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We study integral representations of the Gevrey series solutions of irregular hypergeo-

metric systems under certain assumptions. We prove that, for such systems, any Gevrey

series solution, along a coordinate hyperplane of its singular support, is the asymptotic

expansion of a holomorphic solution given by a carefully chosen integral representation.

1 Introduction

In [10] (see also [11, 12]) the authors introduce and study A-hypergeometric systems

and their solutions, generalizing many classical hypergeometric differential equations.

General A-hypergeometric systems, also known as GKZ systems, are finitely generated

D-modules, where D := C[x]〈∂〉 = C[x1, . . . , xn]〈∂1, . . . , ∂n〉 stands for the complex n-th

Weyl algebra.

Let us first recall some preliminary notions and results in D–module theory.

Given a left D–ideal J ⊆ D, we consider the cyclic D–module M := D/J. A solution f of

M is an element of a left D–module F such that P · f = 0, ∀P ∈ J. In this paper we only

consider the cases when F is either the space of holomorphic functions or the space

Communicated by Prof. Masaki Kashiwara
Received April 16, 2019; Revised October 04, 2019; Accepted October 10, 2019

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/23/17823/5648064 by U
niversidad de Sevilla user on 28 June 2022

https://doi.org/10.1093/imrn/rnz303


17824 F.-J. Castro-Jiménez et al.

of Gevrey series (of order s ∈ R) along Y = {xn = 0} at p ∈ Y. We recall that such a

Gevrey series is an expression of the form f = ∑∞
m=0 fmxm

n where fm = fm(x1, . . . , xn−1)

is holomorphic at p and
∑∞

m=0 fmxm
n /(m! )s−1 is convergent at p. The smallest possible s

(if any) so that this latter condition holds is called the Gevrey index of f .

On the other hand, if u, v ∈ Rn satisfy u + v ∈ Rn
>0 one can consider the graded

ideal (or initial ideal) of J with respect to L = (u, v), denoted by inL(J), which is an ideal

in the polynomial ring C[x, ξ ] = C[x1, . . . , xn, ξ1, . . . , ξn], see, for example, [3, page 28]. Its

zero set V(inL(J)) ⊆ C2n is the L–characteristic variety of the cyclic D–module M = D/J,

see, for example, [28, Definition 3.1]. If F = (u, v) with u = (0, . . . , 0), v = (1, . . . , 1) then

Ch(M) := V(inF(J)) is simply called the characteristic variety of M. The D–module M

is said to be holonomic if the dimension of Ch(M) is n. The singular locus of M is the

Zariski closure of the image of Ch(M) \ {ξ1 = · · · = ξn = 0} ⊆ C2n by the projection

C2n −→ Cn, (x, ξ) 
→ x. On the other hand, set V := (−en, en), where en = (0, . . . , 0, 1),

and denote Ls := F + (s − 1)V for s > 1. The Ls-characteristic variety is known to be

locally constant with respect to s > 1 except at a finite set of values called the slopes of

M along Y, see [17]. If M is holonomic and it has a Gevrey solution with Gevrey index

s > 1 along Y then s is a slope of M along Y, see [18, Théorème 2.4.2] and [23] for a more

general and stronger statement.

The input data for a GKZ system is a pair (A,β) where β is a vector in Cd and

A = (ak�) = (a(1), . . . , a(n)) ∈ (Zd)n is a d × n matrix whose �-th column is a(�) and

ZA := ∑d
k=1 Za(k) = Zd. The toric ideal IA ⊂ C[∂] := C[∂1, . . . , ∂n] is the ideal generated

by the family of binomials ∂u − ∂v, where u, v ∈ Nn and Au = Av (we assume 0 ∈ N).

Following [10, 11], the hypergeometric ideal associated with the pair (A,β) is

HA(β) := DIA + D(E1 − β1, . . . , Ed − βd),

where Ek = ∑n
�=1 ak�x�∂� is the k−th Euler operator associated with the k-th row of A.

The corresponding hypergeometric D-module (or A-hypergeometric system) is MA(β) :=
D

HA(β)
.

In [11] and [1, Thm. 3.9] the authors prove that any hypergeometric system MA(β)

is holonomic. Moreover, a characterization of the regularity of MA(β), in the sense of

D–module theory [18, 23], is provided in the series of papers [16, 27, 28]. The holonomic

D-module MA(β) is regular if and only if the toric ideal IA is homogeneous for the

standard grading in the polynomial ring C[∂]. In particular the condition to be regular

for MA(β) is independent of the parameter vector β.
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The dimension of the space of germs of holomorphic solutions of MA(β) around

a generic point in Cn equals d! Vol(�A) if β is generic (see [11], [1, Cor. 5.20], and [22]).

Here�A is the convex hull in Rd of the points 0, a(1), . . . , a(n), where 0 ∈ Rd is the origin,

and Vol(�A) is its Euclidean volume. These holomorphic solutions are represented as

�–series in [11] (see also [24] and [7]) when β is generic enough.

A. Adolphson considers in [1, Sec. 2] integral representations of solutions of

MA(β) that involve exponentials of polynomial functions and appropriate integration

cycles. In [6], A. Esterov and K. Takeuchi prove that the generic holomorphic solu-

tion spaces are in fact completely described by Adolphson’s integral representations

along rapid decay cycles as introduced by M. Hien in [14] and [15]. Such type of

integrals are also used in [20] and generalized in [21], where they are called Laplace

integrals.

The slopes, see [18], of MA(β) along coordinate subspaces are described in

[28]. Their corresponding irregularity sheaves and Gevrey series solutions, defined

in [23], are studied and described for generic parameters β in [7] (see also [8, 9]).

Moreover, in [4, Proposition 5.3 and Remark 5.4] these Gevrey series solutions of

MA(β) are interpreted as asymptotic expansions of certain of its holomorphic solutions

under some assumption on the Gevrey index of the series, via the so-called modified

A-hypergeometric systems introduced in [29].

In [5], and when A is a row matrix with positive integer entries, the authors

develop a link between Gevrey series solutions of MA(β) and holomorphic solutions in

sectors following Adolphson’s approach. They prove that any Gevrey series solution,

along the singular support of the system MA(β), is the asymptotic expansion of a

holomorphic solution given by a carefully chosen integral representation.

In this paper we further develop this link when the matrix A = (a(1), . . . , a(n)) ∈
(Zd)n satisfies two conditions. Since the rank of A is assumed to be d, we may also

assume, after a possible reordering of the columns, that the 1st d columns of A

determine a (d − 1)-simplex σ . We further assume that A satisfies the following two

conditions (see Assumption 4.1): (1) the points a(d+1), . . . , a(n−1) belong to the interior

of the convex hull �σ of σ and the origin; and (2) the point a(n) is not in �σ and belongs

to the open positive cone of σ . Figure 1 shows an example of an allowed column set

configuration for a 2 × 5 matrix A, where �σ is the triangle.

Under these two conditions we have that Y = {xn = 0} is an irreducible

component of the singular locus of MA(β) [1, Sec. 3], there is only one slope of MA(β)

along Y [28] and, if β is generic enough, the dimension of the space of Gevrey series

solutions of MA(β) along Y is d! Vol(�σ ) [7].
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Fig. 1.

We prove in Theorem 4.3 that for generic β ∈ Cd, the space of Gevrey series

solutions of MA(β), along the hyperplane Y, has a basis given by asymptotic expansions

of holomorphic solutions of MA(β) described by Adolphon’s integral representations.

These integrals are solutions of type

IC(β; x) = IC(β; x1, . . . , xn) :=
∫

C
t−β−1 exp

(
n∑
�=1

x�t
a(�)

)
dt,

where t = (t1, . . . , td), dt = dt1 · · · dtd and C runs over a finite set of cycles on the

universal covering of (C∗)d. These are Borel–Moore cycles or cycles with closed support

on the universal covering of (C∗)d, a notion for which we refer to [25, II,5.3]). Moreover,

we prove in Theorem 5.8 that these cycles can be replaced by a set of rapid decay

homology cycles in the sense of [15].

Here is a summary of the content of this paper. In Section 2 we consider a general

matrix A as before but not necessarily satisfying previous conditions (1) and (2) (see

Assumption 4.1). Following a construction in [13, Sec. 4.4], we describe cycles Cp,δ in

the universal covering of (C∗)d, depending on a given point x ∈ Cn. We fix a maximal

simplex σ ⊂ {1, . . . , n}, that is, the set {a(k) | k ∈ σ } is a basis of Rd. Then this cycle

depends only on xσ := (xk)k∈σ , and on vectors p ∈ Zσ and δ ∈ Rσ with components δk

satisfying |δk| < 1/2. In Section 2.3 we give a sufficient condition for the integrand

of Ip,δ(β; x) := ICp,δ
(β; x) to have moderate growth along Cp,δ. This is a step towards

sufficient conditions of convergence for Ip,δ(β; x) that are developed in Section 3.

In Section 3, we perform the appropriate toric change of variables in the

universal covering of (C∗)d, like in [13], which reduces the description of asymptotic
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expansions for the integrals Ip,δ(β; x) to the study of integrals of type

Fp,δ(β; y) :=
∫

Dp,δ

t−β−1 exp

⎛⎝t1 + · · · + td +
n∑

j=d+1

yjt
a(j)

⎞⎠ dt,

where the cycle Dp,δ is the image of Cp,δ under the change of variables. The new

integral Fp,δ(β; y) looks like a particular case of Ip,δ(β; x), with the 1st d × d submatrix

(a(1), . . . , a(d)) equal to the identity matrix. However, the matrix A = (a(1), . . . , a(n)) is

now allowed to have rational non integer coefficients. The crucial point for convergence

statements is a condition of rapid decay at infinity, see inequality (3.10). We prove that,

under some conditions, the integral Fp,δ(β; y) is absolutely convergent when �βk < 0 for

k ∈ σ and y ∈ (C∗)n−d; see Lemmata 3.1 and 3.2.

Section 4 contains some of the main results of this paper. We assume that the

matrix A defined in Section 3 satisfies more conditions in Assumption 4.4, deduced from

conditions (1) and (2) in Assumption 4.1 already considered for the original matrix. First

we prove that the conditions for convergence in Lemma 4.5, can be obtained in practice

for every y ∈ Cn−d with yn 
= 0.

We fix p ∈ Zd and δ ∈ Rd once for all and we omit these subindexes in our

formulas. As a step towards previously mentioned Theorem 4.3, we prove in Theorem 4.7

that if �β < 0, there is an asymptotic expansion with respect to the variable yn in some

sector in C∗:

F(β; y) ∼
yn→0

∑
m∈N

A(β; m, y′)y
m
n

m!
, (1.1)

where y′ = (yd+1, . . . , yn−1) and

A(β; m, y′) :=
∫

Dp,δ

t−β−1+ma(n) exp

⎛⎝t1 + · · · + td +
n−1∑

j=d+1

yjt
a(j)

⎞⎠ dt.

Assumption 4.4 plays an essential role in the proof of this result. Without

assumption (1), we might need to impose further conditions on the arguments of y,

e.g. conditions (3.5)j for all j, in order to guarantee the convergence of F(β; y). Without

condition (2), the vertex a(n) could have negative components and the integrals defining

the coefficients A(β; m, y′) would fail to be convergent for m large enough.

Then we prove in Lemma 4.9 that F(β; y) admits a meromorphic continuation

F̃(β; y), with respect to the variable β, with poles at most in a countable locally

finite union of hyperplanes P in Cd. The proof of this lemma uses that the points
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a(d + 1), . . . , a(n) belong to
∑d

k=1 R>0a(k) = Rd
>0, which follows from conditions (1) and

(2). The set P is contained in the set of so-called resonant parameters of A [12, 2.9] and

it is explicitly described in terms of the columns of A. We also prove in Lemma 4.10

that, for any fixed parameter β 
∈ P, the meromorphic continuation F̃(β; y) admits an

asymptotic expansion along yn = 0 and that the coefficients Ã(β; m, y′) of this expansion

are the analytic continuation of the previously introduced A(β; m, y′).
In Section 5 we prove that when �β < 0 and β is sufficiently general, the

integrals F(β; y) are in fact equal to integrals over rapid decay cycles in the sense of

[15] (see Theorem 5.3). The statements involving Borel–Moore cycles are weaker because

the analytic continuations are not expressed by integral along cycles when �βk > 0 for

some k. Another reason is that they are not cycles in the suitable homology adapted to

the problem, like for Hien’s rapid decay homology. The notion of rapid decay cycles is

explained in Section 5.1. Section 5.2 is devoted to the construction of rapid decay cycles.

We start from a product of Hankel contours, along which the hypergeometric integrals

are grossly divergent, but then we build a refined towards infinity version of this

product along which convergent integrals are obtained. These integrals in Section 5 are

also defined when �βk ≥ 0 for some k and they are still solutions of MA(β). In Section 5.2

we prove, by using Section 4, that these integrals admit asymptotic expansions as

Gevrey series solutions of MA(β) for non resonant β in Cd.

2 Products of Lines for Rapid Decay

2.1 Notations

Let us slightly change our notation used in the introduction and let us start with a pair

(B, γ ), where B := (b(1), . . . , b(n)) ∈ (Zd)n is a d×n matrix, described as a list of columns

such that ZB := Zb(1) + · · · + Zb(n) = Zd and where γ is a parameter vector in Cd. We

are concerned with integrals:

IC(γ ; x) = IC(γ ; x1, . . . , xn) :=
∫

C
t−γ−1 exp

(
n∑
�=1

x�t
b(�)

)
dt,

where 1 = (1, . . . , 1) ∈ Nd and C is a suitable cycle.

To make precise this definition let us specify some conventions and notations.

As already mentioned, C is a cycle on the universal covering (C̃∗)d of (C∗)d. We identify

(C̃∗)d with Cd or with Rd
>0 × Rd and write z = (log r + √−1 θ) or (r, θ), respectively, for

the coordinates on (C̃∗)d with θk a branch of arg tk tk = exp(zk), and rk = |tk|. We set, for
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any vector v ∈ Cd, tv = ∏d
k=1 tvk

k . This is a multivalued monomial, namely the function

on the universal covering:

exp 〈z, v〉 = exp

(
d∑

k=1

vk(log rk + √−1 θk)

)
,

where we set, given two vectors u, v ∈ Cd, 〈u, v〉 = ∑d
k=1 ukvk.

2.2 Description of cycles of rapid decay at infinity

If τ ⊂ {1, . . . , n}, we denote by Bτ the matrix whose columns are b(j) with j ∈ τ and by τ

the complement of τ in {1, . . . , n}.
Recall that a subset σ ⊂ {1, . . . , n} is called a maximal simplex for B if the

columns {b(k), k ∈ σ } form a basis of Rd. Such a maximal simplex σ is also called a

base in [11, Sec. 1.1]. We often identify the set σ with the set of columns {b(k), k ∈ σ }.
We fix a maximal simplex σ for B and take x ∈ Cn such that xk 
= 0 for all k ∈ σ .

We also fix p = (pk)k∈σ ∈ Zσ � Zd, δ = (δk)k∈σ ∈ Rσ � Rd such that |δk| < 1
2 for all k ∈ σ .

We denote by Cp,δ the cycle in the space (C̃∗)d described by the following condition on

the argument θ := arg t of t ∈ (C∗)d (i.e. tθ := (arg t1, . . . , arg td)):

arg(xktb(k)) = arg xk + 〈b(k), θ〉 = (1 + δk + 2pk)π for allk ∈ σ . (2.1)

Remark 2.1. The cycle Cp,δ depends on xσ := (xk)k∈σ ∈ (C∗)σ � (C∗)d and also on a

choice of its argument. However, a change in this choice yields only a reindexation by p

of the unchanged set of these cycles. For that reason in all our statements we stick on

xσ ∈ (C∗)σ without passing to the universal covering of (C∗)σ .

From now on we will denote Ip,δ(γ ; x) = ICp,δ
(γ ; x). The cycles Cp,δ are a slightly

modified version of cycles considered in [13, Sec. 4.4].

Let us set � := ]
π
2 , 3π

2

[ + 2πZ. The equality (2.1) can be globally rewritten using

matrix notation:

arg xσ + tBσ θ = (1 + δ + 2p)π ∈ �σ . (2.2)

There is a unique solution θ of the previous equation

θ = ( tBσ )
−1 (− arg xσ + (1 + δ + 2p)π

)
(2.3)

so that Cp,δ is the cartesian product of d open half–lines.
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Given p, p′ ∈ Zd, let θ = arg t, θ ′ = arg t′ be the corresponding unique solutions

for equation (2.2).

If ( tBσ )
−1(p−p′) ∈ Zd then θ−θ ′ ∈ 2πZd and the projections of the two cycles Cp,δ

and Cp′,δ on (C∗)d are the same. We check that the convergence of the two integrals along

the cycles Cp,δ and Cp′,δ are then equivalent to each other and, moreover, the integral

solutions differ only by a constant factor:

Ip′,δ(γ ; x) =
∫

Cp′,δ
t−γ−1 exp

(
n∑
�=1

x�t
b(�)

)
dt = e−2π

√−1(
∑d

k=1 mkγk)Ip,δ(γ ; x)

for some mk ∈ Z, k = 1, . . . , d.

When p varies in a set of representatives of Z
d

Z tBσ
, we will see that the

convergence of the integral Ip,δ(γ ; x) depends on δ (see Remark 2.2 and Lemma 4.5).

However, choosing in each such class an appropriate δ, we can find, as a consequence of

our main result and under some conditions (see Assumption 4.1), [Zd : Z tBσ ] = | det Bσ |
many integral solutions Ip,δ(γ ; x) which are linearly independent (see Theorem 4.3).

We will see in the proof of Lemma 3.2, after the change of variables defined in

Section 3, that the cycles Cp,δ are of rapid decay at infinity.

2.3 Sufficient conditions for moderate growth

Sufficient conditions for the convergence of the integral Ip,δ(γ ; x) are detailed in the

next section (see Lemma 3.2 and Remark 3.6). As a preliminary step let us look here at a

condition for bounding the exponential term in that integral; let us notice that condition

(2.1) implies that �(xktb(k)) < 0 along Cp,δ for any xk ∈ C∗, k ∈ σ . If we additionally could

ensure that

arg(xjt
b(j)) ∈ � for all j ∈ σ such that xj 
= 0 (2.4)

(see Remark 2.2 below) then the argument of the exponential has negative real part along

Cp,δ; hence, the absolute value of the exponential term in the integral Ip,δ(γ ; x) is bounded

by 1. Then if we take into account the term t−γ−1, the integrand of Ip,δ(γ ; x) has moderate

growth along Cp,δ.

Remark 2.2. Let us notice that condition (2.3) determines a unique cycle Cp,δ for a

given p and δ. It is not clear that for given x ∈ (C∗)σ × Cσ and p ∈ Zσ one can always

choose δ ∈ Rσ for this cycle to satisfy conditions (2.2) and (2.4). It is therefore interesting

to weaken these conditions by keeping only the significant ones. In Lemma 3.2 and
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Remark 3.6, completed by Remark 3.3, we do this with a reduced version of the variables

x renamed y.

We will see in the next section that conditions (2.2) and (2.4) are sufficient

convergence conditions for the integrals Ip,δ(γ ; x) when combined with a condition on

the parameter γ . After an appropriate change of variables we can interpret them as a

condition of rapid decay at infinity, see the proof of Lemma 3.2.

We notice that Cp,δ is a Borel–Moore cycle in (C̃∗)d but not in general a rapid

decay cycle in the sense of [14], see Remark 3.5.

However, we shall prove in Section 5 that the integral along Cp,δ is equal to

an integral along a rapid decay cycle (see Theorem 5.3) under Assumption 4.4, and for

values of γ that guarantee convergence. Our result can be then interpreted in the frame

of [6, Th. 4.5].

3 A Change of Variables and Explicit Calculations

We will assume for simplicity, after a possible reordering of the variables, that the

maximal simplex σ is {1, . . . , d}. Let us fix x ∈ (C∗)d × Cn−d, and an argument of all xk

with k ∈ σ . We consider the finite to one covering (C∗)d → (C∗)d of degree det Bσ , given

by the formula:

sk = xktb(k) for k ∈ σ .

We think of it as a (ramified) toric change of variables. We fix a branch of log xσ and we

consider the bijective change of variables on the universal covering (C̃∗)d � Cd, given by

log sk − log xk = log t · b(k).

Fractional powers like xv
σ with v ∈ Qd have the natural meaning xv

σ = exp(log xσ ·
v), and the inverse mapping on (C̃∗)d can be read as follows using these fractional

powers:

tk =
(

s

xσ

)B−1
σ e(k)

for k ∈ σ ,

where
(

s
xσ

)
is the vector with coordinates sk/xk and (e(k))k∈σ is the standard basis of Zd.

The image Dp,δ of the cycle Cp,δ described in Section 2, is determined by the conditions:

arg sk = (1 + δk + 2pk)π for all k ∈ σ . (3.1)
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17832 F.-J. Castro-Jiménez et al.

The d-form dt
t = dt1

t1
∧ · · · ∧ dtd

td
is well defined on (C̃∗)d, and we have

dtk

tk
= dsB−1

σ e(k)

sB−1
σ e(k)

=
d∑

i=1

(
B−1
σ

)
i,k

dsk

sk
,

so dt
t = det B−1

σ · ds
s . The integral Ip,δ is transformed as follows:

Ip,δ(γ ; x) =
∫

Cp,δ

t−γ−1 exp
(∑

x�t
b(�)

)
dt =

∫
Cp,δ

t−γ exp
(∑

x�t
b(�)

) dt

t

=
∫

Dp,δ

(
s

xσ

)−B−1
σ γ

exp

⎛⎝∑
k∈σ

sk +
∑
j/∈σ

xjx
−B−1

σ b(j)
σ · sB−1

σ b(j)

⎞⎠ det(B−1
σ )

ds

s
.

The final result is

Ip,δ(γ ; x) = det(B−1
σ )xσ

B−1
σ γ

∫
Dp,δ

s−B−1
σ γ−1 exp

⎛⎝∑
k∈σ

sk +
∑
j/∈σ

xjx
−B−1

σ b(j)
σ · sB−1

σ b(j)

⎞⎠ ds.

Lemma 3.1. Sufficient conditions for the absolute convergence of Ip,δ(γ ; x) are

�B−1
σ γ < 0 and �(xjx

−B−1
σ b(j)

σ sB−1
σ b(j)) < 0 ∀j ∈ σ such that xj 
= 0, ∀s ∈ Dp,δ.

Proof. The 2nd condition is a direct translation of (2.4). It is sensitive to the choice

modulo 2πZ of arg sk, for k ∈ σ , since the matrix B−1
σ b(j) may have coefficients in Q \ Z.

We have sk = −|sk|e
√−1πδk and (|s1|, . . . , |sd|) ∈ Rd

>0 parametrizes the cycle. Since

all the terms in the argument of the exponential term in Ip,δ(γ ; x) have negative real part,

we have

�
⎛⎝∑

k∈σ
sk +

∑
j/∈σ

xjx
−B−1

σ b(j)
σ sB−1

σ b(j)

⎞⎠ ≤ �
(∑

k∈σ
sk

)
≤ −c

(∑
k∈σ

|sk|
)

with c := mink cos(πδk) > 0.

Therefore, the integral Ip,δ(γ ; x), without the prefactor det(B−1
σ )xσ

B−1
σ γ , is domi-

nated by the following convergent integral with αk = �(−(B−1
σ γ )k)− 1 > −1 :

∫
R

d
>0

rα exp

(
−c

∑
k∈σ

rk

)
dr = c−|α|−d�(α + 1),

where r = (r1, . . . , rd, |α| = α1 + · · · + αd and �(α + 1) = ∏d
k=1 �(αk + 1). �
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Gevrey Expansions of Hypergeometric Integrals II 17833

We now define a reduction of the integral Ip,δ(γ ; x), which contains all the

essential information. We put aside the initial monomial xσ
B−1
σ γ , and the constant

det(B−1
σ ), and the remaining integral can be expressed via a function of n − d variables

y indexed by σ :

Gp,δ(γ ; y) = Gp,δ(γ ; yd+1, . . . , yn) :=
∫

Dp,δ

s−B−1
σ γ−1 exp

⎛⎝∑
k∈σ

sk +
∑
j/∈σ

yjs
B−1
σ b(j)

⎞⎠ ds. (3.2)

The formula relating Ip,δ(γ ; x) to the previous integral is

Ip,δ(γ ; x) = det(B−1
σ )xσ

B−1
σ γGp,δ(γ ; y), (3.3)

where yj = xjx
−B−1

σ b(j)
σ for j ∈ σ .

3.1 Reduced version of hypergeometric integrals

In order to simplify subsequent calculations we shall use a more handy version of the

integral Gp,δ(γ ; y) by renaming the exponents.

We consider β ∈ Cd and a d × n matrix A = (a(1), . . . , a(n)) with rational

coefficients and with (a(1), . . . , a(d)) = (e(1), . . . , e(d)) the unit matrix. Writing t instead

of s, we define

Fp,δ(β; y) :=
∫

Dp,δ

t−β−1 exp

⎛⎝t1 + · · · + td +
n∑

j=d+1

yjt
a(j)

⎞⎠ dt (3.4)

and we recover Gp,δ by setting A = B−1
σ B and β = B−1

σ γ in Fp,δ.

Now we transpose to Fp,δ(β; y) the two sufficient conditions in Lemma 3.1. The

1st one simply becomes �βk < 0, for all k ∈ σ , and we shall assume it until the end of this

section. Then we focus on the 2nd condition in Lemma 3.1. This condition transposed to

Fp,δ(β; y) is

arg(yjt
a(j)) = arg yj + 〈1 + δ + 2p, a(j)〉π ∈ � for j ∈ σ such that yj 
= 0. (3.5)

We shall prove in the next two lemmas, that a part of conditions (3.5)� is already

sufficient to guarantee the convergence of the integral Fp,δ(β; y).
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17834 F.-J. Castro-Jiménez et al.

We set yk = 1 for k = 1, . . . , d. Notice that condition (3.5)k is satisfied for all

k ∈ σ because tk = ykta(k) and |δk| < 1/2. So, condition (3.5) is equivalent to

arg(y�t
a(�)) = arg y� + 〈1 + δ + 2p, a(�)〉π ∈ � for � ∈ {1, . . . , n} such that y� 
= 0. (3.6)

Recall that �A denotes the convex hull of {0, a(1), . . . , a(n)} in Rd. Let ∂�A be

the union of the facets of �A not containing the origin and let τA be the set of indices

� ∈ {1, . . . , n} such that a(�) ∈ ∂�A. We denote by η ⊂ τA the set of indices for the vertices

of �A.

Lemma 3.2. Assume that y� 
= 0 if � ∈ τA. The set of conditions (3.6)� for � in τA is

sufficient for the integral Fp,δ(β; y) to be absolutely convergent, when �β < 0.

Proof. Let M(t, y) denote the argument in the exponential term in the integral (3.4). We

need to provide a bound for �M(t, y). We set τ := τA ∪ σ . We can write, for j 
∈ τ ,

a(j) =
∑
�∈η

νj�a(�) (3.7)

with 0 ≤ ∑
�∈η νj� < 1 and νj� ≥ 0 for all � ∈ η and j /∈ τ .

We set

ξ� := |y�ta(�)| for � ∈ τ .

By the condition (3.6)�, there exists ϑ ∈]0, π2 [ such that for all � ∈ τ one has

�(y�ta(�)) ≤ −ξ� cosϑ .

Recall that

M(t, y) =
∑
�∈τ

y�t
a(�) +

∑
j/∈τ

yjt
a(j) =

∑
�∈τ

y�t
a(�) +

∑
j/∈τ

yj

∏
�∈η
(ta(�))νj� =

=
∑
�∈τ

y�t
a(�) +

∑
j/∈τ

yj∏
�∈η y

νj�
�

∏
�∈η
(y�t

a(�))νj� .

Therefore, we get

�M(t, y) ≤ −
(∑
�∈τ

ξ�

)
cosϑ +

∑
j/∈τ

∣∣∣∣∣ yj∏
�∈η y

νj�
�

∣∣∣∣∣ (max
�∈η ξ�)

∑
�∈η νj� ≤ (3.8)

≤ −
(∑
�∈τ

ξ�

)
cosϑ + K max

((∑
�∈τ

ξ�

)κ
, 1

)
, (3.9)
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Gevrey Expansions of Hypergeometric Integrals II 17835

where κ := maxj/∈τ (
∑

�∈η νj�) < 1, and K = ∑
j 
∈τ

∣∣∣∣ yj∏
�∈η y

νj�
�

∣∣∣∣ is a constant for a fixed value

of y ∈ (C∗)n. Set ξ := ∑
�∈τ ξ�. We see that �M(t, y) is bounded by −ξ cosϑ + K max (ξκ , 1)

that tends to −∞ when ξ → +∞.

It also follows that | exp(M(t, y))| is bounded:

| exp(M(t, y))| ≤ exp(−ξ cosϑ + K max
(
ξκ , 1

)
) ≤ eL,

where L := supξ∈R>0
(−ξ cosϑ + K max (ξκ , 1)).

Since σ ⊆ τ , we have ξ = (∑
�∈τ ξ�

) ≥ |t1| + · · · + |td| and we get a rapid decay

condition when |t1| + · · · + |td| → +∞. There are positive constants c > 0 and R > 0

such that

|t1| + · · · + |td| > R �⇒ | exp(M(t, y))| < exp(−c(|t1| + · · · + |td|)).

It is convenient for further calculation to incorporate the upper bound eL in a global

inequality. For C = L + cR > 0 we have that

∀t ∈ Dp,δ, | exp(M(t, y))| < exp(C − c(|t1| + · · · + |td|)). (3.10)

The absolute convergence of the integral Fp,δ(β; y) follows now exactly as in the proof of

Lemma 3.1 by the assumption �βk < 0 for all k ∈ {1, . . . , d}. �

Remark 3.3. Notice that for fixed p ∈ Zd and δ ∈ Rd with |δk| < 1/2, the set of

conditions (3.6)� on y = (yd+1, . . . , yn), for � ∈ τA, defines an open set W ⊂ C{d+1,...,n}\τA ×
(C∗)τA\σ . On the factor (C∗)τA\σ this open set is a product of open sectors. In the more

specific situation of Section 4, since τA = σ ∪ {n}, there will be only one sector for the

variable yn, see Remark 4.6.

Remark 3.4. If y varies in a compact neighborhood of a given point y0 ∈ W we can

replace in (3.10) the constants c, C by constants independent from y = (yd+1, . . . , yn). We

can also take a uniform bound for |t−β−1|, when �β is bounded from below. This implies

that Fp,δ(β; y) is analytic with respect to (β, y) by Lebesgue’s theorem on dominated

convergence for integrals.

Remark 3.5. Notice that, in general, we don’t have rapid decay at the origin. For

example, if the matrix A has only positive entries, the exponential term in the integral
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17836 F.-J. Castro-Jiménez et al.

Fp,δ(β; y) tends to 1, when |t1| + · · · + |td| → 0, and the integrand behaves at the origin as

the factor t−β−1.

Recall that η is the set of vertices of�A different from the origin. We may weaken

the hypothesis in Lemma 3.2 as follows: we have an analogous formula to (3.7) for all

j /∈ η ∪ σ , namely a(j) = ∑
�∈η νj�a(�), with κj := ∑

�∈η νj� ≤ 1. Precisely, κj = 1 for

j ∈ τ \ (η ∪ σ) and κj < 1 for j /∈ τ = τA ∪ σ . We set Kj =
∣∣∣∣ yj∏

�∈η y
νj�
�

∣∣∣∣ for j /∈ η ∪ σ and we

obtain the following.

Remark 3.6. The set of conditions (3.6)� for � ∈ η, is sufficient for the convergence of

Fp,δ(β; y) when y varies in the nonempty open set in (C∗)n−d defined by
∑

j∈τ\(η∪σ) Kj <

cosϑ .

More precisely, we can write down a refined upper bound of the real part of the

exponent

�M(t, y) ≤ −
⎛⎝ ∑
�∈η∪σ

ξ�

⎞⎠ cosϑ +
∑
j/∈τ

Kj

⎛⎝ ∑
�∈η∪σ

ξ�

⎞⎠κj

+
∑

j∈τ\(η∪σ)
Kj

⎛⎝ ∑
�∈η∪σ

ξ�

⎞⎠1

.

Thus, the conclusion follows by an argument similar to the one in Lemma 3.2.

4 Obtaining the Gevrey Series

Given a matrix B = (b(1), . . . , b(n)) as in Section 2 and τ ⊂ {1, . . . , n} we denote by �τ

the convex hull of b(k), k ∈ τ , and the origin. We assume, after a possible reordering

of the variables, that σ := {1, . . . , d} is a maximal simplex for B, i.e. {b(1), . . . , b(d)} is

a basis of Rd.

Assumption 4.1. We assume that the matrix B satisfies

(1) The points b(d + 1), . . . , b(n − 1) belong to the interior of �σ and

(2) b(n) is not in �σ and belongs to the open positive cone of σ .

Remark 4.2. We notice that, under the above assumption, it follows from [1] that,

for any γ ∈ Cd, the singular locus of the hypergeometric system MB(γ ) is equal to⋃
k∈σ {xk = 0} ∪ {xn = 0}. Furthermore, by [28], MB(γ ) has a unique slope along the

coordinate hyperplane {xn = 0}.

The main result in this section is the following theorem announced in the

Introduction.
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Gevrey Expansions of Hypergeometric Integrals II 17837

Theorem 4.3. In the above situation, let us assume that γ ∈ Cd and �(B−1
σ γ ) < 0.

Then,

(1) There exists a finite number of cycles Cp,δ such that all the Gevrey solutions

of MB(γ ) along the hyperplane xn = 0 can be described as linear combina-

tions of the asymptotic expansions of the integral solutions ICp,δ
(γ ; x).

(2) For each cycle C = Cp,δ, there are meromorphic continuations with respect to

γ in Cd, of both IC(γ ; x) and of the coefficients of the asymptotic expansion

to the whole Cd.

(3) For any γ ∈ Cd that is not a pole, the meromorphic continuation of IC(γ ; x)

has an asymptotic expansion whose coefficients are precisely the values at

γ of the meromorphic continuations of the coefficients of the asymptotic

expansion of IC(γ ; x).

In the next three subsections we are proving the analogous result for the reduced

version Fp,δ of the hypergeometric integrals ICp,δ
; see Section 3.1. The transfer of the

results to the integrals ICp,δ
in the form of Theorem 4.3 is immediate.

4.1 Existence of asymptotic expansions for the integrals

As we did in Section 3.1, let us consider β ∈ Cd and A = (a(1), . . . , a(n)) is a d × n matrix

with rational coefficients and with (a(1), . . . , a(d)) = (e(1), . . . , e(d)) the unit matrix.

Let us denote by |a| = a1 + · · · + ad the sum of the coordinates of any vector a ∈ Qd.

Assumption 4.1 takes the following form in this reduced presentation.

Assumption 4.4. The matrix A satisfies

(1) For j = d+1, . . . , n−1, the rational vector a(j) is in the open positive orthant

in Qd and |a(j)| < 1.

(2) The rational vector a(n) belongs to the open positive orthant in Qd and

|a(n)| > 1.

Lemma 4.5. For �β < 0 and under Assumption 4.4 one can find for each yn,0 ∈ C∗,

and each p ∈ Zd a value of the parameter δ ∈ ] − 1
2 , 1

2 [
d

such that the integral Fp,δ(β; y) is

absolutely convergent.

Proof. Indeed by Lemma 3.2 it is sufficient to choose δ such that equation (3.5)n is

satisfied. Such a δ exists because |a(n)| > 1 and the image of ]−1
2 , 1

2 [
d

by the map δ →
〈δ, a(n)〉 is an interval ] − |a(n)|/2, |a(n)|/2[ of length greater than 1. �
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17838 F.-J. Castro-Jiménez et al.

Remark 4.6. Let us fix p, δ and a branch αn of arg yn,0 satisfying condition (??)n. This

defines the subset R ⊂ R of allowed arguments arg yn. Let Sp,δ ⊂ C∗ be the sector

defined by arg yn ∈ R0 the connected component of αn in R. Like in Remark 3.3, Sp,δ is

independent of the choice of αn.

Theorem 4.7. If �βk < 0 for all k = 1, . . . , d, then for any given yn,0 ∈ C∗ there is an

asymptotic expansion with respect to the variable yn in the open sector Sp,δ:

Fp,δ(β; y) ∼
yn→0

∑
m∈N

Ap,δ(β; m, y′)y
m
n

m!
,

where y′ = (yd+1, . . . , yn−1) and

Ap,δ(β; m, y′) :=
∫

Dp,δ

t−β−1+ma(n) exp

⎛⎝t1 + · · · + td +
n−1∑

j=d+1

yjt
a(j)

⎞⎠ dt.

Proof. We have to prove that for any integer N > 0 there exists KN = KN(β, y′) > 0

such that ∣∣∣∣∣Fp,δ(β; y)−
N−1∑
m=0

Ap,δ(β; m, y′)y
m
n

m!

∣∣∣∣∣ ≤ KN |yn|N

holds for every yn ∈ Sp,δ.

Let

�N(z) := ez −
N−1∑
m=0

zm

m!

for z ∈ C. Then we have

|�N(z)| ≤ |z|N
N!

for all z such that �z < 0.

Recall that by the assumption on δ we have �(ynta(n)) < 0 when t ∈ Dp,δ since

yn ∈ Sp,δ. Thus, we have

∣∣∣∣∣Fp,δ(β; y)−
N−1∑
m=0

Ap,δ(β; m, y′)y
m
n

m!

∣∣∣∣∣ =
∣∣∣yN

n

∣∣∣ ∣∣∣Qp,δ(β; y, N)
∣∣∣ ,

where

Qp,δ(β; y, N) =
∫

Dp,δ

ta(n)N−β−1 exp

⎛⎝t1 + · · · + td +
n−1∑

j=d+1

yjt
a(j)

⎞⎠�N(ynta(n))

(ynta(n))N
dt.
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Gevrey Expansions of Hypergeometric Integrals II 17839

The absolute value of the integrand in Qp,δ(β; y, N) is bounded by the function

1

N!

∣∣∣∣∣∣ta(n)N−β−1 exp

⎛⎝t1 + · · · + td +
n−1∑

j=d+1

yjt
a(j)

⎞⎠∣∣∣∣∣∣ ,

which is independent of yn and integrable over Dp,δ by Lemma 3.2 (that can be applied to

the submatrix of A defined by its 1st n − 1 columns because of Assumption 4.4). Notice

that we use here that �(β − a(n)N) < 0 for all N > 0 since a(n) does not have negative

coordinates.

Thus, there exists KN = KN(β, y′) > 0 such that
∣∣∣Qp,δ(β; y, N)

∣∣∣ ≤ KN . This finishes

the proof. �

Remark 4.8. Notice that Ap,δ(β; m, y′) = Fp,δ(β − ma(n); y′) for the submatrix of A

defined by its 1st n − 1 columns. In particular it is analytic with respect to (β, y′) by

Remark 3.4.

We extend Theorem 4.7 to nonnegative values of �βk in Section 4.2.

4.2 Analytic continuation with respect to β

In this section we focus on the analytic dependency of F(β; y) = Fp,δ(β; y) on β. Let us

take yn,0 ∈ C∗ and p ∈ Zd. We choose δ as in Lemma 4.5 and we omit p, δ in the remainder

of this subsection. We assume now that y belongs to Cn−d−1 × Sp,δ, where the sector Sp,δ

is defined in Remark 4.6.

The integral F(β; y) is a solution of the reduced GG-system (see [13]):

βkF(β; y) =
n∑

�=d+1

a(�)k y� F(β − a(�); y)+ F(β − e(k); y) fork = 1, . . . , d (4.1)

F(β − a(�); y) = ∂F

∂y�
(β; y) for� = d + 1, . . . , n. (4.2)

Lemma 4.9. The function F(β; y) admits a meromorphic continuation with respect to

β, denoted by F̃(β; y), with poles at most along the countable locally finite union of

hyperplanes

P :=
d⋃

k=1

{β ∈ Cd| βk ∈ πk(NA)},

where NA = Na(1) + · · · + Na(n) and πk : Qd → Q denotes the projection to the k-th

coordinate.
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17840 F.-J. Castro-Jiménez et al.

Proof. The initial domain of analyticity of F(β; y) is defined by �βk < 0 for all

k = 1, . . . , d. Let us fix conditions �βk < 0 for k = 2, . . . , d and extend the domain

of analyticity in the coordinate β1 using equation (4.1)1 as follows. The functions

F(β − a(�); y) for � = d + 1, . . . , n and F(β − e(1); y) are analytic for �β1 < ã1 :=
min�{a(�)1, 1} and hence it follows from equation (4.1)1 that F(β; y) is meromorphic in

�β1 < ã1 with at most a pole in β1 = 0.

In the general inductive step for the variable β1, we assume that F(β; y) is

meromorphic in the half-space �β1 < (q − 1)̃a1. Then, on the domain defined by

�β1 < qã1, the right-hand side of (4.1)1 is meromorphic, with poles of type β1 = c + 1, or

β1 = c + a(�)1, where β1 = c runs over all the poles of F(β; y). We obtain that F(β; y)

is also meromorphic in the same domain adding these new poles to those already

found. Thus, by induction, we get that F(β; y) is also meromorphic for β1 ∈ C and

�βk < 0 for k = 2, . . . , d with poles at most along β1 = ∑n
�=d+1 m�a(�)1 + m′, for all

md+1, . . . , mn, m′ ∈ N. By an analogous argument in k = 2, . . . , d we get the result. �

Notice that the equations (4.2) are then satisfied by F̃(β; y) by analytic continu-

ation on U := Cd \ P.

Lemma 4.10. For any fixed β ∈, F̃(β; y) admits an asymptotic expansion along yn =
0 in Sp,δ. Furthermore, the coefficients Ã(β; m, y′) of this expansion are analytic with

respect to β ∈ U. Hence, they are analytic continuations of the coefficients A(β; m, y′)
described in Theorem 4.7.

Proof. It follows from an induction starting from Theorem 4.7 and parallel to the

one used in the proof of Lemma 4.9 that for any fixed β ∈, F̃(β; y) admits asymptotic

expansions along yn = 0 in Sp,δ. By construction, these analytic continuations satisfy

equation (4.1), for any β ∈ U. This implies that the coefficients Ã(β; m, y′) of these

expansions satisfy the following equations for k = 1, . . . , d:

βkÃ(β; m, y′) = Ã(β − e(k); m, y′)+
n−1∑
�=d+1

a(�)k y� Ã(β − a(�); m, y′)

+ ma(n)kÃ(β − a(n); m − 1, y′).

(4.3)

Again by an induction like in Lemma 4.9, using (4.3) and Remark 4.8, Ã(β; m, y′)
is analytic with respect to β and y′, hence as a function of β it is an analytic continuation

to U of A(β; m, y′). �
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Gevrey Expansions of Hypergeometric Integrals II 17841

We have proved the following theorem that implies the last sentence in

Theorem 4.3 when we return to the integrals IC(β; y).

Theorem 4.11. There is an asymptotic expansion along yn = 0, in an appropriate open

sector Sp,δ around any half-line R>0 · yn,0 ⊂ C∗:

F̃p,δ(β; y) ∼
yn→0

∑
m∈N

Ãp,δ(β; m, y′)y
m
n

m!
,

where Ãp,δ(β; m, y′) is the analytic continuation of Ap,δ(β; m, y′) to β ∈ U.

4.3 Parametrizations

We go on working with the reduced form of the integral described in (3.2–3.4), and we

study integrals of the form

Fp,δ(β; y) =
∫

Dp,δ

t−β−1 exp

⎛⎝t1 + · · · + td +
n∑

j=d+1

yjt
a(j)

⎞⎠dt.

Lemma 4.12. If �β < 0, then

A0
p,δ(β) :=

∫
Dp,δ

t−β−1 exp(t1 + · · · + td)dt = e
√−1π〈2p+1,−β〉�(−β),

where �(−β) := ∏d
k=1 �(−βk).

Proof. The integrand t−β−1 exp(t1+· · ·+td)dt is of rapid decay at infinity in the product

of d sectors defined by the condition:

arg(tk) ∈ [(1 + min{0, δk} + 2pk)π , (1 + max{0, δk} + 2pk)π ], k ∈ σ .

Thus, since this product of sectors contain Dp,0 and Dp,δ, we know by elementary

considerations in one complex variable, that A0
p,δ(β) does not depend on δk ∈] − 1

2 , 1
2 [ and

so A0
p,0(β) = A0

p,δ(β).

We parametrize Dp,0 by tk = ρke
√−1π(2pk+1) = −ρk with ρk ∈ ]0, +∞), and the

result follows directly from the expression that we obtain

A0
p,0(β) =

∫
]0,+∞)d

exp(
√−1π〈2p + 1, −β〉)ρ−β−1 exp(−ρ1 − · · · − ρd)dρ.

�
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17842 F.-J. Castro-Jiménez et al.

Since A0
p,δ(β) does not depend on δ, from now on we drop δ and set A0

p(β) :=
A0

p,0(β) = A0
p,δ(β).

We notice that Fp,δ(β; y) is locally constant with respect to δ by a similar

homotopy argument. However, the dependency on δ of Fp,δ(β; y) must be kept because

the argument by homotopy works only for small perturbations of δ. This does not allow

a reduction of δ to zero. Let us now make the analytic continuation of the coefficients

of the asymptotic expansion described in Theorem 4.7 more precise by developing them

with respect to y′.

Lemma 4.13. The coefficients of the asymptotic expansion described in Theorem 4.7

are analytic functions of the variables y′ with the following power series development:

Ap,δ(β; m, y′) =
∑

m′∈Nn−d−1

A0
p

⎛⎝β − ma(n)−
n−1∑

j=d+1

mja(j)

⎞⎠ y′ m′

m′!
. (4.4)

Furthermore, this expansion is still valid for the meromorphic continuation of

Ap,δ(β; m, y′) found in Lemma 4.10 and the meromorphic continuation of A0
p(β) deduced

from Lemma 4.12.

Proof. Recall that, when �β < 0 the coefficient we consider has the form

Ap,δ(β; m, y′) =
∫

Dp,δ

ϕ(β; y′; t)dt

with

ϕ(β; y′; t) = t−β−1+ma(n) exp

⎛⎝t1 + · · · + td +
n−1∑

j=d+1

yjt
a(j)

⎞⎠ .

We set |tk| = ρk for k = 1, . . . , d and we parametrize Dp,δ by ρ ∈ Rd
>0. We fix a

polydisc Q = {y′ | |yj| < Rj, j = d + 1, . . . , n − 1} ⊂ Cn−1−d.

The function ϕ(β; y′; t) is holomorphic with respect to y′ ∈ Cn−d−1. By the same

argument as in the proof of Lemma 3.2 and inequality (3.10), the integrand ϕ(β; y′; t)dt

is dominated, via the parametrization tk = e(1+δk+2pk)
√−1πρk and up to a constant

factor, by

ρ−�β+ma(n)−1 exp(C − c(ρ1 + · · · + ρd))dρ

for some constants C, c ∈ R>0. These constants depend only on Q but not on y′ ∈ Q by

Remark 3.4 applied to Ap,δ(β; m, y′) instead of Fp,δ(β; y).
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For each j = d + 1, . . . , n − 1, the integral

∫
Dp,δ

∂ϕ(β; y′; t)

∂yj
dt

has an expression similar to the one for Ap,δ(β; m, y′), with β replaced by β− a(j). By the

same argument as for ϕ, the integrand ∂ϕ(β;y′;t)
∂yj

dt is dominated, up to a constant factor,

by

ρ−�β+ma(n)+a(j)−1 exp(Cj − cj(ρ1 + · · · + ρd))dρ

for some constants Cj, cj ∈ R>0, independent of y′ in the polydisk Q.

By Lebesgue’s theorem on dominated convergence for integrals, these consider-

ations prove that Ap,δ(β; m, y′) is holomorphic with respect to y′ and that

∂Ap,δ(β; m, y′)
∂yj

=
∫

Dp,δ

∂ϕ(β; y′; t)

∂yj
dt

for all j = d + 1, . . . , n − 1. If we iterate the argument we obtain an expression of the

partial derivatives of Ap,δ, up to any order m′ = (md+1, . . . , mn−1):

∂ |m′|Ap,δ(β; m, y′)
∂md+1yd+1 · · · ∂mn−1yn−1

=
∫

Dp,δ

∂ |m′|ϕ(β; y′; t)

∂md+1yd+1 · · · ∂mn−1yn−1
dt.

Setting y′ = 0 in this last expression gives the coefficients of the Taylor expansion of

Ap,δ(β; m, y′) with respect to y′ at the origin. This proves the equality (4.4) when �β < 0.

The last claim of this lemma follows from the explicit calculation in Lemma 4.12

from which we see that the coefficient of y′ m′
m′! is equal to

A0
p

⎛⎝β − ma(n)−
n−1∑

j=d+1

mja(j)

⎞⎠ =

e
√−1π

〈
2p+1,−β+ma(n)+∑n−1

j=d+1 mja(j)
〉
�

⎛⎝−β + ma(n)+
n−1∑

j=d+1

mja(j)

⎞⎠ .

By the standard properties of the �-function, this coefficient admits a mero-

morphic continuation with respect to β, with poles along a subset of P defined in

Lemma 4.9.
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When β ∈ Cd \ P the right-hand side of (4.4) is still defined and yields a

convergent power series defined for all y′ ∈ Cn−d−1 because of the conditions |a(j)| < 1

for j = d + 1, . . . , n − 1, and standard estimates on �-functions (see, e.g., [7, Lemma 3.8]).

Therefore, it is an analytic continuation of the power series defined for �β < 0.

The equality (4.4) follows everywhere in Cd \ P with the meromorphic continuation of

Ap,δ(β; m, y′) on the left-hand side, defined in Lemma 4.10. �

Remark 4.14. Notice that as a consequence of Lemma 4.13 the function Ap,δ(β; m, y′)
does not depend on δ.

4.4 Space of asymptotic expansions and Gevrey series

In this section we finish the proof of Theorem 4.3. For any k ∈ Nn−d, let us set

�k := {k + m = (kd+1 + md+1, . . . , kn + mn) ∈ Nn−d : Aσm ∈ Zd}

and define

Sk(β; y) :=
∑

k+m∈�k

e|Aσ (k+m)|π√−1�
(−β + Aσ (k + m))

) yk+m

(k + m)!
.

Notice that the coefficients of the series Sk are meromorphic with respect to

β ∈ Cd with at most simple poles along each hyperplane in P. In particular, if β /∈ P all

these series are well-defined nonzero power series with support equal to �k since the

Gamma function does not have any zero. It can be proved by using standard estimates of

Gamma functions that these series are Gevrey along yn = 0 with Gevrey index |a(n)| > 1.

Let � ⊆ Nn−d be a set of cardinality [ZA : ZAσ ] such that

{Aσk + ZAσ : k ∈ �} = ZA/ZAσ = ZA/Zd.

We notice that the existence of such � ⊆ Nn−d follows from [7, Lemma 3.2]. It is

clear that G = {Sk(β; y) : k ∈ �} is a linearly independent set because the series Sk

have pairwise disjoint supports �k. Using Theorem 4.7, Lemma 4.12, and Lemma 4.13,

we have

Fp,δ(β; y) ∼
yn→0

∑
qn∈N

Ap,δ(β; qn, y′)y
qn
n

qn!

=
∑

q∈Nn−d

A0
p(β − Aσq)

yq

q!
=

∑
q∈Nn−d

e
√−1π〈1+2p,−β+Aσq〉�

(−β + Aσq
) yq

q!
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=e
√−1π〈1+2p,−β〉 ∑

k∈�

∑
k+m∈�k

e
√−1π〈1+2p,Aσ (k+m)〉� (−β + Aσ (k + m)

) yk+m

(k + m)!

=e
√−1π〈1+2p,−β〉 ∑

k∈�
e
√−1π〈1+2p,Aσk〉 ∑

k+m∈�k

e
√−1π〈1,Aσm〉�

(−β + Aσ (k + m)
) yk+m

(k + m)!

=e
√−1π〈1+2p,−β〉 ∑

k∈�
e
√−1π〈2p,Aσk〉Sk(β; y).

Notice that previous power series is formal with respect to yn, with convergent

coefficients. More precisely, it is a Gevrey series along yn = 0 with Gevrey index

|a(n)| > 1. We notice also that �β < 0 implies that �(β − Aσq) < 0 for all q ∈ Nn−d, by

using Assumption (4.4), which guarantees the convergence of all the integrals involved

in Section 4.3. By the last claim in Lemma 4.13, this calculation is valid everywhere

in the domain of analytic continuation Cd \ P, since the argument applies also to the

coefficients of the series Sk(β; y).

The matrix of coefficients of the series Sk(β; y) in the asymptotic expansions of

the functions

e
√−1π〈2p+1,β〉Fp,δ(β; y)

is (e
√−1π〈2p,Aσk〉)k,p, where k varies in �. If p varies in an appropriate set of [ZA : Zd]

elements, this matrix is square and invertible. Indeed, we have ZA/ZAσ = ZA/Zd �
Zd/ZM, where M is the matrix of coordinates of the canonical basis of Zd with respect

to a basis of ZA/Zd. Thus, the matrix (e
√−1π〈2p,Aσk〉)k,p is invertible by [19, Proposition

6.3], if p runs in a set of representatives of the quotient Zd/Z tM. In particular, if β /∈ P
the set of holomorphic functions Fp,δ(β; y), where p varies in this set of representatives,

is a linearly independent set and any Gevrey series along yn = 0 in the space generated

by the series {Sk(β; y) : k ∈ �} is an asymptotic expansion of a linear combination of

the integrals Fp,δ(β; y).

Now if we start from the matrix B in Section 2 and we apply the above results

with the matrix A = B−1
σ B = (I, B−1

σ Bσ ) and the parameter β = B−1
σ γ , we obtain a similar

statement for the integrals IC(γ ; x) using (3.3) and (3.4) if we set yj = xjx
−a(j)
σ for all

j = d + 1, . . . , n, or y = xσx
−B−1

σ Bσ
σ . Precisely, M can be chosen to be Bσ . We get that

x
B−1
σ γ
σ · G is a linearly independent set of Gevrey series solutions of MB(γ ) along xn = 0

with Gevrey index |a(n)| = |B−1
σ b(n)| > 1 if β /∈ P. Again this transformation involves a
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17846 F.-J. Castro-Jiménez et al.

choice of arg xσ , but by Remark 2.1 and (3.3), a change in this choice does not modify the

basis G except for constant factors.

It is enough to prove that the dimension of the space of Gevrey series solutions

of MB(γ ) along xn = 0 is at most equal to |�| = [Zd : ZBσ ] when �β < 0. To this end,

notice first that, if

f =
∞∑

m=0

fm(x1, . . . , xn−1)x
m
n

is a Gevrey series belonging to this space, then the initial part of f with respect to

the weight vector w = (0, . . . , 0, 1) ∈ Rn has the form inw(f ) = fm(x1, . . . , xn−1)x
m
n for

some m ≥ 0 and it is hence a holomorphic function. Thus, by the same argument as

in the proof of [27, Th. 2.5.5], it is a (holomorphic) solution of in(−w,w)(HB(γ )). This

last ideal is the initial ideal with respect to w of the hypergeometric ideal associated

with (B, γ ) (see [27, p. 4]). In particular, the dimension of the space of Gevrey solutions

is at most equal to the rank of in(−w,w)(HB(γ )), because one can choose a basis of

Gevrey solutions of MB(γ ) such that their initial parts are also linearly independent

(see [27, Proposition 2.5.7]).

On the other hand, by using [27, Lemma 2.1.6] for (u, v) = (0, 1) and (u′, v′) =
(−w, w), we have that the initial ideal of in(−w,w)(HB(γ )) with respect to (0, 1) is

in(0,1)(in(−w,w)(HB(γ ))) = inL(HB(γ ))

for L = (−w, w)+ ε(0, 1) with ε > 0 small enough.

Thus, by [28, Th. 4.21, Rk. 4.23, and Th. 4.28] for L = (−w, w) + ε(0, 1) and

Assumption 4.1, we have that the holonomic rank of in(−w,w)(HB(γ )) equals |�| if γ is

not rank–jumping for B (i.e., if rank(MB(γ )) = d! Vol(�B)), a condition that is weaker

than �β = �(B−1
σ γ ) < 0 by [1, Th. 5.15] (see also [27, Cor. 4.5.3]). This finishes the proof

of Theorem 4.3.

Remark 4.15. Notice that the proof of Theorem 4.3 shows that the constructed set

of Gevrey series solutions x
B−1
σ γ
σ · G is still a basis of the space of Gevrey solutions of

MB(γ ) along xn = 0 when γ is not rank-jumping and β = B−1
σ γ /∈ P, where P is defined

in Lemma 4.9. We do not know if under Assumption 4.1 the condition of γ being rank-

jumping implies β ∈ P. However, it is true that if γ is rank-jumping then it is semi-

resonant [1]. In particular, under Assumption 4.1, γ is semi-resonant for B if and only

if β ∈ P′ := ∪d
k=1{β ∈ Cd| βk ∈ πk(ZA ∩ Rd≥0)}, where πk is the projection to the k-th

coordinate. Notice also that P ⊆ P′.
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Remark 4.16. In [7, Sec. 3] the author constructs certain Gevrey series solutions ϕvk

for the hypergeometric system MB(γ ). Using Euler’s reflection formula, �(z)�(1 − z) =
π/ sin(πz) for z 
∈ Z, it can be easily shown that, for all k ∈ � and when β is generic

enough,

Sk(B
−1
σ γ ; xσx

−B−1
σ Bσ

σ ) = πde
√−1π |Aσk|

sin(π(−β + Aσk))
· ϕvk .

The genericity condition here means that β /∈ P and that β − Aσk does not have

integer coordinates for all k ∈ �.

5 Integrals Over Rapid Decay Cycles

The goal of this section is to prove that when �β < 0 is sufficiently general, the integrals

studied in Theorem 4.3, are in fact integrals over rapid decay cycles in the sense of

[15]. These integrals are defined without the condition �β < 0 and are still solutions

of our GKZ system when �βk ≥ 0 for some k. By meromorphic continuation proved

in Theorem 4.11 they admit asymptotic expansions as Gevrey series solution for all β

sufficiently general in Cd.

5.1 Description of rapid decay cycles

In this section we first briefly recall the theory of rapid decay homology by M. Hien in

[15, Sec. 5.1] and give a sufficient condition to detect a cycle for this homology.

Let U be a complex quasi-projective variety over C of dimension d. Let h ∈ O(U)
and let X be a smooth projective compactification of U, such that D = X \ U is a normal

crossing divisor, and h extends to a map h : X−→P1.

Let us denote by π : X̃(D)−→Xan the real oriented blow-up along D as defined

in [26, 8.2]. The space X̃ := X̃(D) can be embedded into a real Euclidian space as a semi-

analytic subset, and h induces a map h̃ : X̃−→P̃1, where P̃1 → P1 is the real blow-up of

infinity.

Let us describe the morphism π , locally at p ∈ D with local coordinates t1, . . . , td

such that p = 0 and D = {t1 · · · tk = 0},

π : ([0, ε)× S1)k × B(0, ε)d−k −→ Cd

((rj, e
√−1 θj)kj=1, t′) 
→ (r1 · e

√−1 θ1 , . . . , rk · e
√−1 θk , t′),

where t′ = (tk+1, . . . , td) and ε > 0 is a small real number.
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17848 F.-J. Castro-Jiménez et al.

Consider a regular flat algebraic connection ∇ : E−→E ⊗ �U , restriction to U

of a regular meromorphic connection (EX(∗D), ∇) on X, with EX a lattice of this

connection.

On the oriented blow-up X̃, we consider the sheaf A<D
X̃

of holomorphic functions

that are flat along D̃ := π−1(D).

A section of A<D
X̃

on an open set Ṽ ⊆ X̃ is a holomorphic function u on Ṽ \ D̃ such

that, for any compact set K ⊂ Ṽ, and all N = (N1, . . . , Nk) ∈ Nk, there exists a constant

CK,N > 0 satisfying

|u(t)| ≤ CK,N |t1|N1 · · · |tk|Nk , ∀t = (t1, . . . , td) ∈ K \ D̃ (5.1)

in terms of local coordinates as above such that locally D = {t1 · · · tk = 0}.
The twisted connection ∇h = ∇ − dh∧ = exp(h) ◦ ∇ ◦ exp(−h) on U extends to a

morphism of sheaves over X̃

π−1EX ⊗ A<D
X̃

−→ π−1EX ⊗ A<D
X̃

⊗π−1OXan π
−1�1

Xan(∗D).

The kernel of this extension is denoted by S<D. The restriction of this kernel to

U is the set of horizontal sections of ∇h and it is equal to S⊗exp(h), where S is the local

system of horizontal sections of ∇. Since the coefficients of a section of S, on a basis of

E at a point P ∈ D, have at most a polynomial growth, the germ of S<D at a point P̃ ∈ D̃ is

nonzero if and only if exp(̃h) satisfies condition (5.1) at P̃. At such a point it is equal to

the germ of π−1(S)⊗ exp(̃h).

The sheaf of rapid decay chains [15, Sec. 5.1] is obtained from the sheaf C−p
X̃,D̃

of relative chains mod D̃ by tensoring it with S<D:

Cr.d.,−p
X̃

:= C−p
X̃,D̃

⊗
C
S<D.

Let j : U ↪→ X̃ be the inclusion map. The sheaf S<D is a subsheaf of j∗(S⊗exp(h)),

the latter being isomorphic to j∗(S) through the multiplication by exp(−h). Therefore,

Cr.d.,−p
X̃

is a subsheaf of C−p
X̃,D̃

⊗C j∗(S ⊗ exp(h)), and in the next lemma we determine

its image in C−p
X̃,D̃

⊗
C

j∗(S). In all what follows we identify Cr.d.,−p
X̃

with this image. This

convention is the most appropriate for the expression of integrals.

Lemma 5.1. Let Σ be a semi-algebraic set in U such that �h tends to −∞ on Σ with

a controlled argument for h, that is, there exists δ ∈ ]
0, π2

[
such that for all R > 0 there
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Gevrey Expansions of Hypergeometric Integrals II 17849

exists a compact set K ⊂ U, such that, for all t ∈ Σ \ K we have

�(h(t)) < −R and arg(h(t)) ∈ ]π − δ,π + δ[ .

Then the closure Σ in X̃ is a compact semi-algebraic set. Moreover, let T be any finite

triangulation of Σ , and let Υ := ∑
� �⊗ ς� be a section of C−d

X̃,D̃
⊗C j∗(S). This is a finite

sum, where � runs, possibly with repetitions, over all the d-simplices of T that are not

included in D̃ and ς� is a section of S over j−1(�) ∩ U. Then Υ is a rapid decay chain,

whose support is contained in Σ .

Proof. The divisor D is the union of the components (Di)i∈I of h−1(∞) and of other

components (D′
j)j∈J , such that on each D′

j the restriction of h is surjective on P1 or takes

a finite constant value. From the fact that |h(t)| tends to +∞ on the support supp(Υ ) :=⋃{� | ς� 
= 0} of Υ , we deduce that supp(Υ ) ∩ D ⊂ h−1(∞) = ⋃
i∈I Di, where supp(Υ )

denotes the closure of π(supp(Υ )) in X. Furthermore, the closure of upp(Υ ) in X̃ meets

D̃ only at points such that arg h̃ ∈ [π − δ,π + δ].

Let P̃ ∈ D̃ be such a point and let P = π(P̃). We choose local coordinates

(v1, . . . , vd) centered at P such that a local equation of D is v1 . . . vk = 0. The local

expression of h is

h(v) = w(v1, . . . , vd)

vm1
1 . . . vmk

k

with all mk > 0 and w(v) a unit since there are no points of indeterminacy. In a small

enough neighbourhood of , h(v) = − exp(iδ(v))|h(v)|, with cos δ(v) ≥ cos δ > 0 and

|w(v1, . . . , vd)| ≥ R′, for some R′ > 0. Finally, around P we obtain the expected rapid

decay condition because

| exp(h(v))| = exp(�h(v)) ≤ exp
(

− R′ cos δ

|v1|m1 . . . |vk|mk

)
.

�

In order to treat integrals IC(β; x) as in the introduction, we consider the

connection (OU , ∇β) on U = (C∗)d with the differential ∇β = d + β dt
t ∧ and its

meromorphic extension (OX(∗D), ∇β) to X. It contains a lattice isomorphic to OX , and

the local system of horizontal sections over U is Sβ = C ·t−β−1. We set h(t) = ∑n
�=1 x�t

a(�)

and we intend to apply Lemma 5.1 for a fixed value of x. For that purpose, we have to

use a cycle different from the cycles Cp,δ, considered in Section 2, since the support of

Cp,δ always have the origin of Cd in its closure, and when t tends to 0 along Cp,δ, h
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does not tend to +∞. This cycle is described in detail in Section 5.2. It is is still a

Borel–Moore cycle on the universal covering (C̃∗)d, whose projection � on (C∗)d is semi-

algebraic. There is a triangulation T of its closure � in X̃ and a set of d-simplices � ∈ T

not contained in D̃, such that C is obtained by taking their restriction to (C∗)d and

an appropriate lifting to the universal covering (C̃∗)d. These liftings induce branches

ς� = (
t−β)

�
of t−β and we identify C with the twisted chain:

∑
� ⊗ ς�. The formula in

[2, page 23], can be directly adapted to the irregular case:

∫
�⊗ς�

t−βeh(x,t)dt

t
=

∫
�

(
t−β)

�
eh(x,t)dt

t
(5.2)

and the construction above shows that the integral IC(β; x) along C is the integral along

this twisted cycle.

Corollary 5.2. Let us assume that in the above situation h(x, t) satisfies the condition

of rapid decay and controlled argument in Lemma 5.1. Then the cycle Υ = ∑
� ⊗ ς�

associated with C is a rapid decay cycle, and the integral IC(β; x) along this cycle is

convergent.

Proof. Only the last assertion requires a proof. Consider again a point P ∈ D, with

coordinates (v1, . . . , vd) as in the last argument for Lemma 5.1. Since t is algebraic,

t−β−1 has at most a polynomial growth around P, with respect to 1
v1···vk

. Therefore,

t−β−1eh(x,t) is locally bounded by an expression of the form 1
|v1···vk|m exp

(
− R′ cos δ

|v1|m1 ···|vk|mk

)
for some integer m > 0. This yields a convergent integral on UP ∩ (C∗)d for some closed

neighbourhood UP of P. Since � ∩ D can be covered by a finite number of such UP, the

integral is indeed convergent. �

From now on we will identify a cycle on the universal covering and the

corresponding twisted cycle and denote it by the same symbol.

5.2 Realization of solutions by integrals over rapid decay cycles

We state and prove here the main result of this section. We define qk, for k = 1, . . . , d, as

the smallest common denominator of the k-th row of A, that is as the smallest integer

such that qka(�)k ∈ N, for � = d + 1, . . . , n. Recall that, for each p ∈ Zd and yn,0 ∈ C∗ we

choose δ ∈] − 1
2 , 1

2 [d such that (3.6)n is satisfied (see Lemma 4.5).
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Theorem 5.3. There is a rapid decay cycle D̃p,δ such that the integral

∫
D̃p,δ

t−β−1 exp

⎛⎝t1 + · · · + td +
n∑

j=d+1

yjt
a(j)

⎞⎠ dt

is equal to Fp,δ(β; y) up to a nonzero constant factor if �β < 0 and qkβk /∈ Z, for k =
1, . . . , d.

Proof. The proof starts with a preliminary reduction and then has three steps. First,

we build cycles depending on a parameter ε > 0 for which Corollary 5.2 can be applied.

We then show that Fp,δ(β; y) is the limit when ε−→ 0 of the integrals over these cycles

and finally we prove that these integrals are in fact independent of ε.

If we perform the change of coordinates tk = e
√−1π(1+2pk+δk)rk for k = 1, . . . , d,

the image of the cycle Dp,δ, defined in (3.1) is just the positive orthant Rd
>0, and we find

F(β; y) =
∫
R

d
>0

e−√−1π〈1+2p+δ,β〉r−β exp

⎛⎝−
d∑

k=1

e
√−1πδkrk +

n∑
j=d+1

zjr
a(j)

⎞⎠dr

r
(5.3)

with zj = e
√−1π〈1+2p+δ, a(j)〉yj, and �zn < 0, since (3.6)n is satisfied.

For the sake of simplicity we skip the constant e−√−1π〈1+2p+δ,β〉 and consider

only the case p = δ =, zj = e
√−1π |a(j)|yj hence reduce to the integral:

H(β; y) =
∫
R

d
>0

r−β exp

⎛⎝−r1 − · · · − rd +
n∑

j=d+1

yjr
a(j)

⎞⎠dr

r
, (5.4)

related to F by the relation: F0,0(β; y) = e−√−1π |β|H(β; e
√−1π |a(d+1)|yd+1, . . . , e

√−1π |a(n)|yn).

By Lemma 3.2, this integral is convergent since �β < 0 and the condition (3.5)n
transfered to H is �(ynra(n)) = ra(n)�yn < 0. Finally, we are looking for cycles Υ (ε)

such that the integral

HΥ (ε)(β; y) :=
∫
Υ (ε)

u−β exp

⎛⎝−u1 − · · · − ud +
n∑

j=d+1

yju
a(j)

⎞⎠du

u
(5.5)

tends to H(β; y)when ε−→ 0. The cycle D̃0,0 in the statement of Theorem 5.3, is the image

of Υ (ε) by tk = −uk for some ε > 0, with the choice of arguments arg tk = arg uk +π . The

reason is that the same operation changes H(β; y) into F0,0(β; y).
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Fig. 2.

Inspecting the proof, the case of a general value of p, δ is a straightforward

adaptation.

Recall that by Assumption 4.4 we have that a(j) ∈ Qd
>0 for all j = d +

1, . . . , n, |a(j)| < 1, for j = d + 1, . . . , n − 1 and also |a| = a1 + · · · + ad > 1, setting

a := a(n) = t(a1, . . . , ad). �

Notation 5.4. Let � : (C∗)dv−→(C∗)du be the finite covering of multidegree (q1, . . . , qd),

given by the formulas vqk
k = uk between two samples of the torus (C∗)d. The interest of

this convering is that the exponent M(u, y) in the integrand of HΥ (ε)(β; y) is a univalent

function of the variable v.

Let us first describe a product of cycles C := γ1 ×· · ·×γd on the universal covering (C̃∗)d.

In Figure 2 we draw the projection of γk on C∗
vk

, and for the projection on the space C∗
uk

we turn qk times on the circle of radius ε in the k-th component. In Figure 2 the radius

is ε
1

qk on the k-th component. We choose the argument of uk to be 0 or 2qkπ , on the two

half-lines of Figure 2, drawn in Cvk
. The integrand is the same up to a constant factor

on the 2d different products of the d half-lines in (C̃∗)d. With these choices we can think

of C in two different ways: as a cycle on (C̃∗)d, or as a twisted cycle on either (C∗)du
or (C∗)dv .

However, there is a problem of convergence for the integral HC(β; y). The cycle C

is a union of products of the type
(
Sε

)η×([ε, +∞))τ . Here Sε is a circle of radius ε > 0 and

η ∪ τ = {1, . . . , d} is a partition of {1, . . . , d}. On each piece with τ 
= ∅ 
= η the integral is

not convergent. Indeed, when k ∈ η and uk varies in Sε , the argument of each monomial

y�u
a(�) takes all values mod 2π . Therefore, the monomial itself takes arbitrarily large

positive values, as well as |u�| for � ∈ τ .

We shall build the cycle Υ (ε) as a deformed version of C. We identify (C̃∗)d

with Cd = Rd + √−1Rd and the covering map (C̃∗)d → (C∗)d with the map log r +
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√−1 θ−→(r1e
√−1 θ1 , . . . , rde

√−1 θd). We consider (C̃∗)d as fibered over Rd
>0, by the map

log r + √−1θ−→(r1, . . . , rd), with fiber isomorphic to
√−1Rd. The image of the restric-

tion of this map to γ1 × · · · × γd, is [ε, +∞)d, with semi–algebraic fibers. The fiber

over (r1, . . . , rd) is log r + √−1 Fr, where Fr ⊂ Rd is a subset of arguments arg u :=
(arg u1, . . . , arg ud), which depends on r in the following way:

(1) Above each point (r1, . . . , rd) in the open orthant ]ε, +∞)d, there are 2d points

with arg u ∈ Fr = ∏d
k=1{0, 2qkπ}.

(2) Above the point {(ε, . . . , ε)}, the argument arg u is in Fr = ∏d
k=1[0, 2qkπ ].

(3) In general, above the product {ε}η × (]ε, +∞))τ , the fiber has dimension |η|,
the cardinality of η, with 2|τ | connected components. It is described in the

universal covering (C̃∗)d, by

uk ∈ log ε + [0, 2qkπ ]
√−1 if k ∈ η,

u� ∈ log r� + {0, 2q�π}√−1 if � ∈ τ .

We choose instead of γ1 × · · · × γd a cycle Υ (ε) fibered over the subset of Rd
>0

described by the equation ra ≥ ε|a|, which is the union of 2d semi-algebraic strata:

(1) S
∅

= {r ∈ Rd
>0 | ra > ε|a|}

(2) Sη = {r ∈ Rd
>0 | ra = ε|a|, and η = {p | rp = min1≤k≤d rk}}, if η 
= ∅.

We shall sometimes write re
√−1 θ instead of log r + √−1 θ , since the abuse of notation

fits better with the expression of the integral and it is clear from the context that when

the target space is C̃, arguments θ are to be considered in R.

Definition 5.5. Description of the cycle Υ (ε):

(1) The fiber of the support of Υ (ε) over the point r ∈ Sη is

Υ (ε)r :=
∏
k∈η

(log rk + [0, 2qkπ ]
√−1)×

∏
�∈τ
(log r� + {0, 2q�π}√−1).

(2) Let us take some r ∈ Sη. We have r = (ρη; (rk)k∈τ ), with ρη ∈ Rη the point

with all coordinates equal to ρ > 0. When η 
= ∅, these data are subject to

the conditions:

ρ < min((rk)k∈τ ), ra = ρ
∑

j∈η aj
∏
k∈τ

rak
k = ε|a|. (5.6)
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(3) The projection of Sη on the space Rτ>0 is a bijection Sη−→Uη to the open

subset described by the inequalities:

ε|a| < r
∑

j∈η aj

k

∏
�∈τ

ra�
� for any k ∈ τ ,

and the value of the η-coordinate ρ of a point r ∈ Sη is a function ρ((rk)k∈τ )
by implicit equation (5.6).

(4) Let s ∈ {0, . . . , d} be the number of elements in η. Let us denote Υ (ε)η the

union of the pieces of the cycle Υ (ε) above the stratum Sη. Then Υ (ε)η

is the union of 2d−s pieces. A typical piece is indexed by some (ξk)k∈τ ∈
({0, 1})τ , and parametrized by

∏
k∈η[0, 2qkπ ] × Uη ⊂ ∏

k∈η[0, 2qkπ ] × Rτ>0, in

the following way:

(
(θj)j∈η; (rk)k∈τ

)
−→

(
(ρe

√−1 θj)j∈η; (rke2
√−1πξkqk)k∈τ

)
. (5.7)

(5) We choose the coherent system of orientations inspired by the product of

cycles γk, with the circles positively oriented: we orient
∏

k∈η[0, 2qkπ ] ×Rτ>0,

by its canonical orientation multiplied by the signature of the permutation

(η, τ) of {1, . . . , d}, and by (−1)d−∑
ξk .

In fact one can easily check that there is a radial isotopy from γ1×· · ·×γd to Υ (ε),

which yields an oriented stratified isomorphism. Indeed, for r := (r1, . . . , rd) ∈ (Rd
>0),

with rk ≥ ε for all k, define r0 = min{rk}. On the half-line R>0r there is a unique point

r′ = (r′
1, . . . , r′

d) with min{r′
k} = ε, and a unique point ρ := (ρ1, . . . , ρd), such that ρa = ε|a|

(see Figure 3 for d = 2). Let us consider ρ0 = min{ρk} and the linear multiplication

on R>0r by the ratio ρ0/ε = r0r−a/|a|, which depends continuously on r. Then the

map log r + √−1θ 
→ log((ρ0/ε)r) + √−1 θ from γ1 × · · · × γd to Υ (ε) is the mentioned

radial isotopy.

Proposition 5.6. The twisted cycle Υ (ε) is a rapid decay cycle. In particular, the

integrals HΥ (ε)(β; y) are convergent.

Remark 5.7. Again we think of Υ (ε) as well as a cycle on (C̃∗)d, or as a twisted cycle

on either (C∗)du or (C∗)dv . It can be written as a sum ��u ⊗ ςu or ��v ⊗ ςv, with terms

in one-to-one correspondence by �u = ��v, and the branches ςu and ςv of uβ are

compatible with the maps (C̃∗)d−→(C∗)dv−→(C∗)du and yields the change of variables
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Fig. 3.

formula deduced from (5.2):

∫
�u

u−βeM(u,y)du

u
=

∫
�v

v−〈q,β〉eM(vq,y)
d∏

k=1

qk
dv

v
.

Since the exponent M(vq, y) is univalent our Corollary 5.2 can be applied to Υ (ε)

seen as a twisted cycle on (C∗)dv endowed with the pullback C ·v−〈q,β〉 of the local system

C · u−β . However, all our calculations can be done with the variable u. Indeed both

variables u and v are equivalent for the control of rapid decay at infinity, since ‖u‖1 :=∑ |uk| = ∑ |vk|qk .

Proof of Proposition 5.6. Let us consider a stratum with η 
= ∅. The last monomial of

the argument of the exponential in F(β; y) satisfies

|ynua(n)| = |yn|ε|a(n)|. (5.8)

For η = {1, . . . , d} the fiber over Sη is a compact subset of (C̃∗)d and the integrand

of HΥ (ε)(β; y) is holomorphic over it, so there is nothing to prove. Let us assume for

simplicity that η = {1, . . . , s} with 1 ≤ s < d. On the stratum Sη we have r1 = · · · = rs =
ρ < ε. Thus, we imitate the proof of Lemma 3.2 (recall that τA = σ ∪ {n} in our case) to

get an upper bound for the real part of M(u, y) = −u1 − · · · − ud + ∑n
j=d+1 yju

a(j). Recall

that by Assumption 4.4, a(j) = ∑d
k=1 νjke(k) for j = d + 1, . . . , n − 1 where νjk ≥ 0 and
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|a(j)| = ∑d
k=1 νjk < 1. Hence,

�
⎛⎝ n−1∑

j=d+1

yjr
a(j)

⎞⎠ = �
⎛⎝ n−1∑

j=d+1

yj

d∏
k=1

rνjke(k)

⎞⎠ ≤
n−1∑

j=d+1

|yj|(
d

max
k=1

re(k))
∑d

k=1 νjk

≤ K max

⎛⎝1,

(
d∑

k=1

re(k)

)κ⎞⎠ ≤ K max(1, (εs + rs+1 + · · · + rd)
κ),

(5.9)

where K = ∑n−1
j=d+1 |yj| and κ = maxn−1

j=d+1

∑d
k=1 νjk. Finally, using that �(−uj) ≤ ρ < ε for

j = 1, . . . , , �(−uj) = −rj for j = s + 1, . . . , d and (5.8), we obtain

�M(u, y) ≤ εs − rs+1 − · · · − rd + |yn|ε|a| + K max(1, (εs + rs+1 + · · · + rd)
κ). (5.10)

Since rs+1 +· · ·+rd ≤ ‖u‖1 = ρs+rs+1 +· · ·+rd ≤ εs+rs+1 +· · ·+rd for u ∈ Υ (ε)η,

we still get an inequality of type (3.10). There are constants Cη, cη > 0 (depending also

on y but independent of ε) such that �M(y, u) ≤ Cη − cη‖u‖1 for all u ∈ Υ (ε)η.

A closer look at the argument that proves (5.10) shows that we can write the

following upper bound for |�M(u, y)|:

|�M(u, y)| ≤ dε + |yn|ε|a(n)| + K(dε + ‖u‖1)
κ .

This upper bound, the relation (5.10) in the form of inequality �M(y, u) ≤ Cη − cη‖u‖1

and the fact that 0 < κ < 1 prove that �M(u, y)/�M(u, y) tends to zero as ‖u‖1 tends to

infinity. In particular the argument of M(u, y) tends to π along Υ (ε)η.

We need a similar result when η = ∅. We notice that M(u, y) is univalent on the

2d branches of Υ (ε)∅. Following the proof of inequality (5.10) we obtain the inequality:

�M(u, y) ≤ −r1 − · · · − rd − |�yn|ra(n) + K max(1, (r1 + · · · + rd)
κ).

Since for the imaginary part we have the inequality |�M(u, y)| ≤ |�yn|ra(n) +
K(‖u‖1)

κ , we deduce that if we set αn = |π − arg yn| ∈ [0,π/2[, we have for any δ > 0 and

any ‖u‖1 large enough arg M(t, y) ∈]π − αn − δ,π + αn + δ].

Let us use a good compactification X of (C∗)d, a real blow-up π : X̃−→X of X

along D, and apply Corollary 5.2. The behaviour of arg M(t, y) when ‖u‖1 → +∞ and

the fact that for any R >, Υ (ε) ∩ {u | ‖u‖1 ≤ R} is compact imply that Υ (ε) is a rapid

decay cycle. � �
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Let us prove that when �β < 0, the integral HΥ (ε)(β; y) tends, when ε → 0, to the

integral (5.4) multiplied by the factor

T :=
∑

ξ∈{0,1}d

(−1)d−|ξ | exp
(
2
√−1π

∑
βkqkξk

)
=

d∏
k=1

(exp(2
√−1πqkβk)− 1) (5.11)

that comes from the parametrization (5.7) for η = ∅. Since (5.4) is clearly the limit of the

piece of the integral HΥ (ε)(β; y) over Υ (ε)∅, it suffices to show that the integrals over Sη
for η 
= ∅ tend to zero.

Let us assume again for simplicity that η = {1, . . . , s} with 1 ≤ s ≤ d. On each

piece of Υ (ε)η the parameters are

(θ1, . . . , θs, rs+1, . . . , rd) ∈
∏
k∈η

[0, 2qkπ ] × Uη.

and the change of variables from the parametrization (5.7) induces the following results

in the different factors of the integrand:

d∧
k=1

duk

uk
= (

√−1 dθ1) ∧ · · · ∧ (
√−1 dθs) ∧ drs+1

rs+1
∧ · · · ∧ drd

rd
,

u−β = ρ−β1−···−βsr−βs+1
s+1 · · · r−βd

d exp

⎛⎝√−1

⎛⎝−
s∑

j=1

βjθj −
d∑

k=s+1

2πβkqkξk

⎞⎠⎞⎠ ,

|u−β | =ρ−�(β1+···+βs)
d∏

�=s+1

r−�β�
� exp

⎛⎝ s∑
j=1

�βjθj +
d∑

k=s+1

2π�βkqkξk

⎞⎠
≤ ε−�(β1+···+βs)

d∏
�=s+1

r−�β�
� exp

(
d∑

k=1

2π |�βk|qk

)
.

From these inequalities and the fact that the real part of the argument of the exponential

function is bounded from above by

Cη − cη(rs+1 + · · · + rd)

with Cη, cη ∈ R>0 independent of ε, for ε ∈ [0, ε0], we see that the integral over Υ (ε)η
tends to zero when ε → 0 as expected, because −�(β1 + · · · + βs) > 0.
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Finally, let us prove that the integral HΥ (ε) does not depend on ε: take 0 < ε1 < ε2.

We consider Υ ([ε1, ε2]), the noncompact (d + 1)-cycle

⋃
ε∈[ε1,ε2]

{ε} × Υ (ε)

with oriented boundary {ε1} ×Υ (ε1)− {ε2} ×Υ (ε2). Consider then for R > ε2 the compact

cycle ΥR = Υ ([ε1, ε2]) ∩ ([ε1, ε2] × PR), where PR is the polydisk

PR = {u ∈ Cd | |u1| ≤ R, . . . , |ud| ≤ R}.

Integrals HΥ (ε) are of the form HΥ (ε) = ∫
Υ (ε)

ω, where ω is a holomorphic d–form

independent of ε and hence it is a closed form. We have

0 =
∫
ΥR

dω =
∫
∂ΥR

ω.

The boundary ∂ΥR is equal to

({ε1} × Υ (ε1)) ∩ ([ε1, ε2] × PR)− ({ε2} × Υ (ε2)) ∩ ([ε1, ε2] × PR)+ ∂R.

Since by examining the parametrization (5.7) we see that each d-dimensional piece of ∂R

is included in an hyperplane uj = R, hence, the restriction to it of ω is zero. We deduce

that the integral of ω on Υ (εj)∩PR (which can replace ({εj}×Υ (εj))∩([ε1, ε2]×PR) because

ω does not depend on ε) for j = 1, 2 are equal. Taking the limit when R−→∞ we obtain

the result

HΥ (ε1)
= HΥ (ε2)

.

In the case of general p, δ, we keep the same cycle and work with the integral

HΥ (ε)(β; y) :=
∫
Υ (ε)

u−β−1 exp

⎛⎝−
d∑

k=1

e
√−1πδkuk +

n∑
j=d+1

zju
a(j)

⎞⎠du,

where zj = e
√−1π〈1+2p+δ, a(j)〉yj and the proof is essentially the same with only an easy

modification of inequality (5.10).

In particular, the cycle D̃p,δ in the statement of Theorem 5.3, is the image of Υ (ε)

by tk = uk · exp(
√−1π〈1 + 2p + δ, a(k)〉).

Conclusion: The integral HΥ (ε)(β; y) is analytic as a function of β ∈ Cd. Moreover,

when �β < 0, e−√−1π〈1+2p+δ,β〉HΥ (ε)(β; y) = T · Fp,δ(β; y), see (5.11). Hence, it equals the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/23/17823/5648064 by U
niversidad de Sevilla user on 28 June 2022



Gevrey Expansions of Hypergeometric Integrals II 17859

meromorphic continuation T · F̃p,δ(β; y) outside the union of hyperplanes P described in

Lemma 4.9.

When qkβk /∈ Z for all k ∈ {1, . . . , d}, the factor T is non zero and we

obtain a Gevrey series expansion for the integral along rapid decay cycles HΥ (ε)(β; y).

To check this last claim we have to remark that the set of poles of the analytic

continuation F̃p,δ(β; y) is contained in P which is contained in the set defined by

T = ∏d
k=1(exp (2

√−1πqkβk)− 1) = 0. This latter set is, under Assumption 4.1, the set of

parameters β = B−1
σ γ such that γ is called resonant for B (see [12, 2.9]).

Coming back to the general situation of Theorem 4.3, the result of this theorem

and the above considerations prove the following theorem:

Theorem 5.8. If Assumption 4.1 is satisfied and γ ∈ Cd is non resonant for B, then

all the Gevrey solutions of MB(γ ) along the hyperplane xn = 0 can be described as

linear combinations of a fixed set of asymptotic expansions of integral solutions of

type IC(γ ; x) along rapid decay cycles.
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