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1. Introduction

Reduced order models (ROM) are a fairly extensive technique applied in many different fields to reduce the computa-
tional cost of direct numerical simulations while keeping enough accurate numerical approximations. Proper Orthogonal
Decomposition (POD) method provides the elements (modes) of the reduced basis from a given database (snapshots)
which are computed by means of a direct or full order method.

Data assimilation refers to a class of techniques that combine experimental data and simulations in order to obtain
better predictions in a physical system. There is a vast literature on data assimilation methods (see e.g., [1-5], and the
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references therein). One of these techniques is nudging in which a penalty term is added with the aim of driving the
approximate solution towards coarse mesh observations of the data. In [6], a new approach, known as continuous data
assimilation, is introduced for a large class of dissipative partial differential equations.

In this paper we study the numerical approximation of the Navier-Stokes equations with a continuous data assimilation
method defined over a reduced order space. The basis functions in the ROM are based only on velocity approximations at
different times computed with a mixed finite element Galerkin method using inf-sup stable elements. Both the snapshots
and the basis of the ROM satisfy a discrete divergence-free condition.

We consider the Navier-Stokes equations (NSE)

o —vAu+ (u-Viu+Vp=f in (0,T] x £,
V.-u=0 in (0,T] x £2, (1

in a bounded domain £ C RY, d € {2, 3} with initial condition u(0) = u°. In (1), u is the velocity field, p the kinematic
pressure, v > 0 the kinematic viscosity coefficient, and f represents the accelerations due to external body forces acting
on the fluid. The Navier-Stokes equations (1) must be complemented with boundary conditions. For simplicity, we only
consider homogeneous Dirichlet boundary conditions u = 0 on 952.

As in [7] we consider given coarse spatial mesh measurements, corresponding to a solution u of (1), observed at a
coarse spatial mesh. We assume that the measurements are continuous in time and error-free and we denote by Iy(u)
the operator used for interpolating these measurements, where H denotes the resolution of the coarse spatial mesh. Since
no initial condition for u is available one cannot simulate Eq. (1) directly. To overcome this difficulty it was suggested
in [6] to consider instead a solution v of the following system

AWV — VAV + (V- VIWW+ VD = f — By(v) — Iy(w)), in (0,T] x £2,
V-v=0, in (0,T] x £2, (2)

where B is the nudging parameter. In [7] a semidiscrete postprocessed Galerkin spectral method in considered and
analyzed. A fully discrete method for the spatial discretization in [7] is analyzed in [8]. In [9] the continuous data
assimilation algorithm is analyzed considering both a finite element Galerkin method and a Galerkin method with grad-
div stabilization. The extension to the fully discrete case is carried out in [10]. For the Galerkin method with grad-div
stabilization the constants in the error bounds in [9,10] are independent on inverse powers of the viscosity parameter.
In [11] the authors consider also fully discrete approximations to (2) in which for the spatial discretization the Galerkin
method with grad-div stabilization is considered. However, the constants in the error bounds in [11] are not independent
on inverse powers of v. Moreover, in [9,10] there is no need to impose an upper bound on the nudging parameter 8 as
required in [7,8,11]. This fact is important because, on the one hand, there is numerical evidence that no upper bound is
required in the numerical experiments and, on the other hand, better results are obtained in some experiments for values
of B above the upper bound assumed in Refs. [7,8,11].

In [12] a continuous data assimilation reduced order model (DA-ROM) method is introduced and analyzed. The idea
is to consider a Galerkin approximation to (2) defined in a ROM space. The ROM space is based on a set of snapshots
that are fully discrete Galerkin inf-sup stable mixed finite element approximations to (1) at different time steps. The
DA-ROM method in [12] is a Galerkin method without any kind of stabilization. The implicit Euler method is used as time
integrator and error bounds are proved that converge exponentially fast in time to the true solution. The constants in the
error bounds in [12] depend on inverse powers of the viscosity parameter.

In the present paper, we follow [12] and consider almost the same DA-ROM with the difference that we add grad-div
stabilization. We will call the model grad-div-DA-ROM. We make some improvements compared with the error analysis
in [12]. First of all, we prove error bounds in which the constants do not depend on inverse powers of the viscosity.
This fact is important in many applications with large Reynolds numbers. A second difference with respect to [12] is the
following. In [12] the correlation matrix is based on the inner products of the snapshots without dividing by the number
of snapshots as it is standard (see [13]). The reason for not dividing by the number of snapshots is that proceeding in that
way one can bound the maximum in time of the L? error between the true solution and the projection onto the ROM space
instead of having a bound for a discrete primitive in time of the L? error (let say the mean error, see [13] again). Although
an available bound for the maximum norm of the error in the projection simplifies the error analysis, one obtains for
the correlation matrix not divided by the number of snapshots that the size of the eigenvalues scales exactly with the
number of snapshots. This means that not dividing by the number of snapshots, say M where M is typically (At)~!, At
being the time step, we get eigenvalues M times larger than using the standard correlation matrix, which in practice
implies that the error bounds are multiplied by M (say (At)~!). As a consequence, there is no gain using the correlation
matrix considered in [12]. In the present paper, we use the standard correlation matrix as defined in [13] and we get error
bounds for the error between the grad-div-DA-ROM and the orthogonal L? projection of the true solution onto the ROM
space in which we apply the available bound for the mean error instead of requiring a bound for the maximum error.
The last improvement respect to [12] is related to the nudging parameter. In the numerical experiments in [12] there is
evidence that using a large value for 8 (say 8 = 100, 500) makes a significant difference between the DA-ROM and the
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standard ROM, the first one being much more accurate. Although in [12, Remark 3.8] it is stated that with the analysis
presented the usual upper bound on the nudging parameter can be relaxed or even eliminated this is not true. Actually,
we found some inconsistencies in the statement of the main Theorem in [12], Theorem 3.5. More precisely, constants a1,
o are defined in the following way

oy == v —2u(B; — 1)CFH?,
@ =20 — ook — o — 6V IS 2 VP, (3)
2

In (3), the value of u is B, i.e. i is the nudging parameter in (2), H is the coarse mesh in (2), n is the time level, C; is a
constant related to the interpolant operator Iy and C, is a constant related to a standard bound of the nonlinear term.
In [12, Theorem 3.5] it is assumed that «; > 0, 8; > 0, i = 1, 2. Following the error analysis in [12] we found that the
correct value for the constant a5 in (3) should be

@ =2 — —E = == = 6v TGS [ VU,

while 8, must be larger than 1. Then, in view of the assumption «; > 0 we fall essentially into the upper bound
v — ZMCIZHZ > 0 assumed in Refs. [7,8,11], which means that the upper bound cannot be removed. On the other hand, if
we want to relax condition v — 2uC?H? > 0 we can take B, = 1+ € with € — 0 but in that case in view of the correct
value of o, we would need to take 81 > (1+ e)C,z/(Ze), which increases as € goes to zero. Since the factor 8,4 multiplies
the constant in the error bound of Theorem 3.5, relaxing the upper bound in the nudging parameter results in increasing
the size of the constants in the error bounds.

In the present paper, as in [9,10], we do not need to assume an upper bound on the nudging parameter. For the time
integration we use the implicit Euler method although the error analysis for a second order time integrator as BDF2 can
be carried out as in [10]. We prove error bounds for the method with constants independent on inverse powers of the
viscosity. As in [12] and previous references the error in the initial condition goes to zero exponentially fast. The error
in the grad-div-DA-ROM has three components, one coming from the time integrator used, one due to the error in the
snapshots (finite element error) and a third one due to the POD method, measured in terms on the eigenvalues of the
correlation matrix. Numerical experiments confirm that, for large values of the nudging parameter, the proposed grad-
div-DA-ROM rapidly converges to the real solution, and greatly improves the overall accuracy of standard POD schemes
up to low viscosities over predictive time intervals, similarly to the DA-ROM in [12].

We want to mention that there are other works in the literature in which reduced order models have been applied
in the context of other data assimilation techniques different from the one considered here. See for example [14] for
a reduced order approach for 3D variational data assimilation governed by parametrized partial differential equations,
and [15,16] for reduced order modeling for four-dimensional variational (4D-Var) data assimilation problems.

The outline of the paper is as follows. In Section 2 we state some preliminaries and notation. In Section 3 we recall
the POD method and get some a priori bounds for the orthogonal projection of the true solution onto the POD space. In
Section 4 we describe the proposed grad-div-DA-ROM and bound the error. Section 5 is devoted to show some numerical
experiments. Finally, Section 6 presents the main conclusions of this work.

2. Preliminaries and notation

Let us denote by Q = L3(22) = {q € *(2)](q,1)=0}. Let 7o = (7", #)ies,, h > 0 be a family of partitions of

suitable domains $2,, where h denotes the maximum diameter of the elements rj“ € Th, and ([)}1 are the mappings from

the reference simplex tp onto rj". We shall assume that the partitions are shape-regular and quasi-uniform. Let r > 2, we
consider the finite-element spaces

Shr = [Xh € c(2n) |Xh‘rjh ol € Pr_l(fo)} C H'(2y),
Shr = Snr NHy($21),

where P"~!(7y) denotes the space of polynomials of degree at most r — 1 on 1.
We shall denote by (X, r, Qnr—1) the MFE pair known as Hood-Taylor elements [17,18] when r > 3, where

d
Xh.r - (S[?r) s Qh,r—l = Sh,r—l N LS(-Qh)» r>3.
To approximate the velocity we consider the discrete divergence-free space

Vir = Xnr 0 {xn € HY(20)" | (@n, V- xn) =0 Van € Qur—1} .
3
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For n > 1 we define the fully discrete Galerkin approximation with the BDF2 time discretization (uj}, py) € Xp,r X Qnr—1
satisfying for all (@, ¥n) € Xnr X Qur—1

n n—1 n—2
<3uh —4u, +u,

DAL Jﬂh) + v(Vuy, Vo) + ba(uy, uy, @4) + (Vg @)

=", on),
(V- up, y) = 0. (4)
In (4) u}, is the Galerkin approximation at time t,, At is the time step and by(-, -, -) is defined in the following way
buCat, v, 91) = (- V. 9) 4 5(V - @V 03), Vil Vi 94, €Ki
It is straightforward to verify that b, enjoys the skew-symmetry property
bu(u, v, w) = —by(u, w,v)  Vu,v,w e H}(2). (5)

Let us fix T > 0 and define M = T/ At. For the fully discrete Galerkin approximation the following bounds hold, see for
example [19,20]:

IA

lu" —upllo < C(u, p, v, r)(h" +(At)?), 1<n<
1

lu" —ull; < Clu, p,v, )W~ + (At)),

A =

n
<n<M. (6)
Remark 2.1. The constant C(u, p, v, r) in (6) depends explicitly on inverse powers of v and on norms of the true solution.
In particular, it depends on |u]|;, ||p|l-—1. Let us observe that those norms of the solution could also depend on inverse
powers of v. As in [9,11,12], for the error analysis in the present paper we are assuming enough regularity for the solution
so that the error bounds (6) hold. For the case in which non local compatibility conditions are not assumed one has to
resort to the error bounds in [21].

If we use a stabilized method instead of the Galerkin one we can get bounds with constants independent on inverse
powers of v. For the error analysis we carry out in this paper we need to have velocity approximations with discrete
divergence zero. Then, we could start from a Galerkin method with grad-div stabilization as proposed in [22]. A fully
discrete version of the Galerkin method with grad-div stabilization and the implicit Euler method is analyzed in [22]
resulting in the following bounds:

[u" —ulllo + hllu" —ujlly < Clu,p,r)(h"™ '+ At), 1<n<M, (7)

where the constant C(u, p, r) depends on norms of the true solution but not directly on inverse powers of the viscosity
parameter v. Comparing the error bound (7) with (6) we can observe that instead of rate r in terms of h a rate of
convergence r — 1 is proved. The numerical experiments in [23] show that this rate is sharp for small values of the
viscosity parameter v.

If the family of meshes is quasi-uniform then the following inverse inequality holds for each v, € S, see e.g., [24,
Theorem 3.2.6],

moi-3)

where0 <n<m=<1,1=<q<p < o0, and hy is the diameter of K € 7.
We consider a modified Stokes projection that was introduced in [25] and that we denote by s}’ : V — V- satisfying

e
IVellwmpuy < Cinvhy Ivillwnack), (8)

(Vsy, Vo,) = (Vu,Vey), Y @, € Vi, 9)
and the following error bound, see [25]:

lu = sj'llo + hllu = sj'lls < Cllull/,  1<j<r. (10)
From [26], we also have

IVsh'lloo < CllVUlloo, (11)
where C does not depend on v and [9, Lemma 3.8]

lIsitlloo < CCllulla—alull2)"/?, (12)
Vsl 20 < C(lulh ull2) ", (13)

where the constant C is independent of v.
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Let us denote by Py the I? orthogonal projection onto Q1. It holds

Ip = Popllo < CA"'[ipllr—1, P €QNHT'(2). (14)
We will also use the well-known property, see [27, Lemma 3.179]

IV-vlo < IVvllo. v eH(2)" (15)
We will assume that the interpolation operator I is stable in L2, that is,

Ilwullo < collullo, Vu € L*(2), (16)
and that it satisfies the following approximation property,

lu— Iuullo < o H|Vullo, Vu e Hy(2)". (17)

The Bernardi-Girault [28], Girault-Lions [29], or the Scott-Zhang [30] interpolation operators satisfy (16) and (17). Notice
that the interpolation can be on piecewise constants.

3. Proper orthogonal decomposition

We will consider a proper orthogonal decomposition (POD) method. Let us fix T > 0 and M > 0 and take At = T/M
and let us consider the following space

V=(u,...,u".

Let d, be the dimension of the space V.
Let K be the correlation matrix corresponding to the snapshots K = ((k;;)) € RM*M where

1 .
kij = M("Z, u,),

and (-, -) is the inner product in L?(£2)?. Following [13] we denote by A; > A, > --- > Aa, > O the positive eigenvalues

of K and by vy, ..., vg, € RM the associated eigenvectors. Then, the (orthonormal) POD basis is given by
11 ¢
= ———— > vl 5), (18)
Wk \/M )\-k ]:Z] k J

where v{{ is the jth component of the eigenvector v, and the following error formula holds, see [13, Proposition 1]

1 e
v 21: =Y (19)
]:

0 k=I+1
where we have used the notation u; = u(-, ).
Denoting by S the stiffness matrix for the POD basis S = ((s;;)) € R%>% with sij = (V¥;, V) then for any v € V the
following inverse inequality holds, see [13, Lemma 2]

Vvl = VISIlz[Ivllo. (20)

where ||S||, denotes the spectral norm of S.
From this inverse inequality we get

1 M
P
j=1

l
= > (), ¥
k=1

2

1
Vit — Y (0, VIV,

k=1 0
IS1> ~— ! ? d
2 i :
= S 2 [ = D v < IS Y A 21)
=1 k=1 0 k=I+1

Instead of (21) we can also apply the following result that is taken from [31, Lemma 3.2]

I 2 dp
1 . .
o O [ Va = D OV = D MV (22)
j=1 k=1 0 k=l+1

In the sequel we will denote by

Vi= (¥, ¥, ¥),
and by P; the [?-orthogonal projection onto V..
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Although the proof of the following lemma can be found in [31, Lemma 3.3] we include it here for convenience of the
readers.

Lemma 3.1. Let u be the solution of (1) with initial condition u® and let us denote by W = u(-, t;), then the following bounds
hold, C(u, p, v, r) being the constant in (6)

M dp
1 . .
o Dl = Padllf < Copi=2C(u p, v, r(H + (A +2 ) 7
j=1 k=1+1
1 M
i O IV — Pa)|g < Cip = 3C(u p,v, (=Y + (Ar)") (23)
j=1
dp
+3 ) Ml Vg + 3C, p, v, DIISIa(h” + (AD)*).
k=I+1

Proof. By definition of the P; projection
1t — Padllo < [lw — Pago.
Then
I — P[5 < 200 — a1 + 2112t — Poas, 3.
Applying now (6) and (19) we prove the first inequality in (23). To prove the second one we write
VG — Pad)I5 < 31V — w))II§ + 31V (u, — P13
+3(V(Pat, — Pad)|I2.
Taking into account that applying (20) we get
IV (P, — Pa) 5 < ISI211PiCath, — 1) < IS lae, — w5
we conclude by applying (6) and (22). O

3.1. A priori bounds for the orthogonal projection onto V'

In this section we will prove some a priori bounds for the orthogonal projection P¥, j = 0, ..., M, that are needed
in the error analysis of the rest of the paper. To this end, in a first step, we get some a priori bounds for the Galerkin
velocity approximation.

Lemma 3.2. Let u’,; be the Galerkin velocity approximation at time t; defined in (4). Let us assume
At < Ch¥4, (24)

for any positive constant C. Then, the following bounds hold, C(u, p, v, 1), r = 2, 3, being the constant in (6)

[y lloc < Cuin == C (C(u, p, v, 2) + (14— 1F]12)'?) , (25)
[Vl [loo < Cu1,ine := C (C(ut, p, v, 3) + || Vil o)) (26)

i 1/2
1Vl oo < Cua = C (CCu.p, v, 2) + (s ull2) '?) (27)

Proof. To prove (25) we observe that using (8), (12), (6) and (10) we get
Ity lloo < N, = SFC, )Mo + ISC, )lloo

Ch= "2, — sp'C-, t)llo + C([1 la—2 12 1)/

Ch=2C(u, p, v, 2)(W* + AL) + C([Wla—21¢[12)" < Cuinr,

A

IAIA

whenever we assume condition (24) holds. In the error bound (25) we have included the factor Ch?||1¥||, coming from
the error ||t — s7(-, t;)|lo into the factor C(u, p, v, 2)h? coming from the error of the Galerkin method since C(u, p, v, 2)
depends on ||| oc(y2). We refer to Remark 2.1 for the assumed regularity of the solution.

6
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To prove (26) we apply (8), (11), (6) and (10) we get

IVtlloe < (Va8 = VSTC Glloo + VS Gl
Ch2|[u, — ST, )l + CIVW o
< Ch"2C(u, p, v, 3) (W + (At)*) + ClI VW lloo < Cutins,

IATA

whenever condition (24) holds.
Finally, for the bound (27) we use (8), (13), (6) and (10) and assume again condition (24) holds (indeed the weaker
condition At < Ch'/* would be enough) to get

IVt |l 2001 < || V(W — Sh (s 6]l zara-n + Vs, tj)lll/Lzzw(d—n
< Ch™ 2|, — sP'C, )l + C(||u||1||u||2) .
< Ch™2C(u, p, v, 2)(h + (At + C(llullillull2) " < Cupe. O

Now, we prove a priori bounds in the same norms for Pj#.

Lemma 3.3. Under the same conditions of Lemma 3.2 the following bounds hold for the L? projection Pa¥.

1Pt llo < Gint = Cuin + C + h™ VM /A1, (28)
1/2
dp
IVPW oo < Cuint = Curint +C +h- /M1 | S ac] (29)
k=I+1
dp 1/2
VPl 2aja-n < Ga = Cuga + C+hPIYMISI* [ Y ae| (30)
k=I+1

Proof. Using inverse inequality (8), (25), the stability of the P; projection, and (6) we get
1P lloc < 1t lloc + 1P — W lloc < Cuior + h~ 2 1Pt¥ — 18} g

< Cuint + h™ 2P — w))llo + W™/ ||Pad), — u o

< Cuint + =200 — ) o + h™ || Pit), — 14} g

< Guin + h™2C(u, p, v, 2)(H + (A) + W2 | Pt, — w lo

< Cuint + C + h™2||Pad, — u o, (31)
where in the last inequality we assume, as before, condition (24). In view of (19) we can write for the last term
||P,u{1 - u’,}llo < M2 ( ﬁim )Lk)uz' Actually, this estimate can be slightly improved with the following argument. It
is easy to see that

dp

Idl - PluL = Z (u;w ViV

k=I+1

Using the definition of ¥, it is also easy to observe that

dp dp

W, =P, = " (W, Y = VM Y Vaad
k=I+1 k=1+1
And then
0 1/2 dy 1/2
. . ) i 2
[, — Patllo = VM Z LA < VM /i Z i
k=41 k=I+1
< \/M\/ Al+1s (32)

. . . d i 2\1/2 . -
where in the last inequality we have used that (Zk‘; 1 |v}<| ) < 1 since the matrix with columns the vectors v, can

be enlarged to an M x M orthogonal matrix.
Inserting (32) into (31) we finally prove (28).
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Arguing similarly, using inverse inequality (8), (26), (20), the stability of the P; projection, and (6) we get
VP lco < V88 oo + I V(PF — 18}l

< Curint +h™ 2| V(Pad — 1d))]lo

< Curint + h™ 2| V(P — w))llo + h™2|V(Par], — 1d))llo

< Cuint + W=21IS 1,2 108 — wllo + W= V(Par, — )]0

< Cuint +h™2|IS|1,/2Clu, p, v, 2)(W* + (AL?)

+h=2)| v (P, — 180
< Cuint + C + =42V (P, — 1) ). (33)
Finally, from (22) we get
dp 1/2
IV(Pa, —w)llo < VMISI” | D0 M|
k=I+1

which inserted into (33) gives (29).
Arguing exactly as before and applying (27) we also obtain (30). O

Remark 3.4. Let us observe that for the error analysis we assume that the constants Ciy, Cyinr and Cyg in (28), (29)
and (30), respectively, are bounded, which can always be obtained for I large enough in the POD approximation (34). For
the numerical experiments, however, we observed that the method worked equally well for all the different numbers of
modes, [, we considered. Then, the restriction on the value of [ coming from the need of assuming bounded constants Ciyy,
C1.inr and Cyq, seems not to be a problem for the proposed method in practice.

4. The POD data assimilation algorithm

For any initial condition the POD data assimilation approximation using the implicit Euler method and grad-div
stabilization is obtained by solving for n > 1:

un _ un—]
(lAtl’ (01) +v(Vu, Vo) + by(u', uf', @) + (V- u, V - )

=", @) — BUuu} — Iyu", Iyg,), Vo, €V, (34)

where u is the grad-div stabilization parameter, 8 is the nudging parameter and Iy is an interpolation operator over a
coarse mesh.

Theorem 4.1. Let uj be the grad-div-DA-ROM approximation defined in (34), let u" be the velocity approximation of the
Navier-Stokes equations (1) at time t, and let P be its orthogonal projection over the POD space V'. Assuming the solution
(u, p) of (1) is smooth enough the following bound holds for a constant C independent on v and B
n n2 02 2
) — Pty < ————=llejllo + TCop | v+ 20 + — ([[ull2 + Cia + Cinf)
(142 Ar) L

C .. LI C(At)? [t
+TpcdCor 4 1A Y+ S0 [ o as (35)
0

j=1

where Cy p, C1p are the constants in (23), and Cyq, Cinr are the constants in (28), (30).

Proof. Following [12] we will compare u] with Pu". It is easy to obtain

Pu" — P!
<% <Pz> + v(VPu", Vo) + by(Pu", P, @)
+u(V-Pu", V@) =", @)+ v(VT], Vo) + (75, V- @)

+ (15 0)+(th @), Ve eV, (36)
where 7, 73, 75 and 7} are defined by:
i = (Pu" —u"),
5 = (p" — Po(p") + u (V - (Pu" —u™)),
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1
no_ un_un71 _un7
= 4 )
(13, @) = ba(P", Pu", @) — by(u", u", ),

and we denote by P, the [? orthogonal projection onto Qy _1.
Let us denote by

el =u —Pu"

Subtracting (36) from (34) and taking ¢, = €] we get

ZAtwqm lef="15) + viIVellld + wlV - efll5 + Bllinel 13
< —bp(u}, u}', ') + bp(Pu", Pi", €} ) + B(Iu(u" — Pu"), Iyel')
—v(Vt], Vel)— (75, V - €] ) — (75, e]) — (7], €]').

We will argue as in [10].
For the first term on the right-hand side of (38) using the skew-symmetric property (5) we get

|bn(u}’, u}', €) — by(Pu", Pu", €})| = |by(e€], Pu", )]

A

1
2
IVPu" | ll€f 1o + SV €/ llollP" [l ll€f'llo

L 2
illefllé + ZIIV-e?H%,
where

1 C?
L=2max (|| VPu" — ™3 C Zinf
na (II | ||oo+4'u” I IIOO) ( Linf + -2 an

and we have applied (28) and (29) in the last inequality. As pointed out in Remark 3.4 L is a bounded constant.

(37)

(38)

(39)

(40)

For the second term on the right-hand side of (38), applying the L?-stability of the interpolation operator (16) we get

B(Iy(u" — Pu™), Inel) < Beollu™ — Pu"||ollInel o

B, B

2 2
*Co lu" — Pu™|Ig + E”IHe?”o-

IA

For the truncation errors we write
v v
wah1V¢MSEMHH§+;w¢%,

T35

"
(2, V- el < +ﬂme,

2
(5 + 73, €')] < 2L|I 3 +T4||0 ||e?||0

Inserting (39), (41) and (42) into (38) we get

—12 v 2, B 2, M 2

>t (llef115 — llef="113) + EHV‘??HO + E”IHe?”o + *||V A
np2 v ny2 ” 2”0 1 n np2 ﬂ 21440 n2
<lLle ||0+5||V71”o+ 1 +i”73+74”0 *C()”u — Pu’|f.

The following argument is taken from [9,10]. We first observe that
LielI2 < 2LlIx€} 3 + 2LI(1 — Iy)e} [

so that assuming
B =8L

and multiplying (43) by 2 we obtain

B B
mamm M?wa+ww¢%+4m¢%+Mmeﬁ4wu—Mﬁ%

2||73)12
< v VLI + ;“ fng + T4l + Beg lu® — P 3.
Applying (17) we have
v
vIIVerllg — 4LIU — Ln)efI§ = viIVelllg — 4L’ H? [ Velllg = S11Vells.

9

(41)

(42)

(43)

(44)
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whenever
172

H < NS (45)

and then
_ v B
= (el = llef~"15) + 5 Vel + 5 e llg + Il V - ef g
2| 75113
<v|IVTilg + 2lo 4 *II 5+ T4l + Begllu" — Pt (46)

Applying (17) again we get

v B Vo, B

EIIW?Ilé + EHIHe?”(Z) z 56 PH2NU — e}l + EHIHe?”(Z)

14
>y (el ll5 + 10 — Inef ll5) = Elle?llﬁ,

where

2

Let us observe that in view of (45), (44) y > 4L.
Going back to (46) we reach

y = min {ch_ZH’Z, é} . (47)

1 _ 14
A (llefl1s — llef~1I3) + flle?llé +ulV - el

2|75 IIO

2 2 2 2
<v[VTilg + *II T3 + 14ll5 + Beg " — P[5 (48)
Let us denote
2”72”0 2
"1 = vIIVTiIg + *II T4+ T4ll5 + Bcg lu" — P[5

From (48) we have

)/ —
(1 Zac) el < el "3 + Ach=" 13,

and then for 1 < n < M we get

leflig < 0+ ),,||e, ||0+Atz )_,+1 /113
1
< 7llel I3+ Aty [17]3. (49)
(T+ 5a ,21

To conclude we need to bound the truncation error on the right-hand side of (49). We first observe that applying (23) we
get

n n M
i vT i vT : .
VALY VTG = S0 D IVTIG < o D IV — )
j=1 j=1 j=1

< VTCyp. (50)

For the second term in the truncation error applying (14), (15) and (23) again we get

||rf|| 2 2t & .
AfZ 0 < ;ArZuﬂ Po(P)Iy + = D IV (Pad — )5
j=1
< hz“ ”AtZIIp’IIT 1+ 2uTCrp. (51)

j=1
For the first term in the third term of the truncation error we obtain

& 12 ul — uFI ’ 2 " 2
AcY I = = C(At) ; l[ee(s)Il ds. (52)
i=1 0

10
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For the second term in the third term of the truncation error we apply [22, Lemma 2] and (28) and (30) to get

”bh(Pluj’ Plujﬂ (PI) - bh(uj7 uj7 ‘Pl)“o
< (lullz + 1 VP || 2a/a-1) + IIPA¢ [l 0) V(P — 1#)lo
< (lullz + Ga + Ginp) || V(¥ — 8)]o.

And then applying (23) we get

A

n M
; T ; :
Aty Tl < o Ul + Ga+ Go) D IV (P — 1)l
j=1

j=1

IA

T (llullz + Ga + Ginf) Cy,p- (53)

Finally, for the last term in the truncation error applying (23) again we obtain

n . . T cz n . .
B ALY [P — |3 < % > 11Pwd — 1|2 < TBCECop. (54)

j=1 j=1
Inserting (50), (51), (52), (53) and (54) into (49) we conclude (35). O

Remark 4.2. Let us observe that for the POD data assimilation method we can start from u = 0 since the initial error
decays exponentially to zero. The convergence to zero of the initial error depends on y defined in (47) and is faster as y
increases. For the set of snapshots we do not need to include ug since we apply (23) with j starting at 1. This is different
from Refs. [13,31] where the initial condition ug is included into the set of snapshots and agrees with [12].

Remark 4.3. Let us observe that both the parameter x and its inverse p~! appear in the error bounds of Theorem 4.1.
For this reason, as for the grad-div finite element method analyzed in [22], a constant parameter is advisable.

Theorem 4.4. Assuming conditions of Theorem 4.1 hold the following bounds can be obtained
1 M . X y -1
Yl = wIE < (14 D A0) €I + (TG + 1oy
j=1

2
+TCyp (V +2u+ I (lullz + Ga + Cinf)) (55)

M
c . . cat® (T
+;h2<f 1>At§ P12, + . / [ (5)115 d.
j=1 0

Proof. Arguing as in [32], we observe that from (35) we get
1 M . y -1
Nl = (1+ S Ac) el + TBciCor
j=1

2
+TCyp <V +2u+ I (lullz + Ga + Cinf)) (56)

M T

C , c(Aty

+;h2(r DAY P, + . / e (s)1[5 .
= °

so that applying triangle inequality together with (23) we finally reach (55) O

Remark 4.5. Let us observe that in the error bound (55) we have lost the exponential decay of the initial error since we
have taken the maximum error on the right-hand side of (35) to reach (56) and consequently (55). To avoid this problem
one can apply triangle inequality to (35) to bound the error |u] — u"||o. Then, one would have on the right-hand side of
the error bound the term ||u" — Pju"||, for which the rough estimate [u" —Pju" |y < Ml/zC&/P2 follows from (23). Assuming
an equidistribution of the errors in (23) (as observed in Remark 4.6 below) one would avoid the factor M'/2, This is the
behavior we observe in practice in the numerical experiments (see Section 5) where both the exponential decay of the
initial errors is observed together with the absence of the factor M'/2 in the error behavior.

11
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Remark 4.6. Let us observe that, as pointed out in previous Lemma 3.1, bounding separately the terms in (23) one gets
the rough estimate

M
. , 1 . ,
2 2
W — Pl <M i qu o — Pl | <MGCop. (57)

In Bracti_ce one expects an equidistribution of the errors (no individual term much larger than others) in the M factors in
> i1 ¥ — Paé||§ which would avoid the too pessimistic factor (At)~"/? in (57). Actually, in some references this kind of
assumption is included in the error analysis, see for example [31, Assumption 3.2]. In other references, as in [12], instead

of taking the correlation matrix K = ((k;;)) € RM*M where
1 . .
ki,j = M(u;” ui,),
they take
kij = (u}, ),
i.e., they drop the 1/M factor as suggested in [31, Remark 3.2]. Then, instead of a bound for

1 M
o>l — P,
j=1
as in (23) one gets a bound for
M
>l — Pad3,
j=1

from which the bound for any of the terms || —P,ui||§ follows. The problem is that proceeding in this way the eigenvalues
of this approach are the eigenvalues A; in (23) multiplied by M.

Remark 4.7. Accordingly to Remark 4.6 we observe that to get the error bounds (35) we have applied (23). In Ref. [12]
the authors instead of the left-hand side of (23) they bound M times the left-hand side of (23). To this end, instead of
the correlation matrix K = ((k;;)) € RM*M whith k;; = (1/M)(u,’;l, “11)! they take k;j = (uﬁ,, u’h), dropping the 1/M factor.
Then, the eigenvalues A; in the error bounds of [12] are multiplied by M respect to the eigenvalues A; of the present paper.

5. Numerical experiments

In this section, we present numerical results for the grad-div-DA-ROM (34) introduced and analyzed in the previous
section. The numerical experiments are performed on the benchmark problem of the 2D unsteady flow around a cylinder
with circular cross-section [33] at Reynolds numbers Re = 100, 1000. The open-source FE software FreeFEM [34] has been
used to run the numerical experiments.

Setup for numerical simulations. Following [33], the computational domain is given by a rectangular channel with a
circular hole (see Fig. 1 on top for the computational grid used for Re = 100 and Fig. 2 on top for the computational grid
used for Re = 1000):

2 ={(0,2.2) x (0, 0.41)}\{x : (x — (0.2, 0.2))* < 0.05%}.

No slip boundary conditions are prescribed on the horizontal walls and on the cylinder, and a parabolic inflow profile
is provided at the inlet:

u(0,y, t) = (4Uny(A — y)/A%, 0),

with U, = u(0,H/2,t) = 1.5m/s, and A = 0.41 m the channel height. At the outlet, we impose outflow (do nothing)
boundary conditions (vVu — pId)n = 0, with n the outward normal to the domain.

We consider two different values of the kinematic viscosity of the fluid: v = 1073, 1074 m?/s, and there is no external
(gravity) forcing, i.e. f = 0 m/s?. Based on the mean inflow velocity U = 2U,,/3 = 1m/s, the cylinder diameter D = 0.1m
and the different values of the kinematic viscosity of the fluid v = 1073, 10~* m?/s, the Reynolds numbers considered
are Re = UD/v = 100, 1000. In the fully developed periodic regime for the two Reynolds numbers, a vortex shedding can
be observed behind the obstacle, resulting in the well-known von Karman vortex street (see Fig. 3).

For the evaluation of computational results, we are interested in studying the temporal evolution of the following
quantities of interest. The kinetic energy of the flow is the most frequently monitored quantity, given by:

1.2
Exin = 5||u||L2.

12
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Fig. 1. Fine mesh (top) and coarse mesh (bottom), H = 4 h, for example 5.1 (Case Re = 100).

Fig. 2. Fine mesh (top) and coarse mesh (bottom), H = 7 h, for example 5.2 (Case Re = 1000).

2,15

18
1.6
14
1.2

0.8
— 0.6
0.4
0.2
0.00

Fin. Vel. Mag. (Re = 100)

Fin. Vel. Mag. (Re = 1000)

Fig. 3. Final finite element DNS velocity magnitude for examples 5.1 (Case Re = 100) and 5.2 (Case Re = 1000), from top to bottom.
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Table 1
Maximum drag coefficient ¢, maximum lift coefficient ¢"*, and Strouhal number for the finite element DNS solution
(first row), compared with reference intervals from [33] (second row) for example 5.1 (Case Re = 100).

[ e St
DNS 3.22 0.96 0.303
Reference results from [33] [3.22, 3.24] [0.99, 1.01] [0.295, 0.305]
DNS

0.7

0.6 =

Energy

0.55 - -

05 i

Fig. 4. Temporal evolution of kinetic energy for the DNS solution computed for examples 5.1 (Case Re = 100) and 5.2 (Case Re = 1000).

Other relevant quantities of interest are the drag and lift coefficients. In order to reduce the boundary approximation
influences, in the present work these quantities are computed as volume integrals [35]:

2
cp = ———; [(0cu, vp) + b(u, u, vp) + v(Vu, Vvp) — (p, V - wp)],
DU
2
L= —ﬁ [(0cu, v) + b(u, u, v) + v(Vu, Vvy) — (p, V - v )],

for arbitrary test functions vp, v; € H! such that vp = (1, 0)" on the boundary of the cylinder and vanishes on the other
boundaries, v; = (0, 1)T on the boundary of the cylinder and vanishes on the other boundaries. In the actual computations,
we have used the approach in [12], where the pressure term is not necessary to compute cp, ¢;, since the test functions
vp, v, are computed by Stokes projection, so that they are taken properly in the discrete divergence-free space V. For
the lower Reynolds number case (Re = 100), reference intervals for these coefficients were given in [33] (see second row
of Table 1), together with the Strouhal number St = Df /U, where f is the frequency of the vortex shedding. For the higher
Reynolds number case (Re = 1000), we will take the computed finite element DNS drag and lift coefficients as reference
values.

DNS-FEM and POD modes. The numerical method used to compute the snapshots is the DNS-FEM (4) described in
Section 2, with a spatial discretization using the mixed inf-sup stable P> — P! Taylor-Hood FE for the pair velocity-
pressure. For the time discretization, a semi-implicit Backward Differentiation Formula of order 2 (BDF2) has been applied,
which guarantees a good balance between numerical accuracy and computational complexity (cf. [36]). In particular, we
have considered an extrapolation for the convection velocity by means of Newton-Gregory backward polynomials [37].
Without entering into the details of the derivation, for which we refer the reader to e.g. [37], we consider the following
extrapolation of order two for the discrete velocity: Ul = 2u —u}~', n > 1, in order to achieve a second-order accuracy
in time. For the initialization (n = 0), we have considered u,f = ug = Uy, being ugy the initial condition, so that the
time scheme reduces to the semi-implicit Euler method for the first time step (At)? = (2/3)At. In the DNS, an impulsive
start is performed, i.e. the initial condition is a zero velocity field, and the time step is At = 2 x 1073 s. Time integration
is performed till a final time T = 7 s. In the time period [0, 5] s, after an initial spin-up, the flow is expected to develop
to full extent, including a subsequent relaxation time. Afterwards, it reaches a periodic-in-time (statistically- or quasi-
steady) state, see Fig. 4, where we plot kinetic energy temporal evolution for the DNS solutions at Reynolds numbers
Re = 100, 1000. From Table 1, we observe that DNS results at Re = 100 agree quite well with reference results from [33].

The POD velocity modes are generated in L? by the method of snapshots with velocity centered-trajectories [38] by
storing every DNS velocity solution from t = 5, when the solution had reached a periodic-in-time state, and using one
period of snapshot data for the two Reynolds numbers Re = 100, 1000. The full period length of the statistically steady
state is, respectively, 0.332s for Re = 100 and 0.22's for Re = 1000, thus we collect 166 snapshots for Re = 100 and
110 snapshots for Re = 1000. The rank of the velocity data set at Re = 100, 1000 is, respectively, d, = 27, 51, for which
M < 1071 k > d,, see Fig. 5 where we show the decay of POD velocity eigenvalues Ay, k = 1,...,d,, for the two

14
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10°
—8—Re=100
~@-Re=1000

102

POD eigenvalues

10'10
0 60

Fig. 5. POD velocity eigenvalues for examples 5.1 (Case Re = 100) and 5.2 (Case Re = 1000).

Reynolds numbers Re = 100, 1000. As observed in Remark 3.4, although theoretically a big enough number of modes
is required for the method, in practice we obtained good results with a small number of modes, as well as for all the
different values of 8 chosen, without checking condition (44) holds, see the numerical results below.

Numerical results for grad-div-DA-ROM. With POD velocity modes generated, the fully discrete grad-div-DA-ROM (34)
is constructed as discussed in the previous section, using the semi-implicit BDF2 time scheme as for the DNS-FEM,
and run with varying values of the nudging parameter (8 = 10, 100, 500) in the stable response time interval [5, 7] s
with At = 2 x 10735 and a small number (I = 8) of POD velocity modes, which already give a reasonable accuracy
for the proposed method at Reynolds numbers Re = 100, 1000, especially for large values of the nudging parameter
(B = 100, 500). The coarse mesh for grad-div-DA-ROM is given by the same computational grid for the two Reynolds
numbers, represented at the bottom of Figs. 1, 2. For Re = 100 this coarse mesh corresponds to H = 4h, while for
Re = 1000 it corresponds to H = 7 h, being H the resolution of the coarse spatial mesh, and h the one of the used fine
spatial computational grid. In the current implementation, since H/h is bounded, I; has been chosen as the nodal Lagrange
interpolation operator onto the coarse mesh of size H, for which error bounds have been proven in [9,10]. A numerical
comparison with respect to an interpolation operator on piecewise constants [9,10] gave almost similar results (not shown
for brevity). For the grad-div-DA-ROM computations, we start from zero initial velocity conditions at t = 5s and begin
assimilation with the DNS solution at t = 5.002 s, whereas Iyu" is computed only in one period and then repeated in
the rest of periods, thus being the DNS data to construct the reduced basis sufficient to implement the DA term, and no
further information is needed. In the following numerical experiments, we observe that the grad-div-DA-ROM solution
exponentially converges to the DNS solution in time and the speed of convergence grows as we increase the nudging
parameter S.

To assess the numerical accuracy of the new grad-div-DA-ROM, the temporal evolution of the drag and lift coefficients,
and kinetic energy are monitored and compared to the DNS solutions in the stable response time interval [5, 7]s.
Following [12], we also investigate the new grad-div-DA-ROM in predicting the cited quantities of interest when
inaccurate snapshots (64% of one full period) are used in its construction. The interest of this numerical investigation relies
on the fact that, in practice, complete sets of data are usually not available, or the quantity of data needed to reasonably
catch up the behavior of the real solution is usually unknown. This also allows to reduce the offline computational cost of
the method, since a reduced number of snapshots is used to build the correlation matrix, while almost maintaining the
numerical accuracy of complete data sets simulations. At the same time, we compare the performance of the grad-div-
DA-ROM to that of the standard Galerkin-ROM (G-ROM), for which © = 0 and 8 = 0, the grad-div-ROM, for which 8 = 0,
and the DA-ROM, for which i = 0. The DA-ROM has been introduced and analyzed in [12]. To perform the comparison,
here we run it with the same numerical setup as for the grad-div-DA-ROM. From the following numerical experiments,
we observe that under the same setup conditions, both DA reduced order methods tested gave almost similar reliable
results. In terms of computational cost, note that the CPU time of all the ROM tested is at least three orders of magnitude
lower than the CPU time of the DNS-FEM, thus proving their computational efficiency.

Of particular interest is also the comparison of the G-ROM and the grad-div-ROM. For these methods, the initial velocity
condition at t = 5s is taken as the L?-orthogonal projection of the DNS solution onto V. The rest of the numerical setup
is the same as for the DA reduced order methods tested. In the following numerical experiments, we notice that, whereas
the G-ROM solution is totally inaccurate, the application of the grad-div stabilization term already helps to improve
the G-ROM solution, allowing to compute a solution with reasonable accuracy, especially at Reynolds number Re = 100.
However, for the higher Reynolds number Re = 1000, both DA reduced order methods tested outperform both G-ROM and
grad-div-ROM, especially for large values of the nudging parameter, thus supporting the performed numerical analysis,
in which we do not need to assume at all an upper bound on the nudging parameter. In these case, the grad-div-ROM
should be combined with convection stabilization (e.g., SUPG [39] or LPS [40-43]) in order to obtain more accurate results,
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Fig. 6. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes (166 snapshots
used, which comprise one full period from t =5s to t = 5.3325).

but this falls outside the scope of the present work. Recently, the effect of adding the grad-div term as itself in the POD
setting without the DA term has been numerically explored and extensively studied in [44] for the first time. Indeed,
although the grad-div stabilization term has been already considered e.g. in [45,46] within a ROM framework, actually
in [45] it has been embedded within a residual-based VMS [47,48] method, thus making difficult to understand its real
contribution, while in [46] it has been neglected in the numerical studies. This term generally provides improvement
of local discrete mass conservation [49,50], and thus it is particularly important in the present framework, in which
mixed interpolations that satisfy the inf-sup condition but are not exactly divergence-free have been used to compute
the snapshots. This allows to work with only velocity ROM, as in this case, since the POD velocity modes are solenoidal
and the pressure term drops out, but could lead to a poor resolution, as the G-ROM results confirm. In [44], where we also
discussed different techniques of pressure recovery for POD-ROM, we showed the benefits of adding the grad-div term
to the G-ROM to improve in particular the energy prediction, thus we found convenient to add it to the G-ROM in the
present numerical experiments too. Following Remark 4.3 and [44], to select the grad-div parameter y for the following
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Fig. 7. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for DA-ROM with
B =10, 100, 500 (166 snapshots used, which comprise one full period from t =5s to t = 5.3325).

numerical experiments, we have considered a constant value fixed minimizing the L error in time with respect to the
snapshots energy computed in one period and then repeated in the rest of periods, thus being the snapshots data to
construct the reduced basis sufficient to compute the constant w, and no further information is needed. This allows in
particular to obtain a reliable energy prediction. In [44], an adaptive in time algorithm for the grad-div parameter y has
been also proposed and numerically investigated. The adaptive in time strategy consists in adjusting u around a constant
value chosen as above, so that the contribution of the grad-div stabilization term removes dissipation if the ROM energy
is too small, and adds dissipation if the energy is too large with respect to the FEM energy. This additionally allows to
guarantee a very long time accuracy. For the time intervals considered in the present paper, we found that the constant
u already provides a reasonable accuracy. We emphasize, however, that when considering DA into the ROM, thus adding
or not the grad-div stabilization term makes no significant difference and a reliable energy prediction for relatively long
time integrations is similarly approached using just the DA term, as showed in the following numerical experiments.
Nevertheless, introducing the grad-div term in the DA-POD setting improved the numerical analysis upon the existing
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Fig. 8. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for grad-div-DA-ROM
with ¢ =0.15 and B = 10, 100, 500 (166 snapshots used, which comprise one full period from t = 5s to t = 5.3325s).

DA-POD methods. Indeed, as showed in [44], obtaining error bounds with constants independent on inverse powers of
the viscosity parameter can help to find good a priori error indicators that, at least for few modes (of interest in practice),
almost match the computed errors over predictive time intervals.

5.1. Case Re = 100

In this section, we discuss results for Re = 100. In this case, we have used the computational grid represented in Fig. 1
on top to compute the snapshots, for which h = 2.76 x 1072 m, resulting in 32488 d.o.f. for velocities and 4 151 d.o.f. for
pressure. Also, 166 snapshots were collected, which comprise one full period from t = 5s to t = 5.332s. All tested ROM
have been run in the stable response time interval [5, 7] s, corresponding to six periods for the lift coefficient. Thus, we
are actually testing the ability of the considered ROM to predict/extrapolate in time, monitoring their performance over a
six times larger time interval with respect to the one used to compute the snapshots and generate the POD modes. This
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Fig. 9. Example 5.1 (Case Re = 100): First POD velocity modes (Euclidean norm) obtained with 166 snapshots (full period basis, left) and 106
snapshots (inaccurate basis corresponding to 64% of one full period, right).

velPOD4

Table 2

Example 5.1 (Case Re = 100): Errors levels with respect to DNS for G-ROM, grad-div-ROM (u = 0.15), DA-ROM
(B = 500), and grad-div-DA-ROM (n = 0.15, 8 = 500) (166 snapshots used, which comprise one full period from
t=5stot=5.332s).

Errors Re = 100

G-ROM grad-div-ROM DA-ROM grad-div-DA-ROM
Epgx 4.56e—02 1.60e—05 8.20e—05 4.30e—05
g 3.84e—01 7.15e—02 2.72e—03 2.87e—03
" 6.78e—01 4.33e—02 4.18e—03 4.76e—03
£2(L?)u norm 1.68e—01 9.73e—02 2.04e—02 2.04e—02

will show how the strategy to incorporate DA into the ROM can already provide long time stability and accuracy, thus
proving its robustness.

Numerical results for energy, drag and lift predictions using | = 8 modes are shown in Figs. 6, 7, 8. In particular, Fig. 6
shows a comparison within DNS, G-ROM, grad-div-ROM with p = 0.15 (fixed as described above), DA-ROM with g = 10,
and grad-div-DA-ROM with ¢ = 0.15 and 8 = 10. From this figure, we observe that, whereas the G-ROM solution is
totally inaccurate, the application of the grad-div stabilization term greatly improves the G-ROM solution, allowing to
compute rather accurate quantities of interest. Indeed, the temporal evolution of the kinetic energy and lift coefficient is
very close to that of the DNS, being the drag coefficient temporal evolution the most sensitive quantity presenting larger
differences. A slight improvement is observed for using DA with 8 = 10, being results for DA-ROM and grad-div-DA-ROM
almost identical. Note that using DA, since we started from zero initial velocity conditions, the DNS results are approached
around t = 5.4s with g = 10.

A significant improvement is observed by increasing the nudging parameter 8 for DA reduced order methods. This is
clearly displayed in Figs. 7, 8, which respectively show the behavior of the DA-ROM and the grad-div-DA-ROM, varying the
nudging parameter 8 from 10 to 500. Again, almost identical results are obtained with both DA reduced order methods,
for which the best predictions are given by the largest values 8 = 500 of the nudging parameter, although we observe a
similar accuracy already for 8 = 100. Note also that for large values of the nudging parameter (8 = 100, 500), although
we started from zero initial velocity conditions, the DNS results are approached with a rather accurate resolution just after
very few iterations (around 20, i.e. 0.04s, for 8 = 100 and 5, i.e. 0.01s, for 8 = 500). All these results are also confirmed
by Table 2, where we display the error levels with respect to DNS of maximum kinetic energy |Eji"; — Ejiapys|, maximum

kin,DNS
drag coefficient |cp'|* — cp'pys|, maximum lift coefficient |/ — ¢"pil, and velocity norm || — upns|l 22y using | = 8
modes for G-ROM, grad-div-ROM (u = 0.15), DA-ROM (B = 500), and grad-div-DA-ROM (u = 0.15, 8 = 500) in the
time interval [5.01, 7]s. Note how grad-div-ROM already reduces the error level in EJ* of three orders of magnitude

with respect to G-ROM, similarly to both DA reduced order methods, and in ¢/"* of one order of magnitude, while both
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Fig. 10. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes (106 snapshots
used, which comprise 64% of one full period from t =5s to t = 5.2125s).

DA reduced order methods of two orders of magnitude. However, for ¢['*, while grad-div-ROM slightly reduces the error
level with respect to G-ROM (five times), both DA reduced order methods guarantee again a reduction of two orders of
magnitude. In terms of £2(L?) velocity norm, both DA reduced order methods reduces the G-ROM error level eight times,
while the grad-div-ROM is just slightly better accurate than G-ROM.

We also investigate the considered ROM performances in predicting quantities of interest when inaccurate snapshots
(64% of one full period) are used in their construction. Thus, we generate inaccurate snapshots using 64% of one full
period of DNS data, which corresponds in this case to the first 106 DNS time step solutions from t = 5s to t = 5.212s.
Fig. 9 displays the Euclidean norm of the first POD velocity modes obtained with the full set of snapshots (left) and the
inaccurate set of snapshots (right). Results for the considered ROM using | = 8 modes in this case are shown in Figs. 10,
11, 12. Similar to the previous results, DA significantly improves the accuracy of the G-ROM, especially for large values
of the nudging parameter, without the need to increase the number of reduced basis functions. While results for G-ROM
becomes more and more inaccurate as time goes on, results for grad—-div-ROM remain still acceptable if compared with
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Fig. 11. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for DA-ROM with
B =10, 100, 500 (106 snapshots used, which comprise 64% of one full period from t =5s to t = 5.2125).

DA reduced order methods for a small value of the nudging parameter. Again, results for both DA-ROM (with and without
grad-div term) are very close and almost approaches DNS results for large values of the nudging parameter. Actually, they
are almost comparable to previous results for one full period of DNS data. All these considerations are also reflected by the
error levels displayed in Table 3. These results suggest that, despite its simple implementation, DA can greatly improve
the overall accuracy of the standard G-ROM in the computation of quantities of interest even when low-resolution data
are available to construct the reduced basis, which is common in practice, whereas grad-div stabilization (without DA)
continues providing reliable results. We notice, however, that as the Reynolds number is increased (see next section),
results for grad-div-ROM (without DA) are less accurate, and maybe it should be combined with convection stabilization
if one does not use DA in order to obtain more accurate results.



B. Garcia-Archilla, J. Novo and S. Rubino Journal of Computational and Applied Mathematics 411 (2022) 114246

1=8
0.605 T

0.6 1

0.595 7

0.59

0.585

Energy

—DNS
—— grad-div-DA-ROM (=0.15, 3=10) | _|
—— grad-div-DA-ROM (;:=0.15, 3=100)
—— grad-div-DA-ROM (1=0.15, 3=500)

0.575 -

0.58

0.57 -

0.565 1 1 1 1 1 1 1 1 1
5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

33 -
3.25
3.2
o
©3.15
a

3.1

3.05

—— grad-div-DA-ROM (i=0.15, 3=10) | |

—— grad-div-DA-ROM ( :=0.15, 3=100)

——grad-div-DA-ROM ( ;1=0.15, 3=500)|
1

3 1 1 1 1 1 1 1 1
5 5.2 5.4 5.6 58 6 6.2 6.4 6.6 6.8 7

0.8

0.6

0.4

02

—DNS
-0.2 [-||— grad-div-DA-ROM (4=0.15, 3=10)
— grad-div-DA-ROM (1=0.15, 3=100)
—— grad-div-DA-ROM (2=0.15, 3=500)

Lift
o
LN B

-0.4

-0.6

-0.8 -

Fig. 12. Example 5.1 (Case Re = 100): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for
grad-div-DA-ROM with x = 0.15 and g = 10, 100, 500 (106 snapshots used, which comprise 64% of one full period from t = 5s to t = 5.2125).

5.2. Case Re = 1000

In this section, we discuss results for Re = 1000. In this case, we have used a finer computational grid with respect
to Re = 100 to compute the snapshots (see Fig. 2 on top, for which h = 1.46 x 1072 m, resulting in 101820 d.o.f. for
velocities and 12 885 d.o.f. for pressure). This has been necessary to obtain stable DNS results. However, the coarse mesh
for DA in ROM is the same as for the previous case (see Fig. 2 on bottom). The full period length of the statistically steady
state is now 0.22 s, so that 110 snapshots were collected, starting from t = 5s. Again, all tested ROM have been run in
the stable response time interval [5, 7]s, corresponding now to nine periods for the lift coefficient. This time range is
thus nine times wider with respect to the time window used for the generation of the POD modes, so that at the higher
Reynolds number we are performing the longer time integration with respect to the time interval used to compute the
snapshots.
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Fig. 13. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes (110 snapshots
used, which comprise one full period from t =5s to t = 5.225).

Numerical results for energy, drag and lift predictions using | = 8 modes are shown in Figs. 13, 14, 15. In particular,
Fig. 13 shows a comparison within DNS, G-ROM, grad-div-ROM with x = 0.001 (fixed as described above), DA-ROM with
B = 10, and grad-div-DA-ROM with ¢ = 0.001 and 8 = 10. As already noticed in the previous case, from this figure we
observe that, whereas the G-ROM solution is totally inaccurate, the application of the grad-div stabilization term helps to
improve the G-ROM solution, although it shows larger error levels than the lower Reynolds number case Re = 100 when
compared to DNS results. A slight improvement is observed again for using DA with 8 = 10, being results for DA-ROM
and grad-div-DA-ROM almost identical. Looking at the temporal evolution of the kinetic energy (on top), we observe that
also in this case the DA results almost stabilize around t = 5.4 s with 8 = 10, even if the reached values under-estimate
the DNS results.

Increasing the nudging parameter 8 from 10 to 500 for DA reduced order methods (see Figs. 14, 15) already allows
to almost approach DNS results, although we note a detachment in predicting cp, ¢; as time increases. Almost identical
results are obtained with both DA reduced order methods, for which the best predictions are given by the largest values
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Fig. 14. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using /| = 8 modes for DA-ROM
with g = 10, 100, 500 (110 snapshots used, which comprise one full period from t =5s to t = 5.225).

B = 500 of the nudging parameter, although we observe a similar accuracy already for 8 = 100. Note again that for large
values of the nudging parameter (8 = 100, 500), the DNS results are almost approached just after very few iterations
(around 20, i.e. 0.04s, for 8 = 100 and 5, i.e. 0.01s, for 8 = 500). All these results are confirmed by Table 4. Note
that grad-div-ROM now just slightly reduces the error levels with respect to G-ROM for all quantities, while both DA
reduced order methods still guarantee a reduction of two orders of magnitude for Ej*, c['™, and five times for ¢/"™. In
terms of ¢2(L?) velocity norm, both DA reduced order methods reduces the G-ROM error level by a factor of 6.5, while
the grad-div-ROM is just slightly better accurate than G-ROM.

Also in this case we finally investigate the considered ROM performances in predicting quantities of interest when
inaccurate snapshots (64% of one full period) are used in their construction. Thus, we generate inaccurate snapshots
using 64% of one full period of DNS data, which corresponds in this case to the first 70 DNS time step solutions from
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Fig. 15. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for

grad-div-DA-ROM with p = 0.001 and B8 = 10, 100, 500 (110 snapshots used, which comprise one full period from t =5s to t = 5.225).

Table 3

Example 5.1 (Case Re = 100): Errors levels with respect to DNS for G-ROM, grad-div-ROM (. = 0.15), DA-ROM
(B = 500), and grad-div-DA-ROM (u = 0.15, 8 = 500) (106 snapshots used, which comprise 64% of one full period
from t =5s to t =5.2125).

Errors Re = 100 (Inaccurate snapshots)

G-ROM grad-div-ROM DA-ROM grad-div-DA-ROM
Efx 4.34e—02 4.13e—04 2.30e—05 6.10e—05
cp 3.75e—01 6.40e—02 1.14e—02 1.16e—02
o 6.29e—01 1.89e—02 1.16e—02 1.11e—02
£%(L?)u norm 1.76e—01 1.01e—01 2.99e—02 2.99e—02
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Fig. 16. Example 5.2 (Case Re = 1000): First POD velocity modes (Euclidean norm) obtained with 110 snapshots (full period basis, left) and 70
snapshots (inaccurate basis corresponding to 64% of one full period, right).

Table 4

Example 5.2 (Case Re = 1000): Errors levels with respect to DNS for G-ROM, grad-div-ROM (x = 0.001), DA-ROM
(B = 500), and grad-div-DA-ROM (u = 0.001, 8 = 500) (110 snapshots used, which comprise one full period from
t=5stot=05.22s)

Errors Re = 1000
G-ROM grad-div-ROM DA-ROM grad-div-DA-ROM
Epgx 3.79e—02 2.28e—02 2.85e—04 3.11e—04
g 4.21e—01 2.82e—01 3.46e—03 2.85e—03
" 1.40e—01 4.95e—02 2.83e—02 2.77e—02
£2(L?)u norm 3.38e—01 3.02e—01 5.19e—02 5.19e—02
Table 5

Example 5.2 (Case Re = 1000): Errors levels with respect to DNS for G-ROM, grad-div-ROM (x = 0.001), DA-ROM
(B = 500), and grad-div-DA-ROM (u = 0.001, 8 = 500) (70 snapshots used, which comprise 64% of one full period
from t =5s to t =5.145s).

Errors Re = 1000 (Inaccurate snapshots)

G-ROM grad-div-ROM DA-ROM grad-div-DA-ROM
Epgx 4.11e—02 1.59e—02 1.20e—04 1.50e—04
g 4.93e—01 2.15e—01 9.00e—04 1.26e—03
" 1.55e—01 2.83e—02 5.29e—03 5.08e—03
£2(L?)u norm 3.62e—01 3.02e—01 6.79e—02 6.79e—02

t = 5stot = 5.14s. Fig. 16 displays the Euclidean norm of the first POD velocity modes obtained with the full set of
snapshots (left) and the inaccurate set of snapshots (right). Results for the considered ROM using [ = 8 modes in this case
are shown in Figs. 17, 18, 19. Here, we observe that results for G-ROM and grad-div-ROM are rather inaccurate, being
the grad-div-ROM slightly better, while results for both DA-ROM (with and without grad-div term) almost approaches
DNS results as for the one full period case. All these considerations are also reflected by the error levels displayed in
Table 5. These results suggest that DA reduced order methods perform well also for low values of viscosity and display
low sensitivity compared to increases in Reynolds number, even when low-resolution data are available to construct the
reduced basis. This fact is extremely important in order to solve complex realistic flows at high Reynolds numbers and also
provides a numerical support to the theoretical analysis performed, in which error bounds with constants independent
on inverse powers of the viscosity parameter are derived.

26



B. Garcia-Archilla, J. Novo and S. Rubino Journal of Computational and Applied Mathematics 411 (2022) 114246

—DNS
—G-ROM
0.62 —— grad-div-ROM (:=0.001) B
~—— DA-ROM (3=10)

—— grad-div-DA-ROM (1:=0.001, 3=10)

0.6 1 1 1 1 1 1 1 1 1
5 5.2 5.4 56 58 6 6.2 6.4 6.6 6.8 7

—DNS
—G-ROM

—— grad-div-ROM (:=0.001)

~—— DA-ROM (3=10)

—— grad-div-DA-ROM (;:=0.001, 3=10)

Drag

5.8 6 6.2 6.4 6.6 6.8 7
t
1=8
25 |
2+ B
15 B
e B
—DNS
- 05 —G-ROM 7
£ — grad-div-ROM (:=0.001)
ok —— DA-ROM (3=10) B
—— grad-div-DA-ROM (2=0.001, 3=10)
0.5
J
R
-1.5 /
2 1 1 1 1 1 1 1 1 1
5 52 54 5.6 5.8 6 6.2 6.4 6.6 6.8 7

t

Fig. 17. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes (70 snapshots
used, which comprise 64% of one full period from t =5s to t = 5.145s).

6. Conclusions

In this paper, a new stabilized data assimilation reduced order method (grad-div-DA-ROM) for the numerical simu-
lation of incompressible flows is proposed, analyzed and tested. The new grad-div-DA-ROM is a velocity nudging-based
DA-ROM that incorporates a grad-div stabilization term.

The main contribution of the present paper is the numerical analysis of the fully discrete grad-div-DA-ROM applied to
the unsteady incompressible NSE, where a rigorous error estimate is proved. This estimate takes into account the three
sources of error: the spatial discretization error (due to the FE discretization), the temporal discretization error (due to
the backward Euler method), and the POD truncation error.

With respect to a related approach [12] that, in a similar way, proposed, analyzed and tested a nudging-based DA-ROM
(without grad-div) for incompressible flows, here we have obtained error bounds with constants independent on inverse
powers of the viscosity parameter. Also, no upper bounds in the nudging parameter of the data assimilation method are
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Fig. 18. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for DA-ROM
with g = 10, 100, 500 (70 snapshots used, which comprise 64% of one full period from t =55 to t = 5.145s).

required. Thus, in this respect, the present study can be seen as an improvement of the numerical analysis performed
in [12].

Numerical experiments show that, for large values of the nudging parameter and a small number of POD modes, the
new grad-div-DA-ROM converges to the true solution exponentially fast, and similarly to the DA-ROM in [12], despite its
simple implementation, it greatly improves the overall accuracy of the standard Galerkin POD-ROM (G-ROM) up to low
viscosities over predictive time intervals. In the numerical experiments it can also be observed that the incorporation of
the grad-div stabilization term in the ROM framework (grad-div-ROM, without DA) guarantees a significant improvement
over G-ROM only for low Reynolds number. The numerical results suggest that DA reduced order methods display low
sensitivity with respect to increase the Reynolds number, which is extremely important in order to solve complex realistic
flows with low viscosities, and also provide a numerical support to the performed theoretical analysis, in which error
bounds with constants independent on inverse powers of the viscosity parameter are derived.
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Fig. 19. Example 5.2 (Case Re = 1000): Temporal evolution of kinetic energy, drag coefficient and lift coefficient using | = 8 modes for
grad-div-DA-ROM with p = 0.001 and B8 = 10, 100, 500 (70 snapshots used, which comprise 64% of one full period from t =5s to t = 5.145).
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