Dm);F),F))) ∼=
(3)∼= H∗(Hom∗

F
(P∗

M ⊗F[G] ˜C∗
r (X q

Kh(Dm);F),F)) ∼=
(4)∼= H∗(Hom∗

F
(˜C∗

r (XKh(Dm);F),Hom∗
F
(P∗

M ,F))),

where (1) comes from the definition of C∗
r (XKh(Dm)q;F), (2) is the definition of the

Ext functor and the isomorphisms (3) and (4) come from [6, Exercise I.0.6]. Since F
is a field, any projective F[G]-module is also injective by [12, Exercise 1.10.24]. The
functor

M �→ HomF(M,F)

defined on the category of left F[G]-modules is exact by [12, Exercise 1.10.22] and
maps projective modules to projective modules by [12, Corollary 1.10.29]. Therefore,
Hom∗(P∗

M ,F) becomes an injective resolution of the F[G]-module HomR(M,F).
Consequently, by (8.4)

Ext∗
F[G]

(

M, ˜C∗(X q
Kh(Dm);F)

) ∼= Ext∗
F[G]

(

˜C∗
r (XKh(Dm)),HomF(M,F)

)

and the proof is finished. ��
We remark that the same argument as in the proof of Theorem 8.3 shows the

following result.

Proposition 8.4 Let Lm be an m-periodic annular link and let Dm be an m-periodic
diagram of Lm. For a field F and any F[G]-module M, it holds

EAKhi,q,k(Lm; M) ∼= H∗
G(X q,k

AKh(Dm),HomF(M,F)).

8.3 Stable cohomology operations

Given two generalized cohomology theories X(·) and Y (·), a stable cohomology oper-
ation of degree k is a family of natural transformations between functors Xl(·) and
Y k+l(·) commuting with suspension. We focus on stable cohomology operations in
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singular homology over a finite field. These operations form a Steenrod algebra. Stan-
dard references include [17, Section 4.L] and [13, Section 10.4].

The Steenrod algebra A2 over Z2 is generated by the Steenrod squares
Sqi : H∗(·,Z2) → H∗+i (·,Z2), with Sq1 being the Bockstein homomorphism corre-
sponding to the short exact sequence 0 → Z2 → Z4 → Z2 → 0.

For a prime p > 2, the Steenrod algebra Ap is generated by the Bockstein
homomorphism β, and operations Pk : H∗(·,Zp) → H∗+2k(p−1)(·,Zp). The homo-
morphism β is of degree 1, and it is the connecting homomorphism of the long
exact sequence of cohomology induced by the short exact sequence of groups
0 → Zp → Zp2 → Zp → 0.

Coming back to Khovanov homology we make the following observation, see [34,
35].

Proposition 8.5 Let α be a stable cohomology operation of degree k over Zp. Then,
given a link L and q ∈ Z, the map α induces a well defined map

αq : Kh∗,q(L;Zp) → Kh∗+k,q(L;Zp).

There appeared several algorithms for computing Steenrod squares in Khovanov
homology, so the invariants based on Steenrod squares can be effectively computed
(see [35,36]). The knotkit package [42] implements the algorithm of [35]. We remark
that the maps Sq1 and β are determined by the integral Khovanov homology, see [35,
Section 2.5].

The next statement shows that Steenrod operations commute with group action.

Theorem 8.6 Let Lm be an m-periodic link and F a field. Any stable cohomology
operation

α : H∗(−;F) → H∗+k(−;F)

commutes with the action of Zm on Kh(Lm;F).

Proof Cohomology operations are natural, so they commute with the group action on
cohomology ofXKh(Dm), where Dm is somem-periodic diagram of Lm . On the other
hand, Proposition 8.2 shows that the Zm-action on the cohomology ofXLm commutes
with the group action on the Khovanov homology of Lm . ��

8.4 Fixed Point theorems

Recall that BZp is the classifying space of the finite cyclic group of order p. The
cohomology ring of BZp is given below, see [17, Example 3E.2],

H∗(BZp;Fp) ∼=
{

F2[X ], for X ∈ H1(BZ2;F2), p = 2,

Fp[Y ] ⊗Fp �∗
Fp

(Z), for Y ∈ H2(BZp;Fp) and Z ∈ H1(BZp;Fp), p > 2,
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where �∗
Fp

(Z) is the exterior algebra over Fp generated by Z . Write Sp ⊂
H∗(BZp;Fp) for the multiplicative set generated either by X , if p = 2, or by Y ,
when p > 2.

Theorem 8.7 [3,40] Let X be a Zp-CW-complex with p a prime. There exists an
isomorphism of graded Zp-algebras

S−1
p H∗

G(X;Fp) ∼= S−1
p H∗(XG;Zp).

As an immediate corollary of Theorems 8.7 and 1.2, we get

Theorem 8.8 Let L p ⊂ S1 × D2 be a p-periodic link with L denoting the quotient
link. For any q, k ∈ Z there exists an isomorphism of S−1

p H∗(BZp;Fp)-modules

S−1
p H∗(BZp;Fp) ⊗Fp AKh

∗,q,k(L;Fp)
∼=−→ S−1

p EAKh∗,pq−(p−1)k,k(L p;Fp).

Let Ap denote, for any prime p, the mod p Steenrod algebra, i.e. the algebra of
stable Fp-cohomology operations. It turns out that Theorem 8.8 can be strengthened
considerably when we take into account the action of the Steenrod algebra. Before
stating the main result, let us introduce the following terminology.

For p = 2, consider the sequence of nonnegative numbers I = (s1, s2, . . . , sm).
The sequence I is admissible if si ≥ 2si+1, for 1 ≤ i < m. Define the degree of I ,
|I | = s1 + s2 + · · · + sm and excess of I , e(I ) = 2s1 − |I |. To any sequence I we
associate the cohomology operation Sq I = Sqs1 Sqs2 · · · Sqsm ∈ A2. For any k ≥ 0
we set:

L2(k) = {I : e(I ) ≥ k}.

For p > 2, let I = (ε0, s0, ε1, s1, . . . , sm, εm), where s1, s2, . . . , sm are nonneg-
ative integers and εi ∈ {0, 1}, for 0 ≤ i ≤ m. The sequence I is admissible if
si ≥ psi+1 + εi , for any 0 ≤ i < m. Define the degree of I , |I | = 2(p− 1)(s1 + s2 +
· · ·+sm)+ε0+ε1+· · ·+εm and excess of I , e(I ) = 2s1 p+2ε0−|I |. To any sequence
I we can associate a cohomology operation P I = βε0 Ps1βε1 Ps2 · · · Psmβεm ∈ Ap.
Let, for any k ≥ 0,

L p(k) = {I : e(I ) ≥ k + 1, or e(I ) = k and ε0 = 0}.

Definition 8.9 For a graded Ap-module M∗ the submodule of unstable elements,
Un(M)∗, is a graded submodule defined as

Un(M)k =
{

{x ∈ Mk : ∀I∈L2(k) Sq I (x) = 0}, p = 2,

{x ∈ Mk : ∀I∈L p(k) P I (x) = 0}, p > 2.

Equivariant annular Khovanov homology EAKh∗,∗,∗(L;Fp) is isomorphic to Borel
cohomology ofXAKh(L), hence the action of the Steenrod algebra onAKh∗,∗,∗(L;Fp)
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extends to EAKh∗,∗,∗(L;Fp). By [50, Proposition 2.1], the action of Ap on equiv-
ariant annular Khovanov homology extends uniquely to an action on the localization
S−1
p EAKh∗,∗,∗(L;Fp).

Theorem 8.10 Let p be a prime.

(a) If L p ⊂ S1 × I is p-periodic link and L is the quotient link, then for any q, k ∈ Z

there exists an isomorphism of rings

AKh∗,q,k(L;Fp) ⊗Fp H∗(BZp;Fp)
∼=−→ Un

(

S−1
p EAKh∗,pq−(p−1)k,k(L p;Fp)

)∗
.

Consequently

AKh∗,q,k(L;Fp) ∼= Fp ⊗H∗(BZp;Fp) Un
(

S−1
p EAKh∗,pq−(p−1)k,k(L p;Fp)

)∗
.

(b) For a p-periodic link L p ⊂ S3 and for any q ∈ Z it holds:

⊕

q ′,k′∈Z
pq ′−(p−1)k′=q

AKh∗,q ′,k′
(L p;Fp) ∼= Fp ⊗H∗(BZp;Fp) Un

(

S−1
p EKh∗,q(L;Fp)

)∗
,

where L denotes the quotient link.

Proof This is an immediate corollary of [14, Corollary 2.5.] and Theorem 8.3. ��
Smith inequalities given in Theorems 1.4 and 1.5 are corollaries of Theorem 8.10.

We prove now Theorem 1.4; an analogous proof works for the case of Theorem 1.5.

Proof of Theorem 1.4 We have the following chain of inequalities

dimFp AKh
∗,pq−(p−1)k,k(L p;Fp) ≥ rankH∗(BZp;Fp) EAKh

∗,pq−(p−1)k,k(L p;Fp) ≥
≥ rankH∗(BZp;Fp) Un

(

S−1
p EAKh∗,pq−(p−1)k,k(L p;Fp)

)∗ =
= dimFp AKh

∗,q,k(L;Fp).

The first inequality is a consequence of the definition of equivariant annular Khovanov
homology. The second inequality is a natural consequence of the properties of the
localization, and the last equality follows from Theorem 8.10. ��
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Appendix A. 〈n〉-manifolds

A.1. Manifolds with corners

We say that M is a k-manifold with corners if it is locally modelled on open subsets of
R
k+, whereR+ = [0,∞). In other words, M is equipped with an atlasA = {(U , ψU )}

such that every U is an open subset in Rk+ and the transition maps ψ−1
V ◦ ψU , for any

U and V such that U ∩ Y �= ∅, are C∞ diffeomorphisms. Compare [25, Definition
2.1].

For every point x ∈ M we can define its codimension, denoted by c(x), which
records the number of coordinates of ψU (x) which are zero for any chart (U , ψU )

for which x ∈ U . Moreover, we define codimension-i boundary to be the set {x ∈
M : c(x) = i}. A connected face of codimension i of M is the closure of a connected
component of the codimension-i boundary of M . A face is a (possibly empty) disjoint
union of connected faces of the same codimension. A codimension-1 face is usually
called a facet. A k-dimensional manifold with faces is a k-manifold with corners such
that every point x ∈ M belongs to exactly c(x) non-empty connected facets of M .
Moreover, we say that M is an k-dimensional 〈n〉-manifold if M is an k-dimensional
manifold with faces and there exists a decomposition ∂M = ∂1M ∪ ∂2M ∪ · · · ∪ ∂nM
such that

• ∂i M is a facet of M , for every 1 ≤ i ≤ n,
• ∂i M ∩ ∂ j M is a facet of both ∂i M and ∂ j M , for every 1 ≤ i < j ≤ n.

We refer to [25, Section 2] for discussion of the notion of an 〈n〉-manifold.

Example A.1 (see [33, Definition 3.9]). For an (n + 1)-tuple d• = (d0, d1, . . . , dn) of
non-negative integers define

Ed•
n = R

d0 × R≥0 × R
d1 × R≥0 · · · × R≥0 × R

dn .

We make Ed•
n an 〈n〉-manifold by declaring that

∂i E
d•
n = R

d0 × R≥0 × R
d1 × R≥0 . . .Rdi−1 × {0} × R

di × · · · × R≥0 × R
dn .

123

http://creativecommons.org/licenses/by/4.0/


1298 M. Borodzik et al.

Example A.2 An n-dimensional permutohedron has a structure of an 〈n〉-manifold, see
Subsection B.1 below.

We will need the following construction, see [28, Construction 3.4].

Construction A.3 Suppose X is an 〈n〉-manifold andY is an 〈m〉-manifold. The product
X × Y is given the structure of an 〈n + m〉-manifold by declaring.

∂i (X × Y ) =
{

(∂i X) × Y if i ≤ n

X × (∂i−nY ) if i > n.

In some cases, it is more convenient to view 〈n〉-manifolds as certain functors to the
category of topological spaces. Let 21 denote the category consisting of two objects 0
and 1 with a single non-identity morphism 0 → 1. For an integer n > 1 let

2n = 21 × 21 × · · · × 21
︸ ︷︷ ︸

n

.

For two objects a, b ∈ 2n , we set b ≤ a if bi ≤ ai , for any 1 ≤ i ≤ n, where
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). An n-diagram, for n ≥ 1, is a functor
from the category 2n to the category of topological spaces.

We can associate an n-diagram to a given 〈n〉-manifold X by declaring, for every
a = (a1, a2, . . . , an) ∈ 2n :

X(a) =
{

X , if a = (1, 1, . . . , 1),
⋂

i :ai=0 ∂i X , otherwise.

Moreover, for any b ≤ a in 2n themap X(b) → X(a) is the inclusion.Wepoint out that
X(a) is an 〈|a|〉-manifold with the corresponding |a|-diagram obtained by restricting
X to the full subcategory of objects b such that b < a (recall that |a| = ∑

ai ).
Let M be a manifold with corners. Choose a Riemannian metric on M . We have

the following generalization of a classical result.

Proposition A.4 There is an open tubular neighborhood U of ∂M, homeomorphic to
M × [0, 1) and a subset V ⊂ T M |∂M such that the exp map yields a diffeomorphism
between U and V .

Proof The proof is analogous to the proof of the collar neighborhood theorem, see,
for instance, [21, Section 4.6]. ��

Wenow recall the concept of a neat embedding,which roughlymeans an embedding
with no pathological behavior near the boundary. Various similar notions are discussed
in detail in [25, Section 3].

Definition A.5 Let X and Y be two 〈n〉-manifolds. A neat embedding is an embedding
ι : X → Y such that:
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(1) ι is an n-map, i.e. ι−1(∂i Y ) = ∂i X , for any 1 ≤ i ≤ n,
(2) the intersection of X(a) and Y (b) is perpendicular with respect to some Rieman-

nian metric on Y , for b < a in 2n .

The following result is a direct consequence of [33, Lemma 3.11].

Theorem A.6 [33] Every compact 〈n〉-manifold admits a neat embedding

ι : X ↪→ Ed•
n ,

for some d• ∈ N
n+1.

A.2. Group actions on 〈n〉-manifolds

Let Diffn(X) denote the group of diffeomorphisms of the 〈n〉-manifold X that are also
n-maps. If G is a finite group, then a smooth action of G on X is a homomorphism

γ : G → Diffn(X).

An action ofG is said to be effective if γ is injective. Throughout this paper, we assume
that group actions are effective. Moreover, we will often identify g ∈ G with its image
γ (g) ∈ Diffn(X).

Definition A.7 Let V − W ∈ RO(G). We say that X is of dimension V − W , and
denote it by dim X = V − W , if for any interior point x there exists an isomorphism
of representations

Tx X ⊕ W |Gx
∼= V |Gx .

We have the following equivariant analog of Proposition A.4.

Proposition A.8 Let M be an 〈n〉-manifold with an action of a finite group G. Choose
a G-invariant Riemannian metric on M. Then ∂M admits a G-equivariant tubular
neighborhood U such that there exists a G-invariant subset V ⊂ T M |∂M such that
the exp-map takes V diffeomorphically and G-equivariantly to U.

Proof The proof for standard manifolds with boundary is given in [26, Section 3]. The
case of manifolds with corners is analogous. ��
Definition A.9 Let M be an 〈n〉-manifold acted upon by G. Let V be an orthogonal
representation of G. The manifold M is said to be subordinate to V if for each x ∈
M there exists an invariant neighborhood Ux of x , and an equivariant differentiable
embedding ofUx in V t \{0} for some t . We write G(V ) for the category whose objects
are G-manifolds subordinate to V and whose maps are continuous equivariant maps.

Next result is an equivariant version of [33, Lemma 3.11]. It is needed in the proof
of Proposition 3.16.
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Lemma A.10 Let M be a compact 〈n〉-manifold with a group action. Suppose M is
subordinate to a representation V . If ι∂ : ∂M → V d is a G-equivariant embedding,
then there exists d ′ ≥ d and a G-equivariant embedding ι : M → V d ′

such that
ι|∂M = ι∂ .

A key ingredient in the proof is the equivariant version of Whitney embedding
theorem, due to Mostow and Palais.

Theorem A.11 (Mostow–Palais Theorem [49, Corollary 1.10]) If M is in G(V ) and
the (real) dimension of M is n, then any G-equivariant map

f : M −→ V t

can be uniformly Ck-approximated by an equivariant immersion if t ≥ 2n, and by an
equivariant 1–1 immersion if t ≥ 2n + 1. Moreover, if A is a closed subset of M and
f |A is a 1–1 immersion, then the approximation may be chosen in such a way that it
agrees with f on A.

Proof of LemmaA.10 Let U be a G-equivariant collar neighborhood of ∂M . Using
Proposition A.8 we identify U with a subset Z ⊂ T∂MM via a G-equivariant diffeo-
morphism ψ : U → Z that takes ∂M to the zero section of T∂MM . The G-bundle
T∂MM is a subbundle of a trivial bundle V d0 for some d0 > 0. Then ι∂ can be extended
to U via the composition

Z
ψ−→ T∂MM ↪→ V d0 × ∂M

id×ι∂−−−→ V d0 × V d .

Suppose d0 + d > 2 dim M , otherwise increase d0. Extend the embedding of Z
to a smooth G-equivariant map ι̃ : M → V d0 × V d . Then, ι̃ can be perturbed to
an equivariant embedding by the Mostow-Palais Theorem (Theorem A.11). By the
second part of this theorem, we can keep ι̃ equal to ι in a neighborhood of ∂M . ��

Appendix B. Permutohedra

B.1 The construction

We refer to [7, Chapter 1] for general properties of permutohedra.

Definition B.1 Choose a strictly increasing sequence S = {s1, . . . , sr } of positive
integers. The permutohedron �S is the convex hull in R

r of the set of points

(sσ(s1), . . . , sσ(sr )),

where σ runs through all permutations of the set S.

We write �r−1 for the permutohedron in the special case when S = {1, . . . , r}.
The subscript is r − 1 and not r , because dim�r−1 = r − 1.
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(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

Fig. 14 A permutohedron with S = {1, 2, 3}

Example B.2 A permutohedron for S = {1, 2, 3} is depicted in Fig. 14.

To describe the faces of a permutohedron we first set

τi =
i

∑

j=1

s j . (B.1)

Lemma B.3 (see [7, Theorem 1.5.7]). The permutohedron�S is given by the equation
∑

xi = τr and the set of inequalities

∑

i∈P
xi ≥ τ|P |,

where P runs through all non-empty proper subsets of {1, 2, . . . , r}.
From Lemma B.3 we deduce the following fact [28, Section 2].

Lemma B.4 For any proper subset P of {1, . . . , r} the intersection of �S with the
hyperplane

∑

i∈P xi = τ|P | defines a facet of �S , which is diffeomorphic to �S1 ×
�S2 , where S1 = {s1, . . . , s|P |} and S2 = S \ S|P | = {s|P |+1, . . . , sr }.
Example B.5 (Example B.2 continued). For S = {1, 2, 3} and P = {1, 2}, the facet
is given by x1 + x2 = 3. This is a product of a one-dimensional permutohedron
�1 spanned by (1, 2) and (2, 1) in the (x1, x2)-coordinates, and a zero-dimensional
permutohedron �{3} given by {x3 = 3} ⊂ R. For P = {3} we obtain the opposite
facet of the hexagon. It is given by {x3 = 1}, {x1 + x2 = 5}. See Fig. 15.

Sketch of proof of Lemma B.4 If P = {a1, . . . , a|P |} and

{1, . . . , r} \ P = {b1, . . . , br−|P |}, the diffeomorphism takes the element
(x1, . . . , xr ) to an element (xa1, . . . , xa|P|) × (xb1 , . . . , xbr−|P|) ∈ R

|P | × R
r−|P |.

It is routine to verify, using Lemma B.3, that the image is indeed equal to �S1 ×�S2 .��
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(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

Π{1,2} × Π{3}

Π{2,3} × Π{1}

Fig. 15 Illustration of Example B.6

Definition B.6 The facet corresponding toP is denoted by�P,S\P (often simply�P )
and it is called the facet associated with subset P .

In the following corollary we use the notation of the proof of Lemma B.4.

Corollary B.7 For a proper subset P ⊂ {1, . . . , r} the facet �P,S\P is contained in
the subset of �r−1 consisting of points such that

|P |
∑

i=1

xai ≤ s|P |,

r−|P |
∑

i=1

xbi ≥ s|P |+1.

From Lemma B.4 we can obtain an inductive description of codimension k faces
of �S . They correspond to partitions p = (P1, . . . ,Pk+1) of {1, . . . , r} into k + 1
non-empty subsets P1, . . . ,Pk+1. Each such face, denoted by �P1,...,Pk+1 or, in short
�p, is a product of (k + 1) permutohedra �S1 × �S2 × · · · × �Sk+1 , where

S j = {st : |P1| + · · · + |P j−1| < t ≤ |P1| + · · · + |P j |}.

In particular if we set

∂i�S =
⊔

P⊂S
|P |=i

�(P,S\P),

for 1 ≤ i ≤ r − 1, �S becomes an (r − 1)-dimensional 〈r − 1〉-manifold.

Remark B.8 For consistency of the notation, we observe that the interior of �S corre-
sponds to the trivial partition p of {1, . . . , r} into a single subset.

The following notion is intuitive.
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Definition B.9 Let p = (P1, . . . ,Pk+1) be a partition of {1, . . . , r}. A refinement of
p is a partition (˜P1, . . . , ˜P˜k+1) such that there exist indices 0 = a0 < a1 < a2 <

· · · < ak = ˜k + 1 with the property that ˜Pai−1+1 ∪ ˜Pai−1+2 ∪ . . . ∪ ˜Pai−1 = Pi for
i = 1, . . . , k.

It is clear that if p and p′ are two partitions of {1, . . . , r}, then �p′ ⊂ �p if and
only if p′ is a refinement of p.

B.2. Intersecting a permutohedron with a hyperplane

We describe the intersection of a permutohedron with hyperplanes given by sets of
equations {xai = xbi }. It turns out that this intersection is a lower-dimensional per-
mutohedron. The key statement in this section is Proposition B.11, which identifies
the intersection of a permutohedron �S ∩ L with �s1,...,sr−1 . The identification of
Proposition B.11 is such that the combinatorial structure of the boundary is preserved.
In order to spell this control over the combinatorial structure, we need to introduce a
simple notion.

Definition B.10 Let p = (P1, . . . ,Ps) be a partition of {1, . . . , r}. Let 1 ≤ b ≤ r .
Assume that no Pi is equal to the singleton {b}. A reduction of p with respect of b is
a partition pb = (Pb

1 , . . . ,Pb
s ) of {1, . . . , r − 1}, where

• if x ∈ Pi and x < b, then x ∈ Pb
i ;

• if x ∈ Pi and x > b, then x − 1 ∈ Pb
i .

If B = {b1, . . . , b�} is a finite subset of {1, . . . , r} and p is a partition such that no Pi

is a subset of B, the reduction of p with respect to B is a partition pB obtained as a
subsequent reduction of p by the elements bi , starting from the largest element, then
taking the second largest and so on.

The following result can be deduced from the cubical decomposition of a permu-
tohedron, see [28, Section 3.4]. We give a self-contained proof of that result.

Proposition B.11 Let L be a hyperplane in R
r given by {xa = xb} for some a �=

b. Let �S be a permutohedron in R
r for some (strictly) increasing sequence S =

(s1, . . . , sr ). Consider
�L = �S ∩ L. (B.2)

Then there exists a diffeomorphism ψ between �L and �(s1,...,sr−1). Moreover, if
p = (P1, . . . ,Pk+1) is a partition of {1, . . . , r} then
• if a, b do not belong to the same subset of the partition, then �p ∩ L is empty;
• if a, b belong to the same subset of the partition, then �p ∩ L is mapped by ψ

diffeomorphically to �pb .

Example B.12 Let r = 3 and L = {x1 = x3}. The intersection of L with �S is an
intervalwhose endpoints are ( s1+s2

2 , s3,
s1+s2
2 ) and ( s2+s3

2 , s1,
s2+s3
2 ). ForS = {1, 2, 3}

this yields the segment connecting (1.5, 3, 1.5) with (2.5, 1, 2.5). See Fig. 16.
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x

y

z

(1, 2, 3)

(1, 3, 2)

(2, 1, 3)

(2, 3, 1)

(3, 1, 2)

(3, 2, 1)

(1, 2, 3)

(11, 3, 2)))

(2, 1, 3)(2,

Fig. 16 Illustration of Proposition B.11. Observe that the plane x1 = x3 intersects only two faces of the
boundary: �{1,3} × �{2} and �{2} × �{1,3} in accordance with Lemma B.13

Proof of Proposition B.11 The following lemma takes care of the first item in the state-
ment of Proposition B.11 and is needed for the proof of the second one.

Lemma B.13 Suppose p = (P1, . . . ,Pk+1) is a partition of {1, . . . , r}. Then �p ∩ L
is empty, unless there exists an index i such that a, b ∈ Pi .

Proof We argue by contradiction. Suppose, a ∈ Pi , b ∈ P j with i �= j . We have an
inclusion �p ⊂ �Pi ,S\Pi .

By Corollary B.7, if x = (x1, . . . , xr ) ∈ �Pi ,S\Pi , then xa ≤ s|Pi | and xb ≥
s|Pi |+1. Since sk is a strictly increasing sequence, we conclude that xa < xb, hence
�Pi ,S\Pi ∩ L = ∅. In particular �p ∩ L = ∅. ��

Continuation of the proof of Proposition B.11. We will construct the isomorphism by
induction, starting with the lowest dimension faces, i.e. vertices.

For a partition p of length r , �p ∩ L is empty by Lemma B.13. Suppose p is a
length r − 1 partition. Unless a and b belong to the same subset of the partition,
�p ∩ L = ∅. Consider the case, when {a, b} subset P j for some j = 1, . . . , r − 1.
ObviouslyP j = {a, b} and all other subsetsPi , consists of single elements,Pi = {pi }
for some pi different than a and b. By Corollary B.7, �p is given by

xpi = i, if i < j x pi = i + 1, if i > .

xa + xb = j + ( j + 1), xa, xb ∈ [ j, j + 1]
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The intersection of �p with xa = xb is clearly given by

xpi = i, if i < j, xpi = i + 1, if i > j, xa = xb = j + 1

2
.

Now pb is a partition such that all its subsets have one element, namely pb =
(Pb

1 , . . . ,Pb
r−1) with: Pb

i = {pi } for i �= j and pi < b, Pb
i = {pi − 1} for i �= j and

pi > b, and finally Pb
j = {a}. Therefore, �pb is a single point, given by {xpi = si } if

pi < b, {xpi−1 = si } if pi > b, and xa = s j . The map ψ is a map between to points

ψ : �p ∩ L
∼=−→ �pb

Wepass now to the induction step. Supposeψ has been constructed for all boundary
components of codimension at least k+1 and consider a partition p = P1∪· · ·∪Pk+1.
Then, �p is a convex polytope whose boundary is a union of polytopes �p̃ for all
refinements p̃ of p. Therefore, the intersection �p ∩ {xa = xb} is a convex polytope
whose boundary is the union of �p̃ ∩ {xa = xb}.

By Lemma B.13, for each such refinement p̃, either �p̃ ∩ L is empty, or �p̃ ∩ L =
�p̃b . By the induction assumption, in the latter case the restriction of ψ

ψ |�p̃∩L : �p̃ ∩ L → �p̃b

has already been constructed. This means that ψ restricted to the boundary of �p ∩
L is an isomorphism onto the boundary of �pb . Therefore, we can extend ψ to a
diffeomorphism

ψ : �p ∩ L → �pb .

��

Remark B.14 The isomorphism ψ constructed in the proof of Proposition B.11 does
not need to be affine. Two convex polytopes with the same combinatorics are not
necessarily affine equivalent.

Now we state a result on intersections of �S with more than one hyperplane.

Theorem B.15 Suppose �S ⊂ R
r is a permutohedron and H is a linear subspace of

R
r given by equations {xa11 = · · · = xa1k1 }, {xa21 = · · · = xa2k2 }, …, {xaw1 = · · · =

xawkw
}with all the ai j pairwise distinct. Then, the intersection�S∩H is diffeomorphic

to �′ = �(s1,...,sr−K ), where K = ∑

(ki − 1) = codim H. The diffeomorphism takes
the face of�S corresponding to a partition p to the face corresponding to the reduction
pB, where

B = {a12, . . . , a1k1 , a22, . . . , a2k2 , . . . , aw2, . . . , awkw }.

Proof Apply inductively Proposition B.11. ��
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B.3. Permutohedra, group actions and posets

Choose a permutation σ ∈ Permn of order m. We can define an action of a cyclic
group Zm on R

n in terms of σ :

σ̄ (x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n)). (B.3)

Since �n−1 is an invariant subset, Zm acts on �n−1.
We are now going to show that action σ̄ endows �n−1 with a structure of a Zm-

manifold, andwewill compute itsZm-dimension. LetVσ denote theZm-representation
induced by the action of σ on R

n . If σ is a product of p disjoint cycles of lengths
n1, n2, . . . , n p, then there is an isomorphism of representations

Vσ
∼=

p
⊕

i=1

R[Zni ],

where R[Zni ] denotes the real group algebra of Zni , for i = 1, 2, . . . , p, and Zm acts
on R[Zni ] via the projection Zm → Zni . Permutohedron �n−1 is contained in the
affine hyperplane

L =
{

(x1, x2, . . . , xn) :
n

∑

i=1

xi = n(n + 1)

2

}

,

which is invariant under Zm . Orthogonal projection of L onto the hyperplane

L0 =
{

(x1, x2, . . . , xn) :
n

∑

i=1

xi = 0

}

∼= Vσ − R

shows that the action of σ̄ restricted to L yields a representation isomorphic to Vσ −R.

Remark B.16 Recall that Vσ − R denotes the orthogonal complement of a one-
dimensional trivial representation R inside Vσ .

Lemma B.17 Let σ̄ be as above.

(1) At every interior point x of�n−1 the tangent representation Tx�n−1 is isomorphic
to (Vσ − R)|(Zm)x , where (Zm)x denotes the isotropy group at x ∈ �n−1.

(2) If P ⊂ {1, 2, . . . , n} and �P denotes the face of �n−1 defined in Lemma B.4,
then σ̄ (�P ) = �σ(P).

(3) σ̄ restricted to �n−1 is an n-map, i.e., σ̄ (∂i�n−1) = ∂i�n−1.
(4) Suppose that a1 < a2 < · · · < ak are elements of P and b1 < b2 < · · · < bn−k

are the elements of its complement. Suppose that σ(P) = P and define maps

τ1 : P → {1, 2, . . . , k}, τ1(ai ) = i, 1 ≤ i ≤ k,

τ2 : {1, 2, . . . , n} \ P → {1, 2, . . . , n − k}, τ2(bi ) = i, 1 ≤ i ≤ n − k.
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If we identify �P with �|P |−1 × �n−|P |−1 as in Lemma B.4, then

σ̄ |�P = (τ1 ◦ σ |P ◦ τ−1
1 ) × (τ2 ◦ σ |{1,2,...,n}\P ◦ τ−1

2 ).

Proof The first statement follows readily because�n−1 ⊂ L ∼= Vσ −R has non-empty
interior.

In order to prove the second statement recall that �(P,{1,...,n}\P) = �n−1 ∩ ∂LP ,
where

LP =
⎧

⎨

⎩

(x1, . . . , xn) :
∑

i∈|P |
xi ≥ |P|(|P| + 1)

2

⎫

⎬

⎭

.

Since σ̄ (LP ) = Lσ(P), the statement (2) follows.
Next, recall that by the definition of ∂i

∂i�n−1 =
⋃

P⊂{1,2,...,n}
|P |=i

�(P,{1,...,n}\P).

The fact that |σ(P)| = |P| completes the proof of the third statement.
In order to prove the last assertion notice that if P is invariant under σ , then its

complement is also invariant. ��
Proposition B.18 Fix a permutation σ ∈ Permn of order m. Assume that σ is a product
of p disjoint cycles of lenghts n1, n2, . . . , n p and let N = ∑p

i=1(ni − 1). There is a

smooth diffeomorphism ψ taking �
Zm
n−1 to a permutohedron �n−N−1. For a partition

p of {1, . . . , n}, if �Zm
p is not empty, then ψ(�p) is the face �pB of �n−m, where B is

the set obtained from {1, . . . , n} by removing the smallest element of each cycle of σ .
Proof As σ̄ acts by permuting coordinates, the fixed point set of the action is a hyper-
plane L defined as xi = x j , whenever i and j belongs to the same orbit of the action
of σ on {1, 2, . . . , n}. The statement follows from Theorem B.15. ��
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