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Abstract
One of the main drawbacks of the practical use of neural networks is the long time required in the training process. Such a

training process consists of an iterative change of parameters trying to minimize a loss function. These changes are driven

by a dataset, which can be seen as a set of labeled points in an n-dimensional space. In this paper, we explore the concept of

a representative dataset which is a dataset smaller than the original one, satisfying a nearness condition independent of

isometric transformations. Representativeness is measured using persistence diagrams (a computational topology tool) due

to its computational efficiency. We theoretically prove that the accuracy of a perceptron evaluated on the original dataset

coincides with the accuracy of the neural network evaluated on the representative dataset when the neural network

architecture is a perceptron, the loss function is the mean squared error, and certain conditions on the representativeness of

the dataset are imposed. These theoretical results accompanied by experimentation open a door to reducing the size of the

dataset to gain time in the training process of any neural network.

Keywords Data reduction � Neural networks � Representative datasets � Computational topology

1 Introduction

The success of the different architectures used in the

framework of neural networks is doubtless [1]. The

achievements made in areas such as video imaging [2],

recognition [3], or language models [4] show the surprising

potential of such architectures. In spite of such success,

they still have some shortcomings. One of their main

drawbacks is the long time needed in the training process.

Such a long training time is usually associated with two

factors: first, the large amount of weights to be adjusted in

the current architectures and second, the huge datasets used

to train neural networks. In general, the time needed to

train a complex neural network from the scratch is so long

that many researchers use pretrained neural networks as,

for example, Oxford VGG models [5], Google Inception

Model [6], or Microsoft ResNet Model [7]. Other attempts

to reduce the training time are, for example, to partition the

training task in multiple training subtasks with submodels,

which can be performed independently and in parallel [8],

to use asynchronous averaged stochastic gradient descent

[9], and to reduce data transmission through a sampling-

based approach [10]. Besides, in [11], the authors studied

how the elimination of ‘‘unfavorable’’ samples improve

generalization accuracy for convolutional neural networks.

Finally, in [12], an unweighted influence data subsampling

method is proposed.

Roughly speaking, a training process consists of

searching for a local minimum of a loss function in an

abstract space where the states are sets of weights. Each of

the training sample batches provides an extremely small

change in weights according to the training rules. The aim

of such changes is to find the ‘‘best’’ set of weights that

minimizes the loss function. If we consider a
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‘‘geometrical’’ interpretation of the learning process, such

changes can be seen as tiny steps in a multi-dimensional

metric space of parameters that follow the direction settled

by the gradient of the loss function. In some sense, one may

think that two ‘‘close’’ points of the dataset with the same

label provide ‘‘similar’’ information to the learning process

since the gradient of the loss function on such points is

similar.

Such a viewpoint leads us to look for a representative

dataset, ‘‘close’’ to and with a smaller number of points

than the original dataset but keeping its ‘‘topological

information,’’ allowing the neural network to perform the

learning process taking less time without losing accuracy.

Proving such a general result for any neural network

architecture is out of the scope of this paper and, probably,

it is not possible since the definition of neural network is

continuously evolving over time. Due to such difficulties,

we will begin in this paper by proving the usefulness of

representative datasets in the perceptron case; that is, we

formally prove, for the perceptron case, that the accuracy

of a neural network evaluated on the representative dataset

is similar to the accuracy of the neural network evaluated

on the original dataset under some constraints on the rep-

resentativeness of the dataset. Besides, experimental evi-

dence indicates that neural networks trained on

representative datasets perform similar to neural networks

trained on the original datasets in the case of multi-layer

neural networks.

Moreover, in order to ‘‘keep the shape’’ of the original

dataset, the concept of representative datasets is associated

with a notion of nearness independent of isometric trans-

formations. As a first approach, the Gromov–Hausdorff

distance is used to measure the representativeness of the

dataset. Nonetheless, as the Gromov–Hausdorff distance

complexity is an open problem1, the bottleneck distance

between persistence diagrams [14] is used instead as a

lower bound to the Gromov–Hausdorff distance since its

time complexity is cubic on the size of the dataset (see

[15]).

The paper is organized as follows. In Sect. 2, basic

definitions and results from neural networks and compu-

tational topology are given. The notion of representative

datasets is introduced in Sect. 3. Persistence diagrams are

used in Sect. 4 to measure the representativeness of a

dataset. In Sect. 5, the perceptron architecture is studied to

theoretically prove that the accuracy of a perceptron

evaluated on original and representative datasets coincide

under some constraint. In Sect. 6.1, experimental results

are provided for the perceptron case showing the good

performance of representative datasets, compared to ran-

dom datasets. In Sect. 6.2, we illustrate experimentally the

same fact for multi-layer neural networks. Finally, some

conclusions and future work are provided in Sect. 7.

2 Background

Next, we recall some basic definitions and notations used

throughout the paper.

2.1 Neural networks

The research field of neural networks is extremely vivid

and new architectures are continuously being presented

(see, e.g., CapsNets [7], Bidirectional Feature Pyramid

Networks [16] or new variants of the Gated Recurrent

Units [17, 18]), so the current notion of neural network is

far from the classic multi-layer perceptron or radial basis

function networks [19].

As a general setting, a neural network is a mapping

N w;U : Rn ! s0; kt (where s0; kt ¼ f0; 1; . . .; kg) that

depends on a set of weights w and a set of parameters U
which involve the description of the synapses between

neurons, layers, activation functions and whatever consid-

eration in its architecture. To train the neural network

N w;U, we use a dataset which is a finite set of pairs D ¼
�
ðx; cxÞ where point x lies in X � Rn and label cx lies in

s0; kt
�
, for a fixed integer k 2 N. Observe that it should be

satisfied that a point cannot have different labels. The sets

X and s0; kt are called, respectively, the set of points and

the set of labels in D.

To perform the learning process, we use: (1) a loss

function which measures the difference between the output

of the network (obtained with the current weights) and the

desired output; and (2) a loss-driven training method to

iteratively update the weights.

Finally, let us introduce the concept of accuracy as a

measure to evaluate the performance of a neural network.

Definition 1 The accuracy of a neural network N w;U

evaluated on a dataset D ¼
�
ðx; cxÞ : x 2 X � Rn and

cx 2 s0; kt
�
, is defined as:

AðD;N wÞ ¼
1

jXj
X

x2X
IwðxÞ;

where, for any x 2 X,

IwðxÞ ¼
1 if cx ¼ N w;UðxÞ;
0 otherwise:

�

1 It seems to be intractable in practice [13].
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2.2 Persistent homology

In this paper, the representativeness of a dataset will be

measured using methods from the recent developed area

called computational topology whose main tool is persis-

tent homology. A detailed presentation of this field can be

found in [14].

Homology provides mathematical formalism to count

holes where holes refer to connected components, tunnels,

cavities, and so on, being the q-dimensional homology

group the mathematical representation for the q-dimen-

sional holes in a given space. Persistent homology is usu-

ally computed when the homology cannot be determined.

An example of the latter appears when a surface is sampled

by a point cloud.

Persistent homology is based on the concept of filtration,

which is an increasing sequence of simplicial complexes.

The building blocks of a simplicial complex are q-sim-

plices, being a 0-simplex a point, a 1-simplex a line seg-

ment, a 2-simplex a triangle, a 3-simplex a tetrahedron, and

so on. An example of filtration is the Vietoris–Rips filtra-

tion (see [20]) that is built by successively increasing the

radius of the balls centered at the points of a given set in an

n-dimensional space and joining those vertices (points)

whose balls intersect forming new simplices.

We say that a q-dimensional hole is born when it

appears at a specific time along the filtration and it dies

when it merges with another q-dimensional hole at a

specific time along the filtration. One of the common

graphical representations of births and deaths of the q-di-

mensional holes over time is the so-called (q-dimensional)

persistence diagram which consists of a set of points on the

Cartesian plane. This way, a point of a persistence diagram

represents the birth and the death of a hole. Since deaths

happen only after births, all the points in a persistence

diagram lie above the diagonal axis. Furthermore, those

points in a persistence diagram that are far from the diag-

onal axis are candidates to be ‘‘topologically significant’’

since they represent holes that survive for a long time. The

so-called bottleneck distance can be used to compare two

persistence diagrams.

Definition 2 The (q-dimensional) bottleneck distance

between two (q-dimensional) persistence diagrams Dgm

and gDgm is:

dBðDgm; gDgmÞ ¼ inf
/

sup
a

ka� /ðaÞk1

where a 2 Dgm and / is any possible bijection between

Dgm [ D and gDgm [ D, being D the set of points in the

diagonal axis.

An useful result used in this paper is the following one

that connects the Gromov–Hausdorff distance between two

metric spaces and the bottleneck distance between the

persistence diagrams obtained from their corresponding

Vietoris–Rips filtrations. For the sake of brevity, the (q-

dimensional) persistence diagram obtained from the Vie-

toris–Rips filtration computed from a subset X of Rn, with

q� n, will be simply called the (q-dimensional) persistence

diagram of X and denoted by DgmqðXÞ.

Theorem 1 [21, Theorem 5.2] For any two subsets X and

Y of Rn, and for any dimension q� n, the bottleneck dis-

tance between the persistence diagrams of X and Y is

bounded by the Gromov–Hausdorff distance of X and Y:

dBðDgmqðXÞ;DgmqðYÞÞ� 2dGHðX; YÞ:

Let us recall that dGHðX; YÞ ¼ 1
2
inff ;g

�
dHðf ðXÞ;

gðYÞÞ
�
; where dHðX; YÞ ¼ max

�
supx2X infy2Y kx� yk;

supy2Y infx2X kx� yk
�
; and f : X ! Z (resp. g : Y ! Z)

denotes an isometric transformation of X (resp. Y) into

some metric space Z. Summing up, we can conclude that

1

2
dBðDgmqðXÞ;DgmqðYÞÞ� dGHðX; YÞ� dHðX; YÞ:

3 Representative datasets

In this section, we provide the definition of representative

datasets which is independent of the neural network

architecture considered. The intuition behind this definition

is to keep the ‘‘shape’’ of the original dataset while

reducing its number of points.

Firstly, let us introduce the notion of e-representative
point.

Definition 3 A labeled point ð~x; c~xÞ 2 Rn � s0; kt is e-
representative of ðx; cxÞ 2 Rn � s0; kt if cx ¼ c~x and

kx� ~xk� e, where e 2 R is the representation error. We

denote ~x �e x.
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The next step is to define the concept of e-representative
dataset. Notice that if a dataset can be correctly classified

by a neural network, any isometric transformation of such

dataset can also be correctly classified by the neural net-

work (after adjusting the weights). Therefore, the definition

of e-representative dataset should be independent of such

transformations. The concept of k-balanced e-representa-
tive datasets is also introduced and it will be used in Sect. 5

to ensure that similar accuracy results are obtained when a

trained perceptron is evaluated on a representative dataset

rather than on the original dataset.

Definition 4 A dataset ~D ¼
�
ð~x; c~xÞ : ~x 2 ~X � Rn and

c~x 2 s0; kt
�

is e-representative of D ¼
�
ðx; cxÞ : x 2 X �

Rn and cx 2 s0; kt
�
if there exists an isometric transfor-

mation f : ~X ! Rn, such that for any ðx; cxÞ 2 D there

exists ð~x; c~xÞ 2 ~D satisfying that f ð~xÞ �e x. The minimum

of all those possible e for which an isometric transforma-

tion exists is called to be optimal. Finally, the dataset ~D is

said to be k-balanced if for each ð~x; c~xÞ 2 ~D, the set

fðx; cxÞ : f ð~xÞ �e xg contains k points and for each ðx; cxÞ 2
D there exists only one ð~x; c ~xÞ 2 ~D such that f ð~xÞ �e x.

Remark 1 Let us point out that k-balanced datasets cannot

be computed for most datasets when they are required to be

subsets of the datasets. Even if it is too restrictive, in

Sect. 5, we will provide several theoretical results using

that assumption. Nevertheless, we will prove experimen-

tally in Sect. 6 that, without that assumption, e-represen-
tative datasets still perform well.

Proposition 1 Let ~D be an e-representative dataset (with

set of points ~X � Rn) of a dataset D (with set of points

X � Rn). Then,

dGHðX; ~XÞ� e:

Proof By definition of e-representative datasets, there

exists an isometric transformation from ~X to Rn where for

all x 2 X there exists ~x 2 ~X such that kx� f ð~xÞk� e.
Therefore, dHðX; f ð ~XÞÞ� e. Then, by the definition of the

Gromov–Hausdorff distance, dGHðX; ~XÞ� dHðX; f ð ~XÞÞ� e.
h

Notice that the definition of e-representative datasets is

not useful when e is ‘‘big.’’ The following result, which is a

consequence of Proposition 1, provides the optimal value

for e.

Corollary 1 The parameter e is optimal if and only if

e ¼ dGHðX; ~XÞ.

Therefore, one way to discern if a dataset ~D is ‘‘repre-

sentative enough’’ of D is to compute the Gromov–Haus-

dorff distance between X and ~X. If the Gromov–Hausdorff

distance is ‘‘big,’’ we could say that the dataset ~D is not

representative of D. However, the Gromov–Hausdorff

distance is not useful in practice because of its high com-

putational cost. An alternative approach to this problem is

given in Sect. 4.

3.1 Proximity graph algorithm

In this section, for a given e[ 0, we propose a variant of

the proximity graph algorithm [22] to compute an e-rep-

resentative dataset ~D of a dataset D ¼
�
ðx; cxÞ : x 2 X

� Rn and cx 2 s0; kt
�
.

Firstly, a proximity graph is built over X, establishing

adjacency relations between the points of X, represented by

edges.

Definition 5 Given e[ 0, an e-proximity graph of X is a

graph GeðXÞ ¼ ðX;EÞ such that if x; y 2 X and kx� yk� e
then ðx; yÞ 2 E.

See Fig. 1 in which the proximity graph of one of the

two interlaced solid torus is drawn for a fixed e.
Secondly, from an e-proximity graph of X, a dominating

dataset (also known as a vertex cover) ~X � X is computed

satisfying that if x 2 X then x 2 ~X or there exists y 2 ~X

adjacent to x. We then obtain an e-representative dataset
~D ¼ fð~x; c~xÞ : ~x 2 ~X and ð~x; c~xÞ 2 Dg also called domi-

nating dataset of D. Algorithm 1 shows the pseudo-code

used in this paper to compute a dominating dataset of D.

Fig. 1 A point cloud sampling two interlaced solid torus and the e-
proximity graph of one of them for a fixed e.
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Here, DominatingSetðGeðXcÞÞ refers to a dominating set

obtained from the proximity graph GeðXcÞ. Among the

existing algorithms in the literature to obtain a dominating

set, we will use, in our experiments in Sect. 6, the algo-

rithm proposed in [23] that runs in OðjXj � jEjÞ. Therefore,
the complexity of Algorithm 1 is OðjXj2 þ jXj � jEjÞ
because of the size of the matrix of distances between

points and the complexity of the algorithm to obtain the

dominating set. Let us observe that the algorithm proposed

in this paper is just an example to show how we can

compute representative datasets. Other more efficient

algorithms to compute representative datasets are left for

future work in Sect. 7.

Lemma 1 The dominating dataset ~D obtained by running

Algorithm 1 is an e-representative dataset of D.

Proof Let us prove that for any ðx; cxÞ 2 D there exists

ð~x; cxÞ 2 ~D such that x �e ~x. Two possibilities arise:

1. If ðx; cxÞ 2 ~D, it is done.

2. If ðx; cxÞ 62 ~D, since ~Xcx is a dominating dataset of

GeðXcxÞ, then there exists ~x 2 ~Xcx such that ~x is adjacent

to x in GeðXcxÞ. Therefore, ð~x; cxÞ 2 ~D and x �e ~x.

h

4 Persistent homology to Infer
the representativeness of a dataset

In this section, we show the role of persistent homology as

a tool to infer the representativeness of a dataset.

Firstly, from Theorem 1 in page 5, we will establish

that the bottleneck distance between persistence dia-

grams is a lower bound of the representativeness of the

dataset.

Lemma 2 Let ~D be an e-representative dataset (with set of

points ~X � Rn) of a dataset D (with set of points X � Rn).

Let DgmqðXÞ and Dgmqð ~XÞ be the q-dimensional

persistence diagrams of X and ~X, respectively. Then, for

q� n,

1

2
dB
�
DgmqðXÞ;Dgmqð ~XÞ

�
� e:

Proof Since ~D is an e-representative dataset of D then

dGHðX, ~XÞ� e by Proposition 1. Now, by Theorem 1,
1
2
dBðDgmqðXÞ;DgmqðYÞÞ� dGHðX; YÞ� e. h

As a direct consequence of Lemma 2 and the fact that

the Hausdorff distance is an upper bound of the Gromov–

Hausdorff distance, we have the following result.

Corollary 2 Let ~D be an e-representative dataset (with set

of points ~X � Rn) of a dataset D (with set of points

X � Rn) where the parameter e is optimal. Let DgmqðXÞ
and Dgmqð ~XÞ be the q-dimensional persistence diagrams

of X and ~X, respectively. Then,

1

2
dB
�
DgmqðXÞ;Dgmqð ~XÞÞ

�
� e� dH

�
X; ~X

�
:

In order to illustrate the usefulness of this last result, we

will discuss a simple example. In Fig. 2a, we can see a

subsample of a circumference (the original dataset) toge-

ther with two classes corresponding, respectively, to the

upper and lower part of the circumference. In Fig. 2c, we

can see a subset of the original dataset and a decision

boundary ‘‘very’’ different to the one given in Fig. 2a.

Then, we could say that the dataset shown in Fig. 2c does

not ‘‘represent’’ the same classification problem than the

original dataset. However, the dataset shown in Fig. 2b

could be considered a representative dataset of the original

one since both decision boundaries are ‘‘similar.’’ This can

be determined by computing the Hausdorff distance

between the original and the other datasets, and the bot-

tleneck distance between the persistence diagrams of the

corresponding datasets (see the values shown in Table 1).

Using Corollary 2, we can infer that 0:08� e1 � 0:18 for
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the dataset given in Fig. 2b and 0:13� e2 � 0:3 for the

dataset given in Fig. 2c. Therefore, the dataset given in

Fig. 2b can be considered ‘‘more’’ representative of the

dataset shown in Fig. 2a than the dataset given in Fig. 2c,

as expected.

In Table 2, we show the output of Algorithm 1 applied

to the dataset pictured in Fig. 2a and different values of e,
in order to obtain different dominating datasets. Let us

observe that, depending on the value of the parameter e, the
size of the resulting dominating dataset is different. Finally,

let us remark that the values of the parameter used in

Algorithm 1 does not correspond, in general, to the optimal

e (see Definition 4).

5 Theoretical results on the perceptron case

One of the simplest neural network architecture is the

perceptron. Our goal in this section is to formally prove

that the accuracy of a perceptron evaluated on the original

dataset and on its representative dataset are equivalent

when we impose certain conditions on the

representativeness.

For the sake of simplicity, in this section, we will restrict

our interest to a binary classification problem, although our

approach is valid for any classification problem. Therefore,

our input is a binary dataset D ¼
�
ðx; cxÞ : x 2 X � Rn and

cx 2 f0; 1g
�
. Besides, we will assume in this section that

the training process tries to minimize the following error

function:

Eðw;DÞ ¼ 2

jXj
X

x2X
ExðwÞ;

where, for ðx; cxÞ 2 D and w 2 Rnþ1,

ExðwÞ ¼
1

2
ðcx � ywðxÞÞ2

is the loss function considered, called the mean squared

error (MSE). An example of such a training process is the

gradient descent training algorithm.

First, let us introduce the definition of a perceptron.

(a) A binary classifica-
tion problem given by
a sampled circumference.
In this case, the classi-
fication problem tries to
distinguish between the
upper and the lower part
of the circumference.

(b) (ε1-Representative
dataset) A subset of
the sampled circumfer-
ence given in Fig. 2a. Let
us observe that the deci-
sion boundary obtained
is similar to the one
showed in Fig. 2a.

(c) (ε2-Representative
dataset) A subset of
the sampled circumfer-
ence given in Fig. 2a. Let
us observe that the deci-
sion boundary obtained
is quite different to the
one showed in Fig. 2a.

Fig. 2 Illustration of a binary classification problem and the representative dataset concept

Table 1 The 0-dimensional bottleneck distance (dB0), the 1-dimensional bottleneck distance (dB1), and the Hausdorff distance (dH ) between the

persistence diagrams of the dataset given in Fig. 2a and the datasets given in Fig. 2b and c, respectively

Datasets 1
2
dB0

1
2
dB1 dH

Original (Fig. 2a) and e1-representative (Fig. 2b) 0.07 0.08 0.18

Original (Fig. 2a) and e2-representative (Fig. 2c) 0.13 0.08 0.3

Table 2 The 0-dimensional bottleneck distance (dB0
) and the Haus-

dorff distance (dH) between the persistence diagrams of the dataset

(D) given in Fig. 2a, composed of 22 points, and the dominating

datasets ( ~D) obtained applying Algorithm 1 for different values of e,
and a random dataset (R) of the same size than the corresponding

dominating dataset

e (Alg. 1) j ~Dj 1
2
dB0

ðD; ~DÞ 1
2
dB0

ðD;RÞ dHðD; ~DÞ dHðD;RÞ

0.6 8 0.22 0.29 0.39 0.83

0.3 14 0.13 0.16 0.23 0.7

0.2 18 0.05 0.15 0.19 0.71
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Definition 6 A perceptron N w : Rn ! f0; 1g, with

weights w ¼ ðw0;w1; . . .;wnÞ 2 Rnþ1, is defined as:

N wðxÞ ¼
1 if ywðxÞ	

1

2
;

0 otherwise;

8
<

:

being yw : Rn ! ð0; 1Þ defined as

ywðxÞ ¼ rðwxÞ

where, for x ¼ ðx1; . . .; xnÞ 2 Rn,

wx ¼ w0 þ w1x1 þ . . .þ wnxn;

and r : R ! ð0; 1Þ, defined as

rðzÞ ¼ 1

1þ e�z
;

is the sigmoid function.

Remark 2 In the previous definition, let us point out that

the condition ywðxÞ	 1
2
is the same as the condition wx	 0

that usually appears in the definition of perceptron.

A useful property of the sigmoid function is the easy

expression of its derivative. Let rm denote the composition

rm ¼ r � � �m�timesr.

Lemma 3 If m 2 N and z 2 R then

0\ðrmÞ0ðzÞ ¼ mrmðzÞð1� rðzÞÞ� m

mþ 1

� �mþ1

:

Proof Firstly, let us observe that ðrmÞ0ðzÞ ¼ mrmðzÞð1�
rðzÞÞ[ 0 since 0\rðzÞ\1 for all z 2 R. Secondly, let us

find the local extrema of ðrmÞ0 by computing the roots of its

derivative:

ðrmÞ00ðzÞ ¼ mrmðzÞð1� rðzÞÞðm� ðmþ 1ÞrðzÞÞ:

Now, ðrmÞ00ðzÞ ¼ 0 if and only if m� ðmþ 1ÞrðzÞ ¼ 0.

The last expression vanishes at z ¼ logðmÞ. Besides,

ðrmÞ00ðzÞ[ 0 if and only if m� ðmþ 1ÞrðzÞ[ 0 which is

true for all z 2 ð�1; logðmÞÞ. Analogously, ðrmÞ00ðzÞ\0

for all z 2 ðlogðmÞ;þ1Þ, concluding that z ¼ logðmÞ is a

global maximum. Finally, ðrmÞ0ðlogðmÞÞ ¼ m
mþ1

	 
mþ1

concluding the proof. h

From now on, we will consider that the associated iso-

metric transformation f by which the dataset is e-repre-
sentative is applied to the representative dataset. Therefore,

by abuse of notation, ~x will mean f ð~xÞ. Analogously, ~X will

mean f ð ~XÞ and ~D will mean f ð ~DÞ.
In the following lemma, we prove that the difference

between the outputs of the function ymw evaluated at a point

x and at its e-representative point ~x depends on the weights

w and the parameter e.

Lemma 4 Let w 2 Rnþ1 and x, ~x 2 Rn with ~x �e x. Then,

kymwð~xÞ � ymwðxÞk� qmkwk
e;

where

qm ¼ qðwx;w~x;mÞ ¼
ðrmÞ0ðzÞ; if logðmÞ\z;

ðrmÞ0ð~zÞ; if ~z\ logðmÞ;
ðrmÞ0ðlogðmÞÞ; otherwise.

8
><

>:

with z ¼ minfwx;w~xg and ~z ¼ maxfwx;w~xg.

Proof Let us assume, without loss of generality, that

wx�w~x. Then, using the mean value theorem, there exists

b 2 ðwx;w~xÞ such that

ymwð~xÞ � ymwðxÞ ¼ ðrmÞ0ðbÞðw~x� wxÞ:

By Lemma 3, the maximum of ðrmÞ0 in the interval ½z; ~z� is
reached at logðmÞ if z\ logðmÞ\~z, at z if logðmÞ� z, and

at ~z if ~z� logðmÞ, with z ¼ minfwx;w~xg and

~z ¼ maxfwx;w~xg. Consequently,

kymwðxÞ � ymwðxÞk� qmkwð~x� xÞk: ð1Þ

Applying now the Hölder inequality we obtain:

kwð~x� xÞk� kwk
k~x� xk�kwk
e:

Replacing kwð~x� xÞk by kwk
e in Eq. (1), we obtain the

desired result. h

The following result is a direct consequence of Lemma

3 and Lemma 4.

Corollary 3 Let w 2 Rnþ1 and x, ~x 2 Rn with ~x �e x. Then,

kymwð~xÞ � ymwðxÞk�
m

mþ 1

� �mþ1

kwk
e:

The next result establishes under which conditions e-
representative points are classified under the same label as

the points they represent.

Lemma 5 Let ~D be an e-representative dataset of the

binary dataset D. Let N w be a perceptron with weights

w 2 Rnþ1. Let ðx; cÞ 2 D and ð~x; cÞ 2 ~D with ~x �e x. If

e� kwxk
kwk then

N wðxÞ ¼ N wð~xÞ:

Proof First, if wx ¼ 0, then e ¼ 0, therefore x ¼ ~x and

then N wðxÞ ¼ N wð~xÞ. Now, let us suppose that wx\0.

Then, ywðxÞ\ 1
2

and N wðxÞ ¼ 0 by the definition of
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perceptron. Since e\ kwxk
kwk then x and ~x belong to the same

semispace in which the space is divided by the hyperplane

wx ¼ 0. Therefore, w~x\0, then ywð~xÞ\ 1
2

and finally

N wð~xÞ ¼ 0. Similarly, if wx[ 0, then

N wðxÞ ¼ 1 ¼ N wð~xÞ, concluding the proof. h

By Lemma 5, we can state that if e is ‘‘small enough’’

then the perceptron N w evaluated on D and ~D will

coincide.

In the following results, we will restrict ourselves to k-
balance datasets as a theoretical convenience.

The next result relies on the accuracy (see Definition 1)

of a perceptron evaluated on the original dataset and its

representative dataset.

Theorem 2 Let ~D be a k-balanced e-representative data-

set of the binary dataset D. Let N w be a perceptron with

weights w 2 Rnþ1. If e� min
n

kwxk
kwk : ðx; cxÞ 2 D

o
then

AðD;N wÞ ¼ Að ~D;N wÞ:

Proof Since ~D is k-balance e-representative of D, then

jXj ¼ k � j ~Xj and we have:

AðD;N wÞ �Að ~D;N wÞ ¼
1

jXj
X

x2X
IwðxÞ �

1

j ~Xj
X

~x2 ~X

Iwð~xÞ

¼ 1

jXj
X

x2X
IwðxÞ � k � Iwð~xÞð Þ

¼ 1

jXj
X

~x2 ~X

X

x�e ~x

IwðxÞ � Iwð~xÞð Þ:

Finally, IwðxÞ ¼ Iwð~xÞ for all x �e ~x and ð~x; c~xÞ 2 ~D by

Lemma 5 since e\ kwxk
kwk for all ðx; cxÞ 2 D. h

Next, let us compare the two errors Eðw;DÞ and Eðw; ~DÞ
obtained when considering the binary dataset D and its k-

balanced e-representative dataset ~D.

Theorem 3 Let ~D be a k-balanced e-representative data-

set of the binary dataset D. Then:

kEðw;DÞ � Eðw; ~DÞk� 1

jXj
X

x2X

�
2cxq1 þ q2

�
kwðx� ~xÞk

where qm (being m ¼ 1; 2) was defined in Lemma 4, and

for each addend, x �e ~x.

Proof First, let us observe that:

Eðw;DÞ � Eðw; ~DÞ

¼ 1

jXj
X

x2X
ðcx � ywðxÞÞ2 �

1

j ~Xj
X

~x2 ~X

ðc ~x � ywð~xÞÞ2

¼ 1

jXj � j ~Xj

	
j ~Xj

X

x2X
ðcx � ywðxÞÞ2 � jXj

X

~x2 ~X

ðc~x � ywð~xÞÞ2


:

Now, since ~D is k-balanced e-representative of D then

jXj ¼ k � j ~Xj. Therefore,

kEðw;DÞ � Eðw;DÞk

¼ 1

jXj k
X

x2X
2cx

�
y ~wð~xÞ � ywðxÞ

�
þ y2wðxÞ � y2~wð~xÞ

�
k

� 1

jXj
X

x2X
2cxky ~wð~xÞ � ywðxÞk þ ky2wðxÞ � y2~wð~xÞk;

where, for each addend, ~x �e x. Applying Lemma 4 for

m ¼ 1; 2 to the last expression, we get:

kEðw;DÞ � Eðw; ~DÞk� 1

jXj
X

x2X

�
2cxq1 þ q2

�
kwðx� ~xÞk:

h

From this last result, we can infer the following: We can

always fix the parameter e ‘‘small enough’’ so that the

difference between the error obtained when considering the

dataset D and its e-representative dataset is ‘‘close’’ to zero.
Fig. 3 aims to provide intuition for this result.

Theorem 4 Let d[ 0. Let ~D be a k-balanced e-repre-
sentative dataset of the binary dataset D. Let N w be a

perceptron with weights w 2 Rnþ1. If e� 54
43kwk


d, then

kEðw;DÞ � Eðw; ~DÞk� d:

Fig. 3 Intuition for Theorem 4. The error function can be understood

as an error surface. For a fixed set of weights w, the difference

between the error computed on the original dataset, E ¼ Eðw;DÞ, and
on its k-balanced e-representative dataset, ~E ¼ Eðw; ~DÞ, is bounded
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Proof First, q1 � 1
4
and q2 � 8

27
by Corollary 3. Second,

since cx 2 f0; 1g, we have:

1

jXj
X

x2X

�
2cxq1 þ q2

�
kwðx� ~xÞk

� 1

jXj
X

x2X

	 1

2
þ 8

27



kwðx� ~xÞk

¼ 43

54

1

jXj
X

x2X
kwðx� ~xÞk:

Applying Hölder inequality to the last expression, we get:

1

jXj
X

x2X

�
2cxq1 þ q2

�
kwðx� ~xÞk� 43

54
kwk
e:

Therefore, by Theorem 3, if e� 54
43kwk


d, then kEðw;XÞ �
Eðw; ~XÞk\d as stated. h

Summing up, we have proved that the accuracy and

error of a perceptron evaluated on the binary dataset D or

on its k-balanced e-representative dataset, are equivalent.

This fact will be highlighted in Sect. 6.1 for the perceptron

case and in Sect. 6.2 for neural networks with more com-

plex architectures.

6 Experimental results

In this section, we experimentally prove that the accuracy

of a neural network trained on the original dataset and on a

dominating dataset is correlated with the parameter e.
Besides, we also show that the accuracy is worse if we train

the neural network on a random dataset. Evaluation metrics

will be computed to show the performance of the trained

neural network using different datasets. Specifically, MSE

is the mean squared error, Recall is the ratio of positive

identifications correctly classified over all positive identi-

fications. Precision is the ratio of positive identifications

correctly classified over all those classified positive. AUC

is the area under the ROC curve. The ROC curve plots true

positive rates vs. false positive rates at different classifi-

cation thresholds.

6.1 The perceptron case

In this section, two experiments are provided to support our

theoretical results for the perceptron case and to illustrate

the usefulness of our method.

In the first experiment (Sect. 6.1.1), several synthetic

datasets are presented showing different distributions.

Random weight initialization is considered, and the holdout

procedure is applied (i.e., the datasets were split into

training dataset and test set) to test the generalization

capabilities.

In the second experiment (Sect. 6.1.2), the Iris dataset is

considered. The perceptron is initiated with random

weights and trained on three different datasets: the original

dataset, a representative dataset (being the output of

Algorithm 1) and a random dataset of the same size as the

size of the representative dataset. Now, the trained per-

ceptron is evaluated on the original dataset. This experi-

ment supports that a perceptron trained on representative

datasets get similar accuracy to a perceptron trained on the

original dataset.

Besides, we show that the training time, in the case of

the gradient descent training, is lower when using a rep-

resentative dataset and that representative datasets ensure

good performance, while the random dataset provides no

guarantees.

6.1.1 Synthetic datasets

In this experiment, different datasets were generated using

a Scikit-learn Python package implementation.2 Roughly

speaking, it creates clusters of normally distributed points

in an hypercube and adds some noise. Specifically, we

considered three different situations: (1) distribution with-

out overlapping; (2) distribution with overlapping; and (3)

a dataset with a ‘‘thin’’ class and a high e. In the last

experiment, we wanted to show that the choice of e is

important, and that there are cases where representative

datasets are not so useful. In all three cases, the perceptron

was trained using the stochastic gradient descent algorithm

and the mean squared error as the loss function.

The methodology followed in the experiments per-

formed in this section is outlined in Fig. 4 and summarized

in the following steps.

• Input: A dataset D ¼
�
ðx; cxÞ : x 2 X � R2 and cx 2

f0; 1g
�
and a parameter e[ 0.

• Divide the dataset D in a training dataset S and a test

set T .

• Compute a dominating dataset ~S of S using Algorithm

1.

• Compute a random dataset R of S.

• Train the perceptron N w on X , for X 2 fS; ~S;Rg.
• Evaluate the trained perceptron on T .

The aim of the second step in the methodology is to

compute an e-representative dataset using Algorithm 1 (see

Lemma 1 of Sect. 3.1). Nevertheless, using Algorithm 1 is

not mandatory, and we could replace it by any other

2 It can be found in https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.make_classification.html.
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process to compute an e-representative dataset. Observe

that the reduction is done in the fifth step since the idea is

to train the neural network on the e-representative dataset

instead of on the training dataset.

In the first case (see Fig. 5a), 5000 points were taken

with the two clusters well differentiated, i.e., without

overlapping between classes. The 20% of the points were

selected to belong to the test set, and the rest of the points

constituted the training dataset. Then, an e-representative
dataset of the training dataset was computed using Algo-

rithm 1 with e ¼ 0:8, obtaining a dominating dataset with

just 17 points. Similarly, 17 random points were chosen

from the training dataset (see Fig. 5c). Later, a perceptron

was trained on each dataset for 20 epochs and evaluated on

the test set. The mean accuracy results after 5 repetitions

were: 0.96 for the dominating dataset, 0.82 for the random

dataset, and 0.98 for the training dataset. Besides, the

random dataset reached very low accuracy in general. In

the second case (see Fig. 5d), a dataset composed of 5000

points with overlapping classes was generated. As in the

first case, the dataset was split into a training dataset and a

test set. Then, the e-representative dataset of the training

dataset was computed using Algorithm 1 with e ¼ 0:5,

resulting in a dominating dataset of size 22. After training a

perceptron for 20 epochs and repeating the experiments 5

times, the mean accuracy values were: 0.73 for the domi-

nating dataset; 0.67 for the random dataset; and 0.86 for the

training dataset. Finally, in the third case (see Fig. 5g), one

of the classes was very ‘‘thin,’’ in the sense that the points

were very close to each other displaying a thin line.

Therefore, if a ‘‘big’’ e were chosen, that class would be

represented by a pointed line as shown in Fig. 5h where

e ¼ 0:8, reducing the dominating dataset to 15 points. With

this example, we wanted to show a case where represen-

tative datasets were not so useful. The perceptron was

trained for 20 epochs, and the mean accuracy of 5 repeti-

tions was: 0.72 for the dominating dataset; 0.76 for the

random dataset; and 0.99 for the training dataset. In terms

of time, the training for 20 epochs on the training dataset

took around 20 seconds, and the training on the dominating

dataset took half a second. The computation of the domi-

nating dataset took around 7 seconds. In Table 3, some

evaluation metrics are provided on the test set.

6.1.2 The iris dataset

In this experiment, we used the Iris Dataset3 which corre-

sponds to a classification problem with three classes. It is

composed by 150 4-dimensional instances. We limited our

experiment to two of the three classes, keeping a balanced

dataset of 100 points that will be our original dataset.

The methodology followed in the experiments per-

formed in this section is outlined in Fig. 6 and summarized

in the following steps.

• Input: The original dataset D ¼
�
ðx; cxÞ : x 2 X � R4

and cx 2 f0; 1g
�
and a parameter e[ 0.

• Compute a dominating dataset ~D of D using Algorithm

1.

• Compute a random dataset R of D.

• Train a perceptron N w on X , for X 2 fD; ~D;Rg.
• Evaluate the trained perceptron on D.

Fig. 4 Methodology followed in the experiments carried out in Sects. 6.1.1 and 6.2.1

3 https://archive.ics.uci.edu/ml/datasets/iris.
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(a) (Synthetic) case 1:
original dataset

(b) (Synthetic) case 1:
dominating dataset

(c) (Synthetic) case 1:
random dataset

(d) (Synthetic) case 2:
original dataset

(e) (Synthetic) case 2:
dominating dataset

(f) (Synthetic) case 2:
random dataset

(g) (Synthetic) case 3:
original dataset

(h) (Synthetic) case 3:
dominating dataset

(i) (Synthetic) case 3:
random dataset

Fig. 5 Different synthetic datasets generated using the Scikit-learn

python package implementation. The first column corresponds to

original datasets, the second column corresponds to dominating

datasets of the training datasets, and the third column corresponds to

random subsets of the training datasets of the same size as the

corresponding dominating set

Table 3 Evaluation metrics on

the test set for a perceptron

trained on the training datasets,

the dominating datasets and the

random datasets computed from

the synthetic datasets shown in

Fig. 5

(Synthetic) Dataset Accuracy Recall Precision AUC MSE

Case 1 Training 0.98 0.99 0.98 0.99 0.01

Dominating 0.96 0.97 0.97 0.99 0.09

Random 0.82 0.96 0.82 0.84 0.15

Case 2 Training 0.86 0.85 0.93 0.92 0.1

Dominating 0.73 0.89 0.72 0.79 0.18

Random 0.67 0.93 0.66 0.78 0.2

Case 3 Training 0.99 0.98 0.99 0.99 0.01

Dominating 0.72 0.87 0.64 0.95 0.18

Random 0.76 0.71 0.61 0.71 0.22
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Algorithm 1 was applied to the original dataset to obtain

an e-representative dataset of 16 points with e� 0:5. A

random dataset extracted from the original dataset with the

same number of points than the dominating dataset was

also computed. These datasets are represented in R3 in

Fig. 7a, b and c, respectively. Besides, the associated

persistence diagrams are shown in Fig. 8a, b and c. The

Hausdorff and the 0-dimensional bottleneck distances

between the original dataset, and the dominating and ran-

dom datasets are given in Table 4.

We trained the perceptron with different initial weights

and observed that the perceptron trained on the dominating

and the original datasets converged to similar errors. In

Table 5, the difference between the errors using a fixed set

of weights for the dominating and the random dataset is

provided. In Table 6, different metrics were evaluated on

the original dataset when training on the original, the

dominating and the random dataset, respectively. The

table shows that the dominating dataset provides better

metrics than the random dataset (Table 6). In Table 7, the

computation time in seconds when using the different

datasets is shown.

6.2 The multi-layer neural network case

In this section, we will experimentally check the usefulness

of representative datasets for more complex neural network

architectures than a perceptron. Two different experiments

Fig. 6 Methodology followed in the experiments performed in Sects. 6.1.2 and 6.2.2.

(a) (Iris) original
dataset

(b) (Iris) dominating
dataset

(c) (Iris) random
dataset

Fig. 7 Visualization of the Iris dataset: the original dataset is composed of 100 points, and the dominating dataset and the random dataset are

composed of 16 points
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were made, one using synthetic datasets and the other using

the Digits dataset4.

6.2.1 Synthetic datasets

This experiment consists of two different binary classifi-

cation problems on synthetic datasets with 5000 points.

The methodology followed in the experiments per-

formed in this section is outlined in Fig. 4 and summarized

in the following steps.

• Input: A dataset D ¼
�
ðx; cxÞ : x 2 X � R3 and cx 2

f0; 1g
�
and a parameter e[ 0.

(a) (Iris) Persistence
diagram of the original
dataset (Fig. 7a).

(b) (Iris) Persistence dia-
gram of the dominating
dataset (Fig. 7b).

(c) (Iris) Persistence
diagram of the random
dataset (Fig. 7c).

(d) (Digits) Persistence
diagram of the original
dataset (Section 6.2.2).

(e) (Digits) Persistence
diagram of the dominating
dataset (Section 6.2.2).

(f) (Digits) Persistence
diagram of the random
dataset (Section 6.2.2).

Fig. 8 Persistence diagram of the original, dominating and random datasets obtained from the Iris dataset and Digits dataset, respectively

Table 4 The Hausdorff distance (dH) and the 0-dimensional bottle-

neck distance (dB) of the dominating and random datasets with

respect to the original datasets obtained from the Iris dataset and the

Digits dataset, respectively

Dataset Size 1
2
dB dH

(Iris) Original 100 - -

Dominating 16 0.11 0.58

Random 16 0.5 1.12

(Digits) Original 1797 - -

Dominating 173 0.09 0.29

Random 173 0.09 0.31
Table 5 Comparison between the exact error differences computed

over the random and the dominating datasets for the Iris classification

problem

Dataset kEðw;XÞ � Eðw; ~XÞk

(Iris) Dominating 0.05

Random 0.27

The values correspond to the mean of the exact error differences

obtained using 100 different random weights
4 https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_

last_image.html.
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• Select a multi-layer neural network architecture N w;U

to classify D.

• Divide the dataset D in a training dataset S and a test

set T .

• Compute a dominating dataset ~S of S using Algorithm

1.

• Compute a random dataset R of S.

• Train the multi-layer neural network N w;U on X for

X 2 fS; ~S;Rg.
• Evaluate the trained neural network on T .

Each synthetic dataset (case A and case B) was split into a

training dataset and a test set with proportions of 80% and

20%, respectively. Then, a dominating dataset of the

training dataset, and a random subset of the training dataset

with the same size as the dominating dataset, were com-

puted and used for training a 3� 12� 6� 1 neural net-

work. It used ReLU activation function in the inner layers

and sigmoid function in the output layer and was trained

using stochastic gradient descent and mean squared error as

the loss function for 20 epochs.

In the first case (see Fig. 9a), an unbalanced dataset with

overlapping was considered, and an e-dominating dataset

was computed with e ¼ 0:8 composed of 67 points (see

Fig. 9b). Then, a random dataset with the same size as the

dominating dataset was considered. The multi-layer neural

network was trained, and the mean accuracy values after 5

repetitions were: 0.85 for the dominating dataset; 0.74 for

the random dataset; and 0.86 for the training dataset. In the

second case, a balanced dataset with overlapping was

considered (see Fig. 9d), and the same process as in the

first case was carried out but with e ¼ 0:3, obtaining a

dominating dataset of size 319. The mean accuracy values

after 5 repetitions were: 0.92 for the dominating dataset;

0.91 for the random dataset; and 0.93 for the training

dataset. In Table 8, different evaluation metrics on the test

set for the two cases are shown.

6.2.2 The digits dataset

The Digits dataset5 used in this experiment consists of

images classified in 10 different classes corresponding to

digits from 0 to 9. An example of an image of each class is

shown in Fig. 10. The Digits dataset is composed by 1797

64-dimensional instances.

The methodology followed in the experiments per-

formed in this section is outlined in Fig. 6 and summarized

in the following steps.

• Input: A dataset D ¼
�
ðx; cxÞ : x 2 X � R64 and cx 2

f0; 1; :::; 9g
�
and a parameter e[ 0.

• Select a multi-layer neural network architecture N w;U

to classify D.

• Compute a dominating dataset ~D of D using Algorithm

1.

• Compute a random dataset R of D.

• Train the multi-layer neural network N w;U on X for

X 2 fD; ~D;Rg.
• Evaluate the trained neural network on D.

In this experiment, Algorithm 1 was applied with e ¼ 0:2

to obtain a dominating dataset of size 173. The corre-

sponding persistence diagrams can be seen in Fig. 8d, e and

f. The Hausdorff and the bottleneck distances are shown in

Table 4. In this case, we used a multi-layer neural network

with 64� 400� 300� 800� 300� 10 neurons with sig-

moid activation function in the hidden layers and softmax

activation function in the output layer. The neural network

was trained using Adam algorithm and categorical cross-

entropy as the loss function for 1000 epochs. It was laun-

ched 5 times for the dominating dataset and the random

Table 6 Different metrics for

the Iris and the Digits dataset

experiments calculated as the

mean values of 5 repetitions and

evaluated on the original dataset

Dataset Accuracy Recall Precision AUC MSE

(Iris) Original 1 1 1 0.99 0.003

Dominating 0.9 1 0.9 0.9 0.11

Random 0.6 0.2 0.2 0.36 0.39

(Digits) Original 0.95 0.94 0.96 0.99 0.01

Dominating 0.77 0.76 0.78 0.95 0.04

Random 0.63 0.62 0.64 0.89 0.06

Table 7 Time (in seconds) required to compute the dominating

datasets using Algorithm 1 and time (in seconds) required for the

training process on the Iris and Digits datasets

Dataset Alg. 1 time Training time

(Iris) Original - 3.06 sec

Dominating 0.04 sec 0.8 sec

(Digits) Original - 65.6 sec

Dominating 0.57 sec 11.78 sec

The training method consists of the gradient descent algorithm for the

Iris dataset experiment. In the case of the Digits dataset, a multi-layer

neural network was trained for 1000 epochs using the Adam training

algorithm
5 https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_

last_image.html.
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dataset. The mean accuracy values of different metrics for

the 5 repetitions when training the neural network on the

three different datasets and evaluated on the original

dataset are shown in Table 6. Finally, in Table 9, different

values for e were used to compute the size of the domi-

nating dataset and the accuracy of the neural network

trained with the dominating dataset both on the dominating

dataset and on the original dataset.

7 Conclusions and future work

The success of practical applications and the availability of

new hardware (e.g., GPUs [24] and TPUs [25]) have led to

focus neural network research on the development of new

architectures rather than on theoretical issues. Neverthe-

less, a deeper understanding of the data structure is also

necessary for field development, such as new discoveries

on adversarial examples [26] have shown, or the one given

Fig. 9 The first column shows the training datasets obtained as

subsets of two different synthetic datasets generated using the Scikit-

learn python package implementation. The second column shows

dominating datasets computed from the training datasets, and the third

column shows random subsets of the training datasets with the same

size as the corresponding dominating dataset

Table 8 Evaluation metrics on

the test set for the training of a

multi-layer neural network on

the training dataset, on the

dominating dataset and on the

random dataset obtained from

the synthetic dataset experiment

(Synthetic) Dataset Accuracy Recall Precision AUC MSE

Case A Training 0.86 0.61 0.85 0.88 0.11

Dominating 0.85 0.64 0.8 0.84 0.14

Random 0.74 0.05 0.38 0.73 0.18

Case B Training 0.93 0.95 0.93 0.98 0.05

Dominating 0.92 0.96 0.92 0.98 0.07

Random 0.91 0.94 0.92 0.98 0.09
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in [27], where the redundancy of several datasets is

empirically shown.

In this paper, we propose the use of representative

datasets as a new approach to reduce learning time in

neural networks based on the topological structure of the

input dataset. Specifically, we have defined representative

datasets using a notion of nearness that has the Gromov–

Hausdorff distance as the lower bound. Nevertheless, the

bottleneck distance of persistence diagrams (which is a

lower bound of the Gromov–Hausdorff distance) is used to

measure the representativeness of the dataset since it is

computationally less expensive. Besides, we have theoret-

ically proved that the accuracy of a perceptron evaluated

on the original dataset coincides with the accuracy of the

neural network evaluated on its representative dataset when

the neural network architecture is a perceptron, the loss

function is the mean square error and certain conditions on

the representativeness of the dataset are imposed. Fur-

thermore, the agreement between the provided theoretical

results and the experiments supports that representative

datasets can be a good approach to reach an efficient

‘‘summarization’’ of a dataset to train a neural network.

Planned future work is to provide more experiments

using high-dimensional real data and different reduction

algorithms. Furthermore, we plan to formally prove that the

proposed approach can be extended to other neural network

architectures and training algorithms using milder con-

straints. Let us observe that in the case that the dataset is

already small, and then, it will not make sense to compute a

representative dataset. The sparsity of the dataset may be a

feature to be considered as a future work. Finally, we plan

to investigate more efficient ways of computing dominat-

ing datasets in particular and representative datasets in

general, since the algorithm proposed is just an example

and, in general, will not compute the smallest possible

representative dataset nor is it the fastest possible.
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