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a b s t r a c t

We give three proofs of the following result conjectured by Carriegos, De Castro-García
and Muñoz Castañeda in their work on enumeration of control systems: when

(k+1
2

)
≤

n <
(k+2

2

)
, there are as many partitions of n with k corners as pairs of partitions (α, β)

such that
(k+1

2

)
+ |α| + |β| = n.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Integer partitions (finite weakly decreasing sequences of positive integers) are fundamental objects in enumerative
combinatorics. The terms of a partition are called its parts. Several parameters are attached to a partition, such as: its
length, its weight (the sum of its parts), its largest part, the size of its Durfee square (i.e. the maximum k such that the
artition has k parts ≥ k) . . .Another parameter is the number of distinct sizes of its parts. It is also the number of corners
n the diagram of the partition. For instance, the partition (7, 4, 4, 2, 2, 2, 1) has parts of 4 different sizes (7,4,2, and 1).
Accordingly, its diagram has 4 corners, as shown in Fig. 1(a). We will call for short partitions with k corners the partitions
with parts of k different sizes.

Recently, the problem of counting partitions with k corners has arised in the context of the enumeration of linear con-
trol systems with coefficients in a commutative rings, in papers by Carriegos, De Castro-García and Muñoz Castañeda [4,5].
The present note is devoted to proving the following result that they conjectured.

Theorem 1 ([4, Conjecture 30]). When
(k+1

2

)
≤ n <

(k+2
2

)
, there are as many partitions of n with k corners as pairs of partitions

(α, β) such that |α| + |β| = n −
(k+1

2

)
.

Note that
(k+1

2

)
is the size of the staircase partition of length k, which is (k, k − 1, k − 2, . . . , 1); see Fig. 2.

We actually give three proofs of Theorem 1. The first one (Section 3) is based on generating series. The second one
(Section 4) is based on an identity due to Fine on some statistics on partitions. The last one (Section 5) is a bijective proof
of the following more general result.

Theorem 2. For any k ≥ 0 and m ≥ 0, there are as many pairs of partitions (α, β) with |α| + |β| = m whose lengths fulfill
ℓ(α)+ℓ(β) ≤ k, as partitions of m+

(k+1
2

)
with k corners whose diagrams do not contain the diagram of the staircase partition

with length k + 1.
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Fig. 1. The diagrams of the partitions λ = (7, 4, 4, 2, 2, 2, 1) and λ′
= (7, 6, 3, 3, 1, 1, 1), which are conjugate of each other. Each point (i, j) of a

iagram is represented as a square box centered at (i, j).

Fig. 2. The diagram of (5, 4, 3, 2, 1), which is the staircase partition of length 5.

Proof of Theorem 1 from Theorem 2. Consider n <
(k+2

2

)
and set m = n −

(k+1
2

)
. Then m ≤ k. Observe now that all

pairs of partitions (α, β) with |α| + |β| = m fulfill ℓ(α) + ℓ(β) ≤ |α| + |β| = m ≤ k. Also, the diagram of a partition of n
cannot contain the diagram of the staircase partition of length k+ 1, since n is smaller than

(k+2
2

)
= 1+ 2+ · · · + (k+ 1).

Theorem 1 follows. □

2. Basic facts and notations

2.1. Partitions and their diagrams

In this section, we recall classical operations and notations for integer partitions. See [11], [9, I.1], [12, p. 58] or [2, Ch.
I] for further details, basic definitions and general presentations.

Given a partition λ = (λ1, λ2, . . .), its diagram is the set of integer points (i, j) such that 1 ≤ j ≤ ℓ(λ) and 1 ≤ i ≤ λj.
n graphical representations, the points of the diagram of λ are often drawn as square boxes centered at that point. The
onjugate of λ is the partition, denoted λ′, whose diagram is obtained from the diagram of λ by applying the reflection
that swaps the coordinates. The parts of λ are the nonzero terms λ1, λ2 . . . and the length of λ, denoted with ℓ(λ), is the
umber of nonzero terms (non-necessarily distinct). By λ ⊢ n we mean that λ is a partition of n. We call n the weight of
, and denote it with |λ|.
For instance, the partition λ = (7, 4, 4, 2, 2, 2, 1) is a partition of 7 + 4 + 4 + 2 + 2 + 2 + 1 = 22 (so |λ| = 22 and

λ ⊢ 22), with length 7 (denoted ℓ(λ) = 7) and parts 7, 4, 4, 2, 2, 2 and 1. Its conjugate partition is λ′
= (7, 6, 3, 3, 1, 1, 1).

The diagrams of λ and λ′ are shown in Fig. 1.
In sequences and partitions, we will make use of the notation pm for ‘‘m occurrences of p’’. For instance, the partition

(7, 4, 4, 2, 2, 2, 1) will be also denoted (7, 42, 23, 1).
Weakly decreasing sequences of non-negative integers with trailing zeros will be identified with the partition obtained

by deleting the trailing zeros. For instance, (7, 4, 4, 2, 2, 2, 1, 0, 0, 0) will be identified to the partition (7, 4, 4, 2, 2, 2, 1).
Consider two partitions α = (α1, α2, . . .) and β = (β1, β2, . . .). Their sum is the partition α+β = (α1+β1, α2+β2, . . .).

For each i, let ai (resp. bi) be the multiplicity of i in α (resp. in β). The union of the partitions α and β is the partition
(denoted α ∪ β) in which the multiplicity of i is ai + bi. For instance, if α = (7, 4, 4, 2, 2, 2, 1) and β = (4, 2, 1) then
α + β = (7 + 4, 4 + 2, 4 + 1, 2 + 0, 2 + 0, 2 + 0, 1 + 0) = (11, 6, 5, 2, 2, 2, 1) and α ∪ β = (7, 4, 4, 4, 2, 2, 2, 2, 1, 1). The
two operations are related by the identity (α + β)′ = α′

∪ β ′.
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.2. Generating series

Given any nonnegative integer k, the product
k∏

i=1

1
1 − qi

expands as∑
a1,a2,...,ak

q1a1+2a2+···+kak ,

here the sum is carried over all k–tuples (a1, a2, . . . , ak) of nonnegative integers. Interpreting each integer ai as the
ultiplicity of i as a part of a partition with weight 1a1 +2a2 +· · ·+kak, we see that the series also writes

∑
λ q

|λ|, where
he sum is over all partitions λ whose parts are all ≤ k. It is thus the generating series for these partitions, according to
heir weight (i.e. for each n, the coefficient of qn in this series is the number of partitions of n whose parts are all ≤ k).

Similarly, the infinite product
∞∏
i=1

1
1 − qi

is the generating series of all partitions, according to their weight,.

2.3. Corners of partitions

A corner of (the diagram of) λ is a point (i, j) in the diagram of λ, such that neither (i + 1, j) nor (i, j + 1) is in the
iagram of λ. The partitions with parts of k distinct sizes are exactly the partitions whose diagram has k corners.
We will denote with ν(n; k) the number of partitions of n with k corners.
Let ρk = (k, k − 1, . . . , 1). This partition is called the staircase partition of length k. Fig. 2 shows the diagram of the

staircase partition of length 5. The staircase partition of length k is the smallest partition with k corners, in a sense made
recise by the following lemma, that we will use implicitly in the sequel.

emma 3. For any k ≥ 0, the diagram of any partition with k corners contains the diagram of ρk.

Proof. Let k ≥ 0 and let λ be a partition with k corners. Then λ is of the form (pm1
1 pm2

2 · · · pmk
k ) with p1 > p2 > · · · > pk > 0

and all mi > 0.
For each i, set µi = pi − (k − i + 1). Therefore, for all i < k, we have µi − µi+1 = pi − pi+1 − 1 ≥ 0. We have also

µk = pk − 1 ≥ 0. This shows that µ = (µ1, µ2, . . . , µk) is a partition. We have:

λ = (ρk + µ) ∪ (pm1−1
1 pm2−1

2 · · · pmk−1
k ).

This shows that the diagram of λ contains the diagram of ρk. □

We will also make repeated use of the following converse of Lemma 3.

Lemma 4. Let k ≥ 0, and let λ be a partition. If the diagram of λ does not contain the diagram of ρk+1, then λ has at most
k corners. This is the case in particular for any partition λ of weight less than

(k+2
2

)
.

2.4. References on partitions with k corners

It has been remarked in [1] that the number of corners is a statistic on partitions that has been seldom considered.
A notable and early exception is the work of MacMahon [10] relating the enumeration of partitions according to their
number of corners with number theory. MacMahon’s work was expanded by Andrews [3] with a focus on asymptotics.
MacMahon provided a formula for the generating series of partitions according to their weight and number of corners
(identity (1) below in Section 3, where we make use of it). Refinements for this generating series were studied by Alladi [1].
Let us mention also that part of MacMahon’s results on this topic have been rediscovered by some authors unaware of
his work (for instance [8]).

The sequence counting the partitions of n with k corners is number A116608 in The On-Line Encyclopedia of Integer
Sequences [6].

Note finally that another possible name for the partitions with k corners could have been ‘‘partitions with k distinct
parts’’, but this name is already taken and widely used for the partitions with k distinct parts all of multiplicity 1, famous

for having the same generating function as the partitions in odd parts.
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. Proof with generating series

In this section, we prove Theorem 1 using the generating series of the numbers ν(n; k), of partitions of n with k corners,
hich is defined as

F (x, q) =

∑
k,n

ν(n; k)xkqn.

ur starting point will be the following expression for F , due to MacMahon.

heorem 5 ([10, p. 90]; or see (3.2) in Andrews’ account [3]). The generating series F is given by

F (x, q) =

∞∑
j=0

(x − 1)jq(
j+1
2 )

(1 − q)(1 − q2) · · · (1 − qj)
·

∞∏
i=1

1
1 − qi

· (1)

Proof of Theorem 1 from Theorem 5. Consider n and k as in Theorem 1. The number ν(n; k) is the coefficient of xnqk in
(x, q).
In the right-hand side of (1), the summands with indices j < k have degree in x at most k − 1, and thus do not

contribute to the coefficient of xkqn. The expansions of the summands with indices j > k involve only monomials xmqd
ith d ≥

(k+2
2

)
> n, and thus these summands do not contribute to the coefficient of xkqn.

Therefore, ν(n; k) is the coefficient of xkqn in the summand with index j = k, which is

(x − 1)kq(
k+1
2 )

(1 − q)(1 − q2) · · · (1 − qk)
·

∞∏
i=1

1
1 − qi

·

After expanding (x − 1)k as xk + terms of smaller degree in x, we get that ν(n; k) is simply the coefficient of qn in

q(
k+1
2 )

(1 − q)(1 − q2) · · · (1 − qk)
·

∞∏
i=1

1
1 − qi

which is the coefficient of qn−(k+1
2 ) in

1
(1 − q)(1 − q2) · · · (1 − qk)

·

∞∏
i=1

1
1 − qi

· (2)

The left factor in (2) is the generating series for the partitions λ with parts ≤ k; the right factor is the generating series
for all partitions µ (see Section 2.2). Therefore, for any h, the coefficient of qh in (2) is the number of pairs of partitions
(λ, µ) such that |λ| + |µ| = h, and λ has all parts ≤ k. For h ≤ k, the condition on the sizes of the parts of λ can be
dropped. This is the case in particular for h = n −

(k+1
2

)
, since n <

(k+2
2

)
=

(k+1
2

)
+ k + 1. □

4. Proof from statistics on partitions

We now give another proof of Theorem 1, based on the following result due to Fine.

Theorem 6 ([7, Theorem 4 in Chapter 2]). For any r ≥ 0,∑
λ⊢n

(
Q (λ)
r

)
=

∑
λ⊢n

m1(λ)m2(λ) · · ·mr (λ), (3)

where Q (λ) is the number of corners of λ, and mi(λ) stands for the multiplicity of i as a part of λ.

Proof of Theorem 1 from Theorem 6. Consider n and k such that(
k + 1
2

)
≤ n <

(
k + 2
2

)
.

After Lemma 4, the diagram of any partition of n has at most k corners. Apply Theorem 6 with r = k. For any λ ⊢ n,
either λ has less than k corners, and then

(Q (λ)
k

)
= 0, or λ has exactly k corners, and then

(Q (λ)
k

)
= 1. The left-hand side in

(3) is thus ν(n; k).
The right-hand side is∑

m1(λ)m2(λ) · · ·mk(λ). (4)

λ⊢n
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Fig. 3. The diagram of a partition with 4 corners, with its border coordinates (m1,m2,m3,m4; n1, n2, n3, n4)..

Note that if a partition λ ⊢ n has some part j > k, then at least one of its parts i ≤ k must have multiplicity 0 in λ
(otherwise n ≤

(k+2
2

)
cannot be fulfilled). Such a partition does not contribute to the sum (4).

Consider the map (α, β) ↦→ α ∪ β ∪ ρk from the pairs of partitions (α, β) with parts ≤ k. If α = (kak · · · 2a21a1 ) and
β = (kbk · · · 2b21b1 ), the image of (α, β) is the partition (kak+bk+1

· · · 2a2+b2+11a1+b1+1). This shows that the number of
preimages of a partition λ, under this map, is m1(λ)m2(λ) · · ·mk(λ). Indeed, each pair mapped to λ is determined by the
choice of the multiplicities ai, that must fulfill 0 ≤ ai ≤ mi(λ) − 1 for all i, whence there are mi(λ) choices for ai. The
sum (4) now interprets as the cardinality of the inverse image of the set of all partitions λ ≤ n. This inverse image is
the set of all pairs of partitions (α, β) with parts ≤ k such that |α| + |β| + |ρk| = n. This last condition simplifies as
|α| + |β| = n −

(k+1
2

)
. Finally, since n <

(k+2
2

)
, we have that n −

(k+1
2

)
< k + 1. Therefore, the condition that the parts

of α and β are all at most k can be dropped, as it is already implied by the condition on their weights. The statement of
Theorem 1 is obtained. □

5. Bijective proof

It has been shown in the introduction that Theorem 1 follows from the more general Theorem 2. In this section, a
bijective proof of Theorem 2 is provided.

We will use the border coordinates for partitions, that we introduce now.
Let λ be a partition with k corners. Let p1, p2, . . . , pk be the distinct parts of λ, ordered increasingly; p1 < p2 < · · · < pk.

Let q1 < q2 < · · · < qk be the distinct parts of the conjugate partition λ′. For each i, let mi (resp. ni) be the multiplicity of
pi (resp. qi) in λ (resp. λ′). We call the pair of sequences (m1,m2, . . . ,mk; n1, n2, . . . , nk) the border coordinates of λ, since
they are the lengths of the vertical and horizontal segments in the border of the diagram of λ (see Fig. 3).

The border coordinates ni are directly obtained as differences of consecutive parts. Precisely,

nk = p1, and for all i > 1, nk+1−i = pi − pi−1. (5)

Indeed, p1, p2, . . . , pk are the first coordinates of the corners listed from left to right, while nk−1, nk−2, . . . , n1 are the
ifferences between the first coordinates of consecutive corners. The same relation holds between the mi and the qi.

emma 7. Let λ be a partition with k corners and border coordinates

(m1,m2, . . . ,mk; n1, n2, . . . , nk).

et p1 < p2 < · · · < pk be the parts of λ, and let q1 < q2 < · · · < qk be the parts of λ′.

1. Let γ be a partition whose parts are all among the parts of λ. For each i, let ci be the multiplicity of pi in γ . Then the
border coordinates of λ ∪ γ are

(m1 + c1,m2 + c2, . . . ,mk + ck; n1, n2, . . . , nk).

2. Let γ be a partition such that all parts of γ ′ are among the parts of λ′. For each i, let di be the multiplicity of qi in γ ′.
Then the border coordinates of λ + γ are

(m1,m2, . . . ,mk; n1 + d1, n2 + d2, . . . , nk + dk).

roof. We prove part 1. We have λ = (pmk
k · · · pm2

2 pm1
1 ) and γ = (pckk · · · pc22 pc11 ). Therefore

(λ ∪ γ ) = (pmk+ck
k · · · pm2+c2

2 pmk+c1
1 ).

This gives the first half of the border coordinates of λ∪γ . For the second half, observe that, after (5), the ni do not depend
n the multiplicities of the pi, and thus remain unaffected by the union with γ .
Part 2 is straightforwardly deduced from part 1 by means of the identity λ+γ = (λ′

∪γ ′)′, and noting that conjugation
waps the m ’s and the n ’s in the border coordinates. □
i i
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Fig. 4. The bijection (α, β) ↦→ (ρ3 ∪ β ′) + α described in Lemma 8. Its puts in correspondence the pairs of partitions (α, β) with |α| + |β| ≤ 3,
with the partitions λ with 3 corners and weight <

(5
2

)
, whose diagrams do not contain the diagram of ρ4 . This illustrates Theorem 1 for k = 3.

Rows correspond to the partitions α, and columns to the partitions β . The conjugate partition β ′ is drawn. The entry in row α and column β is the
diagram of the partition (ρ3 ∪ β ′) + α. The staircase partition ρ3 is left in white, and the new points of the diagram coming from α and β ′ are in
color.

Theorem 2 follows straightforwardly from the more precise lemma below.

Lemma 8. The map (α, β) ↦→ (ρk ∪ β ′) + α establishes a bijection between the pairs of partitions (α, β) such that
ℓ(α) + ℓ(β) ≤ k, and the partitions λ with k corners whose diagrams do not contain the diagram of ρk+1.

The case k = 3 of the bijection defined in Lemma 8 is shown in Fig. 4.

Proof. Let α and β be two partitions whose lengths have sum at most k. There exist p ≥ ℓ(α) and q ≥ ℓ(β) with p+q = k.
Set bi (resp. ai) for the multiplicity of i in β ′ (resp. α′).

Since β has length at most k, all parts of β ′ are smaller than or equal to k, and thus all parts of β ′ are among those of
k. Lemma 7 applies: the border coordinates of ρk ∪ β ′ are (1 + b1, 1 + b2, . . . , 1 + bk; 1k).
The corners of the diagram of ρk are the pairs (i, k + 1 − i) for i from 1 to k. Since β has length at most q, i.e. β ′ has

ll its parts smaller than or equal to q, performing the union with β ′ does not affect the columns of the diagram whose
ndices i fulfill i > q. Therefore, all pairs (i, k + 1 − i) for i > q are still corners of ρk ∪ β ′. As a consequence, the numbers
+ 1− i for i > q, which are the numbers j ≤ p, are still parts of (ρk ∪ β ′)′. This shows that all parts of α′ are among the
arts of (ρk ∪ β ′)′, allowing to apply again Lemma 7. The conclusion now is that the border coordinates of (ρk ∪ β ′) + α

re

(1 + b1, 1 + b2, . . . , 1 + bk; 1 + a1, 1 + a2, . . . , 1 + ak).

This shows clearly that the map Φ that sends each pair of partitions (α, β) whose lengths have sum at most k to (ρk+β ′)+α

is injective. Indeed, the multiplicities ai and bi of α′ and β ′ can be read from the border coordinates of Φ(α, β).
Besides, since the union with β ′ affects only the first q columns of the diagram, and the sum with α affects only the

first p rows, the point (q + 1, p + 1), that is not in the diagram of ρk, is still not in the diagram of (ρk ∪ β ′) + α. Since
q+1+p+1 = k+2, this point (q+1, p+1) lies in the diagram of ρk+1. This shows that the diagram of Φ(α, β) does not
contain the diagram of ρ . On the other hand, Φ(α, β) has k corners exactly (since it has 2k border coordinates). We
k+1
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onclude that Φ takes its values in the set Sk of all partitions with k corners whose diagrams do not contain the diagram
of ρk+1.

Let us now show that Φ has image Sk exactly. Let λ be a partition with k corners, whose diagram does not contain the
diagram of ρk+1. There exists (i0, j0), lying in the diagram of ρk+1, but not in the diagram of λ. Since λ has k corners, its
diagram contains the diagram of ρk. Therefore (i0, j0) is not in the diagram of ρk, and belongs to the set difference of the
diagram of ρk+1 and the diagram of ρk. Thus i0 + j0 = k + 2. Moreover, any point (i, j) of the diagram, and in particular
any corner, must fulfill i < i0 or j < j0. Let p be the number of corners (i, j) with i < i0, and let q be the number of corners
(i, j) with j < j0. Then k ≤ p+q. We have p ≤ i0−1 since there is at most one corner in each column. Similarly, q ≤ j0−1,
because there is at most one corner in each row. Altogether, we get k ≤ p+ q ≤ (i0 − 1)+ (j0 − 1) = k. As a consequence,

= p + q and p = i0 − 1, q = j0 − 1. There is one corner in each of the first p columns and one corner in each of the
irst q rows, and no corner belongs at the same time to some of the first p columns and to some of the first q rows. We
onclude that λ has border coordinates of the form (m1, . . . ,mq, 1p

; n1, . . . , np, 1q) for some positive numbers mi and ni.
his coincides with the border coordinates of (ρk ∪β ′)+α for β ′

= (qmq−1
· · · 2m2−11m1−1) and α′

= (pnp−1
· · · 2n2−11n1−1).

learly, partitions are determined by their border coordinates. Therefore, λ is equal to (ρk ∪ β ′) + α for the partitions α′

nd β ′ defined above (and α = (α′)′). This shows that all λ ∈ Sk are in the image of Φ , which terminates the proof. □
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