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ABSTRACT

This paper presents new models for segmentation of 2D and 3D Scanning-Transmission Electron Micro-
scope images based on the ordered median function. The main advantage of using this function is its
good adaptability to the different types of images to be studied due to the wide range of weight vec-
tors that can be cast. Classical segmentation models stand out for their ability to provide a segmentation
of the original image very quickly and with low computational burden. However, they do not usually
achieve high quality segmentations with a small number of clusters in order to classify the different ele-
ments which compose the structure represented in the image. The quality of the segmentation provided
by our approach is analysed using different choices of the weight vector in some real instances. More-
over, improvements are proposed for the formulations to reduce the computational time needed to solve

Mixed integer linear programming

these problems by taking advantage of the weight vector structure.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Nowadays, Nanoscience and Nanotechnology are of major rele-
vance for the design of new nanomaterials with a wide range of
applications in areas such as environmental protection, green en-
ergy sources and catalysis. These novel designs are based on the
ability of controlling structure and morphology at nanometer scale.
Scanning Transmission Electron Microscopy (STEM) has therefore
become a powerful tool to rationalise the properties of nanomate-
rials.

In this technique, the nanomaterials are studied by recording
images of their projected structure (2D-STEM images) either in
a specific tilt or by acquiring a tilt-series around a single axis
with constant increment of angle. In the latter, the reconstructions
of the whole set of 2D-STEM images provide information about
the 3D structure, most commonly the morphology of the object
(3D-STEM images). The intensity displayed in the pixels of the
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2D images must at least maintain a monotonic relationship with
thickness.

By classifying the pixels in these images into groups of intensi-
ties it is possible to discriminate the different components which
make up a material and quantify their morphological properties.
For example, in a material composed of small particles dispersed
on a surface, pixel classification (also known as segmentation) al-
lows identification of the image areas or volumes corresponding to
the particles as independent objects and further evaluation of their
morphological features (e.g. size, shape or surface-to-volume ratio).

Different clustering methods focusing on pixel classification can
be found in the field of STEM (Bai, Fan, & Dong, 2021; Gontar,
Ozkaya, & Dunin-Borkowski, 2011). Otsu’s method became popular
for its simplicity, classifying pixels by minimising the intra-class
variance of their intensities (Hindson, Saghi, Hernandez-Garrido,
Midgley, & Greenham., 2011; Leary et al.,, 2012; Liu et al., 2020;
Lopez-Haro et al., 2014). K-means clustering is also a widely used
method to carry out segmentation of images, as it is one of the
most effective methods to classify intensities (Belianinov et al.,
2015). These clustering procedures play an important role in the
analysis of electron microscopy images, since a high quality seg-
mentation determines the success of microscopic characterisation
(Yamamoto et al., 2014). The main advantage of these segmenta-
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tion methods is the ability to obtain solutions very quickly and
with low computational burden. However, these models do not
usually provide good classifications where there are few clusters
or with noisy images, i.e., images where it is very difficult to dis-
tinguish between their different structures.

In recent decades, there has been increasing interest in the
literature in solving clustering problems with mathematical pro-
gramming methods (Hansen & Jaumard, 1997). Different objective
functions are used for this purpose, such as minimising the max-
imum within-cluster distance (Saglam, Salman, Sayin, & Turkay,
2006), minimising the sum of within-cluster distances (Brusco,
2003) or minimising the sum of distances between each point and
its cluster centre (Bradley, Fayyad, & Mangasarian, 1999). This ob-
jective function combined with feature selection was also stud-
ied in Benati & Garcia (2014). See Benati, Puerto, & Rodriguez-Chia
(2017), Benati, Ponce, Puerto, & Rodriguez-Chia (2021) for the latest
advances in the use of mixed-integer linear programming formula-
tions for clustering problems.

Following this line of research, in this paper we propose a new
clustering method based on mathematical programming using the
Discrete Ordered Median Problem (DOMP) as a criterion to seg-
ment STEM images. DOMP has attracted the attention of many
studies in the area of discrete location, since it provides a unified
framework for the most popular location problems used in discrete
location literature (median, center, centdian, k-sum,...).

The idea behind the objective function of this problem con-
sists of applying a penalisation to each distance between a client
and its corresponding service facility depending on its position
in the whole sequence of sorted distances (unlike classical mod-
els such as median or center, where this penalisation is assigned
to each client regardless of the magnitude of the distance to
its service facility). This adds a ‘sorting’ to the underlying fa-
cility location problem, making formulation and solution much
more challenging. There are many studies based on this func-
tion such as Kalcsics, Nickel, & Puerto (2003), Ogryczak & Tamir
(2003), Nickel & Puerto (2005), Boland, Dominguez-Marin, Nickel,
& Puerto (2006), Puerto (2008), Marin, Nickel, Puerto, & Vel-
ten (2009) which introduce classical DOMP formulations, while
Kalcsics, Nickel, Puerto, & Rodriguez-Chia (2010), Labbé, Ponce, &
Puerto (2017), Aouad & Segev (2019), Olender & Ogryczak (2019),
Blanco (2019), Deleplanque, Labbé, Ponce, & Puerto (2020), Espejo,
Puerto, & Rodriguez-Chia (2021), Marin, Ponce, & Puerto (2020) of-
fer an overview of recent advances in DOMP.

The goal of this paper is twofold. The first aim is to show that
segmentations with the ordered median objective function provide
high quality pixel classifications for certain choices of the weight
vector. The second goal is to develop new formulations and im-
provements for DOMP with specific choices of the weight vector
that allow us to solve the resulting optimisation problems in an
efficient way.

This paper is structured as follows: Section 2 introduces the
notation needed to formulate segmentation problems within the
DOMP framework; Section 3 proposes different improvements to
DOMP formulations to reduce the computational time needed to
obtain a high quality segmentation by taking advantage of the
weighted vector structure in the objective function to be min-
imised; Section 4 provides alternative improvements to the formu-
lations based on the idea developed in Ogryczak & Tamir (2003);
Section 5 offers an extensive computational analysis of the dif-
ferent formulations and the improvements developed in this pa-
per; in Section 6 this model is validated with different images
and a way of quantifying the segmentations obtained is proposed;
Section 7 outlines the main conclusions of this paper; and fi-
nally, for the sake of completeness, the formulations used to com-
pare with the ones proposed in this paper are set out in the
Appendix.
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2. Image segmentation and the ordered median problem

This section describes the elements that define image segmen-
tation models and states the links to formulate these problems
within the DOMP framework.

Let us suppose we have an image with M x N pixels to be seg-
mented with the aim of identifying the elements which consti-
tute the nanomaterial shown in the original image. Each pixel has
a specific intensity which is an integer value in a range whose
length will depend on the resolution (number of bits) of the im-
age, for instance, between 0 and 28 or 0 and 2'6. The smallest in-
tensities of this range correspond to the lowest densities of the
object represented in the image (close to black colour) and the
largest intensities correspond to the greatest densities (close to
white colour). Let us also assume that we have n different inten-
sities and N := {1,...,n}. The number of pixels having the same
intensity is referred to as the frequency of that intensity and the
set of frequencies of an image is denoted as f :={fi,..., fn}.

Segmenting an image consists of grouping its intensities into p
(< n) different clusters. Each cluster is associated with an inten-
sity which acts as its representative. Therefore, in terms of mathe-
matical programming we can define the segmentation of an image
as the choice/location of p cluster representatives and the alloca-
tion of each intensity to a cluster representative in such a way that
some objective function is minimised. It is assumed that the set of
candidate cluster representatives is the set of intensities. We de-
fine cluster j as the one having intensity j as its representative.
Moreover, each intensity is allocated to only one cluster represen-
tative. Let d = (d;;); j=1,..n be the n x n intensity weighted distance
matrix where d;; represents the intensity weighted distance for al-
locating intensity i to the cluster representative j. These intensity
weighted distances are defined as the product of the frequency of
the pixel intensity i (f;) multiplied by the distance between inten-
sities i and j, i.e. d;j = fi|i — j|. The distance between two inten-
sities is obtained as the absolute value of the difference between
both intensities, since they are on the real line (|i — j|). Let Jc N/
be the subset of p intensities selected as representatives of p dif-
ferent clusters. We define d;(J), i € N as the intensity-allocation
weighted distance of intensity i to a cluster representative in J. It is
assumed that each intensity i is allocated to a representative such
that j e arg nku]n dy or in other words:

€

dij = di(J) := T{}EIF di-

2D and 3D-images are usually composed of different structures
such as background, particles and support (materials which hold
particles). Particles are usually characterised by intensities with
low pixel frequencies in the original image because of their small
size compared to the other structures of the image. Hence, if we
consider the ordered vector of the intensity-allocation weighted
distances, the first positions of that vector usually correspond to
intensities associated with particles. We can therefore attempt to
exploit this observation by applying a specific DOMP model with
appropriate weights to achieve a good segmentation of images ob-
tained with STEM. The intensity-allocation weighted distances are
sorted to calculate the ordered median function where d-(J) :=
(d; (), ....d%(J)) will be this vector, such that:

dL() <. =d2().

The DOMP aims to minimise the ordered weighted average of vec-
tor (d’; (J)) with respect to a given set of A-weights:

H k gk
min 3 A*d<()),

=p keN
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Cluster whose representative

Cluster whose representative

1 1 1 1 1 1 1 2 1 1
2 1 3 2 2 2 2 2 1 1
2 1 1 2 2 3 3 3 3 2
2 2 2 3 3 4 4 2 2 2
1 1 2 3 4 4 5 5 5 4
3 3 4 4 4 5 5 4 3 3
2 2 2 3 3 3 4 4 3 1
1 1 1 2 2 1 1 1 1 1
Intensities: 1 5 3 4 s Segmentation for 1 = (1,1,0,1,1) andp = 2:
Frequencies: ‘ 2 ‘ 2 ‘ 6 ‘ 0 ‘ s ‘ - Cluster representatives: J = {1, 3}.
f1 5 h I3 7 - Allocations of intensities:
0 25 50 75 100 Intensity allocated to  Cluster representative
—_—
> 0 3 40 6 ; _— } is the intensity 1
d= 32 16 0 16 32 3 — 3
33 22 11 0 11 4 -_— 3
20 15 10 5 0 3 - 3 is the intensity 3

- Intensity-allocation weighted distances: d(J) = (0,23,0,11,10)

- Ordered intensity-allocation weighted distances: d.(J) = (0,0,10,11,23)

Fig. 1. Segmentation of an 8 x 10 image with 5 intensities and 2 clusters.

where A = (A, ..., A"), with A¥ > 0, Vk € NV. Figure 1 shows an ex-
ample of an image segmentation with five intensities grouped into
2 clusters.

The above expression needs to be reformulated for its imple-
mentation in MIP solvers. There are several formulations involved
in this task. The formulation Fpomp, proposed in Puerto, Ramos, &
Rodriguez-Chia (2013), Puerto, Ramos, Rodriguez-Chia, & Sanchez-
Gil (2016) and Espejo et al. (2021) and the formulation For, intro-
duced in Marin et al. (2020) are known to have the best perfor-
mance in terms of solution times when A-vectors have repetitions
(components with equal values). For the sake of completeness, we
have included these formulations in Appendix A.1 and A.2, respec-
tively.

3. Specific formulations

The application of the state-of-the-art DOMP formulations to
segmentation problems allows us to solve medium size instances.
The most promising formulations for these types of problems are
described in Appendix A.1 and A.2. However, still the CPU times re-
quired to solve these problems make them not competitive when
compared with standard methods in the image segmentation area.
For this reason, our goal is to improve their performance by ex-
ploiting specific aspects of the problem. Taking advantage of the
particular A-vector structure, we aim to provide new formulations
that allow a reduction of the computational time required by the
general formulations of the ordered median problem. Since the
main goal of image segmentation techniques is the analysis of the
particle characteristics contained in STEM experiments, these for-
mulations will attempt to remove intensities that do not corre-
spond to specific structures of the original image. These intensi-
ties could contain noise generated by the microscope when pro-
jections are recorded (intensities with the lowest frequencies). On
the other hand, they could represent structures with larger sizes
than particles. Therefore, to remove these intensities from the ob-
jective function, we attempt to assign the value O to the positions
of the A-vector where these intensities will hopefully be in the or-
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dered intensity-allocation weighted distance vector and the value
1 to positions corresponding to relevant intensities.

In this section we propose different specific criteria depending
on the type of sample to be segmented: i) anti-k-centrum (A =
(1,...,1,0,...,0)), which minimises the sum of the k-smallest
components of the ordered intensity-allocation weighted distance
vector, will be selected to segment images with small relevant
features (smallest frequencies) and very large unimportant struc-
tures (largest frequencies), since hopefully the first and last po-
sitions of the ordered intensity-allocation weighted distance vec-
tor will correspond to the intensities with the smallest and
largest frequencies, respectively; ii) (kq, kp)-trimmed mean (A =
,...,0,1,...,1,0,...,0)), which minimises the sum of compo-
nents between the (k; + 1)th and the (n -k, — 1)th positions of
the ordered intensity-allocation weighted distance vector, will be
applied to segment images where the kq-smallest and the k;-
largest frequencies correspond to intensities that do not provide
meaningful information about the image; and iii) (kq, ky)-anti-
trimmed-mean (A =(1,...,1,0,...,0,1,...,1)), which minimises
the sum of the first k; plus the last k;, components of the ordered
intensity-allocation weighted distance vector, could be used for im-
ages whose ki-smallest and k,-largest frequencies correspond to
intensities that represent the most important structures.

3.1. Anti-k-centrum

Let us suppose that the image to be segmented is made up of
very small particles and the main aim is to detect only these par-
ticles regardless of the rest of the elements. Particles are usually
in the first positions of the ordered intensity-allocation weighted
distance vector, since there are fewer pixels with intensities associ-
ated with particles than pixels with intensities associated with the
rest of elements of the image. That is, we are interested in assign-
ing the intensities with the smallest intensity-allocation weighted
distances in the best possible way. The anti-k-centrum problem
may have a suitable structure for this situation, since the assign-
ments with the smallest intensity-allocation weighted distances
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penalise the objective function thanks to the non-zero values of
A-vector whereas the largest ones are hardly considered due to
the zeros in the corresponding positions. This A-vector assigns the
value 1 to the first k-positions and zero otherwise, that is, A =
(1,...,1,0,...,0). To give a formulation for the anti-k-centrum
model, we define the allocation r-variables, such that rij=1 if in-
tensity i is assigned to cluster representative j and r;; = 0 other-
wise. The locations of representatives are controlled by y-variables,
defined as y; = 1 if intensity j is selected as the representative of
a cluster and y; =0 otherwise. In what follows, for the sake of
brevity, we will say that cluster j exists if y; = 1. Taking advan-
tage of the particular structure of the A-vector in anti-k-centrum,
we propose the following formulation for this problem:

(Fakc) min Z d;jrij

i,jeN

st. Y yj=p (1a)
JjeN
rij fyj, Vi,je/\/, (lb)
Zrijgl, YieN, (1c)
JjeN
> =k, (1d)
i,jeN
ry e (0.1}, VijeN. (1)

The objective function stands for the sum of the k-smallest
components of the ordered intensity-allocation weighted distance
vector. The equality constraint (1a) sets the number of cluster rep-
resentatives to p. Constraints (1b) avoid allocating intensity i to j
if j is not selected as cluster representative. Constraints (1c) en-
sure that each intensity is allocated to a maximum of one clus-
ter. The equality constraint (1d) sets the number of allocations
to k. Closest assignment constraints used in the formulation of
Appendix A.2 (17d) are not included in the formulation, since the
assignments with the n — k largest intensity-allocation weighted
distances may be post-processed to be allocated to their closest
clusters. Although r-variables may be relaxed, we have considered
them as binary variables since they provided us lower computa-
tional times. In the rest of the formulations included in this paper
we will proceed in the same way.

We can adapt this formulation if there is more than one non-
zero block in A-vector (a block is defined as a set of consecutive
non-null identical values in A-vector). These blocks must be sorted
in decreasing order, for instance A =(2,...,2,1,...,1,0,...,0).
Consequently, we define as many sets of allocation variables as
there are positive blocks. If there are two blocks with k; and k;
elements which take the value of 2 and 1 respectively, r and s-
variables will be defined to control each intensity allocation. The
r-variables control the lowest kqth allocation weights and the s-
variables state the following k,th ones.

(Faucy)  min 2 ) dijrij+ ) dsij
i,jeN i,jeN
s.t. (1a),
rij + sl'j < yj’ Vl,] € ./\/, (23)
Z(rij+sij) <1, VieN, (Zb)
JjeN
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Z Iij = kl, (ZC)
i,jeN
> sij=ka. (2d)
i,jeN
Tij, Sij, Yj € {0,1} VI,]EN (26)

Constraints (2a) avoid allocating intensity i to j if j is not se-
lected as cluster representative. Constraints (2b) ensure that each
intensity is assigned to at most one cluster. The number of alloca-
tions controlled by r and s-variables are set to k; and k, by con-
straints (2c) and (2d) respectively.

3.2. (kq, ky)-Anti-Trimmed mean

If one is interested in identifying only the smallest particles to-
gether with the largest ones, in general, these particles will cor-
respond to the intensities with the smallest and largest frequen-
cies, respectively. As mentioned above, the smallest elements of
the image are usually in the first positions of the ordered intensity-
allocation weighted distance vector and the largest ones are of-
ten in the last positions of the vector, which correspond to the
background of the image. This situation fits to the structure of the
(kq, kp)-anti-trimmed mean model, since it aims to minimise the
ki-smallest intensity-allocation weighted distances together with
the k,-largest ones, i.e, A=(1,...,1,0,...,0,1,...,1). We define
three sets of allocation variables ry;, s;; and t;;, with i, j € A. These
variables take the value 1 if intensity i is allocated to cluster j and
the value O otherwise. r-variables are used for controlling the al-
locations with the smallest intensity-allocation weighted distances,
t-variables manage the largest ones and s-variables are used to al-
locate intensities with intensity-allocation weighted distances cor-
responding to positions in which A-vector takes the value 0. A
formulation for the (kq, ky)-anti-trimmed mean model is as fol-

lows:
Fikpary)  min Y " dirij+ Y dijty;
i,jeN ijeN
s.t. (1a),
Tij + Sij + tij <Y, Vi.jeN, (3a)
Z(Tij+5ij+tij)=1’ VieN, (3b)

JjeN

Ordering constraints (See Section 3.2.1),

(30

Z tij = ]{2, (3d)
i,jeN

Zsij:n_(k1+k2)» (3e)
i,jeN

T,'j,Sij,t,‘j,yj S {0,1}, Vl,]EN (Bf)

The objective function accounts for the kq-smallest plus
the k;-largest intensity-allocation weighted distances. Constraints
(3a) avoid allocating intensity i to j if j is not selected as clus-
ter representative and (3b) ensure that each intensity is allocated
to one cluster. Constraints (3c) ensure that any allocation using t-
variables will have an intensity-allocation weighted distance larger
than the ones associated with s-variables and will be described in
Section 3.2.1. Constraints (3b) together with (3d) and (3e) deter-
mine the number of allocations controlled by each set of variables.
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3.2.1. Alternative ordering constraints for F, 1,)arm formulation

In this subsection we propose different ways of modelling or-
dering constraints, (3c). These constraints allow us to model the
order of the intensity-allocation weighted distances. Hence, this
family of constraints ensures that the intensity-allocation weighted
distances of assignments controlled by s-variables must be smaller
than or equal to the ones controlled by t-variables. Below, we
introduce different sets of constraints with the same purpose
of ordering the assignments controlled by s and t-variables. In
Section 5 a preliminary computational study is carried out to
choose the ordering constraints with the best performance to solve
the F, k,)atm formulation.

First family: This allocation order may be controlled by a big
M value to force that the intensity-allocation weighted distance of
each s-variable assignment is smaller than or equal to the one of
each allocation controlled by t-variables. Hence, these constraints
may be written as follows:

Zd,-js,-j <@ _Zti’j)Ml"’_Zdi’jtl”j? Vi,i' e N.

JjeN JjeN JjeN
The value of M; has been set to the maximum intensity-allocation
weighted distance of intensity i, i.e., M; = max;c,r d;;. Constraints
(4a) may be reinforced by including on the left side the sum of the
intensity-allocation weighted distances of assignments controlled
by r-variables, obtaining:

Z(d,‘jS,’j + d,-jr,-j) <(1- Z ti’j)Mi + Z di’jti’jv Vi, i e V.

JjeN JjeN JjeN

(4a)

(4b)

Second family: In what follows we consider a different way of
modelling the ordering constraints without using big M values. To
do so, we define the following constraints:

(n*’ﬁ *kz)tij < Z Skl Vl,]GN

kleN:

dyy<d;j

(5a)

These constraints force that the intensity-allocation weighted
distances of the n —k; — k, assignments controlled by s-variables
must be smaller than the intensity-allocation weighted distance of
every assignment controlled by t-variables. The number of assign-
ments controlled by r-variables may be included in (5a), since, if
tij = 1 then, the total number of assignments controlled by r and s-
variables with intensity-allocation weighted distances smaller than
d;; must be larger than or equal to n —kj:

(n—k)tij < D" (S +Tu), Vi,jeN.
k.leN:
dy=d;

(5b)

Third family: An alternative way of modelling the ordering con-
straints is as follows:

kasij < Z trt,

kleN:
dy>d;;

Vi jeN. (6a)

These inequalities ensure that the number of assignments con-
trolled by t-variables must be equal to k, and they must have
intensity-allocation weighted distances larger than the allocations
controlled by s-variables.

Fourth family: The following constraints state the maxi-
mum number of assignments controlled by r and s-variables. If
tijj =0, then the number of assignments with intensity-allocation
weighted distances larger than or equal to d;; must be smaller than
or equal to n — ky. Moreover, if t;; = 1, there can be no assignments
controlled by r and s-variables with intensity-allocation weighted
distances larger than d;;. These constraints may be written as fol-
lows:

Z (S + 1) < (1 =t;))(n—ky),

kIeN:
dy=d;j

Vi jeN. (7a)
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The values of t-variables may be added for intensity i if the
intensity-allocation weighted distance is smaller than or equal to
dij:

S Gutr) == ) tp)n—ky). VijeN. (7b)
d=d, dy=dy

Fifth family: Another way to order each assignment is to define

two variables (umax and Up,;,) which take the maximum intensity-
allocation weighted distance value of the assignments controlled
by r-variables and the minimum value of the ones controlled by
t-variables, respectively. Four sets of ordering constraints are in-
cluded in the Fg, ,)arm formulation:

dij(1 = "1 =Y ti) <A =yj+ > yOM+Upn, Vi jeN,
keN keN d ke,‘v;:i
ik<dij

(8a)

dijy;j+ (1 —-y)M + (Z Tk + Ztik)M > Unax, Vi jeN,

keN keN
(8b)
Z rikdik = Umax, VieN, (SC)
keN
1- Z Lik M+ Z tikdik = Umjn, Vie N. (Sd)

keN keN

Constraints (8a) and (8b) ensure that the maximum and min-
imum intensity-allocation weighted distance of each assignment
controlled by s-variables must be smaller than or equal to Uy,
and larger than or equal to umax, respectively. Constraints (8c¢) and
(8d) state the maximum intensity-allocation weighted distance of
assignments managed by r-variables and the minimum intensity-
allocation weighted distance of assignments controlled by t-
variables, respectively.

3.3. (kq, ky)-Trimmed mean

Let us now suppose that we are interested in segmenting an
image where the intensities with the smallest and largest num-
ber of pixels do not provide useful information. These unimpor-
tant intensities usually represent noise (lowest frequencies) and
the background (highest frequencies). Therefore, we need to find
a model that does not consider the smallest intensity-allocation
weighted distances together with the largest ones in the objec-
tive function. The (kq, kp)-trimmed mean model adapts well to
this situation as it minimises intensity-allocation weighted dis-
tances excluding the kq-smallest and k,-largest ones, ie., A=
©,...,0,1,...,1,0,...,0). To formulate this specific model, pro-
ceeding in a similar way to Fg, i,)arm, we define two sets of allo-
cation variables r and s. The r-variables which do not contribute to
the objective function control the k;-smallest intensity-allocation
weighted distances and the s-variables control the n— (k; +ky)
following ones. This model may be written as follows:

> dijSii
i,jeN
(1a),
Tij +Sij = ¥j,

(Fik, kpyrm) MmN

s.t.

Vi,jeN, (9a)

D i+ <1, Vie N, (9b)

JjeN
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Ordering constraints (See Section 3.3.1),

(9¢)

Z rij = k], (9d)
i,jeN

Z Sij=n— (k1 + kz), (9@)
i,jeN

r,‘j,S,‘j,yj € {0,1}, Vl,]EN (gf)

The objective function provides the sum of assignments with
intensity-allocation weighted distances larger than the kqth po-
sition and smaller than the n —k,th position in the ordered
intensity-allocation weighted distance vector. Constraints (9a) en-
sure that each intensity is associated with a cluster that exists.
Constraints (9b) force that each intensity is allocated to at most
one cluster. Constraints (9c) ensure that the intensity-allocation
weighted distances of assignments controlled by r-variables are
smaller than the ones controlled by s-variables. The number of al-
locations made by r-variables and s-variables are given by (9d) and
(9e), respectively.

3.3.1. Alternative ordering constraints for F, k,ymm formulation

In this subsection, we analyse different ways of modelling or-
dering constraints (9¢). These families of constraints aim to model
the order of assignments controlled by r and s-variables in a simi-
lar way to the F, ,)arm formulation. We have proposed different
ordering constraint families and a preliminary computational study
is carried out to select the family that shows the best performance
in the F, x,)rm formulation (see Section 5).

First family: The first set of ordering constraints proposed to
state the assignments controlled by r and s-variables such that
intensity-allocation weighted distances of assignments managed by
r-variables must be smaller than or equal to the ones controlled by
s-variables. This can be written as follows:

Zdijrij =(1- ZS,-/]-)Mi + Zdi’jsi’j, Vi,i' e NV,

jeN JjeN JjeN

(10a)

where M; = max;c d;;.

Second family: Similarly to the F, y,)arm formulation, con-
straints (10a) may be replaced by the following ones which also
state the order of each assignment:

k]Sijf Z Tki» Vl,]GN

KleN:
dyy<d;j

(11a)

These constraints ensure that the number of allocations with
intensity-allocation weighted distances smaller than d;; controlled
by r-variables must be larger than or equal to k; if s;; = 1. Con-
straints (9d) are removed from the F, ;,)rv formulation, since the
number of allocations controlled by r-variables is stated in con-
straint (11a). Computational results have been obtained with this
set of constraints. Valid inequalities to manage the order of alloca-
tions may also be included in the formulation:

=k —k)ryj < Y s, Vi, jeN.
kleN:
dk,>d1]v

(12a)

These constraints set as n—k; —k, the number of assign-
ments controlled by s-variables. Each one must have an intensity-
allocation weighted distance larger than the intensity-allocation
weighted distances of each assignment controlled by r-variables.
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4. New formulations based on the dualisation of the k-sum
problem

Ogryczak & Tamir (2003) developed a formulation for the or-
dered median problem using the dual of the problem that max-
imises the sum of k values of a set of n values (k-sum prob-
lem). Although this formulation has a good performance due to
the reduced number of variables, it can only be extended to A-
vectors whose components are given in non-decreasing order, i.e.,
0=Ap <A1 <--- < An. It requires a set of allocation variables x;;,
with i, j € NV, defined as x;; =1 if intensity i is assigned to clus-
ter j and x;; = 0 otherwise, Vi, j € NV. In addition, the wy- and z-
variables correspond to the dual variables of the problems that
maximise the sums of k values for each i € /. The formulation is
given by:

(For) min ) (An_ks1 — Anoie) (kzi + ) wye)

keN ieN
s.t. (1a),
Xij =Yj Vi,jeN,
(13a)
2::Xu =1, YieN,
JjeN
(13b)
Wik +2 = Y dijXij, Vi ke N,
JjeN
(13¢)
Xij.yj € {0. 1}, Vi, jeN,
(13d)
Wi, = 0, Vi,ke N,
(13e)
Zy € R, Vk e V.
(13f)

The kth addend of the objective function namely kz; +
Zia\/ wy,, represents the dual objective function of the problem
that maximises the sum of k intensity-allocation weighted dis-
tances, and consequently, the telescopic sum of these addends
when the weights are given in a non-decreasing way provides the
ordered objective function. Constraints (13a) prevent each inten-
sity being allocated to a cluster representative that does not ex-
ist. Moreover, constraints (13b) ensure that the allocation of each
pixel is unique. Constraints (13c) are used to build the dual from
the maximisation problem to calculate the sum of the k-largest
weights.

The F, ky)arm and F, ,yrv formulations require less compu-
tational time than the generic ordered median formulation. How-
ever, they still need a high computational time to solve large size
instances. For this reason, we have exploited some aspects of the
For formulation to provide alternatives that permit to solve the
aforementioned instances in smaller computation times.

4.1. OT-(kq, ky)-Anti-Trimmed mean

Let A=(1,...,1,0,...,0,1,...,1) be the A-vector correspond-
ing to the (kq, kp)-anti-trimmed mean model, where the first and
second blocks of ones have k; and k, elements, respectively. The
kq-smallest intensity-allocation weighted distances are minimised
by using the anti-k-centrum criterion and the k,-largest intensity-
allocation weighted distances are minimised by exploiting the ra-
tionale behind the OT formulation to solve the k,-centrum prob-
lem. Hence, r-variables are defined to control the assignments
with the k;-smallest intensity-allocation weighted distances and x-
variables are used to apply the OT criterion to minimise the sum
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of the k;-largest intensity-allocation weighted distances:

(Fik, ky)ATMo;) D Z djrix+kaz+ ZWi
J.keN ieN
s.t. (1a), (9d), (13a), (13b),
Wi+zZZdUXU7 VieN,
jeN
(14a)
T,'j SX,’j, Vi,jEN,
(14b)
xij, 1ij, ¥j € {0, 1}, Vi,jeN,
(14c)
w; >0, VieN,
(14d)
zeR. (14e)

The first term of the objective function computes the k-
smallest intensity-allocation weighted distances and the sum of
the ky-largest ones are computed by the second term. Constraints
(14a) relate primal and dual variables associated with the formula-
tion that minimises the sum of the k,-largest assignments. Con-
straints (14b) set xj =1 if rj, takes the value 1, since, in con-
trast to r-variables, which control k; assignments, x-variables are
involved in each of the n allocations due to constraints (13b).

4.2. OT-(kq, ky)-Trimmed mean

We define A =(0,...,0,1,...,1,0,...,0) where the first block
of zeros contains k; elements and the second block of zeros is
composed of k, elements. Thus, Ogryczak and Tamir’s formulation
is applied to the first n — k, elements of A-vector. To achieve this,
the number of allocations controlled by x-variables will be set as
n—ky:

min  (n—k —k)z+ Y w;
ieN

(Fiky o) ™or )

s.t. (1), (13a), (14a),
> xij=n—k, (15a)
i,jeN
xijnyj € {0,1}, Vi,jEN, (15b)
w; >0, Vie N, (15¢)
zeR. (15d)

The objective function implements Ogryczak and Tamir’s formu-
lation to the first n — k, components of A. Constraints (15a) set the
number of allocations controlled by x-variables, i.e., the number of
assignments must be equal to n — k.

5. Computational results

This section provides a detailed computational analysis of the
alternative formulations proposed for the different choices of the
A-vector in the discrete ordered median problem. Our focus is on
the application of DOMP to segment electron microscopy images
recorded during the structural characterisation of nanomaterials
with potential applications in environmental catalysis. Therefore,
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Stack of 2D-projections

l from -70° to 70"54—0—\,

12 D-projection

Electron tomography
reconstruction

(@) (b)

Fig. 2. (a) corresponds to a 3D-STEM image and (b) is a 2D-STEM image. Both have
been used to assess the performance of the different formulations.

we have restricted ourselves to meaningful choices of A-vectors
which are valid for this application. This analysis allows us to de-
termine which formulations are the most efficient to solve the
proposed segmentation problems. As is usual in the STEM field,
the computational experience is carried out in simulated instances.
Generating real experiments is highly time-demanding and con-
sequently the time needed to obtain a large number of instances
would not be affordable. The idea is to generate synthetic images
(phantoms) with fully known features (e.g., sizes, shapes, intensi-
ties) that are close to real systems studied in STEM (Staniewicz &
Midgley, 2015; Tovey et al., 2019).

Figure 2 shows the procedures to generate the phantoms se-
lected to implement the computational studies of the formulations
and validation of the proposed models (see Section 6). We have de-
cided to segment these images because of their importance in the
field of nanoscience and nanotechnology. It is important to note
that both phantoms represent complex nanomaterials which have
potential applications in the field of heterogeneous and environ-
mental catalysis (see Liu & Corma, 2018). Thus, high quality seg-
mentations of the components that make up such systems are es-
sential not only to obtain an accurate quantification but also to be
able to link the structural properties at nm-scale to their chemical
or physical behaviour (see Lopez-Haro et al., 2018).

In particular, these datasets simulate 3D-STEM (Fig. 2(a)) and
2D-STEM (Fig. 2(b)) images. Both images are composed of a back-
ground (pixels close to black colour), the support (pixels with grey
colours) and the particles (pixels close to white colour). Supports
are necessary in STEM experiments to hold the nanometric ob-
jects, since these particles cannot be analysed individually due to
their microscopic sizes. The goal for segmenting these images is to
identify most of the particles to quantify their properties. To obtain
Fig. 2(a), a 3D phantom was generated to simulate a nanocatalyst,
and the shapes, sizes and intensities of these structures are related
with the characteristics of a real nanocatalyst. Once the phantom
had been generated, four different 3D-STEM images were recon-
structed using a classical reconstruction algorithm by considering
projections from -70 to 70 degrees obtained every 5, 10, 15, and
20 degrees (see Midgley, Ward, Hungria, & Thomas, 2007).

Figure 2 (b) simulates a 2D projection provided by electron
microscopes before applying a reconstruction algorithm (2D-STEM
image). Four instances were created by modifying the support
structure and the location, number and sizes of every particle
within the image. Supports were obtained by generating 3D sur-
faces very similar to the structures that hold the particles in these
types of experiments. Particles were represented by spheres whose
centres (x,y,z) were obtained by generating uniformly distributed
values between 0 and 512 pixels for each dimension. Values re-
lated to the radius of these spheres were calculated with a uni-
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Table 1
Different ordering constraints included in the F, x,)arv formulation.
(4a) (4b) (5a) (5b)

n p Time Gap BB Gap LR  Nodes Time Gap BB Gap LR  Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes

128 2 3201.88M 1.14 99.94 22550.75 1524.01 0 9994 116125 7208.06™ 99.99 99.88 8079.75 7311.02* 99.99 99.94  4560.75
128 3 4423.04M 4.58 99.93 30106.75 1837.45 0 99.93 10774.75 7207.14 9998 99.85 6210.50 - - - -
128 4 544562 28,66 99.90 36150.25 2111.39 0 99.90 19921 7205.35@® 99.98 99.77 9085.75 - - - -
128 5 7200.97%  70.06 99.15 42022.75 6208.16® 4634 99.91 45656.75 7206.14“¥  99.99 99.76 8425.25 - - - -
256 2 7200.90® 97.61 99.86 1214.25 7200.57*  99.94 99.76 0 - - - - - - - -
256 3 7202.06® 97.54 99.88 1658 7200.56“  99.63 99.73 1670.75 - - - - - - - -
256 4 7201.61® 9830 99.89  648.75 7201.23¥ 99.74 99.73 2218.5 - - - - - - - -
256 5 7201.12® 9878 99.89 428 7201.44%  99.76 99.67 86.33 - - - - - - - -

(6a) (7a) (7b) (8a), (8b), (8c), (8d)

128 2 1127.49 0 34.05 116525 7227.16% 99.76 99.94 1546.75 7207.51®  99.75 99.60 3.5 7201.19® 0.7815 99.95 859252.25
128 3 1250.88 0 4050 237125 7208.01® 99.84 99.92 1926.50 7213.70¥  99.74 99.43 503.5 7202.15® 99.90 99.94 170940.25
128 4 128498 0 64.41 833 7207.35®  99.87 99.89 2349.50 7205.43® 99.77 99.13 16.5 7201.99%  99.67 99.90 399771
128 5 673535C3) 46.84 7435 122695 7247.24® 9984 99.89 2456.50 7204.15®  99.68 99.05 229.75 7204.99) 99.88 99.89 223942.33
256 2 - - - - - - - - - - - - - - - -
256 3 - - - - - - - - - - - - - - - -
256 4 - - - - - - - - - - - - - - - -
256 5 - - - - - - - - - - - - - - - -

form distribution between 3 and 8 pixels. After creating these 3D
structures, they were projected on the horizontal plane to obtain
2D-STEM images.

The instances to be segmented were generated with different
numbers of intensities to study the performance of every formula-
tion with different instance sizes (128, 256, 512, and 1024 inten-
sities) and four values of p for each instance were selected (2, 3,
4, and 5 clusters). Moreover, k, k; and k, parameters were set de-
pending on the size of the instances: k was set to 5, where n is the
number of intensities of the image under study, i.e., k was set to
64, 128, 256, and 512 to segment an image with 128, 256, 512, and
1024 intensities, respectively; meanwhile, k; and k, were both set
to approximately {4, i.e., k; =k, = 10, 25, 50, and 100 for 128, 256,
512, and 1024 intensities, respectively. These choices correspond to
a preliminary computational analysis over different experiments,
where the values of these parameters always reported very good
performance.

All the formulations were implemented in MATLAB R2020b and
solved with CPLEX 12.10 thanks to the API that links both codes.
All the experiments were performed on an Intel Xeon W-2245
workstation, 256 Gb RAM, NVIDIA Quadro RTX 4000. The time for
solving each instance was limited to 7200 CPU seconds. All the ta-
bles report the average of 4 instances and the number of instances
for which the optimal solution was not obtained within the time
limit is denoted using a superscript. Moreover, ‘- means that more
than 2 h were required to obtain a feasible solution for each of the
4 instances.

5.1 Finding the best ordering constraints for F, x,yarm and F, i,)mv

A preliminary computational study was carried out to se-
lect the most efficient ordering constraint family described in
Sections 3.2.1 and 3.3.1 using the instances introduced above with
128 and 256 intensities (see Tables 1 and 2). The first two columns
contain the number of intensities and clusters, respectively. The
rest of the table is divided into different blocks. Each one of them
reports the time needed to obtain the optimal solution in seconds,
the gap between the best solution and the best bound (Gap BB),
the gap between the optimal solution of the integer problem and
the optimal solution of the linear relaxation (Gap LR), and finally,
the number of nodes explored in the branching tree by each for-
mulation. If the optimal solution is not obtained with any formula-
tion, the best solution found among all the formulations is chosen
to compute Gap LR.
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In Table 1, we can see that constraints (6a) provide the best
computational times to solve the F, i,)arm formulation for 128
intensities, but instances with 256 intensities are not solved be-
fore 7200 s. Alternatively, constraints (4a) and (4b) provided fea-
sible solutions for 256 intensity instances. Therefore, constraints
(4b) will be included in our segmentation model, since these con-
straints solve instances with 128 intensities in less time than con-
straints (4a).

As in the Fg, i,)arm formulation, we also analysed the re-
sults provided by the different ordering constraints included in the
F(k, kyyrm formulation. These computational results are shown in
Table 2, which shows that the best computational times to solve
the F, i,yrv formulation for 128 intensities are given by con-
straints (12a). However, this family of constraints does not even
provide feasible solutions for instances with 256 intensities. For
this reason, constraints (10a) were chosen to carry out the com-
putational study for F, i, ym-

5.2. Comparing formulations

Table 3 shows the computational results obtained applying the
two best formulations existing in the literature to solve the anti-
k-centrum problem, Fpomp, and For, (see Appendix Al and A2,
respectively, for more details about these formulations), compared
with the one proposed in Section 3.1 using 3D-STEM images.

The Fpomp, formulation only solved instances with 128 inten-
sities. The For, formulation has provided segmentation up to 512
intensities and the computational time was significantly reduced.
Nevertheless, this formulation could not provide solutions of in-
stances with 1024 intensities in less than 7200 s. Finally, the Fpyc
formulation reported the best performance, reducing the comput-
ing time substantially to obtain the optimal solution of instances
with 128, 256 and 512 intensities. Moreover, instances with 1024
intensities were only solved in less than ten minutes with the Fpjc
formulation. All the formulations provided very good linear relax-
ation values with gaps smaller than 0.3% and the Nodes columns
in the table show that most of the instances were solved in the
root node.

Table 4 provides the computational results obtained by applying
Fpomp,, For, and Fayc formulations to the anti-k-centrum problem
to segment 2D-STEM images. This table is organised in the same
way as Table 3 and the results obtained show the performance of
the formulations is similar to what was observed for 3D-STEM im-
ages.
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Table 2
Different ordering constraints included in the F, x,yrv formulation.
(10a) (11a) (12a)

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 600.24 0 3297 8055.25 899.69 0 33.76 1882.5 931.17 0 24.75 3475.50
128 3 3333.32 0 37.70 115815.75 3181.24 0 34.73 14403.25 1899.87 0 27.39 10398.75
128 4 5653.98( 6.45 39.46 94996.5 4862.83M 1.68 32.65 24,553 1794.43 0 25.55 13302.25
128 5 4207.94 0 40.71 52518.25 5219.34M 4.11 31.32 26,188 1296.91 0 24.77 11,954
256 2 7204.33@ 79.24 65.83 2737.75 - - - - - - - -
256 3 7206.98@ 89.67 63.78 0 - - - - - - - -
256 4 7204.99¢4 76.06 63.89 1.25 - - - - - - - -
256 5 7206.05® 68.66 58.76 480.75 - - - - - - - -

Table 3
Computational results of the Fpomp,, For, and Faic formulations to solve the anti-k-centrum problem using 3D-STEM images.
Fpowmp, For, Faic

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 315.57 0 0.11 0 13.71 0 0.11 0 0.43 0 0.11 0
128 3 264.52 0 0 0 13.21 0 0 0 0.31 0 0 0
128 4 268.09 0 0 0 15.03 0 0.06 0 0.33 0 0.06 0
128 5 240.85 0 0 0 13.01 0 0 0 0.29 0 0 0
256 2 - - - - 121.01 0 0.10 0 16.16 0 0.10 0
256 3 - - - - 132.79 0 0.01 0 17.39 0 0.01 0
256 4 - - - - 114.15 0 0.01 0 15.81 0 0.01 0
256 5 - - - - 117.93 0 0 0 13.41 0 0 0
512 2 - - - - 1014.45 0 0.05 5.5 110.77 0 0.11 0
512 3 - - - - 1830.42 0 0.01 0 109.64 0 0.01 0
512 4 - - - - 1643.14 0 0 0 99.02 0 0 0
512 5 - - - - 1470.52 0 0 0 101.52 0 0 0
1024 2 - - - - - - - - 661.56 0 0.28 10.25
1024 3 - - - - - - - - 669.84 0 0 0
1024 4 - - - - - - - - 583.23 0 0 0
1024 5 - - - - - - - - 564.76 0 0 0

Table 4
Computational results of the Fpowmp,, For, and Fyc formulations to solve the anti-k-centrum problem using 2D-STEM images.
FDOMPG FOT9 Fakc

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 217.39 0 0 0 20.20 0 0 0 0.58 0 0 0
128 3 207.42 0 0 0 19.85 0 0 0 0.58 0 0 0
128 4 178.39 0 0 0 20.7 0 0 0 0.55 0 0 0
128 5 169.50 0 0 0 20.94 0 0 0 0.53 0 0 0
256 2 5985.12 48.30 0 0 217.69 0 0 0 26.14 0 0 0
256 3 5824.79 47.43 0 0 202.04 0 0 0 29.20 0 0 0
256 4 5915.04 48.02 0 0 210.63 0 0 0 17.86 0 0 0
256 5 5125.26 24.15 0 0 236.43 0 0 0 22.05 0 0 0
512 2 - - - - - - - - 138.77 0 0.01 0
512 3 - - - - - - - - 156.35 0 0.02 0
512 4 - - - - - - - - 155.42 0 0.02 0
512 5 - - - - - - - - 133.40 0 0.08 190.25
1024 2 - - - - - - - - 617.91 0 0.02 0
1024 3 - - - - - - - - 642.72 0 0.02 0
1024 4 - - - - - - - - 634.04 0 0.04 38
1024 5 - - - - - - - - 497.77 0 0.04 284

Tables 5 (3D-STEM images) and 6 (2D-STEM images) show
the computational times, gap and nodes needed to solve the
(kq, kp)-trimmed mean problem using Fpomp,, Fk, kym: For,s
and F, 1)ty (see Appendix Al and A.2 for more details of
the Fpomp, and For, formulations, respectively). The For, and
F(k, .ky)TM,; fOrmulations provided optimal solutions for larger in-
stances than those provided by Fpomp, and F, r,ymm- Instances
with 256 and 512 intensities were solved applying For, and
F(k, ky) My, formulations within the time limit. It is worth high-
lighting that the computational times to obtain optimal solutions
provided by F, r,)m,, are one order of magnitude lower than the
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time needed by For,. For the case of instances with 1024 inten-
sities, although F, 1,ym,, did not provide optimal solutions for
most instances within 7200 s, it reports feasible solutions with a
small gap. The number of instances without any solution obtained
within 7200 s is shown in parenthesis. In this case, the Gap LR
values are larger than those obtained for the Fp; ¢ formulation, and
very few instances are solved in the root node (see the Nodes col-
umn).

Tables 7 and 8 report the computational results with the
(kq, kp)-anti-trimmed mean problem for 3D-STEM and 2D-STEM
images, respectively. In contrast to the Fpomp, formulation, which
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Table 5
Computational results of the Fpomp,, Fk, k,)tm» For,» and F, x,ymm,,; formulations to solve the (ki, k)-trimmed mean problem using 3D-STEM images.
Foomp, Fik, kyytv For, Fiky o) Vor
n p Time Gap BB Gap LR  Nodes Time  Gap BB Gap LR  Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 7203.12¢% 833 10.54 71701.25 600.24 0 3297 805525 18.20 0 070 1325 1.22 0 091 0
128 3 7202.09% 590 10.25 77007.25  3333.33 0 37.70 115815.75  17.19 0 042 0 1.50 0 076 1.5
128 4 7202.50@ 4.74 10.01 128,057  5653.98 6.45 39.47  94996.5 15.40 0 014 0 1.14 0 045 2.5
128 5 7201.44@ 2.85 10.02 153064.75  4207.94 0 40.73 5251825 16.06 0 023 0 0.96 0 059 0
256 2 - - - - 720433@ 7924 4137 273775 154.74 0 024 4275 13.86 0 1.11 0
256 3 - - - - 7206.98%  89.67 44.49 0 182.61 0 016 4925 15.39 0 1.36 605.75
256 4 - - - - 7204.99%  76.06 4527 1.25 187.47 0 016 0 12.90 0 093 1585
256 5 - - - - 7206.05%  68.66 45.91 480.75 208.75 0 028 2905 12.46 0 1.14 587.75
512 2 - - - - - - - - 2819.58 0 019 151 262.89 0 1.32 1991
512 3 - - - - - - - - 4133.13 0 016 3515 695.10 0 1.62 79735
512 4 - - - - - - - - 3999.28 0 0.16 587 234.02 0 1.21 3969.25
512 5 - - - - - - - - 5138.95 0 024 2073.25 381.47 0 1.40 7934.75
1024 2 - - - - - - - - - - - - 7200.87@ 2.81 2.82 1081
1024 3 - - - - - - - - - - - - 7200.43(1)®  11.10 11.12 0
1024 4 - - - - - - - - - - - - 7201.15® 2279 22.81 71025
1024 5 - - - - - - - - - - - - 6932.82 1.66 1.80 531.75
Table 6
Computational results of the Fpomp,, Fk, k,ytm. For,, and F, k,ytm,, formulations to solve the (k;, k;)-trimmed mean problem using 2D-STEM images.
Fpomp, Fite, sy ytm For, Fiky ky) Mo
n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 7202.00¥ 2.02 8.16 462050.25  1282.68 0 49.26 8031.75 27.64 0 012 0 1.2 0 061 0
128 3 7202.06@ 1.75 8.17 267664.75  4041.77 0 51.48 19264.75 27.78 0 021 0 1.38 0 079 0
128 4 7203.58% 229 26.46 983072.75  4834.27 0 5231 26931.75 29.46 0 034 0 1.88 0 098 0
128 5 7201.62® 176 828 370,114 5604.49( 1.72 5486 23,347 32.52 0 045 0 2.09 0o 117 0
256 2 - - - - 7209914 7929 56.71 60.25 293.08 0 014 0 10.90 0 098 0
256 3 - - - - 7204.93% 7643 57.79 0 325.94 0 027 0 16.26 0 119 0
256 4 - - - - 7205.27% 7291 59.02 659.5 376.12 0 038 0 19.15 0 143 16225
256 5 - - - - 7203.63% 6637 6032 65575 379.6 0 045 145 29.96 0 159 2505
512 2 - - - - - - - - 6503.94(2)® 0 014 0 194.04 0 117 4605
512 3 - - - - - - - - 6208.88(2)®@ 0 027 2135 260.40 0 144 884
512 4 - - - - - - - - 6038.99(2)® 0 035 3895 708.23 0 1.65 4198.75
512 5 - - - - - - - - 7002.03(2)® 054 0.76 202.5 832.08 0 1.84 5037.75
1024 2 - - - - - - - - - - - - 6657313 1.67 220 2168.75
1024 3 - - - - - - - - - - - - 7201.70@ 246  2.54 1851.25
1024 4 - - - - - - - - - - - - 7201124 21.74 2174 2675
1024 25 - - - - - - - - - - - - 7201.34@ 3.61 3.64 196.33
Table 7
Computational results of the Fpomp,, Fk, k,)atm. For,» and F, k,)amm,, formulations to solve the (k, k;)-anti-trimmed mean problem using 3D-STEM images.
Foomp, Fik, ky)atm For, Eiky k) ATMor
n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 7203.52® 4849 77.86 436575  1524.00 0 99.94 116125 15.55 0 1.68 0 6.12 0 1.68 0
128 3 7203.07® 4830 66.78 784225  1837.45 0 99.93 10774.75 17.53 0 487 0 7.95 0 487 0
128 4 7203.05® 63.71 57.91 9502  2111.39 0 99.90 19,921 16.65 0 7.72 0 6.28 0 7.72 0
128 5 7202.51® 8748 63.65 10098.75 6208.16 4634 99.91 45656.75 22.11 0 2130 0 7.75 0 2130 0
256 2 - - - - 7200.57® 9959 99.76 0 157.78 0 0.57 0 42.49 0 0.57 0
256 3 - - - - 7200.56“  99.63 99.73 1670.75 189.00 0 2.14 0 58.65 0 2.14 0
256 4 - - - - 7201.23®  99.74 99.73 22185 210.66 0 497 0 47.05 0 497 0
256 5 - - - - 7201.44% 9976 99.67 86.33 287.41 0 10.18 0 71.77 0 10.18 56.25
512 2 - - - - - - - - 2837.15 0 0.52 0 408.74 0 0.52 0
512 3 - - - - - - - - 3076.41 0 1.17 0 493.77 0 117 0
512 4 - - - - - - - - 4948.72(1)@  28.50 1.91 0 463.45 0 2.69 0
512 5 - - - - - - - - 7201.38%  16.15 16.77 11.75  1243.08 0 8.21 790.25
1024 2 - - - - - - - - - - - - 2780.90 0 1.96 528.75
1024 3 - - - - - - - - - - - - 4591.78® 3.12 3.29 1202.25
1024 4 - - - - - - - - - - - - 4045.440%) 4.85 5.36 251
1024 5 - - - - - - - - - - - - 5401.93® 3197 32.01 4.75
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Table 8
Computational results of the Fpomp,, Fk, k,)atm. For,» and F, k,)amm,, formulations to solve the (k, k;)-anti-trimmed mean problem using 2D-STEM images.
Fpowmp, Fik, ky)atm For, Fik, ky)ATMor

n p Time GapBB Gap LR Nodes Time  Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes
128 2 7203.63@ 41.69 75.01 30038.75 6901.19®) 61.24 98.68 17622.25 33.32 0 16.24 0 16.97 0 16.24 0
128 3 7203.20¥ 4346 7473 37,649 7200.66 97.68 99.94 10262.5 4598 2595 88.75 19.97 0 2595 0
128 4 7202.87® 4255 74.61 38892.75 7200.39Y 98.85 99.96 11056.25 66.34 0 2891 202.75 15.57 0 2891 29625
128 5 7202.74% 3597 75.03 28942 7201.16% 98.74 99.95 15,342 91.97 0 29.75 546.75 18.37 0 2975 4545
256 2 - - - - - - - - 366.13 0 11.82 4925 98.02 0 11.82 42
256 3 - - - - - - - - 541.22 0 1824 52825 116.20 0 1824 33325
256 4 - - - - - - - - 2056.11 0 2137 1972 184.06 0 2137 1678.75
256 5 - - - - - - - - 3548770 1.5 23.65 5665.25 620.93 0 23.65 10403.75
512 2 - - - - - - - - 6506.18(2)@ 0 968 2985 769.88 0 1138 389
512 3 - - - - - - - - 7202.25(2)@  19.98 19.98 0 866.34 0 1633 2043.75
512 4 - - - - - - - - 7204.49(2)@ 2542 2544 1.5 4273.16®  7.06 20.13 5347.25
512 5 - - - - - - - - 5401.40(3)® 18.26 18.85 0 7201.18(2)® 13.66 21.59 10182.33
1024 2 - - - - - - - - - - - - 6060.20® 966 12.89 411
1024 3 - - - - - - - - - - - - 7201.96% 7552 75.60 2
1024 4 - - - - - - - - - - - - 7202.06(2)® 5099 51.00 35
1024 5 - - - - - - - - - - - - 7202.093)® 31.23 31.24 4

does not provide the optimal solution within the time limit with . Predicted values Particle Support Background

. i . . . %
}28 mtensmes: F(_’<1J<z)ATM achieves the optimal solutlon_ for most 2| TP|FN ' 316 13923 51297
instances of this size. The Fop, and F, . yarm.. formulations make > Phantom
~ ~ 8 (1 k) AT Mo, : 2| Fp | TN 65220 51613 14239
considerable improvements on the computational times of the E
others and thus allow us to solve larger instances. In particular, a) b) c)

F(k, .ky)aTM,; Provided the optimal solution for every instance with
512 intensities. Moreover, this formulation achieved solutions for
1024 intensities, with acceptable gaps in most instances.

The general conclusion is that, to apply and solve large size
instances of image segmentation with the above-mentioned A-
weights for DOMP, it is advisable to use our new formulations that
exploit the structure of these problems, resulting in improvements
in CPU time of one order of magnitude.

6. Validation of the model

In this section, we assess the performance of the discrete or-
dered median model in 2D and 3D-STEM images. We have used
the phantoms introduced in the previous section to validate the
proposed models and evaluate the quality of the segmentations.
The particles in Fig. 2(a) are the smallest structures, whereas the
background corresponds to the largest one. Therefore, it is ex-
pected that the first positions of the ordered intensity-allocation
weighted distance vector will correspond to the intensities with
the smallest frequencies. This justifies the use of the anti-k-
centrum model to obtain a segmentation of this image using the
Farc formulation. However, particles are not the smallest struc-
tures in Fig. 2(b), since there is a wide range of intensities that
correspond to the support and intensities representing the parti-
cles are not found in the first positions of the ordered intensity-
allocation weighted distance vector. Hence, the (kq, ky)-trimmed
mean model seems to be suitable to perform segmentation of the
image in Fig. 2(b) using the F, j,ymm,, formulation. After a pre-
liminary analysis with different models, the aforementioned crite-
ria provided the best results to segment these two images. In ad-
dition, a real experiment recorded by an electron microscope will
be segmented to verify the performance in a real instance.

These analyses are carried out to compare the efficiency pro-
vided by DOMP formulations and classical segmentation mod-
els such as Otsu’s method and p-means in the field of STEM
(Belianinov et al., 2015; Hindson et al., 2011; Leary et al., 2012;
Liu et al, 2020; Lopez-Haro et al., 2014). To perform a compari-
son between segmentations obtained by using classical models and
DOMP with the formulations introduced in this work, the number
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Fig. 3. TP represents the number of pixels that constitute each structure of the
original image (a) particle, b) support and c) background). TN is the number of
pixels that form the remaining parts (a) support and background, b) particle and
background and c) particle and support).

of clusters (p) has been set to 4 and 5 for 3D-STEM images and
to 2 and 3 for 2D-STEM images. These choices aim to identify the
different elements that constitute the original image with as few
clusters as possible.

In order to quantify the quality of the different segmentations
we have divided the elements which constitute the image into
three confusion matrices, because visually the image is composed
of three elements (background, support and particles). Since the
main goal of the experiment is to detect true particles, to compare
the quality of the segmented particles we define the null hypothe-
sis Hy and the alternative hypothesis H; as:

Each element of the confusion matrix referring to particles is
defined as follows:

Hp : pixel that does not represent a particle,
H,; : pixel that represents a particle.

True Positive (TP): Pixels successfully detected as particle. Hy is
false and it is rejected.

True Negative (TN): Pixels successfully detected as different
from particles. Hy is true and it is not rejected.

False Positive (FP): Pixels wrongly detected as particles. Hy is
true and it is rejected (Type I error).

False Negative (FN): Pixels not detected as particles, in a wrong
way. Hy is false and it is not rejected (Type II error).

The same applies to the confusion matrices for the support
and background. Figure 3 shows the number of pixels that corre-
spond to particles, support and background in the phantom used
to obtain the reconstruction shown in Fig. 2(a). This figure has
65536 pixels, of which 316 correspond to particles, 13,923 are gen-
erated by the support and 51,297 are the background of the image.

As is to be expected, the main goal is to avoid FP for particles,
i.e., to avoid classifying as particles pixels that actually do not cor-
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respond to particles. Indeed, these are the errors that produce the
largest distortion in the analysis of characteristics of a nanomate-
rial. Therefore, although the goal is to have a small number of FN
and FP, it would be better to have more FN than FP.

As in other references (see Murugan et al., 2020), different
quantifiers have been used to compare the quality of the segmen-
tations obtained using each formulation. In the following, we con-
sider different types of metrics to measure the performance of seg-
mentation models depending on the pixels classified (correctly or
wrongly).

6.1. Rates of wrong classification (RWC)

These coefficients report the percentages of wrongly classified
pixels. Accordingly, the lower the values of these coefficients (per-
fect segmentations correspond to 0), the better the quality of the
segmentation obtained. The false negative rate (FNR) means the
probability of classifying pixels as features different from particles
when they are in fact particles:

_FN
T FN+TP
The false positive rate (FPR) means the probability of wrongly

classifying pixels as particles when they correspond to other fea-
tures:

FNR

FP
T FP+TN’
This rate plays an important role assessing the quality of the seg-
mentations, since detecting false particles negatively affects on the
nano-object analysis. Therefore, high quality segmentations are ob-
tained if false positives are detected with a low probability.

FPR

6.2. Rates of correct classification (RCC)

We have named the coefficients which report the percentages
of correctly clustered pixels ‘RCC’. The higher the values (the value
of 1 represents a perfect segmentation), the better the pixel clas-
sification. The true positive rate (TPR), also known as recall or
sensitivity, measures the percentage of pixels correctly classified as
particles (TP) among all pixels that form the particles in the origi-
nal image (TP+FN):

P
TP+FN
Similarly, the true negative rate (TNR) or specificity computes the
proportion of pixels correctly classified as different to particles
(TN) among all the pixels that do not correspond to particles in
the original image (TN+FP):

TN
TN+FP "~
The efficiency of each classification model can be measured by
plotting the false positive rate against the true positive rate in the
ROC space. The perfect classification is represented by the point

in the ROC space corresponding to FPR =0 and TPR = 1. The Area
Under the Curve (AUC) is computed as:

TPR = 1 —FNR.

TNR = 1—-FPR.

1—FPR+TPR _ specificity + sensitivity

2 N 2 '
The F1 score is used to obtain a balance between sensitivity and
precision, where precision measures the percentage of pixels cor-
rectly classified as particles (TP) among all the pixels identified as
particle (TP+FP), i.e.,

TP

TP +FP’

AUC =

precision =
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Thus, the F1 score is the harmonic mean between both metrics,

1 2TP
~ 2TP+FP+FN’

The accuracy (ACC) measures the percentage of pixels correctly
classified (TP+TN) among all the pixels that constitute the seg-
mented image:

3 TP+TN
" TP+TN+FP+FN’

Finally, the Rand Index (RI) and the Adjusted Rand Index (ARI) have
been computed to obtain the similarity between the correct clas-
sification and the segmentation provided by the different formu-
lations introduced in this paper (Hubert & Arabie, 1985). The RI
takes a value between 0 and 1, while the ARI takes values between
-1 and 1. The closer the value is to 1, the higher is the similar-
ity between both classifications. The following matrix reports the
overlaps between both segmentations (original and approximate):

ACC

Segmentation sums
€11 | C12 Cip | Sx1
=
g C21 | C22 Cop | Sx2
on
=
o
Cp1 | Cp2 Cpp | Sxp
sums Syl SyZ Syp

cij represents the number of pixels which must belong to the
cluster i but which are classified in cluster j. These coefficients are
obtained as follows:

2% (9 -5 (Zz)) - () +6)
Y () -GS N6
2 (3) + X ()] -[Z () (D) 6)

6.3. Anti-k-centrum

RI

ARI =

Figure 4 compares the solutions of 3D-STEM segmentations
provided by the p-means, Otsu and anti-k-centrum models with n
= 128 intensities and two numbers of clusters (p =4, p=>5). The
value of k in anti-k-centrum is set to 5. One slice has been se-
lected from the whole segmented volume to analyse the segmen-
tation quality in an efficient way. The performance of segmenta-
tions for the remaining slices is similar. Ideally, intensities which
contain information about particles should be grouped in the same
cluster and it should be different to the clusters containing inten-
sities representing the rest of structures. In Fig. 4, cluster 4 for
the case p=4 and cluster 5 for p =5 will represent particles. It
can be observed with p =4 that p-means and Otsu models as-
sign to the same cluster the particles and a large number of pix-
els corresponding to support. Hence, these models provide a large
false positive rate (0.1538 and 0.1415, respectively) due to the large
number of false positives obtained (10029 and 9226). However, the
anti-k-centrum model identified pixels corresponding to particles
in a highly effective way. This model had a very small false pos-
itive rate (0.0001), since very few pixels were identified as parti-
cles in a wrong way (55 pixels). Similar results were obtained by
applying p-means for p = 5. However, the Otsu’s method with 5
clusters provided 0 pixels classified as particles wrongly but at the
expense of identifying a small number of pixels as particles suc-
cessfully (18 pixels). In addition, the RI and ARI coefficients took
the highest values for segmentations obtained using the anti-k-
centrum model (the RI reported 0.9791 and 0.9738 for p =4 and
p =5 respectively and 0.9536 and 0.9420 for the ARI coefficient).
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Therefore, we can ensure that this formulation provided the most
accurate segmentation. The quality obtained with the different co-
efficients may be visually confirmed with the images in Fig. 4. Seg-

mentations provided by the anti-k-centrum correctly identify most
pixels belonging to particles (white colour). However, p-means and

Otsu segmentations contain a large number of pixels classified as

particles, although they actually belong to support.

Fig. 5. Quantification of the results obtained by applying p-means, Otsu and

(k1 k2)

trimmed mean models to segment a 2D-STEM image.

In the STEM segmentation field, clustering is carried out on the
vector of intensities in such a way that the clusters are delimited
by certain intensities, which are called threshold values. There-

fore, some intensities are identified as particles (associated with

the cluster of particles)

anti-k-centrum model, the green dot is the solution provided by

the Otsu’s method and the p-means is represented by a yellow

dot. Moreover, the results provided by the (kq, ky)-trimmed mean

if their intensities are larger than the lower

trimmed mean are represented by black and or-

anti
ange dots, respectively. The p-means, Otsu,

ka)-

)

and (kq

threshold value defining this cluster. Figure 6 shows the compro-

(kq, ky)-trimmed mean,

mise between TPR and FPR depending on the threshold value from

and (kq, kp)-anti-trimmed mean provide a higher TPR, but at the
cost of a high FPR. However, the anti-k-centrum model achieves a

which an intensity is considered as a particle for segmentations

shown in Fig. 4 with p

5. The red dot represents the

4 and p =

683
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p-means (ky, ky )-anti-trimmed mean

ROC Curve p=5

Otsu @ anti-k-centrum @ (ky,k;, )-trimmed mean

ROC Curve p=4
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Fig. 6. ROC curves obtained by 3D-STEM image segmentations which represent a
comparison between TPR and FPR depending on the minimum intensity value con-
sidered as a particle.

very good compromise, with a slightly lower TPR value but an FPR
close to zero. Accordingly, the anti-k-centrum model results in a
better segmentation, since electron tomography segmentations try
to avoid false particles, i.e., the value of FP must be close to zero.

6.4. (ky, ky)-Trimmed mean

Following the comparison performed for 3D-STEM images,
Fig. 5 shows the evaluation of the quality of the segmentations
provided by the p-means, Otsu and (kq, ky)-trimmed mean mod-
els using formulations for a 2D-STEM image with 128 intensities.
In this case, only one confusion matrix for particle and background
was obtained, since this image has only two different structures
(particles and background). Two different numbers of clusters are
considered, p=2 and p = 3, and k; = k, = 10. It may be observed
that the FPR takes the lowest values for the (kq, kp)-trimmed mean
model (0.0543 and 0.0604 for p =2 and p = 3, respectively) while
the p-means (0.0604 and 0.2033) and Otsu (0.0744 and 0.2520)
result in higher FPR values. Regarding the RCC coefficients, they
take the highest values for the (kq, k;)-trimmed mean model. This
performance resulting from the RWC and RCC coefficients is con-
firmed in Fig. 7. It may be observed with p =2 that the com-

Experimental image

(a)

Fig. 8. Segmentation of an experimental 2D-STEM image: (a) 2D-STEM image. (b) p-means segmentation and (c) (k;,

correspond to enlargements of the areas marked by the squares.

p-means, p =4

(b)
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Otsu @ anti-k-centrum @ (kq, ky)-trimmed mean © (kq, kz)-anti-trimmed mean

ROC Curve STEM p=4 ROC Curve STEM p=5
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Fig. 7. ROC curves obtained by 2D-STEM image segmentations which represent a
comparison between TPR and FPR depending on the minimum intensity value con-
sidered as a particle.

promise between false positive rate and true positive rate is very
similar for the p-means, Otsu and (kq, ky)-trimmed mean. Never-
theless, if 3 clusters are considered, there are differences in the
ROC curve among these formulations. Clearly, the (kq, k,)-trimmed
mean achieved the best compromise between false positive and
true positive rates. The images in Fig. 5 report the quality of the
segmentations in a visual way. It may be observed that the p-
means, Otsu and (kq, ky)-trimmed mean provide similar results
for p = 2. However, the (kq, ky)-trimmed mean identifies particles
with a better quality than the p-means and Otsu for p = 3.

In Fig. 9 of Appendix we have carried out a similar analysis for
the (kq, kp)-anti-trimmed mean with a 2D-STEM image that repre-
sents a small number of particles and low noise. The results show
that the (kq, kp)-anti-trimmed mean provides better quality seg-
mentation than the OTSU and p-means.

6.5. Segmentation of an experimental 2D-STEM image

In order to extend the analysis beyond phantom images, the
p-means and (kq, ky)-trimmed mean models were used to solve
an experimental 2D-STEM image (see Fig. 8). Note how the image
shows small bright areas corresponding to the nanoparticles on

(k1- k3)-Trimmed mean, p =4
k1=10, k2=1

(©)

ky)-trimmed mean segmentation. Yellow rectangles
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Fig. 9. Quantification of the results obtained by applying the p-means, Otsu and (k;, k;)-trimmed mean models to segment a 2D-STEM image.

top of the non-homogenous larger particles (support), which dis-
play areas with similar intensities to those corresponding to the
nanoparticles. These features make it difficult to distinguish be-
tween the intensities belonging to the particles and the support.
See Liu & Corma (2018) for further details about the structure of
this type of images.

To perform the segmentation of the 2D-STEM image, the follow-
ing parameters were considered to classify the intensities of the
pixels for both the p-means and (ki, k;)-trimmed mean model:
128 intensities, p = 4, k; = 10 and k, = 10. The results obtained for
each model were superimposed on the original image as a trans-
parent green contour (see Fig. 8(b) and (c)). The pixels belong-
ing to clusters 2, 3 and 4 are included in these contour images.
Generally speaking, in both cases there is a good correlation be-
tween the particles and the segmented areas. Nevertheless, it can
be seen how the p-means (Fig. 8(b)) has provided a much noisier
image segmentation than the (kq, ky)-trimmed mean model. This
is clearly shown in the enlargement marked with a yellow square
in Fig. 8(b) and (c). This specific area shows the transparent green
contour and black and white images. The latter shows the pixels
classified as background (cluster corresponding to p = 1) in white
and the clusters p > 1 as black. In this specific area, the p-means
model not only shows a higher number of false positives but also
the particles identified are not well segmented, showing large ar-
tifacts, e.g. they are not well separated and some tails appear in
the surrounding areas of the particles. These artifacts appear be-
cause in the selected clusters not only the pixels belonging to the
particles are classified but also pixels corresponding to the back-
ground are included. The (kq, k,)-trimmed mean model achieves a
high level of accuracy, identifying every particle of the original im-
age and providing better results than the p-means. In addition, this
result is very closely aligned with those obtained from the phan-
tom images. Therefore, our proposed models are very promising
tools to obtain high quality segmentations that allow us to quan-
tify the structural properties of nanomaterials and obtain a better
insight into their chemical or physical properties.

7. Conclusions

This paper has studied an application of the ordered median
problem to segment 3D-STEM and 2D-STEM images. Classical mod-
els do not provide good quality segmentations of small particles.
However, the ordered median operator allows us to select in the
objective function the frequencies which usually represent small
particles thanks to the A-vector values. Different formulations
have been proposed depending on the A-vector structure (anti-k-
centrum, (kq, ky)-trimmed mean, (kq, kp)-anti-trimmed mean) to
improve the computational times needed to obtain the optimal so-
lution for each segmentation model. The formulations introduced
in this paper have substantially reduced the computing time to ob-
tain the optimal solution, making it possible to solve larger size in-
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stances. The importance of solving large size STEM instances must
be emphasised, since the larger the instances solved the more ac-
curate the segmentations are with respect to the original images.
Finally, this paper also proposes an efficient way of quantifying the
segmentations obtained by analysing their confusion matrices.
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Appendix A.

In the computational analysis described in Section 5, the formu-
lations proposed in this manuscript have been compared with the
two most promising formulations in the state of the art of DOMP.
These formulations, are the block formulation (Espejo et al., 2021;
Puerto et al., 2013; Puerto et al., 2016) and OT, formulation (Marin
et al., 2020). For the sake of completeness, we have described both
formulations in this appendix.

Al. Ordered median problem with blocks

The DOMP formulation with blocks is developed in Puerto et al.
(2013), Puerto et al. (2016), Espejo et al. (2021). A block is de-
fined as a set of consecutive non-null identical values in the A-
vector. The structure of this formulation takes advantage of se-
quences of repetitions in some classical A-vectors by defining new
vectors which provide the information about the length of every
block.

We consider A = (1,1,0,1,1) a vector with 2 blocks as an ex-
ample. Let I be the number of non-null blocks in A-vector and
I:={1 I}. Let us define the vector y = (4 1), being y;,
ieZ the value of the elements in the ith block of repeated el-
ements in A, i.e. in our example y-vector is y = (1,1). We de-
fine the vector o = (aq, ..., 0, o0p11) Where «;, with i€ Z, is the
number of elements taking the value of zero between the (i — 1)th
and ith blocks of positive elements in A-vector and o, the num-
ber of zeros after the Ith positive block in A, i.e., in our example
o = (0, 1,0). In addition, we set the vector 8 = (B4, ..., B;) where
Bi, with i € Z, is the number of elements in the ith block of posi-
tive elements in A-vector, i.e., 8 = (2,2) in the example. This for-
mulation considers an ordered intensity-allocation weighted dis-
tance vector created from the matrix d by removing the duplicated

..........
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Dimensions of the Fpomp, (Appendix A.1), For (Section 4) and For, (Appendix A.2) formulations, where K* = {k e N': Ay > 0} and K~ = {k e N': Ay < O}.

Variables Constraints

X y u v w z 6 (1a) (13a) (13b) (13c) (16a) (16b) (16¢) (16d)  (17a) (17b) (17d)
Foowr, 1> n |Z]-1H| |Z]-|H] - - - 1 n? n - H AZI=-D-H AZI=-D - R 7] A - - -
For n? n - - n? n - 1 n2 n? - - - - - - -
For, n? n - - n-|K*] Kt n?o|K| 1 n? n? - - - - K7 n? K| n?

values and sorting its components in increasing sequence. Let H
be the number of different nonzero elements of the intensity-
allocation weighted distance matrix and # := {1, ..., H}. The or-
dered intensity-allocation weighted distance vector is built as fol-
lows:

d(o) =0< d(]) <...< d(H) = max{d,-j . l,]EN}

Let h € H and k € Z, we define the set of binary variables u;;, which

take the value of one if the (Z§=1 o +Z§;} Bj+ Dth intensity-

allocation weighted distance is at least d;y and the value of zero

otherwise. In addition, variables v, give the number of alloca-
K

tions in the kth block between positions ijl ozj-i-zlj;} Bi+1

and sz:l (aj + B;) with a weight higher than d,. Thus, the or-
dered median problem with blocks is formulated as follows:

(Foompe)  min > "> "y (diny — din_1))Vin
keZ hen
st (1a), (13a), (13b)
Do+ Y Vet =y Y X, VheH,
keT keT ieN jen:
dij=d
(16a)
Ugn = Ug_1 p» Vk=2-..,I, heH, (16b)
,3](_1Ukh = Vk_1.n» Vk=2-.-,I, heH, (]GC)
Vkp = ,BkUkh, VkeZI heH, (16d)
Xijvyj S {0, 1}, VI,] S N, (168)
u, € {0, 1}, VkeZ heH. (16f)
Vkh eZﬂ[O, /Bk], VkeZ heH. (16g)

The objective function is the ordered sum of the intensities-
allocation weighted distances. Constraints (16a) guarantee that the
number of intensities with an intensity-allocation weighted dis-
tance greater than or equal to d is either equal to the num-
ber of allocations with an intensity-allocation weighted distance at
least d ) whenever vy, > 0 or less than or equal to ;¢ otherwise.
Constraints (16b) control that u,, must be greater than or equal to
uy_1 . Upper and lower bounds of variables vy, are given by con-
straints (16c) and (16d) respectively.

A2. 0T, Formulation

Marin et al. (2020) introduce a formulation of the ordered me-
dian problem based on the rationale that explains the original
OT formulation (Ogryczak & Tamir, 2003) (see Section 4). Differ-
ently from the original OT formulation, this one is valid for any A-
vector structure, non necessarily monotone. Let A, = A, — A;_q. It
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requires new variables 01.’]‘. that take the value of 1 if the intensity-
allocation weighted distance of assigning intensity i to cluster j is
sorted in position k and O otherwise. Then, the formulation that
results is:

(FOT()) min Z Ay <(Tl —k+ 1)z, + ZW,’k> +Z Ay Z Z dijeil;
ke ieN ket ieN jeN
A>0 k<
s.t. (1a), (13a), (13b), (13c),
M3 ok=n—k+1, Vke N : A <0,
ieN jeN
(17a)
0f < x5, Vi,jke N: Ay <0, (17b)
91.’;. >0, Vi,j,ke N : Ay <0, (17¢)
> Xatyi=1, VijeN, (17d)
a:dig>d;;
Wi, 2, > 0, Vi,ke N: Ay >0, (17e)
xij,yj S {0,1}, Vl,]GN (17f)

The first term of the objective function contains the sum of the
(n — k + 1)th greatest intensity-allocation weighted distances mul-
tiplied by Ay for k € N such that A, > 0. The second term con-
tains the sum of the remaining (n —k+ 1)th greatest intensity-
allocation weighted distances multiplied by A, for k € N such
that A, < 0. Constraints (17a) state the number of allocations con-
trolled by variables Qi’j. and (17b) force that every allocation man-
aged by 9,.’;. is also controlled by ¥x;;. Finally, the family of con-
straints (17d) ensures the allocation of each intensity to the closest
cluster.

To have an idea of the complexity of the different formulations,
we show in Table 9 a comparative of the number of variables and
constraints needed to formulate the Fpomp,, For (see Section 4)
and FOT(_)'

A3. Validation of the (kq, ky)-anti-trimmed mean model.

In this Appendix, a 2D-STEM image with a low density of par-
ticles supported on a continuous thin layer is segmented by us-
ing the (kq, ky)-anti-trimmed mean model. This 2D-STEM phantom
image represents an example of nanomaterials used in devices for
alternative energy, see Fig. 9. This new instance contains a small
amount of particles and low noise, then we are interested in the
smallest and largest intensity-allocation weighted distances. Ide-
ally, the smallest intensity-allocation weighted distance will cor-
respond to the ones of particles and the largest ones to those of
the background. Therefore, taking A =(1,...,1,0,...,0,1,...,1)
the resulting segmentation model attemps to identify two differ-
ent structures: particles and background with a low level of noise.
Hence, we only need 2 clusters to classify the intensities (see
Fig. 9).
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