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a b s t r a c t 

This paper presents new models for segmentation of 2D and 3D Scanning-Transmission Electron Micro- 

scope images based on the ordered median function. The main advantage of using this function is its 

good adaptability to the different types of images to be studied due to the wide range of weight vec- 

tors that can be cast. Classical segmentation models stand out for their ability to provide a segmentation 

of the original image very quickly and with low computational burden. However, they do not usually 

achieve high quality segmentations with a small number of clusters in order to classify the different ele- 

ments which compose the structure represented in the image. The quality of the segmentation provided 

by our approach is analysed using different choices of the weight vector in some real instances. More- 

over, improvements are proposed for the formulations to reduce the computational time needed to solve 

these problems by taking advantage of the weight vector structure. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Nowadays, Nanoscience and Nanotechnology are of major rele- 

ance for the design of new nanomaterials with a wide range of 

pplications in areas such as environmental protection, green en- 

rgy sources and catalysis. These novel designs are based on the 

bility of controlling structure and morphology at nanometer scale. 

canning Transmission Electron Microscopy (STEM) has therefore 

ecome a powerful tool to rationalise the properties of nanomate- 

ials. 

In this technique, the nanomaterials are studied by recording 

mages of their projected structure (2D-STEM images) either in 

 specific tilt or by acquiring a tilt-series around a single axis 

ith constant increment of angle. In the latter, the reconstructions 

f the whole set of 2D-STEM images provide information about 

he 3D structure, most commonly the morphology of the object 

3D-STEM images). The intensity displayed in the pixels of the 
∗ Corresponding author. 
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D images must at least maintain a monotonic relationship with 

hickness. 

By classifying the pixels in these images into groups of intensi- 

ies it is possible to discriminate the different components which 

ake up a material and quantify their morphological properties. 

or example, in a material composed of small particles dispersed 

n a surface, pixel classification (also known as segmentation) al- 

ows identification of the image areas or volumes corresponding to 

he particles as independent objects and further evaluation of their 

orphological features (e.g. size, shape or surface-to-volume ratio). 

Different clustering methods focusing on pixel classification can 

e found in the field of STEM ( Bai, Fan, & Dong, 2021; Gontar, 

zkaya, & Dunin-Borkowski, 2011 ). Otsu’s method became popular 

or its simplicity, classifying pixels by minimising the intra-class 

ariance of their intensities ( Hindson, Saghi, Hernandez-Garrido, 

idgley, & Greenham., 2011; Leary et al., 2012; Liu et al., 2020; 

opez-Haro et al., 2014 ). K-means clustering is also a widely used 

ethod to carry out segmentation of images, as it is one of the 

ost effective methods to classify intensities ( Belianinov et al., 

015 ). These clustering procedures play an important role in the 

nalysis of electron microscopy images, since a high quality seg- 

entation determines the success of microscopic characterisation 

 Yamamoto et al., 2014 ). The main advantage of these segmenta- 
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ion methods is the ability to obtain solutions very quickly and 

ith low computational burden. However, these models do not 

sually provide good classifications where there are few clusters 

r with noisy images, i.e., images where it is very difficult to dis- 

inguish between their different structures. 

In recent decades, there has been increasing interest in the 

iterature in solving clustering problems with mathematical pro- 

ramming methods ( Hansen & Jaumard, 1997 ). Different objective 

unctions are used for this purpose, such as minimising the max- 

mum within-cluster distance ( Saglam, Salman, Sayin, & Turkay, 

006 ), minimising the sum of within-cluster distances ( Brusco, 

003 ) or minimising the sum of distances between each point and 

ts cluster centre ( Bradley, Fayyad, & Mangasarian, 1999 ). This ob- 

ective function combined with feature selection was also stud- 

ed in Benati & García (2014) . See Benati, Puerto, & Rodríguez-Chía 

2017) , Benati, Ponce, Puerto, & Rodríguez-Chía (2021) for the latest 

dvances in the use of mixed-integer linear programming formula- 

ions for clustering problems. 

Following this line of research, in this paper we propose a new 

lustering method based on mathematical programming using the 

iscrete Ordered Median Problem (DOMP) as a criterion to seg- 

ent STEM images. DOMP has attracted the attention of many 

tudies in the area of discrete location, since it provides a unified 

ramework for the most popular location problems used in discrete 

ocation literature (median, center, centdian, k -sum,...). 

The idea behind the objective function of this problem con- 

ists of applying a penalisation to each distance between a client 

nd its corresponding service facility depending on its position 

n the whole sequence of sorted distances (unlike classical mod- 

ls such as median or center, where this penalisation is assigned 

o each client regardless of the magnitude of the distance to 

ts service facility). This adds a ‘sorting’ to the underlying fa- 

ility location problem, making formulation and solution much 

ore challenging. There are many studies based on this func- 

ion such as Kalcsics, Nickel, & Puerto (2003) , Ogryczak & Tamir 

2003) , Nickel & Puerto (2005) , Boland, Domínguez-Marín, Nickel, 

 Puerto (2006) , Puerto (2008) , Marín, Nickel, Puerto, & Vel- 

en (2009) which introduce classical DOMP formulations, while 

alcsics, Nickel, Puerto, & Rodríguez-Chía (2010) , Labbé, Ponce, & 

uerto (2017) , Aouad & Segev (2019) , Olender & Ogryczak (2019) , 

lanco (2019) , Deleplanque, Labbé, Ponce, & Puerto (2020) , Espejo, 

uerto, & Rodríguez-Chía (2021) , Marín, Ponce, & Puerto (2020) of- 

er an overview of recent advances in DOMP. 

The goal of this paper is twofold. The first aim is to show that 

egmentations with the ordered median objective function provide 

igh quality pixel classifications for certain choices of the weight 

ector. The second goal is to develop new formulations and im- 

rovements for DOMP with specific choices of the weight vector 

hat allow us to solve the resulting optimisation problems in an 

fficient way. 

This paper is structured as follows: Section 2 introduces the 

otation needed to formulate segmentation problems within the 

OMP framework; Section 3 proposes different improvements to 

OMP formulations to reduce the computational time needed to 

btain a high quality segmentation by taking advantage of the 

eighted vector structure in the objective function to be min- 

mised; Section 4 provides alternative improvements to the formu- 

ations based on the idea developed in Ogryczak & Tamir (2003) ; 

ection 5 offers an extensive computational analysis of the dif- 

erent formulations and the improvements developed in this pa- 

er; in Section 6 this model is validated with different images 

nd a way of quantifying the segmentations obtained is proposed; 

ection 7 outlines the main conclusions of this paper; and fi- 

ally, for the sake of completeness, the formulations used to com- 

are with the ones proposed in this paper are set out in the 

ppendix. 
672 
. Image segmentation and the ordered median problem 

This section describes the elements that define image segmen- 

ation models and states the links to formulate these problems 

ithin the DOMP framework. 

Let us suppose we have an image with M × N pixels to be seg- 

ented with the aim of identifying the elements which consti- 

ute the nanomaterial shown in the original image. Each pixel has 

 specific intensity which is an integer value in a range whose 

ength will depend on the resolution (number of bits) of the im- 

ge, for instance, between 0 and 2 8 or 0 and 2 16 . The smallest in-

ensities of this range correspond to the lowest densities of the 

bject represented in the image (close to black colour) and the 

argest intensities correspond to the greatest densities (close to 

hite colour). Let us also assume that we have n different inten- 

ities and N := { 1 , . . . , n } . The number of pixels having the same

ntensity is referred to as the frequency of that intensity and the 

et of frequencies of an image is denoted as f := { f 1 , . . . , f n } . 
Segmenting an image consists of grouping its intensities into p

≤ n ) different clusters. Each cluster is associated with an inten- 

ity which acts as its representative. Therefore, in terms of mathe- 

atical programming we can define the segmentation of an image 

s the choice/location of p cluster representatives and the alloca- 

ion of each intensity to a cluster representative in such a way that 

ome objective function is minimised. It is assumed that the set of 

andidate cluster representatives is the set of intensities. We de- 

ne cluster j as the one having intensity j as its representative. 

oreover, each intensity is allocated to only one cluster represen- 

ative. Let d = (d i j ) i, j=1 , ... ,n be the n × n intensity weighted distance 

atrix where d i j represents the intensity weighted distance for al- 

ocating intensity i to the cluster representative j. These intensity 

eighted distances are defined as the product of the frequency of 

he pixel intensity i ( f i ) multiplied by the distance between inten- 

ities i and j, i.e. d i j = f i | i − j| . The distance between two inten-

ities is obtained as the absolute value of the difference between 

oth intensities, since they are on the real line ( | i − j| ). Let J ⊂ N 

e the subset of p intensities selected as representatives of p dif- 

erent clusters. We define d i (J) , i ∈ N as the intensity-allocation 

eighted distance of intensity i to a cluster representative in J. It is 

ssumed that each intensity i is allocated to a representative such 

hat j ∈ arg min 

k ∈ J 
d ik or in other words: 

 i j = d i (J) := min 

k ∈ J 
d ik . 

2D and 3D-images are usually composed of different structures 

uch as background, particles and support (materials which hold 

articles). Particles are usually characterised by intensities with 

ow pixel frequencies in the original image because of their small 

ize compared to the other structures of the image. Hence, if we 

onsider the ordered vector of the intensity-allocation weighted 

istances, the first positions of that vector usually correspond to 

ntensities associated with particles. We can therefore attempt to 

xploit this observation by applying a specific DOMP model with 

ppropriate weights to achieve a good segmentation of images ob- 

ained with STEM. The intensity-allocation weighted distances are 

orted to calculate the ordered median function where d ≤(J) := 

d 1 ≤(J) , . . . , d n ≤(J)) will be this vector, such that: 

 

1 
≤(J) ≤ . . . ≤ d n ≤(J) . 

he DOMP aims to minimise the ordered weighted average of vec- 

or ( d k ≤(J) ) with respect to a given set of λ-weights: 

in 

J⊂N 
| J| = p 

∑ 

k ∈N 
λk d k ≤(J) , 
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Fig. 1. Segmentation of an 8 × 10 image with 5 intensities and 2 clusters. 
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here λ = (λ1 , . . . , λn ) , with λk ≥ 0 , ∀ k ∈ N . Figure 1 shows an ex-

mple of an image segmentation with five intensities grouped into 

 clusters. 

The above expression needs to be reformulated for its imple- 

entation in MIP solvers. There are several formulations involved 

n this task. The formulation F DOMP G 
proposed in Puerto, Ramos, & 

odríguez-Chía (2013) , Puerto, Ramos, Rodríguez-Chía, & Sánchez- 

il (2016) and Espejo et al. (2021) and the formulation F OT θ
intro- 

uced in Marín et al. (2020) are known to have the best perfor- 

ance in terms of solution times when λ-vectors have repetitions 

components with equal values). For the sake of completeness, we 

ave included these formulations in Appendix A.1 and A.2 , respec- 

ively. 

. Specific formulations 

The application of the state-of-the-art DOMP formulations to 

egmentation problems allows us to solve medium size instances. 

he most promising formulations for these types of problems are 

escribed in Appendix A.1 and A.2 . However, still the CPU times re- 

uired to solve these problems make them not competitive when 

ompared with standard methods in the image segmentation area. 

or this reason, our goal is to improve their performance by ex- 

loiting specific aspects of the problem. Taking advantage of the 

articular λ-vector structure, we aim to provide new formulations 

hat allow a reduction of the computational time required by the 

eneral formulations of the ordered median problem. Since the 

ain goal of image segmentation techniques is the analysis of the 

article characteristics contained in STEM experiments, these for- 

ulations will attempt to remove intensities that do not corre- 

pond to specific structures of the original image. These intensi- 

ies could contain noise generated by the microscope when pro- 

ections are recorded (intensities with the lowest frequencies). On 

he other hand, they could represent structures with larger sizes 

han particles. Therefore, to remove these intensities from the ob- 

ective function, we attempt to assign the value 0 to the positions 

f the λ-vector where these intensities will hopefully be in the or- 
673 
ered intensity-allocation weighted distance vector and the value 

 to positions corresponding to relevant intensities. 

In this section we propose different specific criteria depending 

n the type of sample to be segmented: i) anti- k -centrum ( λ = 

1 , . . . , 1 , 0 , . . . , 0) ), which minimises the sum of the k -smallest

omponents of the ordered intensity-allocation weighted distance 

ector, will be selected to segment images with small relevant 

eatures (smallest frequencies) and very large unimportant struc- 

ures (largest frequencies), since hopefully the first and last po- 

itions of the ordered intensity-allocation weighted distance vec- 

or will correspond to the intensities with the smallest and 

argest frequencies, respectively; ii) ( k 1 , k 2 )-trimmed mean ( λ = 

0 , . . . , 0 , 1 , . . . , 1 , 0 , . . . , 0) ), which minimises the sum of compo-

ents between the (k 1 + 1) th and the (n − k 2 − 1) th positions of

he ordered intensity-allocation weighted distance vector, will be 

pplied to segment images where the k 1 -smallest and the k 2 - 

argest frequencies correspond to intensities that do not provide 

eaningful information about the image; and iii) ( k 1 , k 2 )-anti- 

rimmed-mean ( λ = (1 , . . . , 1 , 0 , . . . , 0 , 1 , . . . , 1) ), which minimises

he sum of the first k 1 plus the last k 2 components of the ordered 

ntensity-allocation weighted distance vector, could be used for im- 

ges whose k 1 -smallest and k 2 -largest frequencies correspond to 

ntensities that represent the most important structures. 

.1. Anti- k -centrum 

Let us suppose that the image to be segmented is made up of 

ery small particles and the main aim is to detect only these par- 

icles regardless of the rest of the elements. Particles are usually 

n the first positions of the ordered intensity-allocation weighted 

istance vector, since there are fewer pixels with intensities associ- 

ted with particles than pixels with intensities associated with the 

est of elements of the image. That is, we are interested in assign- 

ng the intensities with the smallest intensity-allocation weighted 

istances in the best possible way. The anti- k -centrum problem 

ay have a suitable structure for this situation, since the assign- 

ents with the smallest intensity-allocation weighted distances 
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enalise the objective function thanks to the non-zero values of 

-vector whereas the largest ones are hardly considered due to 

he zeros in the corresponding positions. This λ-vector assigns the 

alue 1 to the first k -positions and zero otherwise, that is, λ = 

1 , . . . , 1 , 0 , . . . , 0) . To give a formulation for the anti- k -centrum

odel, we define the allocation r-variables, such that r i j = 1 if in- 

ensity i is assigned to cluster representative j and r i j = 0 other- 

ise. The locations of representatives are controlled by y -variables, 

efined as y j = 1 if intensity j is selected as the representative of 

 cluster and y j = 0 otherwise. In what follows, for the sake of

revity, we will say that cluster j exists if y j = 1 . Taking advan-

age of the particular structure of the λ-vector in anti- k -centrum, 

e propose the following formulation for this problem: 

F A k C ) min 

∑ 

i, j∈N 
d i j r i j 

s.t. 
∑ 

j∈N 
y j = p, (1a) 

r i j ≤ y j , ∀ i, j ∈ N , (1b) 

∑ 

j∈N 
r i j ≤ 1 , ∀ i ∈ N , (1c) 

∑ 

i, j∈N 
r i j = k, (1d) 

r i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N . (1e) 

The objective function stands for the sum of the k -smallest 

omponents of the ordered intensity-allocation weighted distance 

ector. The equality constraint (1a) sets the number of cluster rep- 

esentatives to p. Constraints (1b) avoid allocating intensity i to j

f j is not selected as cluster representative. Constraints (1c) en- 

ure that each intensity is allocated to a maximum of one clus- 

er. The equality constraint (1d) sets the number of allocations 

o k . Closest assignment constraints used in the formulation of 

ppendix A.2 (17d) are not included in the formulation, since the 

ssignments with the n − k largest intensity-allocation weighted 

istances may be post-processed to be allocated to their closest 

lusters. Although r-variables may be relaxed, we have considered 

hem as binary variables since they provided us lower computa- 

ional times. In the rest of the formulations included in this paper 

e will proceed in the same way. 

We can adapt this formulation if there is more than one non- 

ero block in λ-vector (a block is defined as a set of consecutive 

on-null identical values in λ-vector). These blocks must be sorted 

n decreasing order, for instance λ = (2 , . . . , 2 , 1 , . . . , 1 , 0 , . . . , 0) .

onsequently, we define as many sets of allocation variables as 

here are positive blocks. If there are two blocks with k 1 and k 2 
lements which take the value of 2 and 1 respectively, r and s - 

ariables will be defined to control each intensity allocation. The 

-variables control the lowest k 1 th allocation weights and the s - 

ariables state the following k 2 th ones. 

F A k C2 ) min 2 

∑ 

i, j∈N 
d i j r i j + 

∑ 

i, j∈N 
d i j s i j 

s.t. (1a) , 

r i j + s i j ≤ y j , ∀ i, j ∈ N , (2a) 

∑ 

j∈N 
(r i j + s i j ) ≤ 1 , ∀ i ∈ N , (2b) 
m

674 
∑ 

i, j∈N 
r i j = k 1 , (2c) 

∑ 

i, j∈N 
s i j = k 2 , (2d) 

r i j , s i j , y j ∈ { 0 , 1 } ∀ i, j ∈ N . (2e) 

Constraints (2a) avoid allocating intensity i to j if j is not se- 

ected as cluster representative. Constraints (2b) ensure that each 

ntensity is assigned to at most one cluster. The number of alloca- 

ions controlled by r and s -variables are set to k 1 and k 2 by con-

traints (2c) and (2d) respectively. 

.2. (k 1 , k 2 ) -Anti-Trimmed mean 

If one is interested in identifying only the smallest particles to- 

ether with the largest ones, in general, these particles will cor- 

espond to the intensities with the smallest and largest frequen- 

ies, respectively. As mentioned above, the smallest elements of 

he image are usually in the first positions of the ordered intensity- 

llocation weighted distance vector and the largest ones are of- 

en in the last positions of the vector, which correspond to the 

ackground of the image. This situation fits to the structure of the 

k 1 , k 2 ) -anti-trimmed mean model, since it aims to minimise the 

 1 -smallest intensity-allocation weighted distances together with 

he k 2 -largest ones, i.e., λ = (1 , . . . , 1 , 0 , . . . , 0 , 1 , . . . , 1) . We define

hree sets of allocation variables r i j , s i j and t i j , with i, j ∈ N . These

ariables take the value 1 if intensity i is allocated to cluster j and 

he value 0 otherwise. r-variables are used for controlling the al- 

ocations with the smallest intensity-allocation weighted distances, 

-variables manage the largest ones and s -variables are used to al- 

ocate intensities with intensity-allocation weighted distances cor- 

esponding to positions in which λ-vector takes the value 0. A 

ormulation for the (k 1 , k 2 ) -anti-trimmed mean model is as fol- 

ows: 

F (k 1 ,k 2 ) ATM 

) min 

∑ 

i, j∈N 
d i j r i j + 

∑ 

i, j∈N 
d i j t i j 

s.t. (1a) , 

r i j + s i j + t i j ≤ y j , ∀ i, j ∈ N , (3a) 

∑ 

j∈N 
(r i j + s i j + t i j ) = 1 , ∀ i ∈ N , (3b) 

Ordering constraints (See Section 3.2.1) , 
(3c) 

∑ 

i, j∈N 
t i j = k 2 , (3d) 

∑ 

i, j∈N 
s i j = n − (k 1 + k 2 ) , (3e) 

r i j , s i j , t i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N . (3f) 

The objective function accounts for the k 1 -smallest plus 

he k 2 -largest intensity-allocation weighted distances. Constraints 

3a) avoid allocating intensity i to j if j is not selected as clus- 

er representative and (3b) ensure that each intensity is allocated 

o one cluster. Constraints (3c) ensure that any allocation using t- 

ariables will have an intensity-allocation weighted distance larger 

han the ones associated with s -variables and will be described in 

ection 3.2.1 . Constraints (3b) together with (3d) and (3e) deter- 

ine the number of allocations controlled by each set of variables. 
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.2.1. Alternative ordering constraints for F (k 1 ,k 2 ) ATM 

formulation 

In this subsection we propose different ways of modelling or- 

ering constraints, (3c) . These constraints allow us to model the 

rder of the intensity-allocation weighted distances. Hence, this 

amily of constraints ensures that the intensity-allocation weighted 

istances of assignments controlled by s -variables must be smaller 

han or equal to the ones controlled by t-variables. Below, we 

ntroduce different sets of constraints with the same purpose 

f ordering the assignments controlled by s and t-variables. In 

ection 5 a preliminary computational study is carried out to 

hoose the ordering constraints with the best performance to solve 

he F (k 1 ,k 2 ) ATM 

formulation. 

First family: This allocation order may be controlled by a big 

value to force that the intensity-allocation weighted distance of 

ach s -variable assignment is smaller than or equal to the one of 

ach allocation controlled by t-variables. Hence, these constraints 

ay be written as follows: ∑ 

j∈N 
d i j s i j ≤ (1 −

∑ 

j∈N 
t i ′ j ) M i + 

∑ 

j∈N 
d i ′ j t i ′ j , ∀ i, i ′ ∈ N . (4a) 

he value of M i has been set to the maximum intensity-allocation 

eighted distance of intensity i , i.e., M i = max j∈N d i j . Constraints 

4a) may be reinforced by including on the left side the sum of the 

ntensity-allocation weighted distances of assignments controlled 

y r-variables, obtaining: ∑ 

j∈N 
(d i j s i j + d i j r i j ) ≤ (1 −

∑ 

j∈N 
t i ′ j ) M i + 

∑ 

j∈N 
d i ′ j t i ′ j , ∀ i, i ′ ∈ N . 

(4b) 

Second family: In what follows we consider a different way of 

odelling the ordering constraints without using big M values. To 

o so, we define the following constraints: 

(n − k 1 − k 2 ) t i j ≤
∑ 

k,l∈N : 

d kl <d i j 

s kl , ∀ i, j ∈ N . (5a) 

These constraints force that the intensity-allocation weighted 

istances of the n − k 1 − k 2 assignments controlled by s -variables 

ust be smaller than the intensity-allocation weighted distance of 

very assignment controlled by t-variables. The number of assign- 

ents controlled by r-variables may be included in (5a) , since, if 

 i j = 1 then, the total number of assignments controlled by r and s - 

ariables with intensity-allocation weighted distances smaller than 

 i j must be larger than or equal to n − k 2 : 

(n − k 2 ) t i j ≤
∑ 

k,l∈N : 

d kl <d i j 

(s kl + r kl ) , ∀ i, j ∈ N . (5b) 

Third family: An alternative way of modelling the ordering con- 

traints is as follows: 

k 2 s i j ≤
∑ 

k,l∈N : 

d kl >d i j 

t kl , ∀ i, j ∈ N . (6a) 

These inequalities ensure that the number of assignments con- 

rolled by t-variables must be equal to k 2 and they must have 

ntensity-allocation weighted distances larger than the allocations 

ontrolled by s -variables. 

Fourth family: The following constraints state the maxi- 

um number of assignments controlled by r and s -variables. If 

 i j = 0 , then the number of assignments with intensity-allocation 

eighted distances larger than or equal to d i j must be smaller than 

r equal to n − k 2 . Moreover, if t i j = 1 , there can be no assignments

ontrolled by r and s -variables with intensity-allocation weighted 

istances larger than d i j . These constraints may be written as fol- 

ows: ∑ 

k,l∈N : 

d kl ≥d i j 

(s kl + r kl ) ≤ (1 − t i j )(n − k 2 ) , ∀ i, j ∈ N . (7a) 
675 
he values of t-variables may be added for intensity i if the 

ntensity-allocation weighted distance is smaller than or equal to 

 i j : ∑ 

k,l∈N : 

d kl ≥d i j 

(s kl + r kl ) ≤ (1 −
∑ 

l ′ ∈N : 

d il ′ ≤d i j 

t il ′ )(n − k 2 ) , ∀ i, j ∈ N . (7b) 

Fifth family: Another way to order each assignment is to define 

wo variables ( u max and U min ) which take the maximum intensity- 

llocation weighted distance value of the assignments controlled 

y r-variables and the minimum value of the ones controlled by 

-variables, respectively. Four sets of ordering constraints are in- 

luded in the F (k 1 ,k 2 ) ATM 

formulation: 

d i j (1 −
∑ 

k ∈N 
r ik −

∑ 

k ∈N 
t ik ) ≤ (1 − y j + 

∑ 

k ∈N : 

d ik <d i j 

y k ) M + U min , ∀ i, j ∈ N , 

(8a) 

d i j y j + (1 − y j ) M + ( 
∑ 

k ∈N 
r ik + 

∑ 

k ∈N 
t ik ) M ≥ u max , ∀ i, j ∈ N , 

(8b) 

∑ 

k ∈N 
r ik d ik ≤ u max , ∀ i ∈ N , (8c) 

( 

1 −
∑ 

k ∈N 
t ik 

) 

M + 

∑ 

k ∈N 
t ik d ik ≥ U min , ∀ i ∈ N . (8d) 

Constraints (8a) and (8b) ensure that the maximum and min- 

mum intensity-allocation weighted distance of each assignment 

ontrolled by s -variables must be smaller than or equal to U min 

nd larger than or equal to u max , respectively. Constraints (8c) and 

8d) state the maximum intensity-allocation weighted distance of 

ssignments managed by r-variables and the minimum intensity- 

llocation weighted distance of assignments controlled by t- 

ariables, respectively. 

.3. (k 1 , k 2 ) -Trimmed mean 

Let us now suppose that we are interested in segmenting an 

mage where the intensities with the smallest and largest num- 

er of pixels do not provide useful information. These unimpor- 

ant intensities usually represent noise (lowest frequencies) and 

he background (highest frequencies). Therefore, we need to find 

 model that does not consider the smallest intensity-allocation 

eighted distances together with the largest ones in the objec- 

ive function. The (k 1 , k 2 ) -trimmed mean model adapts well to 

his situation as it minimises intensity-allocation weighted dis- 

ances excluding the k 1 -smallest and k 2 -largest ones, i.e., λ = 

0 , . . . , 0 , 1 , . . . , 1 , 0 , . . . , 0) . To formulate this specific model, pro-

eeding in a similar way to F (k 1 ,k 2 ) ATM 

, we define two sets of allo-

ation variables r and s . The r-variables which do not contribute to 

he objective function control the k 1 -smallest intensity-allocation 

eighted distances and the s -variables control the n − (k 1 + k 2 ) 

ollowing ones. This model may be written as follows: 

F (k 1 ,k 2 ) TM 

) min 

∑ 

i, j∈N 
d i j s i j 

s.t. (1a) , 

r i j + s i j ≤ y j , ∀ i, j ∈ N , (9a) 

∑ 

j∈N 
(r i j + s i j ) ≤ 1 , ∀ i ∈ N , (9b) 
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Ordering constraints (See Section 3.3.1) , 
(9c) 

∑ 

i, j∈N 
r i j = k 1 , (9d) 

∑ 

i, j∈N 
s i j = n − (k 1 + k 2 ) , (9e) 

r i j , s i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N . (9f) 

The objective function provides the sum of assignments with 

ntensity-allocation weighted distances larger than the k 1 th po- 

ition and smaller than the n − k 2 th position in the ordered 

ntensity-allocation weighted distance vector. Constraints (9a) en- 

ure that each intensity is associated with a cluster that exists. 

onstraints (9b) force that each intensity is allocated to at most 

ne cluster. Constraints (9c) ensure that the intensity-allocation 

eighted distances of assignments controlled by r-variables are 

maller than the ones controlled by s -variables. The number of al- 

ocations made by r-variables and s -variables are given by (9d) and 

9e) , respectively. 

.3.1. Alternative ordering constraints for F (k 1 ,k 2 ) TM 

formulation 

In this subsection, we analyse different ways of modelling or- 

ering constraints (9c) . These families of constraints aim to model 

he order of assignments controlled by r and s -variables in a simi- 

ar way to the F (k 1 ,k 2 ) ATM 

formulation. We have proposed different 

rdering constraint families and a preliminary computational study 

s carried out to select the family that shows the best performance 

n the F (k 1 ,k 2 ) TM 

formulation (see Section 5 ). 

First family: The first set of ordering constraints proposed to 

tate the assignments controlled by r and s -variables such that 

ntensity-allocation weighted distances of assignments managed by 

-variables must be smaller than or equal to the ones controlled by 

 -variables. This can be written as follows: ∑ 

j∈N 
d i j r i j ≤ (1 −

∑ 

j∈N 
s i ′ j ) M i + 

∑ 

j∈N 
d i ′ j s i ′ j , ∀ i, i ′ ∈ N , (10a) 

here M i = max j∈N d i j . 

Second family: Similarly to the F (k 1 ,k 2 ) ATM 

formulation, con- 

traints (10a) may be replaced by the following ones which also 

tate the order of each assignment: 

k 1 s i j ≤
∑ 

k,l∈N : 

d kl <d i j 

r kl , ∀ i, j ∈ N . (11a) 

These constraints ensure that the number of allocations with 

ntensity-allocation weighted distances smaller than d i j controlled 

y r-variables must be larger than or equal to k 1 if s i j = 1 . Con-

traints (9d) are removed from the F (k 1 ,k 2 ) TM 

formulation, since the 

umber of allocations controlled by r-variables is stated in con- 

traint (11a) . Computational results have been obtained with this 

et of constraints. Valid inequalities to manage the order of alloca- 

ions may also be included in the formulation: 

(n − k 1 − k 2 ) r i j ≤
∑ 

k,l∈N : 

d kl >d i j 

s kl , ∀ i, j ∈ N . (12a) 

These constraints set as n − k 1 − k 2 the number of assign- 

ents controlled by s -variables. Each one must have an intensity- 

llocation weighted distance larger than the intensity-allocation 

eighted distances of each assignment controlled by r-variables. 
676 
. New formulations based on the dualisation of the k-sum 

roblem 

Ogryczak & Tamir (2003) developed a formulation for the or- 

ered median problem using the dual of the problem that max- 

mises the sum of k values of a set of n values ( k -sum prob-

em). Although this formulation has a good performance due to 

he reduced number of variables, it can only be extended to λ- 

ectors whose components are given in non-decreasing order, i.e., 

 = λ0 ≤ λ1 ≤ · · · ≤ λn . It requires a set of allocation variables x i j , 

ith i, j ∈ N , defined as x i j = 1 if intensity i is assigned to clus-

er j and x i j = 0 otherwise, ∀ i, j ∈ N . In addition, the w ik - and z k -

ariables correspond to the dual variables of the problems that 

aximise the sums of k values for each i ∈ N . The formulation is

iven by: 

F OT ) min 

∑ 

k ∈N 
(λN−k +1 − λN−k )(kz k + 

∑ 

i ∈N 
w ik ) 

s.t. (1a) , 

x i j ≤ y j , ∀ i, j ∈ N , 

(13a) ∑ 

j∈N 
x i j = 1 , ∀ i ∈ N , 

(13b) 

w ik + z k ≥
∑ 

j∈N 
d i j x i j , ∀ i, k ∈ N , 

(13c) 

x i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N , 

(13d) 

w ik ≥ 0 , ∀ i, k ∈ N , 

(13e) 

z k ∈ R , ∀ k ∈ N . 

(13f) 

The k th addend of the objective function namely kz ik + 

 

i ∈N w ik , represents the dual objective function of the problem 

hat maximises the sum of k intensity-allocation weighted dis- 

ances, and consequently, the telescopic sum of these addends 

hen the weights are given in a non-decreasing way provides the 

rdered objective function. Constraints (13a) prevent each inten- 

ity being allocated to a cluster representative that does not ex- 

st. Moreover, constraints (13b) ensure that the allocation of each 

ixel is unique. Constraints (13c) are used to build the dual from 

he maximisation problem to calculate the sum of the k -largest 

eights. 

The F (k 1 ,k 2 ) ATM 

and F (k 1 ,k 2 ) TM 

formulations require less compu- 

ational time than the generic ordered median formulation. How- 

ver, they still need a high computational time to solve large size 

nstances. For this reason, we have exploited some aspects of the 

 OT formulation to provide alternatives that permit to solve the 

forementioned instances in smaller computation times. 

.1. OT- (k 1 , k 2 ) -Anti-Trimmed mean 

Let λ = (1 , . . . , 1 , 0 , . . . , 0 , 1 , . . . , 1) be the λ-vector correspond-

ng to the (k 1 , k 2 ) -anti-trimmed mean model, where the first and

econd blocks of ones have k 1 and k 2 elements, respectively. The 

 1 -smallest intensity-allocation weighted distances are minimised 

y using the anti- k -centrum criterion and the k 2 -largest intensity- 

llocation weighted distances are minimised by exploiting the ra- 

ionale behind the OT formulation to solve the k 2 -centrum prob- 

em. Hence, r-variables are defined to control the assignments 

ith the k 1 -smallest intensity-allocation weighted distances and x - 

ariables are used to apply the OT criterion to minimise the sum 
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Fig. 2. (a) corresponds to a 3D-STEM image and (b) is a 2D-STEM image. Both have 

been used to assess the performance of the different formulations. 
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l

f the k 2 -largest intensity-allocation weighted distances: 

F (k 1 ,k 2 ) ATM OT 
) min 

∑ 

j,k ∈N 
d jk r jk + k 2 z + 

∑ 

i ∈N 
w i 

s.t. (1a), (9d), (13a), (13b) , 

w i + z ≥
∑ 

j∈N 
d i j x i j , ∀ i ∈ N , 

(14a) 

r i j ≤ x i j , ∀ i, j ∈ N , 

(14b) 

x i j , r i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N , 

(14c) 

w i ≥ 0 , ∀ i ∈ N , 

(14d) 

z ∈ R . (14e) 

The first term of the objective function computes the k 1 - 

mallest intensity-allocation weighted distances and the sum of 

he k 2 -largest ones are computed by the second term. Constraints 

14a) relate primal and dual variables associated with the formula- 

ion that minimises the sum of the k 2 -largest assignments. Con- 

traints (14b) set x jk = 1 if r jk takes the value 1, since, in con-

rast to r-variables, which control k 1 assignments, x -variables are 

nvolved in each of the n allocations due to constraints (13b) . 

.2. OT- (k 1 , k 2 ) -Trimmed mean 

We define λ = (0 , . . . , 0 , 1 , . . . , 1 , 0 , . . . , 0) where the first block

f zeros contains k 1 elements and the second block of zeros is 

omposed of k 2 elements. Thus, Ogryczak and Tamir’s formulation 

s applied to the first n − k 2 elements of λ-vector. To achieve this, 

he number of allocations controlled by x -variables will be set as 

 − k 2 : 

F (k 1 ,k 2 ) TM OT 
) min (n − k 1 − k 2 ) z + 

∑ 

i ∈N 
w i 

s.t. (1a), (13a), (14a) , ∑ 

i, j∈N 
x i j = n − k 2 , (15a) 

x i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N , (15b) 

w i ≥ 0 , ∀ i ∈ N , (15c) 

z ∈ R . (15d) 

The objective function implements Ogryczak and Tamir’s formu- 

ation to the first n − k 2 components of λ. Constraints (15a) set the 

umber of allocations controlled by x -variables, i.e., the number of 

ssignments must be equal to n − k 2 . 

. Computational results 

This section provides a detailed computational analysis of the 

lternative formulations proposed for the different choices of the 

-vector in the discrete ordered median problem. Our focus is on 

he application of DOMP to segment electron microscopy images 

ecorded during the structural characterisation of nanomaterials 

ith potential applications in environmental catalysis. Therefore, 
677 
e have restricted ourselves to meaningful choices of λ-vectors 

hich are valid for this application. This analysis allows us to de- 

ermine which formulations are the most efficient to solve the 

roposed segmentation problems. As is usual in the STEM field, 

he computational experience is carried out in simulated instances. 

enerating real experiments is highly time-demanding and con- 

equently the time needed to obtain a large number of instances 

ould not be affordable. The idea is to generate synthetic images 

phantoms) with fully known features (e.g., sizes, shapes, intensi- 

ies) that are close to real systems studied in STEM ( Staniewicz & 

idgley, 2015; Tovey et al., 2019 ). 

Figure 2 shows the procedures to generate the phantoms se- 

ected to implement the computational studies of the formulations 

nd validation of the proposed models (see Section 6 ). We have de- 

ided to segment these images because of their importance in the 

eld of nanoscience and nanotechnology. It is important to note 

hat both phantoms represent complex nanomaterials which have 

otential applications in the field of heterogeneous and environ- 

ental catalysis (see Liu & Corma, 2018 ). Thus, high quality seg- 

entations of the components that make up such systems are es- 

ential not only to obtain an accurate quantification but also to be 

ble to link the structural properties at nm-scale to their chemical 

r physical behaviour (see López-Haro et al., 2018 ). 

In particular, these datasets simulate 3D-STEM ( Fig. 2 (a)) and 

D-STEM ( Fig. 2 (b)) images. Both images are composed of a back- 

round (pixels close to black colour), the support (pixels with grey 

olours) and the particles (pixels close to white colour). Supports 

re necessary in STEM experiments to hold the nanometric ob- 

ects, since these particles cannot be analysed individually due to 

heir microscopic sizes. The goal for segmenting these images is to 

dentify most of the particles to quantify their properties. To obtain 

ig. 2 (a), a 3D phantom was generated to simulate a nanocatalyst, 

nd the shapes, sizes and intensities of these structures are related 

ith the characteristics of a real nanocatalyst. Once the phantom 

ad been generated, four different 3D-STEM images were recon- 

tructed using a classical reconstruction algorithm by considering 

rojections from -70 to 70 degrees obtained every 5, 10, 15, and 

0 degrees (see Midgley, Ward, Hungría, & Thomas, 2007 ). 

Figure 2 (b) simulates a 2D projection provided by electron 

icroscopes before applying a reconstruction algorithm (2D-STEM 

mage). Four instances were created by modifying the support 

tructure and the location, number and sizes of every particle 

ithin the image. Supports were obtained by generating 3D sur- 

aces very similar to the structures that hold the particles in these 

ypes of experiments. Particles were represented by spheres whose 

entres (x, y, z) were obtained by generating uniformly distributed 

alues between 0 and 512 pixels for each dimension. Values re- 

ated to the radius of these spheres were calculated with a uni- 
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Table 1 

Different ordering constraints included in the F (k 1 ,k 2 ) ATM formulation. 

(4a) (4b) (5a) (5b) 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 3201.88 (1) 1.14 99.94 22550.75 1524.01 0 99.94 11612.5 7208.06 (4) 99.99 99.88 8079.75 7311.02 (4) 99.99 99.94 4560.75 

128 3 4423.04 (1) 4.58 99.93 30106.75 1837.45 0 99.93 10774.75 7207.14 (1) 99.98 99.85 6210.50 - - - - 

128 4 5445.62 (2) 28.66 99.90 36150.25 2111.39 0 99.90 19921 7205.35 (4) 99.98 99.77 9085.75 - - - - 

128 5 7200.97 (4) 70.06 99.15 42022.75 6208.16 (3) 46.34 99.91 45656.75 7206.14 (4) 99.99 99.76 8425.25 - - - - 

256 2 7200.90 (4) 97.61 99.86 1214.25 7200.57 (4) 99.94 99.76 0 - - - - - - - - 

256 3 7202.06 (4) 97.54 99.88 1658 7200.56 (4) 99.63 99.73 1670.75 - - - - - - - - 

256 4 7201.61 (4) 98.30 99.89 648.75 7201.23 (4) 99.74 99.73 2218.5 - - - - - - - - 

256 5 7201.12 (4) 98.78 99.89 428 7201.44 (4) 99.76 99.67 86.33 - - - - - - - - 

(6a) (7a) (7b) (8a), (8b), (8c), (8d) 

128 2 1127.49 0 34.05 1165.25 7227.16 (4) 99.76 99.94 1546.75 7207.51 (4) 99.75 99.60 3.5 7201.19 (4) 0.7815 99.95 859252.25 

128 3 1250.88 0 40.50 2371.25 7208.01 (4) 99.84 99.92 1926.50 7213.70 (4) 99.74 99.43 503.5 7202.15 (4) 99.90 99.94 170940.25 

128 4 1284.98 0 64.41 833 7207.35 (4) 99.87 99.89 2349.50 7205.43 (4) 99.77 99.13 16.5 7201.99 (4) 99.67 99.90 399771 

128 5 6735.35 (3) 46.84 74.35 12269.5 7247.24 (4) 99.84 99.89 2456.50 7204.15 (4) 99.68 99.05 229.75 7204.99 (4) 99.88 99.89 223942.33 

256 2 - - - - - - - - - - - - - - - - 

256 3 - - - - - - - - - - - - - - - - 

256 4 - - - - - - - - - - - - - - - - 

256 5 - - - - - - - - - - - - - - - - 
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orm distribution between 3 and 8 pixels. After creating these 3D 

tructures, they were projected on the horizontal plane to obtain 

D-STEM images. 

The instances to be segmented were generated with different 

umbers of intensities to study the performance of every formula- 

ion with different instance sizes (128, 256, 512, and 1024 inten- 

ities) and four values of p for each instance were selected (2, 3, 

, and 5 clusters). Moreover, k , k 1 and k 2 parameters were set de-

ending on the size of the instances: k was set to n 
2 , where n is the

umber of intensities of the image under study, i.e., k was set to 

4, 128, 256, and 512 to segment an image with 128, 256, 512, and

024 intensities, respectively; meanwhile, k 1 and k 2 were both set 

o approximately n 
10 , i.e., k 1 = k 2 = 10 , 25 , 50 , and 100 for 128, 256,

12, and 1024 intensities, respectively. These choices correspond to 

 preliminary computational analysis over different experiments, 

here the values of these parameters always reported very good 

erformance. 

All the formulations were implemented in MATLAB R2020b and 

olved with CPLEX 12.10 thanks to the API that links both codes. 

ll the experiments were performed on an Intel Xeon W-2245 

orkstation, 256 Gb RAM, NVIDIA Quadro RTX 40 0 0. The time for 

olving each instance was limited to 7200 CPU seconds. All the ta- 

les report the average of 4 instances and the number of instances 

or which the optimal solution was not obtained within the time 

imit is denoted using a superscript. Moreover, ‘-’ means that more 

han 2 h were required to obtain a feasible solution for each of the 

 instances. 

.1. Finding the best ordering constraints for F (k 1 ,k 2 ) ATM 

and F (k 1 ,k 2 ) TM 

A preliminary computational study was carried out to se- 

ect the most efficient ordering constraint family described in 

ections 3.2.1 and 3.3.1 using the instances introduced above with 

28 and 256 intensities (see Tables 1 and 2 ). The first two columns

ontain the number of intensities and clusters, respectively. The 

est of the table is divided into different blocks. Each one of them 

eports the time needed to obtain the optimal solution in seconds, 

he gap between the best solution and the best bound (Gap BB), 

he gap between the optimal solution of the integer problem and 

he optimal solution of the linear relaxation (Gap LR), and finally, 

he number of nodes explored in the branching tree by each for- 

ulation. If the optimal solution is not obtained with any formula- 

ion, the best solution found among all the formulations is chosen 

o compute Gap LR. 
678 
In Table 1 , we can see that constraints (6a) provide the best 

omputational times to solve the F (k 1 ,k 2 ) ATM 

formulation for 128 

ntensities, but instances with 256 intensities are not solved be- 

ore 7200 s. Alternatively, constraints (4a) and (4b) provided fea- 

ible solutions for 256 intensity instances. Therefore, constraints 

4b) will be included in our segmentation model, since these con- 

traints solve instances with 128 intensities in less time than con- 

traints (4a) . 

As in the F (k 1 ,k 2 ) ATM 

formulation, we also analysed the re- 

ults provided by the different ordering constraints included in the 

 (k 1 ,k 2 ) TM 

formulation. These computational results are shown in 

able 2 , which shows that the best computational times to solve 

he F (k 1 ,k 2 ) TM 

formulation for 128 intensities are given by con- 

traints (12a) . However, this family of constraints does not even 

rovide feasible solutions for instances with 256 intensities. For 

his reason, constraints (10a) were chosen to carry out the com- 

utational study for F (k 1 ,k 2 ) TM 

. 

.2. Comparing formulations 

Table 3 shows the computational results obtained applying the 

wo best formulations existing in the literature to solve the anti- 

 -centrum problem, F DOMP G 
and F OT θ

(see Appendix A.1 and A.2 , 

espectively, for more details about these formulations), compared 

ith the one proposed in Section 3.1 using 3D-STEM images. 

The F DOMP G 
formulation only solved instances with 128 inten- 

ities. The F OT θ
formulation has provided segmentation up to 512 

ntensities and the computational time was significantly reduced. 

evertheless, this formulation could not provide solutions of in- 

tances with 1024 intensities in less than 7200 s. Finally, the F A k C 
ormulation reported the best performance, reducing the comput- 

ng time substantially to obtain the optimal solution of instances 

ith 128, 256 and 512 intensities. Moreover, instances with 1024 

ntensities were only solved in less than ten minutes with the F A k C 
ormulation. All the formulations provided very good linear relax- 

tion values with gaps smaller than 0.3% and the Nodes columns 

n the table show that most of the instances were solved in the 

oot node. 

Table 4 provides the computational results obtained by applying 

 DOMP G 
, F OT θ

and F A k C formulations to the anti- k -centrum problem 

o segment 2D-STEM images. This table is organised in the same 

ay as Table 3 and the results obtained show the performance of 

he formulations is similar to what was observed for 3D-STEM im- 

ges. 
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Table 2 

Different ordering constraints included in the F (k 1 ,k 2 ) TM formulation. 

(10a) (11a) (12a) 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 600.24 0 32.97 8055.25 899.69 0 33.76 1882.5 931.17 0 24.75 3475.50 

128 3 3333.32 0 37.70 115815.75 3181.24 0 34.73 14403.25 1899.87 0 27.39 10398.75 

128 4 5653.98 (2) 6.45 39.46 94996.5 4862.83 (1) 1.68 32.65 24,553 1794.43 0 25.55 13302.25 

128 5 4207.94 0 40.71 52518.25 5219.34 (1) 4.11 31.32 26,188 1296.91 0 24.77 11,954 

256 2 7204.33 (4) 79.24 65.83 2737.75 - - - - - - - - 

256 3 7206.98 (4) 89.67 63.78 0 - - - - - - - - 

256 4 7204.99 (4) 76.06 63.89 1.25 - - - - - - - - 

256 5 7206.05 (4) 68.66 58.76 480.75 - - - - - - - - 

Table 3 

Computational results of the F DOMP G , F OT θ and F A k C formulations to solve the anti- k -centrum problem using 3D-STEM images. 

F DOMP G F OT θ F A k C 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 315.57 0 0.11 0 13.71 0 0.11 0 0.43 0 0.11 0 

128 3 264.52 0 0 0 13.21 0 0 0 0.31 0 0 0 

128 4 268.09 0 0 0 15.03 0 0.06 0 0.33 0 0.06 0 

128 5 240.85 0 0 0 13.01 0 0 0 0.29 0 0 0 

256 2 - - - - 121.01 0 0.10 0 16.16 0 0.10 0 

256 3 - - - - 132.79 0 0.01 0 17.39 0 0.01 0 

256 4 - - - - 114.15 0 0.01 0 15.81 0 0.01 0 

256 5 - - - - 117.93 0 0 0 13.41 0 0 0 

512 2 - - - - 1014.45 0 0.05 5.5 110.77 0 0.11 0 

512 3 - - - - 1830.42 0 0.01 0 109.64 0 0.01 0 

512 4 - - - - 1643.14 0 0 0 99.02 0 0 0 

512 5 - - - - 1470.52 0 0 0 101.52 0 0 0 

1024 2 - - - - - - - - 661.56 0 0.28 10.25 

1024 3 - - - - - - - - 669.84 0 0 0 

1024 4 - - - - - - - - 583.23 0 0 0 

1024 5 - - - - - - - - 564.76 0 0 0 

Table 4 

Computational results of the F DOMP G , F OT θ and F A k C formulations to solve the anti- k -centrum problem using 2D-STEM images. 

F DOMP G F OT θ F A k C 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 217.39 0 0 0 20.20 0 0 0 0.58 0 0 0 

128 3 207.42 0 0 0 19.85 0 0 0 0.58 0 0 0 

128 4 178.39 0 0 0 20.7 0 0 0 0.55 0 0 0 

128 5 169.50 0 0 0 20.94 0 0 0 0.53 0 0 0 

256 2 5985.12 (2) 48.30 0 0 217.69 0 0 0 26.14 0 0 0 

256 3 5824.79 (2) 47.43 0 0 202.04 0 0 0 29.20 0 0 0 

256 4 5915.04 (2) 48.02 0 0 210.63 0 0 0 17.86 0 0 0 

256 5 5125.26 (1) 24.15 0 0 236.43 0 0 0 22.05 0 0 0 

512 2 - - - - - - - - 138.77 0 0.01 0 

512 3 - - - - - - - - 156.35 0 0.02 0 

512 4 - - - - - - - - 155.42 0 0.02 0 

512 5 - - - - - - - - 133.40 0 0.08 190.25 

1024 2 - - - - - - - - 617.91 0 0.02 0 

1024 3 - - - - - - - - 642.72 0 0.02 0 

1024 4 - - - - - - - - 634.04 0 0.04 38 

1024 5 - - - - - - - - 497.77 0 0.04 284 
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Tables 5 (3D-STEM images) and 6 (2D-STEM images) show 

he computational times, gap and nodes needed to solve the 

k 1 , k 2 ) -trimmed mean problem using F DOMP G 
, F (k 1 ,k 2 ) TM 

, F OT θ
,

nd F (k 1 ,k 2 ) TM OT 
(see Appendix A.1 and A.2 for more details of 

he F DOMP G 
and F OT θ

formulations, respectively). The F OT θ
and 

 (k 1 ,k 2 ) TM OT 
formulations provided optimal solutions for larger in- 

tances than those provided by F DOMP G 
and F (k 1 ,k 2 ) TM 

. Instances 

ith 256 and 512 intensities were solved applying F OT θ
and 

 (k 1 ,k 2 ) TM OT 
formulations within the time limit. It is worth high- 

ighting that the computational times to obtain optimal solutions 

rovided by F (k ,k ) TM 

are one order of magnitude lower than the 

1 2 OT 

679 
ime needed by F OT θ
. For the case of instances with 1024 inten- 

ities, although F (k 1 ,k 2 ) TM OT 
did not provide optimal solutions for 

ost instances within 7200 s, it reports feasible solutions with a 

mall gap. The number of instances without any solution obtained 

ithin 7200 s is shown in parenthesis. In this case, the Gap LR 

alues are larger than those obtained for the F A k C formulation, and 

ery few instances are solved in the root node (see the Nodes col- 

mn). 

Tables 7 and 8 report the computational results with the 

k 1 , k 2 ) -anti-trimmed mean problem for 3D-STEM and 2D-STEM 

mages, respectively. In contrast to the F DOMP G 
formulation, which 
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Table 5 

Computational results of the F DOMP G , F (k 1 ,k 2 ) TM , F OT θ , and F (k 1 ,k 2 ) TM OT 
formulations to solve the (k 1 , k 2 ) -trimmed mean problem using 3D-STEM images. 

F DOMP G F (k 1 ,k 2 ) TM F OT θ F (k 1 ,k 2 ) TM OT 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 7203.12 (4) 8.33 10.54 71701.25 600.24 0 32.97 8055.25 18.20 0 0.70 13.25 1.22 0 0.91 0 

128 3 7202.09 (4) 5.90 10.25 77007.25 3333.33 0 37.70 115815.75 17.19 0 0.42 0 1.50 0 0.76 1.5 

128 4 7202.50 (4) 4.74 10.01 128,057 5653.98 6.45 39.47 94996.5 15.40 0 0.14 0 1.14 0 0.45 2.5 

128 5 7201.44 (4) 2.85 10.02 153064.75 4207.94 0 40.73 52518.25 16.06 0 0.23 0 0.96 0 0.59 0 

256 2 - - - - 7204.33 (4) 79.24 41.37 2737.75 154.74 0 0.24 42.75 13.86 0 1.11 0 

256 3 - - - - 7206.98 (4) 89.67 44.49 0 182.61 0 0.16 49.25 15.39 0 1.36 605.75 

256 4 - - - - 7204.99 (4) 76.06 45.27 1.25 187.47 0 0.16 0 12.90 0 0.93 158.5 

256 5 - - - - 7206.05 (4) 68.66 45.91 480.75 208.75 0 0.28 290.5 12.46 0 1.14 587.75 

512 2 - - - - - - - - 2819.58 0 0.19 151 262.89 0 1.32 1991 

512 3 - - - - - - - - 4133.13 0 0.16 351.5 695.10 0 1.62 7973.5 

512 4 - - - - - - - - 3999.28 0 0.16 587 234.02 0 1.21 3969.25 

512 5 - - - - - - - - 5138.95 0 0.24 2073.25 381.47 0 1.40 7934.75 

1024 2 - - - - - - - - - - - - 7200.87 (4) 2.81 2.82 1081 

1024 3 - - - - - - - - - - - - 7200.43(1) (4) 11.10 11.12 0 

1024 4 - - - - - - - - - - - - 7201.15 (4) 22.79 22.81 710.25 

1024 5 - - - - - - - - - - - - 6932.82 (3) 1.66 1.80 531.75 

Table 6 

Computational results of the F DOMP G , F (k 1 ,k 2 ) TM , F OT θ , and F (k 1 ,k 2 ) TM OT 
formulations to solve the (k 1 , k 2 ) -trimmed mean problem using 2D-STEM images. 

F DOMP G F (k 1 ,k 2 ) TM F OT θ F (k 1 ,k 2 ) TM OT 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 7202.00 (4) 2.02 8.16 462050.25 1282.68 0 49.26 8031.75 27.64 0 0.12 0 1.2 0 0.61 0 

128 3 7202.06 (4) 1.75 8.17 267664.75 4041.77 0 51.48 19264.75 27.78 0 0.21 0 1.38 0 0.79 0 

128 4 7203.58 (4) 2.29 26.46 983072.75 4834.27 0 52.31 26931.75 29.46 0 0.34 0 1.88 0 0.98 0 

128 5 7201.62 (4) 1.76 8.28 370,114 5604.49 (1) 1.72 54.86 23,347 32.52 0 0.45 0 2.09 0 1.17 0 

256 2 - - - - 7209.91 (4) 79.29 56.71 60.25 293.08 0 0.14 0 10.90 0 0.98 0 

256 3 - - - - 7204.93 (4) 76.43 57.79 0 325.94 0 0.27 0 16.26 0 1.19 0 

256 4 - - - - 7205.27 (4) 72.91 59.02 659.5 376.12 0 0.38 0 19.15 0 1.43 162.25 

256 5 - - - - 7203.63 (4) 66.37 60.32 655.75 379.6 0 0.45 145 29.96 0 1.59 250.5 

512 2 - - - - - - - - 6503.94(2) (2) 0 0.14 0 194.04 0 1.17 460.5 

512 3 - - - - - - - - 6208.88(2) (2) 0 0.27 213.5 260.40 0 1.44 884 

512 4 - - - - - - - - 6038.99(2) (2) 0 0.35 389.5 708.23 0 1.65 4198.75 

512 5 - - - - - - - - 7002.03(2) (3) 0.54 0.76 202.5 832.08 0 1.84 5037.75 

1024 2 - - - - - - - - - - - - 6657.31 (3) 1.67 2.20 2168.75 

1024 3 - - - - - - - - - - - - 7201.70 (4) 2.46 2.54 1851.25 

1024 4 - - - - - - - - - - - - 7201.12 (4) 21.74 21.74 267.5 

1024 25 - - - - - - - - - - - - 7201.34 (4) 3.61 3.64 196.33 

Table 7 

Computational results of the F DOMP G , F (k 1 ,k 2 ) ATM , F OT θ , and F (k 1 ,k 2 ) ATM OT 
formulations to solve the (k 1 , k 2 ) -anti-trimmed mean problem using 3D-STEM images. 

F DOMP G F (k 1 ,k 2 ) ATM F OT θ F (k 1 ,k 2 ) ATM OT 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 7203.52 (4) 48.49 77.86 4365.75 1524.00 0 99.94 11612.5 15.55 0 1.68 0 6.12 0 1.68 0 

128 3 7203.07 (4) 48.30 66.78 7842.25 1837.45 0 99.93 10774.75 17.53 0 4.87 0 7.95 0 4.87 0 

128 4 7203.05 (4) 63.71 57.91 9502 2111.39 0 99.90 19,921 16.65 0 7.72 0 6.28 0 7.72 0 

128 5 7202.51 (4) 87.48 63.65 10098.75 6208.16 46.34 99.91 45656.75 22.11 0 21.30 0 7.75 0 21.30 0 

256 2 - - - - 7200.57 (4) 99.59 99.76 0 157.78 0 0.57 0 42.49 0 0.57 0 

256 3 - - - - 7200.56 (4) 99.63 99.73 1670.75 189.00 0 2.14 0 58.65 0 2.14 0 

256 4 - - - - 7201.23 (4) 99.74 99.73 2218.5 210.66 0 4.97 0 47.05 0 4.97 0 

256 5 - - - - 7201.44 (4) 99.76 99.67 86.33 287.41 0 10.18 0 71.77 0 10.18 56.25 

512 2 - - - - - - - - 2837.15 0 0.52 0 408.74 0 0.52 0 

512 3 - - - - - - - - 3076.41 0 1.17 0 493.77 0 1.17 0 

512 4 - - - - - - - - 4948.72 (1) (4) 28.50 1.91 0 463.45 0 2.69 0 

512 5 - - - - - - - - 7201.38 (4) 16.15 16.77 11.75 1243.08 0 8.21 790.25 

1024 2 - - - - - - - - - - - - 2780.90 0 1.96 528.75 

1024 3 - - - - - - - - - - - - 4591.78 (2) 3.12 3.29 1202.25 

1024 4 - - - - - - - - - - - - 4045.44 (3) 4.85 5.36 251 

1024 5 - - - - - - - - - - - - 5401.93 (4) 31.97 32.01 4.75 

680 
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Table 8 

Computational results of the F DOMP G , F (k 1 ,k 2 ) ATM , F OT θ , and F (k 1 ,k 2 ) ATM OT 
formulations to solve the (k 1 , k 2 ) -anti-trimmed mean problem using 2D-STEM images. 

F DOMP G F (k 1 ,k 2 ) ATM F OT θ F (k 1 ,k 2 ) ATM OT 

n p Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes Time Gap BB Gap LR Nodes 

128 2 7203.63 (4) 41.69 75.01 30038.75 6901.19 (3) 61.24 98.68 17622.25 33.32 0 16.24 0 16.97 0 16.24 0 

128 3 7203.20 (4) 43.46 74.73 37,649 7200.66 (4) 97.68 99.94 10262.5 45.98 0 25.95 88.75 19.97 0 25.95 0 

128 4 7202.87 (4) 42.55 74.61 38892.75 7200.39 (4) 98.85 99.96 11056.25 66.34 0 28.91 202.75 15.57 0 28.91 296.25 

128 5 7202.74 (4) 35.97 75.03 28,942 7201.16 (4) 98.74 99.95 15,342 91.97 0 29.75 546.75 18.37 0 29.75 454.5 

256 2 - - - - - - - - 366.13 0 11.82 49.25 98.02 0 11.82 42 

256 3 - - - - - - - - 541.22 0 18.24 528.25 116.20 0 18.24 333.25 

256 4 - - - - - - - - 2056.11 0 21.37 1972 184.06 0 21.37 1678.75 

256 5 - - - - - - - - 3548.77 (1) 1.5 23.65 5665.25 620.93 0 23.65 10403.75 

512 2 - - - - - - - - 6506.18 (2) (2) 0 9.68 298.5 769.88 0 11.38 389 

512 3 - - - - - - - - 7202.25 (2) (4) 19.98 19.98 0 866.34 0 16.33 2043.75 

512 4 - - - - - - - - 7204.49 (2) (4) 25.42 25.44 1.5 4273.16 (2) 7.06 20.13 5347.25 

512 5 - - - - - - - - 5401.40 (3) (4) 18.26 18.85 0 7201.18 (2) (4) 13.66 21.59 10182.33 

1024 2 - - - - - - - - - - - - 6060.20 (3) 9.66 12.89 411 

1024 3 - - - - - - - - - - - - 7201.96 (4) 75.52 75.60 2 

1024 4 - - - - - - - - - - - - 7202.06 (2) (4) 50.99 51.00 3.5 

1024 5 - - - - - - - - - - - - 7202.09 (3) (4) 31.23 31.24 4 
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Fig. 3. TP represents the number of pixels that constitute each structure of the 

original image (a) particle, b) support and c) background). TN is the number of 

pixels that form the remaining parts (a) support and background, b) particle and 

background and c) particle and support). 
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oes not provide the optimal solution within the time limit with 

28 intensities, F (k 1 ,k 2 ) ATM 

achieves the optimal solution for most 

nstances of this size. The F OT θ
and F (k 1 ,k 2 ) ATM OT 

formulations make 

onsiderable improvements on the computational times of the 

thers and thus allow us to solve larger instances. In particular, 

 (k 1 ,k 2 ) ATM OT 
provided the optimal solution for every instance with 

12 intensities. Moreover, this formulation achieved solutions for 

024 intensities, with acceptable gaps in most instances. 

The general conclusion is that, to apply and solve large size 

nstances of image segmentation with the above-mentioned λ- 

eights for DOMP, it is advisable to use our new formulations that 

xploit the structure of these problems, resulting in improvements 

n CPU time of one order of magnitude. 

. Validation of the model 

In this section, we assess the performance of the discrete or- 

ered median model in 2D and 3D-STEM images. We have used 

he phantoms introduced in the previous section to validate the 

roposed models and evaluate the quality of the segmentations. 

he particles in Fig. 2 (a) are the smallest structures, whereas the 

ackground corresponds to the largest one. Therefore, it is ex- 

ected that the first positions of the ordered intensity-allocation 

eighted distance vector will correspond to the intensities with 

he smallest frequencies. This justifies the use of the anti- k - 

entrum model to obtain a segmentation of this image using the 

 AkC formulation. However, particles are not the smallest struc- 

ures in Fig. 2 (b), since there is a wide range of intensities that

orrespond to the support and intensities representing the parti- 

les are not found in the first positions of the ordered intensity- 

llocation weighted distance vector. Hence, the (k 1 , k 2 ) -trimmed 

ean model seems to be suitable to perform segmentation of the 

mage in Fig. 2 (b) using the F (k 1 ,k 2 ) TM OT 
formulation. After a pre- 

iminary analysis with different models, the aforementioned crite- 

ia provided the best results to segment these two images. In ad- 

ition, a real experiment recorded by an electron microscope will 

e segmented to verify the performance in a real instance. 

These analyses are carried out to compare the efficiency pro- 

ided by DOMP formulations and classical segmentation mod- 

ls such as Otsu’s method and p-means in the field of STEM 

 Belianinov et al., 2015; Hindson et al., 2011; Leary et al., 2012; 

iu et al., 2020; Lopez-Haro et al., 2014 ). To perform a compari- 

on between segmentations obtained by using classical models and 

OMP with the formulations introduced in this work, the number 
681 
f clusters ( p) has been set to 4 and 5 for 3D-STEM images and

o 2 and 3 for 2D-STEM images. These choices aim to identify the 

ifferent elements that constitute the original image with as few 

lusters as possible. 

In order to quantify the quality of the different segmentations 

e have divided the elements which constitute the image into 

hree confusion matrices, because visually the image is composed 

f three elements (background, support and particles). Since the 

ain goal of the experiment is to detect true particles, to compare 

he quality of the segmented particles we define the null hypothe- 

is H 0 and the alternative hypothesis H 1 as: 

H 0 : pixel that does not represent a particle, 
H 1 : pixel that represents a particle. 

Each element of the confusion matrix referring to particles is 

efined as follows: 

• True Positive (TP): Pixels successfully detected as particle. H 0 is 

false and it is rejected. 
• True Negative (TN): Pixels successfully detected as different 

from particles. H 0 is true and it is not rejected. 
• False Positive (FP): Pixels wrongly detected as particles. H 0 is 

true and it is rejected (Type I error). 
• False Negative (FN): Pixels not detected as particles, in a wrong 

way. H 0 is false and it is not rejected (Type II error). 

The same applies to the confusion matrices for the support 

nd background. Figure 3 shows the number of pixels that corre- 

pond to particles, support and background in the phantom used 

o obtain the reconstruction shown in Fig. 2 (a). This figure has 

5536 pixels, of which 316 correspond to particles, 13,923 are gen- 

rated by the support and 51,297 are the background of the image. 

As is to be expected, the main goal is to avoid FP for particles, 

.e., to avoid classifying as particles pixels that actually do not cor- 
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espond to particles. Indeed, these are the errors that produce the 

argest distortion in the analysis of characteristics of a nanomate- 

ial. Therefore, although the goal is to have a small number of FN 

nd FP, it would be better to have more FN than FP. 

As in other references (see Murugan et al., 2020 ), different 

uantifiers have been used to compare the quality of the segmen- 

ations obtained using each formulation. In the following, we con- 

ider different types of metrics to measure the performance of seg- 

entation models depending on the pixels classified (correctly or 

rongly). 

.1. Rates of wrong classification (RWC) 

These coefficients report the percentages of wrongly classified 

ixels. Accordingly, the lower the values of these coefficients (per- 

ect segmentations correspond to 0), the better the quality of the 

egmentation obtained. The false negative rate (FNR) means the 

robability of classifying pixels as features different from particles 

hen they are in fact particles: 

 NR = 

F N 

F N + T P 
. 

The false positive rate (FPR) means the probability of wrongly 

lassifying pixels as particles when they correspond to other fea- 

ures: 

 P R = 

F P 

F P + T N 

. 

his rate plays an important role assessing the quality of the seg- 

entations, since detecting false particles negatively affects on the 

ano-object analysis. Therefore, high quality segmentations are ob- 

ained if false positives are detected with a low probability. 

.2. Rates of correct classification (RCC) 

We have named the coefficients which report the percentages 

f correctly clustered pixels ‘RCC’. The higher the values (the value 

f 1 represents a perfect segmentation), the better the pixel clas- 

ification. The true positive rate (TPR), also known as recal l or 

ensit i v it y , measures the percentage of pixels correctly classified as 

articles (TP) among all pixels that form the particles in the origi- 

al image (TP+FN): 

 P R = 

T P 

T P + F N 

= 1 − F NR. 

imilarly, the true negative rate (TNR) or speci f icity computes the 

roportion of pixels correctly classified as different to particles 

TN) among all the pixels that do not correspond to particles in 

he original image (TN+FP): 

 NR = 

T N 

T N + F P 
= 1 − F P R. 

he efficiency of each classification model can be measured by 

lotting the false positive rate against the true positive rate in the 

OC space. The perfect classification is represented by the point 

n the ROC space corresponding to F P R = 0 and T P R = 1 . The Area

nder the Curve (AUC) is computed as: 

UC = 

1 − F P R + T P R 

2 

= 

speci f icity + sensiti v ity 

2 

. 

he F1 score is used to obtain a balance between sensit i v it y and

precision , where precision measures the percentage of pixels cor- 

ectly classified as particles (TP) among all the pixels identified as 

article (TP+FP), i.e., 

precision = 

T P 

T P + F P 
. 
682 
hus, the F1 score is the harmonic mean between both metrics, 

 1 = 

2 T P 

2 T P + F P + F N 

. 

he accuracy (ACC) measures the percentage of pixels correctly 

lassified (TP+TN) among all the pixels that constitute the seg- 

ented image: 

CC = 

T P + T N 

T P + T N + F P + F N 

. 

inally, the Rand Index (RI) and the Adjusted Rand Index (ARI) have 

een computed to obtain the similarity between the correct clas- 

ification and the segmentation provided by the different formu- 

ations introduced in this paper ( Hubert & Arabie, 1985 ). The RI 

akes a value between 0 and 1, while the ARI takes values between 

1 and 1. The closer the value is to 1, the higher is the similar-

ty between both classifications. The following matrix reports the 

verlaps between both segmentations (original and approximate): 

c i j represents the number of pixels which must belong to the 

luster i but which are classified in cluster j. These coefficients are 

btained as follows: 

I = 

2 

∑ 

i j 

(
c i j 

2 

)
− ∑ 

i 

(
Sx i 
2 

)
− ∑ 

i 

(
Sy j 
2 

)
+ 

(
n 
2 

)(
n 
2 

)
RI = 

∑ 

i j 

(
c i j 

2 

)
−

[∑ 

i 

(
Sx i 
2 

)∑ 

j 

(
Sy j 
2 

)]
/ 
(

n 
2 

)
1 
2 

[∑ 

i 

(
Sx i 
2 

)
+ 

∑ 

j 

(
Sy j 
2 

)]
−

[∑ 

i 

(
Sx i 
2 

)∑ 

j 

(
Sy j 
2 

)]
/ 
(

n 
2 

) . 

.3. Anti- k -centrum 

Figure 4 compares the solutions of 3D-STEM segmentations 

rovided by the p-means, Otsu and anti- k -centrum models with n 

 128 intensities and two numbers of clusters ( p = 4 , p = 5 ). The

alue of k in anti- k -centrum is set to n 
2 . One slice has been se-

ected from the whole segmented volume to analyse the segmen- 

ation quality in an efficient way. The performance of segmenta- 

ions for the remaining slices is similar. Ideally, intensities which 

ontain information about particles should be grouped in the same 

luster and it should be different to the clusters containing inten- 

ities representing the rest of structures. In Fig. 4 , cluster 4 for 

he case p = 4 and cluster 5 for p = 5 will represent particles. It

an be observed with p = 4 that p-means and Otsu models as- 

ign to the same cluster the particles and a large number of pix- 

ls corresponding to support. Hence, these models provide a large 

alse positive rate (0.1538 and 0.1415, respectively) due to the large 

umber of false positives obtained (10029 and 9226). However, the 

nti- k -centrum model identified pixels corresponding to particles 

n a highly effective way. This model had a very small false pos- 

tive rate (0.0 0 01), since very few pixels were identified as parti- 

les in a wrong way (55 pixels). Similar results were obtained by 

pplying p-means for p = 5 . However, the Otsu’s method with 5 

lusters provided 0 pixels classified as particles wrongly but at the 

xpense of identifying a small number of pixels as particles suc- 

essfully (18 pixels). In addition, the RI and ARI coefficients took 

he highest values for segmentations obtained using the anti- k - 

entrum model (the RI reported 0.9791 and 0.9738 for p = 4 and 

p = 5 respectively and 0.9536 and 0.9420 for the ARI coefficient). 



J.J. Calvino, M. López-Haro, J.M. Muñoz-Ocaña et al. European Journal of Operational Research 302 (2022) 671–687 

Fig. 4. Quantification of the results obtained by applying p-means, Otsu and anti- 

k -centrum models to segment a 3D-STEM image with p = 4 and p = 5 . 
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Fig. 5. Quantification of the results obtained by applying p-means, Otsu and 

(k 1 , k 2 ) -trimmed mean models to segment a 2D-STEM image. 
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he remaining rates of RCC coefficients have a similar performance, 

ince the highest values correspond to the anti- k -centrum model. 

herefore, we can ensure that this formulation provided the most 

ccurate segmentation. The quality obtained with the different co- 

fficients may be visually confirmed with the images in Fig. 4 . Seg- 

entations provided by the anti- k -centrum correctly identify most 

ixels belonging to particles (white colour). However, p-means and 

tsu segmentations contain a large number of pixels classified as 

articles, although they actually belong to support. 

In the STEM segmentation field, clustering is carried out on the 

ector of intensities in such a way that the clusters are delimited 

y certain intensities, which are called threshold values. There- 

ore, some intensities are identified as particles (associated with 

he cluster of particles) if their intensities are larger than the lower 

hreshold value defining this cluster. Figure 6 shows the compro- 

ise between TPR and FPR depending on the threshold value from 

hich an intensity is considered as a particle for segmentations 

hown in Fig. 4 with p = 4 and p = 5 . The red dot represents the
683 
nti- k -centrum model, the green dot is the solution provided by 

he Otsu’s method and the p-means is represented by a yellow 

ot. Moreover, the results provided by the (k 1 , k 2 ) -trimmed mean 

nd (k 1 , k 2 ) -anti-trimmed mean are represented by black and or- 

nge dots, respectively. The p-means, Otsu, (k 1 , k 2 ) -trimmed mean, 

nd (k 1 , k 2 ) -anti-trimmed mean provide a higher TPR, but at the 

ost of a high FPR. However, the anti- k -centrum model achieves a 
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Fig. 6. ROC curves obtained by 3D-STEM image segmentations which represent a 

comparison between TPR and FPR depending on the minimum intensity value con- 

sidered as a particle. 
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Fig. 7. ROC curves obtained by 2D-STEM image segmentations which represent a 

comparison between TPR and FPR depending on the minimum intensity value con- 

sidered as a particle. 
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a

s

F

c

ery good compromise, with a slightly lower TPR value but an FPR 

lose to zero. Accordingly, the anti- k -centrum model results in a 

etter segmentation, since electron tomography segmentations try 

o avoid false particles, i.e., the value of FP must be close to zero. 

.4. (k 1 , k 2 ) -Trimmed mean 

Following the comparison performed for 3D-STEM images, 

ig. 5 shows the evaluation of the quality of the segmentations 

rovided by the p-means, Otsu and (k 1 , k 2 ) -trimmed mean mod- 

ls using formulations for a 2D-STEM image with 128 intensities. 

n this case, only one confusion matrix for particle and background 

as obtained, since this image has only two different structures 

particles and background). Two different numbers of clusters are 

onsidered, p = 2 and p = 3 , and k 1 = k 2 = 10 . It may be observed

hat the FPR takes the lowest values for the (k 1 , k 2 ) -trimmed mean

odel (0.0543 and 0.0604 for p = 2 and p = 3 , respectively) while

he p-means (0.0604 and 0.2033) and Otsu (0.0744 and 0.2520) 

esult in higher FPR values. Regarding the RCC coefficients, they 

ake the highest values for the (k 1 , k 2 ) -trimmed mean model. This

erformance resulting from the RWC and RCC coefficients is con- 

rmed in Fig. 7 . It may be observed with p = 2 that the com-
ig. 8. Segmentation of an experimental 2D-STEM image: (a) 2D-STEM image. (b) p-me

orrespond to enlargements of the areas marked by the squares. 

684 
romise between false positive rate and true positive rate is very 

imilar for the p-means, Otsu and (k 1 , k 2 ) -trimmed mean. Never- 

heless, if 3 clusters are considered, there are differences in the 

OC curve among these formulations. Clearly, the (k 1 , k 2 ) -trimmed 

ean achieved the best compromise between false positive and 

rue positive rates. The images in Fig. 5 report the quality of the 

egmentations in a visual way. It may be observed that the p- 

eans, Otsu and (k 1 , k 2 ) -trimmed mean provide similar results 

or p = 2 . However, the (k 1 , k 2 ) -trimmed mean identifies particles

ith a better quality than the p-means and Otsu for p = 3 . 

In Fig. 9 of Appendix we have carried out a similar analysis for 

he (k 1 , k 2 ) -anti-trimmed mean with a 2D-STEM image that repre- 

ents a small number of particles and low noise. The results show 

hat the (k 1 , k 2 ) -anti-trimmed mean provides better quality seg- 

entation than the OTSU and p-means. 

.5. Segmentation of an experimental 2D-STEM image 

In order to extend the analysis beyond phantom images, the 

p-means and (k 1 , k 2 ) -trimmed mean models were used to solve 

n experimental 2D-STEM image (see Fig. 8 ). Note how the image 

hows small bright areas corresponding to the nanoparticles on 
ans segmentation and (c) (k 1 , k 2 ) -trimmed mean segmentation. Yellow rectangles 
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Fig. 9. Quantification of the results obtained by applying the p-means, Otsu and (k 1 , k 2 ) -trimmed mean models to segment a 2D-STEM image. 
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op of the non-homogenous larger particles (support), which dis- 

lay areas with similar intensities to those corresponding to the 

anoparticles. These features make it difficult to distinguish be- 

ween the intensities belonging to the particles and the support. 

ee Liu & Corma (2018) for further details about the structure of 

his type of images. 

To perform the segmentation of the 2D-STEM image, the follow- 

ng parameters were considered to classify the intensities of the 

ixels for both the p-means and (k 1 , k 2 ) -trimmed mean model: 

28 intensities, p = 4 , k 1 = 10 and k 2 = 10 . The results obtained for

ach model were superimposed on the original image as a trans- 

arent green contour (see Fig. 8 (b) and (c)). The pixels belong- 

ng to clusters 2, 3 and 4 are included in these contour images. 

enerally speaking, in both cases there is a good correlation be- 

ween the particles and the segmented areas. Nevertheless, it can 

e seen how the p-means ( Fig. 8 (b)) has provided a much noisier

mage segmentation than the (k 1 , k 2 ) -trimmed mean model. This 

s clearly shown in the enlargement marked with a yellow square 

n Fig. 8 (b) and (c). This specific area shows the transparent green 

ontour and black and white images. The latter shows the pixels 

lassified as background (cluster corresponding to p = 1 ) in white 

nd the clusters p > 1 as black. In this specific area, the p-means 

odel not only shows a higher number of false positives but also 

he particles identified are not well segmented, showing large ar- 

ifacts, e.g. they are not well separated and some tails appear in 

he surrounding areas of the particles. These artifacts appear be- 

ause in the selected clusters not only the pixels belonging to the 

articles are classified but also pixels corresponding to the back- 

round are included. The (k 1 , k 2 ) -trimmed mean model achieves a 

igh level of accuracy, identifying every particle of the original im- 

ge and providing better results than the p-means. In addition, this 

esult is very closely aligned with those obtained from the phan- 

om images. Therefore, our proposed models are very promising 

ools to obtain high quality segmentations that allow us to quan- 

ify the structural properties of nanomaterials and obtain a better 

nsight into their chemical or physical properties. 

. Conclusions 

This paper has studied an application of the ordered median 

roblem to segment 3D-STEM and 2D-STEM images. Classical mod- 

ls do not provide good quality segmentations of small particles. 

owever, the ordered median operator allows us to select in the 

bjective function the frequencies which usually represent small 

articles thanks to the λ-vector values. Different formulations 

ave been proposed depending on the λ-vector structure (anti- k - 

entrum, (k 1 , k 2 ) -trimmed mean, (k 1 , k 2 ) -anti-trimmed mean) to

mprove the computational times needed to obtain the optimal so- 

ution for each segmentation model. The formulations introduced 

n this paper have substantially reduced the computing time to ob- 

ain the optimal solution, making it possible to solve larger size in- 
685 
tances. The importance of solving large size STEM instances must 

e emphasised, since the larger the instances solved the more ac- 

urate the segmentations are with respect to the original images. 

inally, this paper also proposes an efficient way of quantifying the 

egmentations obtained by analysing their confusion matrices. 
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ppendix A. 

In the computational analysis described in Section 5 , the formu- 

ations proposed in this manuscript have been compared with the 

wo most promising formulations in the state of the art of DOMP. 

hese formulations, are the block formulation ( Espejo et al., 2021; 

uerto et al., 2013; Puerto et al., 2016 ) and OT θ formulation ( Marín

t al., 2020 ). For the sake of completeness, we have described both 

ormulations in this appendix. 

1. Ordered median problem with blocks 

The DOMP formulation with blocks is developed in Puerto et al. 

2013) , Puerto et al. (2016) , Espejo et al. (2021) . A block is de-

ned as a set of consecutive non-null identical values in the λ- 

ector. The structure of this formulation takes advantage of se- 

uences of repetitions in some classical λ-vectors by defining new 

ectors which provide the information about the length of every 

lock. 

We consider λ = (1 , 1 , 0 , 1 , 1) a vector with 2 blocks as an ex-

mple. Let I be the number of non-null blocks in λ-vector and 

 := { 1 , . . . , I} . Let us define the vector γ = (γ1 , . . . , γI ) , being γi ,

 ∈ I the value of the elements in the i th block of repeated el-

ments in λ, i.e., in our example γ -vector is γ = (1 , 1) . We de-

ne the vector α = (α1 , . . . , αI , αI+1 ) where αi , with i ∈ I , is the

umber of elements taking the value of zero between the (i − 1) th 

nd i th blocks of positive elements in λ-vector and αI+1 the num- 

er of zeros after the Ith positive block in λ, i.e., in our example 

= (0 , 1 , 0) . In addition, we set the vector β = (β1 , . . . , βI ) where

i , with i ∈ I , is the number of elements in the i th block of posi-

ive elements in λ-vector, i.e., β = (2 , 2) in the example. This for- 

ulation considers an ordered intensity-allocation weighted dis- 

ance vector created from the matrix d by removing the duplicated 
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Table 9 

Dimensions of the F DOMP G (Appendix A.1), F OT ( Section 4 ) and F OT θ (Appendix A.2) formulations, where K + = { k ∈ N : �k > 0 } and K − = { k ∈ N : �k < 0 } . 
Variables Constraints 

x y u v w z θ (1a) (13a) (13b) (13c) (16a) (16b) (16c) (16d) (17a) (17b) (17d) 

F DOMP G n 2 n |I| · |H| |I| · |H| - - - 1 n 2 n - |H| (|I| − 1) · |H| (|I| − 1) · |H| |I| · |H| - - - 

F OT n 2 n - - n 2 n - 1 n 2 n n 2 - - - - - - - 

F OT θ n 2 n - - n · | K + | | K + | n 2 · | K −| 1 n 2 n n 2 - - - - | K −| n 2 · | K −| n 2 
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H

F

alues and sorting its components in increasing sequence. Let H

e the number of different nonzero elements of the intensity- 

llocation weighted distance matrix and H := { 1 , . . . , H} . The or-

ered intensity-allocation weighted distance vector is built as fol- 

ows: 

 (0) = 0 < d (1) < . . . < d (H) := max { d i j : i, j ∈ N } . 
et h ∈ H and k ∈ I , we define the set of binary variables u kh which

ake the value of one if the ( 
∑ k 

j=1 α j + 

∑ k −1 
j=1 β j + 1) th intensity- 

llocation weighted distance is at least d (h ) and the value of zero 

therwise. In addition, variables v kh give the number of alloca- 

ions in the k th block between positions 
∑ k 

j=1 α j + 

∑ k −1 
j=1 β j + 1 

nd 

∑ k 
j=1 (α j + β j ) with a weight higher than d (h ) . Thus, the or- 

ered median problem with blocks is formulated as follows: 

 F DOMP G ) min 

∑ 

k ∈I 

∑ 

h ∈H 
γk (d (h ) − d (h −1) ) v kh 

s.t. (1a), (13a), (13b) ∑ 

k ∈I 
αk u kh + 

∑ 

k ∈I 
v kh + αI+1 ≥

∑ 

i ∈N 

∑ 

j∈N : 

d i j ≥d (h ) 

x i j , ∀ h ∈ H, 

(16a) 

u kh ≥ u k −1 ,h , ∀ k = 2 · · · , I, h ∈ H, (16b) 

βk −1 u kh ≥ v k −1 ,h , ∀ k = 2 · · · , I, h ∈ H, (16c) 

v kh ≥ βk u kh , ∀ k ∈ I, h ∈ H, (16d) 

x i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N , (16e) 

u kh ∈ { 0 , 1 } , ∀ k ∈ I, h ∈ H. (16f) 

v kh ∈ Z ∩ [0 , βk ] , ∀ k ∈ I, h ∈ H. (16g) 

The objective function is the ordered sum of the intensities- 

llocation weighted distances. Constraints (16a) guarantee that the 

umber of intensities with an intensity-allocation weighted dis- 

ance greater than or equal to d (h ) is either equal to the num- 

er of allocations with an intensity-allocation weighted distance at 

east d (h ) whenever v Ih > 0 or less than or equal to αI+1 otherwise. 

onstraints (16b) control that u kh must be greater than or equal to 

 k −1 ,h . Upper and lower bounds of variables v kh are given by con- 

traints (16c) and (16d) respectively. 

2. OT θ Formulation 

Marín et al. (2020) introduce a formulation of the ordered me- 

ian problem based on the rationale that explains the original 

T formulation ( Ogryczak & Tamir, 2003 ) (see Section 4 ). Differ- 

ntly from the original OT formulation, this one is valid for any λ- 

ector structure, non necessarily monotone. Let �k = λk − λk −1 . It 
686 
equires new variables θ k 
i j 

that take the value of 1 if the intensity- 

llocation weighted distance of assigning intensity i to cluster j is 

orted in position k and 0 otherwise. Then, the formulation that 

esults is: 

F OT θ ) min 

∑ 

k ∈N : 

�k > 0 

�k 

( 

(n − k + 1) z k + 

∑ 

i ∈N 
w ik 

) 

+ 

∑ 

k ∈N : 

�k < 0 

�k 

∑ 

i ∈N 

∑ 

j∈N 
d i j θ

k 
i j 

s.t. (1a), (13a), (13b), (13c) , ∑ 

i ∈N 

∑ 

j∈N 
θ k 

i j = n − k + 1 , ∀ k ∈ N : �k < 0 , 

(17a) 

θ k 
i j ≤ x i j , ∀ i, j, k ∈ N : �k < 0 , (17b) 

θ k 
i j ≥ 0 , ∀ i, j, k ∈ N : �k < 0 , (17c) 

∑ 

a : d ia >d i j 

x ia + y j ≤ 1 , ∀ i, j ∈ N , (17d) 

w ik , z k ≥ 0 , ∀ i, k ∈ N : �k > 0 , (17e) 

x i j , y j ∈ { 0 , 1 } , ∀ i, j ∈ N . (17f) 

The first term of the objective function contains the sum of the 

n − k + 1) th greatest intensity-allocation weighted distances mul- 

iplied by �k for k ∈ N such that �k > 0 . The second term con-

ains the sum of the remaining (n − k + 1) th greatest intensity- 

llocation weighted distances multiplied by �k for k ∈ N such 

hat �k < 0 . Constraints (17a) state the number of allocations con- 

rolled by variables θ k 
i j 

and (17b) force that every allocation man- 

ged by θ k 
i j 

is also controlled by x i j . Finally, the family of con- 

traints (17d) ensures the allocation of each intensity to the closest 

luster. 

To have an idea of the complexity of the different formulations, 

e show in Table 9 a comparative of the number of variables and 

onstraints needed to formulate the F DOMP G 
, F OT (see Section 4 ) 

nd F OT θ
. 

3. Validation of the (k 1 , k 2 ) -anti-trimmed mean model. 

In this Appendix, a 2D-STEM image with a low density of par- 

icles supported on a continuous thin layer is segmented by us- 

ng the (k 1 , k 2 ) -anti-trimmed mean model. This 2D-STEM phantom 

mage represents an example of nanomaterials used in devices for 

lternative energy, see Fig. 9 . This new instance contains a small 

mount of particles and low noise, then we are interested in the 

mallest and largest intensity-allocation weighted distances. Ide- 

lly, the smallest intensity-allocation weighted distance will cor- 

espond to the ones of particles and the largest ones to those of 

he background. Therefore, taking λ = (1 , . . . , 1 , 0 , . . . , 0 , 1 , . . . , 1)

he resulting segmentation model attemps to identify two differ- 

nt structures: particles and background with a low level of noise. 

ence, we only need 2 clusters to classify the intensities (see 

ig. 9 ). 
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