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ON THE UNIFORM CONTROLLABILITY FOR A FAMILY OF

NON-VISCOUS AND VISCOUS BURGERS-α SYSTEMS
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and Diego A. Souza2,∗∗,***

Abstract. In this paper we study the global controllability of families of the so called non-viscous
and viscous Burgers-α systems by using boundary and space independent distributed controls. In
these equations, the usual convective velocity of the Burgers equation is replaced by a regularized
velocity, induced by a Helmholtz filter of characteristic wavelength α. First, we prove a global exact
controllability result (uniform with respect to α) for the non-viscous Burgers-α system, using the return
method and a fixed-point argument. Then, the global uniform exact controllability to constant states is
deduced for the viscous equations. To this purpose, we first prove a local exact controllability property
and, then, we establish a global approximate controllability result for smooth initial and target states.
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1. Introduction

Let L > 0 and T > 0 be given. Let us present the notations used along this work. The symbols C, Ĉ and
Ci, i = 0, 1, . . . stand for positive constants (usually depending on L and T and independent of α). For any
r ∈ [1,+∞] and any given Banach space X, ‖ · ‖Lr(X) will stand for the usual norm in Lebesgue-Bochner space
Lr(0, T ;X). In particular, the norms in Lr(0, L), Lr(0, T ) and Lr((0, T )× (0, L)) will be denoted by ‖ · ‖r. In
this paper, we will consider the following two families of controlled systems:

yt + zyx = p(t) in [0, T ]× [0, L],

z − α2zxx = y in [0, T ]× [0, L],

z(·, 0) = vl, z(·, L) = vr in [0, T ],

y(·, 0) = vl in Il,

y(·, L) = vr in Ir,

y(0 , ·) = y0 in [0, L],

(1.1)
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where Il = {t ∈ [0, T ] : vl(t) > 0} and Ir = {t ∈ [0, T ] : vr(t) < 0}, and



yt − µyxx + zyx = p(t) in (0, T )× (0, L),

z − α2zxx = y in (0, T )× (0, L),

z(·, 0) = y(·, 0) = vl in (0, T ),

z(·, L) = y(·, L) = vr in (0, T ),

y(0 , ·) = y0 in (0, L).

(1.2)

These are the so called non-viscous and viscous convectively filtered Burgers equations (also known in the
literature as the Burgers-α system or Leray-Burgers equation). The couples (y, z) and the triplets (p, vl, vr)
stand for the corresponding states and controls. The parameter µ > 0 is the fluid viscosity and α > 0 is the
characteristic wavelength of the considered Helmholtz filter. For simplicity, throughout this paper we will take
µ = 1. All the results can be extended without difficulty to the case where µ is an arbitrary positive number.

Obviously, (1.1) and (1.2) can be regarded as nonlinear regularizations of the non-viscous and viscous Burgers
equations. These systems and some related variants have already been studied. More precisely, (1.2) is the b = 0
case of the b-family:

{
yt − µ yxx + zyx + b zxy = p(t)
z − α2zxx = y

(1.3)

or, equivalently,

zt − α2zxxt − µ zxx + µα2zxxxx + (b+ 1)zzx − α2zzxxx − bα2zxzxx = p(t).

It has been studied in [37] as a model for the nonlinear 1D wave dynamics in a fluid including the effects of
convection and stretching; the dimensionless parameter b measures the relative strength of these effects and
z can be viewed as the fluid velocity in the x direction (or equivalently the height of the free surface of the
fluid above a flat bottom). When b = 2, (1.3) is the so-called viscous Camassa-Holm equation; it describes the
unidirectional surface waves at a free surface of shallow water under the influence of gravity, see [10]. When
b = 3, we are dealing with the viscous Degasperis-Procesi equation, which plays a similar role in water wave
theory, see [19].

It is interesting to highlight that this regularization idea was first employed by Leray in [39] to prove the
existence of a solution to the Navier-Stokes equations. It has been used to capture shocks in the Burgers
equation in [5, 7, 8, 42, 43]. It has also been employed in other contexts, such as the analysis of compressible
Euler equations, scalar conservations laws and aggregation equations, see [4, 6, 9, 18, 46]. Finally, systems
like (1.1) and (1.2) can also be viewed as simplified 1D versions of the so called Leray-α system introduced some
time ago to describe turbulent flows, as an alternative to the classical averaged Reynolds models; see [12, 29, 30].

Our main results deal with the global uniform (with respect to α) exact controllability of (1.1) and (1.2).
More precisely, one has:

Theorem 1.1. Let α > 0 be given. The non-viscous Burgers-α system (1.1) is globally exactly controllable
in C1. That is, for any given y0, yT ∈ C1([0, L]), there exist a space-independent control pα ∈ C0([0, T ]), a
couple of boundary controls (vαl , v

α
r ) ∈ C1([0, T ];R2) and an associated state pair (yα, zα) ∈ C1([0, T ]× [0, L];R2)

satisfying (1.1) and

yα(T , ·) = yT in (0, L). (1.4)
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Moreover, there exists a positive constant C > 0 (depending on L, T , y0 and yT but independent of α) such that

‖(zα, yα)‖C1([0,T ]×[0,L];R2) + ‖pα‖C0([0,T ]) + ‖(vαl , vαr )‖C1([0,T ];R2) ≤ C. (1.5)

Theorem 1.2. Let α > 0 be given. The viscous Burgers-α system (1.2) is globally exactly controllable in L∞

to constant trajectories. That is, for any given y0 ∈ L∞(0, L) and N ∈ R, there exist a space-independent
control pα ∈ C0([0, T ]), a couple of boundary controls (vαl , v

α
r ) ∈ H3/4(0, T ;R2) and an associated state pair

(yα, zα) ∈ L2(0, T ;H1(0, L;R2)) ∩ L∞(0, T ;L∞(0, L;R2)) satisfying (1.2),

yα(T , ·) = N in (0, L) (1.6)

and the following estimate

‖pα‖C0([0,T ]) + ‖(vαl , vαr )‖H3/4([0,T ];R2) ≤ C,

where C is a positive constant (depending on L, T , y0 and N but independent of α). Moreover, if y0 ∈ H1
0 (0, L)

then the same conclusion holds with

(yα, zα) ∈ L2(0, T ;H2(0, L;R2)) ∩H1(0, T ;L2(0, L;R2)).

In this paper, we are going to deal with situations that lead to new difficulties compared to previous works
on nonlinear parabolic equations. Let us explain these differences:

– Nonlocal nonlinearities. In (1.1) and (1.2), the usual convective term is replaced and a filtered (averaged)
velocity appears. As a consequence, the arguments in [11] must be modified, as shown below.

– Uniform controllability. Performing careful estimates of the controls, global uniform controllability results
can be obtained. This way, we will be able to generalize previous control results for nonlinear parabolic
equations with nonlocal nonlinearities, see [11, 41].

For completeness, let us mention some previous works on the well-posedness and control of the previous
systems and other similar models. Global and local well-posedness are respectively established in [23] (when
the boundary conditions are homogeneous) and [13, 45]. Moreover, there are many important works dealing
with the controllability properties of parabolic equations and systems (see [22, 25, 28, 31]) and non-viscous and
viscous Burgers equations (see [11, 17, 20, 26, 31, 33, 34, 38, 41, 44]). In the case of the Burgers-α system, the
local uniform null controllability of the viscous system (1.2) with distributed and boundary controls was studied
in [1]; later, the results have been extended to any equation of the b-family in [27]. In higher dimensions, local
uniform (distributed and boundary) null controlability results for the Leray-α system have been obtained in [2].

The rest of this paper is organized as follows. In Section 2, we prove some results concerning the existence,
uniqueness and regularity of the solutions. Sections 3 and 4 deal with the proofs of Theorems 1.1 and 1.2.
Finally, in Section 5, we present several additional comments and questions.

2. Preliminaries

2.1. Notations and classical results

Let us denote by C0
b (R) (resp. C0,1

b (R)) the Banach space of bounded continuous functions on R
(resp. bounded Lipschitz-continuous functions on R). Let C0,1

x ([0, T ] × R) be the space of functions f :
[0, T ] × R 7→ R that are continuous in x and t and globally Lipschitz-continuous in space, with a Lipschitz
constant independent of t.
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In the sequel, for any given f ∈ C0([0, T ]×R), the associated flux function Φ = Φ(s; t, x) is defined as follows: ∂Φ

∂t
(s; t, x) = f(t,Φ(s; t, x)),

Φ(s; s, x) = x.

(2.1)

The mapping Φ contains all the information on the trajectories of the particles transported by the velocity f .
Furthermore, we have the following existence, uniqueness and regularity result:

Proposition 2.1 ([21], Thm. 10.19). Assume that f ∈ C0,1
x ([0, T ]×R) and fx belongs to the space C0([0, T ]×R).

Then, there exists a unique flux function associated to f , that is, a unique function Φ : [0, T ]× [0, T ]× R 7→ R
satisfying (2.1) for all (s, t, x) ∈ [0, T ]× [0, T ]× R. Moreover, Φ ∈ C1([0, T ]× [0, T ]× R).

See [35, 36] for other similar results. Under the assumptions in Proposition 2.1, it is well known that for
any s, t ∈ [0, T ] the mapping Φ(s; t , ·) : R 7→ R is a diffeomorphism, with

Φ(s; t , ·)−1 = Φ(t; s , ·).

Let us now recall a result from Bardos and Frisch [3]. To this purpose, let us first note that, for any given
Banach space X with norm ‖ · ‖X and any function u ∈ C1([0, T ];X), the following inequality holds:

d

dt+
‖u(t)‖X ≤ ‖ut(t)‖X in (0, T ), (2.2)

where d/dt+ represents the time derivative to the right.

Proposition 2.2 ([3], Lem. 1). Let the velocity v and the source g be given respectively in the spaces
C0([0, T ];C0,1

b (R))∩C0,1
x ([0, T ]×R) and C0([0, T ];C0

b (R)). Then, any solution in the space C0([0, T ];C1
b (R))∩

C1([0, T ];C0
b (R)) to the equation

yt + vyx = g in (0, T )× R (2.3)

satisfies the following inequality

d

dt+
‖y(t , ·)‖C0

b (R) ≤ ‖g(t , ·)‖C0
b (R) in (0, T ).

Proof. Let Φ be the flow associated to v. For any (s, t, x) ∈ [0, T ]× [0, T ]× R, we have by (2.3) that

d

dt
y(t,Φ(s; t, x)) = g(t,Φ(s; t, x)).

Using this identity and the fact that Φ(s; t , ·) is a diffeomorphism, we get:

‖ d

dt
y(t ,Φ(s; t, ·))‖C0

b (R) ≤ ‖g(t , ·)‖C0
b (R).

Now, the result follows easily from this and from (2.2).

The last result of this section is an immediate consequence of Banach’s Fixed-Point Theorem:
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Theorem 2.3. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be Banach spaces, with F continuously embedded in E. Let B be
a subset of F and let G : B 7→ B be a mapping such that

‖G(u)−G(v)‖E ≤ γ‖u− v‖E ∀ u, v ∈ B, for some γ ∈ (0, 1).

Let us denote by B̃ the closure of B for the norm ‖ · ‖E. Then, G can be uniquely extended to a continuous

mapping G̃ : B̃ 7→ B̃ that possesses a unique fixed-point in B̃.

2.2. Well-posedness of the viscous burgers-α system

Let us introduce the Hilbert space E := H3/4(0, T )×H3/4(0, T ). It is not difficult to check that the trace oper-
ator Γ : L2(0, T ;H2(0, L)) ∩H1(0, T ;L2(0, L)) 7→ E, defined by Γ(ξ) := (ξ(·, 0), ξ(·, L)), is surjective, see [40],
p. 18. Furthermore, there exists a linear continuous mapping S : E 7→ L2(0, T ;H2(0, L)) ∩H1(0, T ;L2(0, L))
such that Γ ◦ S = IE . Thus, for each (vl, vr) ∈ E, we can get ξ ∈ L2(0, T ;H2(0, L)) ∩H1(0, T ;L2(0, L)) such
that

‖ξ‖L2(H2)∩H1(L2) ≤ C(‖vl‖H3/4 + ‖vr‖H3/4),

for some C > 0.
The following result concerns the global existence and uniqueness of a solution to the viscous Burgers-α

system:

Proposition 2.4. Let α > 0, f ∈ L∞(0, T ;L∞(0, L)), y0 ∈ H1(0, L) and vl, vr ∈ H3/4(0, T ) be given. Assume
that the following compatibility relations hold:

vl(0) = y0(0) and vr(0) = y0(L).

Then there exists a unique solution (yα, zα) to the Burgers-α system:
yαt − yαxx + zαyαx = f in (0, T )× (0, L),
zα − α2zαxx = yα in (0, T )× (0, L),
zα(·, 0) = yα(·, 0) = vl in (0, T ),
zα(·, L) = yα(·, L) = vr in (0, T ),
yα(0 , ·) = y0 in (0, L).

(2.4)

with {
yα ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) ∩ C0([0, T ];H1(0, L)),

zα ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H4(0, L)) ∩ C0([0, T ];H3(0, L)).
(2.5)

Let us set MT := ‖y0‖∞ + ‖vl‖∞ + ‖vr‖∞ + T‖f‖∞. Then, the following estimates holds:


‖yα‖∞ ≤MT , ‖zα‖∞ ≤MT ,

‖yα‖H1(L2)∩L2(H2) + ‖yα‖L∞(H1) ≤ CeCM
2
T (‖f‖2 + ‖y0‖H1 + ‖vl‖H3/4 + ‖vr‖H3/4) ,

‖zα‖2 + α‖zαx ‖2 + α2‖zαxx‖2 ≤ CeCM
2
T
[
‖f‖2 + ‖y0‖H1 + (1 + α2)‖(vl, vr)‖H3/4×H3/4

]
,

(2.6)

where the constants C do not depend of α.
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Proof. The proof of existence can be reduced to find a fixed-point of an appropriate mapping Λα. Thus, note
first that there exists ξ ∈ L2(0, T ;H2(0, L)) ∩H1(0, T ;L2(0, L)) with

ξ(·, 0) = vl, ξ(·, L) = vr on (0, T ) and ξ(0 , ·) = y0, in (0, L).

Accordingly, for each ȳ ∈ L∞(0, T ;L∞(0, L)) there exists exactly one z ∈ L∞(0, T ;H2(0, L)) with{
z − α2zxx = ȳ in (0, T )× (0, L),
z(·, 0) = vl, z(·, L) = vr in (0, T ),

and, moreover, using a lifting argument together with standard energy estimates for elliptic equations, we get
a positive constant C (independent of α) such that:

‖z‖22 + 2α2‖zx‖22 + α4‖zxx‖22 ≤ C
(
‖ȳ‖22 + ‖ξ‖22 + α2‖ξx‖22 + α4‖ξxx‖22

)
,

‖z‖L∞(L∞) ≤ ‖ȳ‖L∞(L∞) + ‖vl‖∞ + ‖vr‖∞.

With this z, by applying (for instance) the Faedo-Galerkin method, we can easily prove the existence of a
solution y to the linear parabolic equation yt − yxx + zyx = f in (0, T )× (0, L),

y(·, 0) = vl, y(·, L) = vr in (0, T ),
y(0 , ·) = y0 in (0, L)

(2.7)

that satisfies

y ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) ∩ C0([0, T ];H1(0, L))

and

‖yt‖L2(L2) + ‖y‖L2(H2) + ‖y‖L∞(H1) ≤ C
(
‖y0‖H1 + ‖f‖L2(L2) + ‖vl‖H3/4 + ‖vr‖H3/4

)
eC‖z‖

2
∞ , (2.8)

for some C > 0 that is independent of α.
Arguing as in the proof of Lemma 1 in [1], we can deduce that the solution to (2.7) belongs to the space

C0([0, T ];H1(0, L)) and, in particular, ‖y‖L∞(L∞) ≤ MT . Accordingly, we can introduce the bounded closed
convex set

K := {ȳ ∈ L∞(0, T ;L∞(0, L)) : ‖ȳ‖L∞(L∞) ≤MT }

and the mapping Λα : K 7→ K, with Λα(ȳ) = y. Obviously, Λα is well-defined and continuous and, moreover, we
can see from the estimates in (2.8) that G := Λα(K) is bounded in L∞(0, T ;H1(0, L)) and Gt := {ut;u ∈ G}
is bounded in L2(0, T ;L2(0, L)). From classical results of the Aubin-Lions kind (see [47]), we deduce that G is
relatively compact in L∞(0, T ;L∞(0, L)). Therefore, by Schauder’s Fixed Point Theorem, Λα has a fixed point
in K, which obviously implies the existence of a solution to (2.4).

We prove now that the solution is unique. Let (yα, zα) and (ŷα, ẑα) be two solutions to (2.4) and let us
introduce u := yα − ŷα and v := zα − ẑα. Then,

ut − uxx + zαux = −vŷαx in (0, T )× (0, L),
v − α2vxx = u in (0, T )× (0, L),
u(·, 0) = u(·, L) = v(·, 0) = v(·, L) = 0 in (0, T ),
u(0 , ·) = 0 in (0, L).

(2.9)
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Using the fact that ŷα ∈ L2(0, T ;H2(0, L)) ↪→ L2(0, T ;C1[0, L]) and multiplying the first equation of the system
above by u, we get:

1

2

d

dt
‖u‖22 + ‖ux‖22 ≤ ‖zα‖∞‖ux‖2‖u‖2 + ‖ŷαx ‖∞‖v‖2‖u‖2

≤ 1

2
‖ux‖22 +

‖zα‖2∞
2
‖u‖22 + ‖ŷαx ‖∞‖u‖22.

Therefore,

d

dt
‖u‖22 + ‖ux‖22 ≤

(
‖zα‖2∞ + 2‖ŷαx ‖∞

)
‖u‖22.

Since u(0 , ·) = 0, Gronwall’s Lemma implies u ≡ 0 and, consequently, v ≡ 0.
Finally, let us check that zα satisfies the regularity properties in (2.5). To get this, let us introduce the

function given by

h(t, x) :=
vl(t)(L− x) + x vr(t)

L
.

Then, we obtain from (2.4) that zα = wα + h, where wα solves

{
wα − α2wαxx = yα − h in (0, T )× (0, L),
wα(·, 0) = wα(·, 0) = 0 in (0, T ).

Consequently, wα ∈ L2(0, T ;H4(0, L) ∩ H1
0 (0, L)) ∩ C0([0, T ];H3(0, L) ∩ H1

0 (0, L)) and the estimates are
uniform, with respect to α, in the space L2(0, T ;H2(0, L) ∩H1

0 (0, L)) ∩ C0([0, T ];H1
0 (0, L)).

Now, let us present a result concerning global existence and uniqueness of a (weak) solution with initial
conditions in L∞(0, L):

Proposition 2.5. Let α > 0, f ∈ L∞(0, T ;L∞(0, L)), y0 ∈ L∞(0, L) and vl, vr ∈ H3/4(0, T ) be given. Then,
there exists a unique solution (yα, zα) to the Burgers-α system:


yαt − yαxx + zαyαx = f in (0, T )× (0, L),
zα − α2zαxx = yα in (0, T )× (0, L),
zα(·, 0) = yα(·, 0) = vl in (0, T ),
zα(·, L) = yα(·, L) = vr in (0, T ),
yα(0 , ·) = y0 in (0, L)

(2.10)

with

{
yα ∈ H1(0, T ;H−1(0, L)) ∩ L2(0, T ;H1

0 (0, L)) ∩ C0([0, T ];L2(0, L)) ∩ L∞(0, T ;L∞(0, L)),

zα ∈ H1(0, T ;H−1(0, L)) ∩ L2(0, T ;H3(0, L)) ∩ C0([0, T ];H2(0, L)).
(2.11)
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Let us set MT := ‖y0‖∞ + ‖vl‖∞ + ‖vr‖∞ + T‖f‖∞. Then, the following estimates holds:

‖yα‖∞ ≤ MT , ‖zα‖∞ ≤MT ,

‖yα‖H1(H−1)∩L2(H1) + ‖yα‖L∞(L2) ≤ CeCM
2
T (‖f‖2 + ‖y0‖2 + ‖vl‖H3/4 + ‖vr‖H3/4) ,

‖zα‖2 + α‖zαx ‖2 + α2‖zαxx‖2 ≤ CeCM
2
T
[
‖f‖2 + ‖y0‖2+ (1 + α2)(‖(vl, vr)‖H3/4×H3/4)

]
,

(2.12)

where the constant C > 0 is independent of α.

Proof. Let ξ ∈ L2(0, T ;H2(0, L)) ∩H1(0, T ;L2(0, L)) be such that

ξ(·, 0) = vl and ξ(·, L) = vr in (0, T ).

Now, for any ȳ ∈ L2(0, T ;L∞(0, L)), there exists a unique solution to the elliptic problem{
z − α2zxx = ȳ in (0, T )× (0, L),
z(·, 0) = vl, z(·, L) = vr in (0, T ),

and, again, using a lifting argument together with standard energy estimates for elliptic equtions, we get a
positive constant C (independent of α) such that:

‖z‖22 + 2α2‖zx‖22 + α4‖zxx‖22 ≤ C
(
‖ȳ‖22 + ‖ξ‖22 + α2‖ξx‖22 + α4‖ξxx‖22

)
,

‖z‖L2(L∞) ≤ ‖ȳ‖L2(L∞) + ‖vl‖2 + ‖vr‖2.

With this z, we can solve (for instance via Faedo-Galerkin method) the linear problem yt − yxx + zyx = f in (0, T )× (0, L),
y(·, 0) = vl, y(·, L) = vr in (0, T ),
y(0 , ·) = y0 in (0, L)

(2.13)

and we find a weak solution y that satisfies

‖yt‖L2(H−1) + ‖y‖L2(H1
0 ) + ‖y‖L∞(L2) ≤ C (‖y0‖2 + ‖f‖2 + ‖vl‖H3/4 + ‖vr‖H3/4) e

C‖z‖2
L2(L∞) .

Again, as in the proof of Lemma 1 in [1], we can deduce that the solution to (2.13) satisfies

‖y‖L∞(L∞) ≤MT and ‖y‖L2(L∞) ≤ T 1/2MT .

Let us introduce the set

K := {ȳ ∈ L2(0, T ;L∞(0, L)) : ‖ȳ‖L2(L∞) ≤ T 1/2MT }

and the mapping Λα : K 7→ K with Λα(ȳ) = y. Then, arguing as in the proof of Proposition 2.4, it is not difficult
to prove that Λα possesses a fixed-point in K.

Finally, in order to prove uniqueness, we consider to solutions u := yα− ŷα and v := zα− ẑα and we get (2.9).
Then, multiplying the first equation of (2.9) by u, we easily get the differential inequality

d

dt
‖u(t , ·)‖22 + ‖ux(t , ·)‖22 ≤

(
‖zα(t , ·)‖2∞ +

2C‖ŷαx (t , ·)‖2
α

)
‖u(t , ·)‖22.
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Since u(0 , ·) ≡ 0, Gronwall’s Lemma implies u ≡ 0 and, consequently, v ≡ 0.
Let (yα, zα) be the solution to (2.10). From (2.10) and the fact that y ∈ L∞(0, T ;L∞(0, L)), the maximum

principle implies that

‖zα‖L∞(L∞) ≤ ‖yα‖L∞(L∞) ≤MT .

This ends the proof.

3. Controllability of the non-viscous Burgers-α system

In this section we present a proof of the global exact controllability property of the non-viscous Burgers-α
system. We split the proof in two parts: (i) a local null controllability result; (ii) an argument based on a time
scale-invariance and reversibility in time that leads to the desired global result.

3.1. Local null controllability

We have the following result:

Proposition 3.1. Let α > 0 be given. Then, there exist δ > 0 and C > 0 (both independent of α) such that
the following property holds: for each y0 ∈ C1([0, L]) with ‖y0‖C1([0,L]) ≤ δ, there exist pα ∈ C0([0, T ]) with
pα(T ) = 0, vαl , v

α
r ∈ C1([0, T ]) and associated states (yα, zα) ∈ C1([0, T ]× [0, L];R2) satisfying (1.1),

yα(T , ·) = zα(T , ·) = 0 in (0, L)

and

‖pα‖C0([0,T ]) + ‖(vαl , vαr )‖C1([0,T ];R2) ≤ C ∀α > 0.

The proof is obtained by applying the return method, see [11, 15, 16, 32]. It relies on a linearization process
in combination with a fixed-point argument: (i) first, we need to find a “good” trajectory (a particular solution
for the nonlinear system) steering 0 to 0 such that the linearization around it is controllable; (ii) then, we must
recover (for instance by a fixed-point argument) the exact controllability result, at least locally, for the nonlinear
system.

In our case, it is not difficult to verify that the linearization around zero is not controllable. Accordingly, we
build an appropriate nontrivial trajectory connecting (0, 0) to (0, 0).

To this purpose, let us introduce the set

ΛL,T,k :=
{
λ ∈ Ck([0, T ]; [0,∞)) : ‖λ‖L1(0,T ) > L

}
.

Let us consider the couple (ŷ(x, t), ẑ(x, t)) := (λ(t), λ(t)) and the triplet (p̂(t), v̂l(t), v̂r(t)) := (λ′(t), λ(t), λ(t)),
with λ ∈ ΛL,T,1 and supp λ ⊂ (0, T ). Note that (ŷ, ẑ) is a particular solution to (1.1), associated to the control
(p̂, v̂l, v̂r). We have the following general controllability result:

Proposition 3.2. Assume that λ ∈ ΛL,T,0 and let α > 0 be given. Then, for any y0 ∈ C1([0, L]), there exists
(y, z) ∈ C1([0, T ]× [0, L];R2) such that

yt + λ(t)yx = 0 in (0, T )× (0, L),

z − α2zxx = y in (0, T )× (0, L),

z(·, 0) = y(·, 0), z(·, L) = y(·, L) in (0, T ),

y(0 , ·) = y0 in (0, L),

y(T , ·) = 0 in (0, L).

(3.1)



10 R.K.C. ARAÚJO ET AL.

For the proof, it suffices to use Proposition 8 of [11] to find y ∈ C1([0, T ] × [0, L]) satisfying (3.1)1,(3.1)4

and (3.1)5 and then solve the elliptic problem (3.1)2–(3.1)3 to construct z ∈ C1([0, T ]× [0, L]).
Thanks to Proposition 3.2, one may expect that the null controllability for the nonlinear system (1.1) holds.

Indeed, we have the following result from which Proposition 3.1 is an immediate consequence:

Proposition 3.3. Assume that λ ∈ ΛL,T,0 and let α > 0 be given. Then, there exist δ > 0 and C > 0 (both
independent of α) such that: for any y0 ∈ C1([0, L]) with ‖y0‖C1([0,L]) ≤ δ, there exist (vl, vr) ∈ C1([0, T ];R2)
and an associated state (y, z) ∈ C1([0, T ]× [0, L];R2) satisfying

yt + (λ(t) + z)yx = 0 in (0, T )× (0, L),

z − α2zxx = y in (0, T )× (0, L),

z(·, 0) = vl, z(·, L) = vr in [0, T ],

y(·, 0) = vl in Il,

y(·, L) = vr in Ir,

y(0 , ·) = y0 in (0, L),

y(T , ·) = 0 in (0, L)

(3.2)

and

‖y‖C1([0,T ]×[0,L]) ≤ C‖y0‖C1([0,L]) ∀α > 0.

Proof. We will reformulate the null controllability problem as a fixed-point equation. To do this, we
will first introduce some auxiliar functions and establish some helpful results. Thus, to any given h ∈
C0([0, T ];C0([0, L])) ∩ L∞

(
0, T ;C0,1([0, L])

)
, we associate the unique solution z ∈ C0([0, T ];C2([0, L])) ∩

L∞(0, T ;C3,1([0, L])) to the time-dependent problem
z − α2zxx = h in (0, T )× (0, L),

z(·, 0) = h(·, 0) in (0, T ),

z(·, L) = h(·, L) in (0, T ).

(3.3)

It follows from the maximum principle for elliptic equations that

‖z(t , ·)‖∞ ≤ ‖h(t , ·)‖∞ ≤ ‖h‖C0([0,T ];C0([0,L])) for t a.e. in [0, T ]. (3.4)

Since h ∈ L∞(0, T ;C0,1([0, L])), one has h(t , ·) ∈ W 1,∞(0, L) for t a.e. in [0, T ] and, by applying again the
maximum principle for elliptic equations, we get:

‖zx(t , ·)‖∞ ≤ ‖hx(t , ·)‖∞ ≤ ‖h‖L∞(0,T ;C0,1([0,L])) for t a.e. in [0, T ]. (3.5)

Then, by combining (3.4) and (3.5), we easily get that

‖z‖C0([0,T ];C1([0,L])) ≤ ‖h‖C0([0,T ];C0([0,L]))∩L∞(0,T ;C0,1([0,L])). (3.6)

Note that this inequality does not lead to contradiction when alpha goes to 0, since the space C0([0, T ];C1([0, L]))
is not reflexive and, the limit, z can “escape”.

Since λ ∈ ΛL,T,0, we can find η ∈ (0, L/2) such that∫ T

0

λ(s) ds > L+ 2η. (3.7)
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Now, we consider the following extension of z to the closed interval [−η, L+ η]:

zη(t, x) :=


5z(t,−x)− 20z

(
t,−x2

)
+ 16z

(
t,−x4

)
, (t, x) ∈ [0, T ]× [−η, 0],

z(t, x) (t, x),∈ [0, T ]× [0, L],

5z(t, 2L− x)− 20z
(
t, 3L−x

2

)
+ 16z

(
t, 5L−x

4

)
, (t, x) ∈ [0, T ]× [L,L+ η].

It is not difficult to check that zη ∈ C0([0, T ];C2([−η, L+ η])) and there exists C1 > 0 (independent of α) such
that

‖zη‖C0([0,T ];C1([−η,L+η])) ≤ C1‖z‖C0([0,T ];C1([0,L])). (3.8)

Then, let χ be given, with χ ∈ C∞0 (−η/2, L+ η/2), χ = 1 in [0, L] and 0 ≤ χ ≤ 1. This way, we can introduce
z∗ ∈ C0([0, T ];C2(R)), with

z∗(t, x) =

{
χ(x)zη(t, x), (t, x) ∈ [0, T ]× [−η, L+ η],

0, (t, x) ∈ [0, T ]× (R \ [−η, L+ η]).
(3.9)

and, using (3.8) and (3.9), we see that

‖z∗‖C0([0,T ];C1
b (R)) ≤ C2‖z‖C0([0,T ];C1([0,L])), (3.10)

for some C2 > 0, again independent of α.
Let us set R := η

C2T
and let us assume from now on that

‖h‖C0([0,T ];C0([0,L]))∩L∞(0,T ;C0,1([0,L])) ≤ R. (3.11)

Then, it follows from (3.6), (3.10) and (3.11) that

‖z∗‖C0([0,T ];C1
b (R)) ≤

η

T
. (3.12)

Let φ∗ be the flux associated to λ+ z∗, that is, the solution to
∂φ∗

∂t
(s; t, x) = λ(t) + z∗(t, φ∗(s; t, x)),

φ∗(s; s, x) = x.
(3.13)

Claim 3.4. The flux φ∗ = φ∗(s; t, x) is well-defined for any (t, x) ∈ [0, T ]× R and s ∈ [0, T ].

Proof. Let φ : [0, T ] × [0, T ] × R 7→ R be the flux associated to λ. Then, for every (s, t, x) ∈ Dom(Φ), we get
from (3.13) that

|φ∗(s; t, x)− φ(s; t, x)| =

∣∣∣∣∫ t

s

(
∂φ∗

∂τ
(s; τ, x)− ∂φ

∂τ
(s; τ, x)

)
dτ

∣∣∣∣
≤

∫ t

s

∣∣∣∣∂φ∗∂τ (s; τ, x)− ∂φ

∂τ
(s; τ, x)

∣∣∣∣ dτ

=

∫ t

s

|z∗(τ, φ∗(s; τ, x))|dτ

≤ T‖z∗‖C0([0,T ];C0(R)).
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Hence, for any (s, t, x) such that φ∗(s; t, x) is well-defined, one has

|φ∗(s; t, x)− φ(s; t, x)| ≤ η. (3.14)

This and the fact that φ(s; t, x) is well-defined for all (s, t, x) ∈ [0, T ]× [0, L]×R lead to the desired conclusion.

Let y0 ∈ C1([0, L]) be given and let us introduce yη0 ∈ C1 ([−η, L+ η]) with

yη0 (x) =


−y0(−x) + 2y0(0), x ∈ [−η, 0],

y0(x), x ∈ [0, L],

−y0(2L− x) + 2y0(L), x ∈ [L,L+ η]

and

y∗0(x) =

{
χ(x)yη0 (x), x ∈ [−η, L+ η],

0, x ∈ R \ [−η, L+ η].

Then, it is easy to see that y∗0 is a compactly supported extension of y0 to the whole real line and

‖y∗0‖C1
b (R) ≤ C3‖y0‖C1([0,L]). (3.15)

for some C3 > 0 independent of α.
Let us set y ∈ C1([0, T ]× R), with

y(t, x̄) := y∗0(φ∗(t; 0, x̄)) ∀(t, x̄) ∈ [0, T ]× R. (3.16)

Then, we have the following :

Claim 3.5. The function y satisfies:
yt + (λ(t) + z∗(t, x))yx = 0 in (0, T )× R,
y(0 , ·) = y∗0 in R,
y(T , ·) = 0 in [0, L].

(3.17)

Proof. For any t ∈ [0, T ], φ∗(0; t , ·) : R→ R is a diffeomorphism and (3.16) is equivalent to y(t, φ∗(0; t, x))) ≡
y∗0(x). Then, for each x ∈ R, we deduce that

yt(t, φ
∗(0; t, x)) + [λ(t) + z∗(t, φ∗(0; t, x))] yx(t, φ∗(0; t, x)) = 0.

Using (3.16) and (3.13)2, we get

y(0, x) = y∗0(x) ∀ x ∈ R.

Moreover, it is not difficult to see that, for any 0 < η < L/2 such that (3.7) holds, the flux associated to λ
satisfies φ(T ; 0, L) < −2η and we obtain from (3.14) that φ∗(T ; 0, L) < −η. Since φ∗(s; t , ·) is increasing for any
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s, t ∈ [0, T ], we see that

φ∗(T ; 0, x) < −η ∀ x ∈ (−∞, L].

This inequality and (3.16) together with the fact that

supp y∗0 ⊂ [−η, L+ η]

imply that y(T , ·) = 0 in [0, L].

An immediate consequence of (3.12), (3.13), (3.15) and (3.16) is that

‖y‖C1([0,T ]×R) ≤ C4‖y0‖C1([0,L])

for a positive constant C4 depending on R but independent of α. By taking y0 ∈ C1([0, L]) such that

‖y0‖C1([0,L]) ≤ R/3C4,

we get easily the function y, defined in (3.16), satisfies the inequality

‖y‖C0([0,T ];C0(R)) + ‖y‖L∞(0,T ;C0,1(R)) ≤ R. (3.18)

Let us consider now the closed ball BR centered at the origin and radius R in the Banach space
C0([0, T ];C0([0, L])) ∩ L∞(0, T ;C0,1([0, L])). Using the inequality (3.18), we can define the mapping F : BR 7→
BR, with F(h) = y|[0,T ]×[0,L], where y is given by (3.16).

Thanks to (3.16), we have that F(BR) ⊂ C1([0, T ]× [0, L]). Furthermore, the following holds:

Claim 3.6. There exists a positive constant C5 depending on ‖y0‖C1([0,L]), L,R and T , but independent of α,
such that, for any m ≥ 1 and any h1, h2 ∈ BR, one has

‖(Fm(h1)−Fm(h2))(t , ·)‖C0([0,L]) ≤
(C5t)

m

m!
‖h1 − h2‖C0([0,T ];C0([0,L])) in [0, T ],

where Fm denotes F iterated m times.

Proof. The proof relies on an induction argument. Let hi ∈ BR be given for i = 1, 2. Then, let us consider
the functions zi,∗ and yi, respectively given by (3.9) and (3.16) and set y := y1 − y2 and z∗ := z1,∗ − z2,∗. By
Claim 3.5, we have

yt + (λ+ z1,∗)yx = −z∗y2
x in (0, T )× R,

whence, from Proposition 2.2,

d

dt+
‖y(t , ·)‖C0

b (R) ≤ ‖z∗(t , ·)y2
x(t , ·)‖C0

b (R).

Therefore, integrating from 0 to t and using that y2
x ∈ C0([0, T ];C0

b (R)) and the maximum principle for elliptic
PDE’s, we find a positive constant C5 depending on ‖y0‖C1([0,L]), L,R and T , but independent of α, such that

‖y(t , ·)‖C0
b (R) ≤ R

∫ t

0

‖z∗(τ , ·)‖C0
b (R) dτ
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≤ C5

∫ t

0

‖z1(τ , ·)− z2(τ , ·)‖C0([0,L]) dτ

≤ C5

∫ t

0

‖h1(τ , ·)− h2(τ , ·)‖C0([0,L]) dτ.

It follows that

‖(F(h1)−F(h2))(t , ·)‖C0([0,L]) ≤ C5t‖h1 − h2‖C0([0,T ];C0([0,L])) (3.19)

and the result is true for m = 1.
Then, by making similar computations and using the induction hypothesis, we get the result of the claim.

Let B̃R be the closure of BR with the norm of C0([0, T ];C0([0, L])) and let F̃ be the unique continuous

extension of F to B̃R. Note that, since F is uniformly continuous, F̃ is well-defined.

Claim 3.7. The continuous extension F̃ satisfies the following properties:

a) For any h in B̃R, the function F̃(h) belongs to C1([0, T ]× [0, L]) and satisfies equation (3.17);

b) F̃(B̃R) ⊂ BR.

Proof. Let us begin by proving the item a). For a given h ∈ B̃R, let us consider a sequence (hn)n∈N in BR such
that hn → h in C0([0, T ];C0([0, L])). Therefore, the corresponding elliptic solutions to (3.3) and the associated
flows (given in (3.13)) satisfy the convergences

zn → z in C0([0, T ];C2([0, L])) and Φ∗n → Φ∗ in C0([0, T ]× [0, T ]× R).

Moreover, since the Φ∗n,Φ
∗ ∈ C1([0, T ] × [0, T ] × R), the corresponding functions, defined in (3.16), belong to

C1([0, T ]× [0, L]), verify the transport equation (3.17) and, furthermore,

yn → y in C0([0, T ];C0([0, L])).

Thus, it follows easily from this and from the definition of F and F̃ that F̃(h) = y.

Let us now prove the item b). In fact, notice that, by definition of F , for any h ∈ B̃R there exists a sequence
(hn)∞n=1 in BR such that hn → h in C0([0, T ];C0([0, L])) and

F̃(h) = lim
n→∞

F(hn) in C0([0, T ];C0([0, L])).

It is not difficult to prove that

‖F̃(h)(t , ·)‖C0([0,L]) ≤ ‖F(hn)(t , ·)‖C0([0,L]) + ‖F(hn)(t , ·)− F̃(h)(t , ·)‖C0([0,L]), ∀ n ∈ N.

On the other hand, since F̃(h),F(hn) ∈ C1([0, T ]× [0, L]), we have, for any x, x′ ∈ [0, L] with x 6= x′, that

|F̃(h)(t, x)− F̃(h)(t, x′)|
|x− x′|

≤ |F(hn)(t, x)−F(hn)(t, x′)|
|x− x′|

+
|(F̃(h)(t, x)−F(hn)(t, x))− (F̃(h)(t, x′)−F(hn)(t, x′))|

|x− x′|
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and, consequently, letting n→ +∞ and then maximizing in x and x′, the following is found:

sup
x,x′∈[0,L]

|F̃(h)(t, x)− F̃(h)(t, x′)|
|x− x′|

≤ sup
n∈N

(
sup

x,x′∈[0,L]

|F(hn)(t, x)−F(hn)(t, x′)|
|x− x′|

)
.

Therefore, using the fact that F̃(h) ∈ C1([0, T ] × [0, L]) and the F(hn) belong to BR, we certainly have

F̃(h) ∈ BR.

It follows from Claim 3.6 that Fm is a contraction for m large enough. Then, from the Theorem 2.3, F̃
possesses a unique fixed-point y ∈ B̃R. Finally, taking into account Claim 3.7, the proof of Proposition 3.3 is
achieved.

Remark 3.8. Assume that λ ∈ ΛL,T,1 and consider the Banach space

X = C0([0, T ];C1([0, L])) ∩ C1([0, T ];C0([0, L])) ∩ L∞(0, T ;C1,1([0, L]))

If y0 ∈ C2([0, L]) is small enough, then the fixed-point mapping F can be defined in a closed ball of X centered
at zero of radius R > 0. Then, one applies the Theorem 2.3 to the closure of this ball with the norm of
C0([0, T ];C1([0, L])) ∩ C1([0, T ];C0([0, L])). Performing similar computations as those in Proposition 3.3, one
can deduce that there exists δ > 0 (independent of α) such that, for any y0 ∈ C2([0, L]) with ‖y0‖C2([0,L]) ≤ δ,
there exists a solution (y, z) ∈ C2([0, T ]× [0, L];R2) to (3.2), satisfying

‖y‖C2([0,T ]×[0,L])) ≤ C‖y0‖C2([0,L]) ∀α > 0, (3.20)

for a constant C > 0 that is independent of α.

Remark 3.9. Proposition 3.1 is a consequence of Proposition 3.3 by assuming that λ ∈ ΛL,T,1 and satisfies
λ(0) = λ(T ) = λt(T ) = 0.

Remark 3.10. From the proof of the previous result, one sees that z(·, 0) = y(·, 0) and z(·, L) = y(·, L) in [0, T ].
This is important at least for two reasons: (i) to guarantee that in the limit, as α goes to 0, z and y converge
to the same limit; (ii) to build suitable controls for the uniform approximate controllability problem presented
in Section 4.2.

3.2. Global exact controllability

In order to prove Theorem 1.1, we have to use scaling arguments and the time-reversibility of the non-
viscous Burgers-α system. Thus, let us consider initial and final states y0, yT ∈ C1([0, L]), let δ > 0 be given by
Proposition 3.1 and let γ0, γT ∈ (0, 1) be such that γ0 < γT ,

‖γ0y0‖C1([0,L]) ≤ δ and ‖(1− γT )yT ‖C1([0,L]) ≤ δ.
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Then, by Proposition 3.1, there exist distributed controls p̃, p̂ in C0([0, T ]), with p̃(T ) = p̂(T ) = 0, boundary
controls (ṽl, ṽr), (v̂l, v̂r) in C1([0, T ]) and associated states (ỹ, z̃), (ŷ, ẑ) in the space C1([0, T ]× [0, L]) such that

ỹt + z̃ ỹx = p̃(t) in (0, T )× (0, L),
z̃ − α2z̃xx = ỹ in (0, T )× (0, L),
z̃(·, 0) = ṽl, z̃(·, L) = ṽr in (0, T ),

ỹ(·, 0) = ṽl in Ĩl,

ỹ(·, L) = ṽr in Ĩr,
ỹ(0 , ·) = γ0y0(x) in (0, L),
ỹ(T , ·) = 0 in (0, L),

(3.21)

where Ĩl = {t ∈ [0, T ] : ṽl(t) > 0} and Ĩr = {t ∈ [0, T ] : ṽr(t) < 0} and

ŷt + ẑŷx = p̂(t) in (0, T )× (0, L),
ẑ − α2ẑxx = ŷ in [0, T ]× [0, L],
ẑ(·, 0) = v̂l, ẑ(·, L) = v̂r in (0, T ),

ŷ(·, 0) = v̂l in Îl,

ŷ(·, L) = v̂r in Îr,
ŷ(0 , ·) = (1− γT )yT in (0, L),
ŷ(T , ·) = 0 in (0, L),

(3.22)

where Îl = {t ∈ [0, T ] : v̂l(t) > 0} and Îr = {t ∈ [0, T ] : v̂r(t) < 0}.
Using (3.21), (3.22) and the fact that p̃(T ) = p̂(T ) = 0 and γ0 ∼ 0 and γT ∼ 1, we can introduce the functions

Y,Z : [0, T ]× [0, L] 7→ R and P, Vl, Vr : [0, T ] 7→ R, given by

Y (t, x) :=


γ−1

0 ỹ
(
t γ−1

0 , x
)

(t, x) ∈ [0, γ0T ]× [0, L],

0 (t, x) ∈ [γ0T, γTT ]× [0, L],

1

1− γT
ŷ

(
T − t

1− γT
, L− x

)
(t, x) ∈ [γTT, T ]× [0, L],

Z(t, x) :=


γ−1

0 z̃
(
t γ−1

0 , x
)

(t, x) ∈ [0, γ0T ]× [0, L],

0 (t, x) ∈ [γ0T, γTT ]× [0, L],

1

1− γT
ẑ

(
T − t

1− γT
, L− x

)
(t, x) ∈ [γTT, T ]× [0, L],

P (t) :=


γ−2

0 p̃
(
t γ−1

0

)
t ∈ [0, γ0T ] ,

0 t ∈ [γ0T, γTT ] ,

− 1

(1− γT )2
p̂

(
T − t

1− γT

)
t ∈ [γTT, T ],

Vl(t) :=


γ−1

0 ṽl
(
t γ−1

0 , x
)

t ∈ [0, γ0T ] ,

0 t ∈ [γ0T, γTT ] ,

1

1− γT
v̂r

(
T − t

1− γT

)
t ∈ [γTT, T ]
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and

Vr(t) :=


γ−1

0 ṽr
(
t γ−1

0 , x
)

t ∈ [0, γ0T ] ,

0 t ∈ [γ0T, γTT ] ,

1

1− γT
v̂l

(
T − t

1− γT

)
t ∈ [γTT, T ].

It is now straightforward to check that (Y,Z) ∈ C1([0, T ] × [0, L];R2), P ∈ C0([0, T ]), Vl, Vr ∈ C1([0, T ])
and (1.1), (1.4) and (1.5) are satisfied.

Remark 3.11. Notice that the distributed control pα is independent of α, that is, its definition only depends
on T , L, the initial condition and the target state.

4. Global controllability of the viscous Burgers-α system

4.1. Smoothing effect

The goal of this section is to prove that, starting from a H1
0 initial state, there exists a small time where the

solution begins to be smooth. More precisely, we have the following result:

Proposition 4.1. Let y0 ∈ H1
0 (0, L) be given and let (yα, zα) be the solution to


yαt − yαxx + zαyαx = 0 in (0, T )× (0, L),
zα − α2zαxx = yα in (0, T )× (0, L),
yα(·, 0) = yα(·, L) = zα(·, 0) = zα(·, L) = 0 in (0, T ),
yα(0 , ·) = y0 in (0, L).

(4.1)

Then, there exist T ∗ ∈ (0, T/2) such that the solution yα belongs to C0([T ∗, T ];H3(0, L)) and satisfies

‖yα‖C0([T∗,T ];H3(0,L)) ≤ Λ(‖y0‖H1
0
),

where Λ : R+ → R+ is a continuous function satisfying Λ(s)→ 0 as s→ 0+.

Proof. We will divide the proof in several steps. Throughout the proof, all the constants are independent of α.

Step 1: Strong estimates in (0, T/2). Since y0 ∈ H1
0 (0, L), f ≡ 0 and vl ≡ vr ≡ 0, Proposition 2.4 implies

the existence and uniqueness of a solution (yα, zα) to (4.1) satisfying (2.5) and (2.6). In particular, we have
from (2.6) that

‖yα‖L∞(H1
0 ) + ‖yα‖L2(H2∩H1

0 ) ≤ C‖y0‖H1
0
e
C‖y0‖2H1

0 .

Consequently, there exists t1 ∈ (0, T/2) such that

‖yα(t1 , ·)‖H2∩H1
0
≤
√

2

T
C‖y0‖H1

0
e
C‖y0‖2H1

0 .
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Step 2: Estimates in (t1, T/2). Let us set y1 := yα(t1 , ·), g := zαyαx . Then, we can easily check that yα is the
unique solution to the heat equation: yαt − yαxx = g in (t1, T )× (0, L),

yα(·, 0) = yα(·, L) = 0 in (t1, T ),
yα(t1 , ·) = y1 in (0, L).

(4.2)

From the regularity of yα and zα, we have g ∈ L2(0, T ;H1
0 (0, L)) ∩H1(0, T ;H−1(0, L)) and

‖g‖L2(H1
0 ) + ‖gt‖L2(H−1) ≤ C‖yα‖L∞(H1

0 )(‖yα‖L2(H2) + ‖yαt ‖L2(L2))

≤ Ce
C‖y0‖2H1

0 ‖y0‖2H1
0
.

Using this estimate, the fact that g ∈ C0([0, T ];L2(0, L)) (see [24], Chap. 5, Thm. 3), (4.2) and the parabolic
regularity result ([24], Ch. 3, Thm. 5), we find that

yα ∈ L∞(t1, T ;H2(0, L)), yαt ∈ L∞(t1, T ;L2(0, L)) ∩ L2(t1, T ;H1
0 (0, L)) ∩H1(t1, T ;H−1(0, L))

and, in the time interval (t1, T ),

‖yα‖L∞(H2) + ‖yαt ‖L∞(L2)∩L2(H1
0 ) + ‖yαtt‖L2(H−1) ≤ C

(
‖g‖L2(H1

0 )∩H1(H−1) + ‖y1‖H2

)
≤ 1

2
Λ1(‖y0‖H1

0
)

(4.3)

where

Λ1(‖y0‖H1
0
) = 2Ce

C‖y0‖2H1
0 ‖y0‖H1

0
(1 + ‖y0‖H1

0
).

From (4.2), we have that {
−yαxx(t , ·) = g(t , ·)− yαt (t , ·)
yα(t, 0) = yα(t, L) = 0

for t a.e in (t1, T ). Thus, using (4.3) and elliptic regularity results, (see [24], Chap. 6, Thm. 5), we deduce that
yα ∈ L2(t1, T ;H3(0, L)) and

‖yα‖L2(t1,T ;H3(0,L)) ≤
1

2
Λ1(‖y0‖H1

0
).

We also deduce that, for some t2 ∈ (t1, T/2), one has

‖yαt (t2 , ·)‖H1
0

+ ‖yα(t2 , ·)‖H3∩H1
0
≤
√

2

T − 2t1
Λ1(‖y0‖H1

0
).

Step 3: Estimates in (t2, T/2). Let us set y2 := yα(t2 , ·). Note that

‖g‖L2(t1,T ;H2(0,L))∩H1(t1,T ;L2(0,L)) ≤ C‖yα‖L∞(t1,T ;H1
0 (0,L))‖yα‖L2(t1,T ;H3(0,L))∩H1(t1,T ;H1

0 (0,L))

≤ C‖y0‖H1
0
Λ1(‖y0‖H1

0
) e
C‖y0‖2H1

0
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and the needed compatibility conditions for regularity results holds:

g(t2 , ·) + y2,xx = yαt (t2 , ·) ∈ H1
0 (0, L).

Using ([24], Ch. 7, Thm. 6), we get that

yα ∈ L2(t2, T ;H4(0, L)) ∩H1(t2, T ;H2(0, L)) ∩H2(t2, T ;L2(0, L))

and, moreover, in the time interval (t2, T )

‖yα‖L2(H4)∩H1(H2)∩H2(L2) ≤ C
(
‖g‖L2(H2)∩H1(L2) + ‖y2‖H3

)
≤ Λ2(‖y0‖H1

0
),

(4.4)

where

Λ2(‖y0‖H1
0
) := C

(
1 + ‖y0‖H1

0
e
C‖y0‖2H1

0

)
Λ1(‖y0‖H1

0
).

Step 4: Conclusion. Finally, the result in ([24], Ch. 5, Thm. 4) applied to (4.4) leads to the regularity
C0([t2, T ];H3(0, L)) for yα. Therefore, the conclusion follows from Sobolev’s embedding, taking T ∗ = t2 and
Λ(‖y0‖H1

0
) = Λ2(‖y0‖H1

0
).

Remark 4.2. Proposition 4.1 is also true when y0 ∈ L∞(0, L). Indeed, we can start using Proposition 2.4 that
guarantees the existence and uniqueness of a solution (yα, zα) to (4.1) satisfying (2.11) and (2.12). In particular,
we have from (2.12) that

‖yα‖L2(H1
0 ) ≤ C‖y0‖∞eC‖y0‖

2
∞ .

Therefore, there exists t1 ∈ (0, T/2) such that

‖yα(t1 , ·)‖H1
0
≤
√

2

T
C‖y0‖∞eC‖y0‖

2
∞ .

Then, we can achieve arguing as in the proof of Proposition 4.1.

4.2. Uniform approximate controllability

In this section, the goal is to prove the following approximate controllability result starting from sufficiently
smooth initial data:

Proposition 4.3. Let y0, yf ∈ C2([0, L]) be given. There exist positive constants τ∗ and K > 0, both independent
of α, such that, for any τ ∈ (0, τ∗], there exist pα ∈ C0

c (0, τ), (vαl , v
α
r ) ∈ H3/4(0, τ ;R2) and associated states

(yα, zα) with the following regularity

{
yα ∈ L2(0, τ ;H2(0, L)) ∩H1(0, τ ;L2(0, L)) ∩ C0([0, τ ];H1(0, L))
zα ∈ L2(0, T ;H4(0, L)) ∩H1(0, τ ;L2(0, L)) ∩ C0([0, τ ];H3(0, L)),

(4.5)



20 R.K.C. ARAÚJO ET AL.

satisfying 
yαt − yαxx + zαyαx = pα(t) in (0, τ)× (0, L),
zα − α2zαxx = yα in (0, τ)× (0, L),
zα(·, 0) = yα(·, 0) = vαl on (0, τ),
zα(·, L) = yα(·, L) = vαr on (0, τ),
yα(0 , ·) = y0 in (0, L)

(4.6)

and, moreover,

‖yα(τ, .)− yf‖H1(0,L) ≤ K
√
τ (4.7)

and

‖pα‖C0([0,T ]) + ‖(vαl , vαr )‖H3/4([0,T ];R2) ≤ C ∀α > 0.

In order to prove this result, let us introduce λ ∈ C1
0 ((0, 1); [0,∞)) with ‖λ‖L1(0,1/2) > L and λ(t) = λ(1− t)

for all t ∈ [0, 1]. Let us set λτ (t) := 1
τ λ
(
t
τ

)
for all t ∈ [0, τ ].

The following two results hold:

Lemma 4.4. Let M > 0 be a positive constant. Then, if u0, uf ∈ C2([0, L]) and

max{‖u0‖C2([0,L]), ‖uf‖C2([0,L])} ≤M, (4.8)

there exists τ0 ∈ (0, 1), independent of α, such that for every τ ∈ (0, τ0] we can find controls vα,τl , vα,τr in
C2([0, τ ]) and associated states uα,τ , wα,τ in C2([0, τ ]× ([0, L])), satisfying

uα,τt + (λτ (t) + wα,τ )uα,τx = 0 in [0, τ ]× [0, L],
wα,τ − α2wα,τxx = uα,τ in [0, τ ]× [0, L],
wα,τ (·, 0) = vα,τl , wα,τ (·, L) = vα,τr in [0, τ ],
uα,τ (·, 0) = vα,τl in Il,
uα,τ (·, L) = vα,τr in Ir,
uα,τ (0 , ·) = u0 in [0, L],
uα,τ (τ , ·) = uf in [0, L],

(4.9)

where Il = {t ∈ [0, T ] : vα,τl (t) > 0} and Ir = {t ∈ [0, T ] : vα,τr (t) < 0}. Furthermore, there exists C > 0,
independent of α and τ , such that

‖uα,τ‖C0([0,τ ];C2([0,L])) ≤ CM. (4.10)

Proof. First, thanks to the fact that ‖λ‖L1(0,1/2) > L and Remark 3.8, we know that there exists δ > 0 (inde-
pendent of α) such that, for any initial datum in a ball of C2([0, L]) centered at origin and radius δ, there exists
a solution to (3.2) belonging to C2([0, 1/2]× [0, L]) satisfying (3.20).

Let us now take τ0 ∈ (0, 1) such that τ0M ≤ δ. Then, according to the previous construction, for each
τ ∈ (0, τ0] there exist functions (ỹα, z̃α), (ŷα, ẑα) ∈ C2([0, 1/2] × [0, L];R2)), solutions to (3.2) and satisfying
ỹα(0, x) = τu0(x) and ŷα(0, x) = τuf (L− x), for all x ∈ [0, L], and (3.20).

Then, one defines the states

uα,τ (t, x) :=

{
τ−1ỹα(τ−1t, x) in [0, τ/2]× [0, L],
τ−1ŷα(τ−1(τ − t), L− x) in [τ/2, τ ]× [0, L]
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and

wα,τ (t, x) :=

{
τ−1z̃α(τ−1t, x) in [0, τ/2]× [0, L],
τ−1ẑα(τ−1(τ − t), L− x) in [τ/2, τ ]× [0, L],

and the associated boundary controls

vα,τl (t) := wα,τ (t, 0) and vα,τr (t) := wα,τ (t, L).

Since λ(τ−1t) ≡ λ(τ−1(τ − t)), the couple (uα,τ , wα,τ ) belongs to the space C2([0, τ ] × [0, L];R2) and
satisfies (4.9) and (4.10).

Remark 4.5. Indeed, thanks to Remark 3.10, one sees that uα,τ and wα,τ coincides on the boundary, i.e.
uα,τ (·, 0) = wα,τ (·, 0) and uα,τ (t, L) = wα,τ (t, L) in [0, T ].

Lemma 4.6. Assume that M > 0, u0, uf ∈ C2([0, L]) satisfy (4.8) and τ0 is furnished by Lemma 4.4. Then,
there exists τ∗ ∈ (0, τ0] such that, for any τ ∈ (0, τ∗] and any (uα,τ , wα,τ ) ∈ C2([0, τ ]× [0, L];R2) satisfying (4.9)
and (4.10), there exists a unique solution to

rα,τt + (qα,τ + wα,τ + λτ )rα,τx − rα,τxx + qα,τuα,τx − uα,τxx = 0 in (0, τ)× (0, L),
qα,τ − α2qα,τxx = rα,τ in (0, τ)× (0, L),
rα,τ (·, 0) = 0, rα,τx (·, L) = 0 in (0, τ),
qα,τ (·, 0) = 0, qα,τ (·, L) = rα,τ (·, L) in (0, τ),
rα,τ (0 , ·) = 0 in (0, L),

satisfying {
rα,τ ∈ L2(0, τ ;H2(0, L)) ∩H1(0, τ ;L2(0, L)) ∩ C0([0, τ ];H1(0, L)),
qα,τ ∈ L2(0, τ ;H4(0, L)) ∩H1(0, τ ;L2(0, L)) ∩ C0([0, τ ];H3(0, L))

and

‖rα,τ‖L2(0,τ ;H2(0,L))∩H1(0,τ ;L2(0,L)) ≤ C.

Here, C is a positive constant that depends on L, T,M and τ , but it is independent of α. Moreover, there exists
a constant K that depends on L, T and M (independent of α and τ), such that

‖rα,τ‖C0([0,τ ];H1(0,L)) ≤ K
√
τ . (4.11)

Proof. The proof is standard. It can be easily obtained, for instance, via a Faedo-Galerkin technique in
combination with well known energy estimates.

We can now achieve the proof of Proposition 4.3. Indeed, given τ ∈ (0, τ∗], it is not difficult to see that

(yα, zα) := (uα,τ + rα,τ + λτ , wα,τ + qα,τ + λτ )

satisfies (4.5) and (4.6) with pα(t) = λτt and, thanks to Remark 4.5, boundary controls vαl (t) = uα,τ (t, 0) +
rα,τ (t, 0) + λτ (t) and vαr (t) = uα,τ (t, L) + rα,τ (t, L) + λτ (t). Moreover, using (4.9)6, (4.11) and the fact that λτ

vanishes in the neighbourhood of τ , we obtain (4.7).
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4.3. Uniform local exact controllability to the trajectories

The goal of this section is to prove the local exact controllability to space-independent trajectories for the
Burgers-α system, with controls and associated states uniformly bounded with respect to α in appropriate
spaces. Thus, let m̂ ∈ C1([0, T ]) be given and note that (ŷα, ẑα) = (m̂, m̂) is a trajectory of viscous Burgers-α
system with (p̂α(t), v̂αl (t), v̂αr (t)) = (m̂′(t), m̂(t), m̂(t)). We have the following result:

Theorem 4.7. Let α > 0 and m̂ ∈ C1([0, T ]) be given. Then, there exists δ > 0 (independent of α) such
that for any initial data y0 ∈ H1(0, L) satisfying ‖y0 − m̂(0)‖H1 ≤ δ there exist pα ∈ C0([0, T ]) and (vαl , v

α
r ) ∈

H3/4(0, T ;R2) and associated states (yα, zα) ∈ L2(0, T ;H2(0, L;R2)) ∩ H1(0, T ;L2(0, L;R2)) satisfying (1.2)
and

yα(T , ·) ≡ m̂(T ). (4.12)

Moreover, the following estimates hold:

‖pα‖C0([0,T ]) + ‖(vαl , vαr )‖H3/4([0,T ];R2) ≤ C ∀α > 0, (4.13)

where C > 0 is a positive constant independent of α.

Let us set (yα, zα) = (uα + m̂, wα + m̂) and take pα = m̂′. Then, (uα, wα) must satisfy
uαt − uαxx + (wα + m̂)uαx = 0 in (0, T )× (0, L),
wα − α2wαxx = uα in (0, T )× (0, L),
uα(·, 0) = wα(·, 0) = hαl in (0, T ),
uα(·, 0) = wα(·, L) = hαr in (0, T ),
uα(0 , ·) = u0 in (0, L),

(4.14)

where u0 := y0 − m̂(0) and (hαl , h
α
r ) := (vαl − m̂, vαr − m̂). Therefore, Theorem 4.7 is equivalent to the local

null-controllability to (4.14).

Proposition 4.8. Let the conditions of Theorem 4.7 be satisfied. There exists δ > 0 (independent of α) such that,
for any initial data u0 ∈ H1(0, L) satisfying ‖u0‖H1 ≤ δ, there exist (hαl , h

α
r ) ∈ H3/4(0, T ;R2) and (uα, wα) ∈

L2(0, T ;H2(0, L;R2)) ∩H1(0, T ;L2(0, L;R2)) satisfying (4.14) and

uα(T , ·) ≡ 0. (4.15)

Moreover, there exists a positive constant C > 0 (independent of α) such that

‖(hαl , hαr )‖H3/4([0,T ];R2) ≤ C ∀α > 0. (4.16)

Proof. The proof of this result relies on a fixed-point argument. Thus, given u0 ∈ H1(0, L) and η > 0, one can
get by reflection method an extension u∗0 ∈ H1

0 (−η, L+ η), with

‖u∗0‖H1
0 (−η,L+η) ≤ Ĉ1‖u0‖H1(0,L),

where Ĉ1 is a positive constant independent of α.
Let R > 0 be given and consider the set

BηR := {ū ∈ L∞(0, T ;C0([−η, L+ η]) : ‖ū‖L∞(0,T ;C0([−η,L+η])) ≤ R}.
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For any ū ∈ BηR, we can easily deduce that there exists a unique solution to{
w − α2wxx = ū1(0,L) in (0, T )× (0, L),
w(·, 0) = ū(·, 0), w(·, L) = ū(·, L) in (0, T ).

(4.17)

Moreover, using the maximum principle, we obtain that

‖w‖L∞(0,T ;C0([0,L])) ≤ Ĉ2‖ū‖L∞(0,T ;C0([−η,L+η])) ≤ CR,

where Ĉ2 is a positive constant independent of α.
Then, again using the reflection method, we get an extension w∗ ∈ L∞(0, T ;C2([−η, L+ η])) with

‖w∗‖L∞(0,T ;C0([−η,L+η])) ≤ Ĉ3‖w‖L∞(0,T ;C0([0,L])) ≤ Ĉ3R,

where Ĉ3 is a positive constant independent of α.
We assume that L < a < b < L+η. Then, arguing as in the proof of Theorem 1 in [1], we find v ∈ L∞((0, T )×

(a, b)) and u ∈ L2(0, T ;H2(−η, L+ η)) ∩ L∞(0, T ;H1
0 (−η, L+ η)) such that

ut − uxx + (w∗ + m̂)ux = v1(a,b) in (0, T )× (−η, L+ η),
u(·,−η) = u(·, L+ η) = 0 in (0, T ),
u(0 , ·) = u∗0 in (−η, L+ η),
u(T , ·) = 0 in (−η, L+ η),

(4.18)

and

‖v‖L∞(0,T ;L∞(a,b)) ≤ C‖u0‖H1(0,L),

for some C > 0 of the form

C := eC0[1+1/T+(1+T )(‖w∗‖2L∞(L∞)+‖m̂‖
2
∞)].

where C0 > 0 depends on a, b, L and η and independent of α. Therefore, it is not difficult to deduce that the
norm of u in H1(0, T ;L2(−η, L + η)), L2(0, T ;H2(−η, L + η)) and L∞(0, T ;H1

0 (−η, L + η)) are bounded by
C‖u0‖H1 , where C is independent of α.

Consequently, there exists δ > 0 (independent of α) such that, if ‖u0‖H1 ≤ δ, one has
‖u‖L∞(0,T ;C0([−η,L+η])) ≤ R and the mapping Λα : BηR 7→ BηR, Λα(ū) := u is well defined. Note that

– Λα is well defined and continuous. Indeed, this follows from the uniqueness of solution of (4.17)
and (4.18); the continuity is obtained by using standard parabolic estimates and the fact that, if ūn → ū
in L∞(0, T ;C0([−η, L + η])), then w∗n → w∗ in L∞(0, T ;C0([−η, L + η])) and, therefore, un → u in
L∞(0, T ;C0([−η, L+ η])).

– F η := Λα(BηR) is relatively compact in L∞(0, T ;C0([−η, L + η])). Indeed, one easily obtains that F η is
bounded in L∞(0, T ;H1

0 (−η, L+ η)) and F ηt is bounded in L2(0, T ;L2(−η, L+ η)). Hence, applying again
([47], Cor. 4), we get the desired compactness.

Finally, by applying Schauder’s Fixed-Point Theorem, we see that there exists u ∈ BηR such that Λα(u) = u.
Then, the couple (uα, vα), where uα is the restriction to (0, T ) × (0, L) of u and w is the solution to (4.17),
belongs to L2(0, T ;H2(0, L;R2)) ∩H1(0, T ;L2(0, L;R2)) and satisfies (4.14), (4.15) and (4.16) with controls
hαl := u(·, 0) and hαr := u(·, L).
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4.4. Global exact controllability

In this section we prove Theorem 1.2 by combining the results obtained in Sections 4.1, 4.2 and 4.3. First
recall that given y0 ∈ L∞(0, L) and the unique associated solution (yα1 , z

α
1 ) to (4.1), Proposition 4.1 provides a

time T ∗ ∈ (0, T/2) and a constant M∗ > 0 (both independent of α) such that yα1 ∈ C0([T ∗, T ];C2([0, L])) and,
moreover,

‖yα1 ‖C0([T∗,T ];C2([0,L])) ≤M∗. (4.19)

Now, let us fix N ∈ R, let us set M := max{M∗, |N |} and assume that the constant τ∗ > 0, furnished by
Proposition 4.3 is small enough, such that T ∗ < T/2− τ∗. Then, yα2,0 := yα1 (T/2− τ , ·) belongs to C2([0, L]) and,

from (4.19) and Proposition 4.3, there exist pα2 ∈ C0([0, τ ]), (vαl,2, v
α
r,2) ∈ H3/4(0, τ ;R2) and associated states

(yα2 , z
α
2 ) ∈ L2(0, τ ;H2(0, L;R2)) ∩H1(0, τ ;L2(0, L;R2)) satisfying (4.5), (4.6) and (4.7), with initial datum yα2,0

and target yf = N .
Finally, decreasing τ if necessary and setting yα3,0 := yα2 (τ , ·), we deduce, thanks to (4.7), that ‖yα3,0 −N‖H1 ≤

δ, where δ > 0 is the constant given in Theorem 4.7 for a control time T/2. Hence, this theorem (applied with
m̂ ≡ N), guarantees the existence of controls (vαl,3, v

α
r,3) ∈ H3/4(0, T/2;R2) such that the associated states

(yα3 , z
α
3 ) satisfying (1.2), (4.12) and (4.13), with pα ≡ 0 and initial datum yα3,0.

To conclude, using (yα1 , z
α
1 ), (yα2 , z

α
2 ) and (yα3 , z

α
3 ), and the associated controls, we can build the required

solution, as stated in Theorem 1.2.

5. Additional comments and questions

5.1. Controllability for Lipschitz-continuous data

Proposition 3.3 and Theorem 1.1 also hold for y0 in C0,1([0, L]). Indeed, arguing as in the proof, one
can guarantee that, as soon as the initial condition is small enough in the Lipschitz-continuous class, there
exist (vl, vr) ∈ C0,1([0, T ];R2) and an associated state (y, z) ∈ C0,1([0, T ] × [0, L];R2) satisfying (3.2) almost
everywhere; furthermore, it is not difficult to check that all the estimates are uniform with respect to α.

Note that this result improves Theorem 1 in [11].

5.2. Passing to the limit as α → 0

Thanks to Theorem 1.2, assuming that y0 ∈ H1
0 (0, L), the family of controls {(pα, vαl , vαr )}α>0 of the viscous

Burgers-α systems is uniformly bounded in C0([0, T ])×H3/4(0, T ;R2) (take into account Remark 3.11) and the
associated family of states {yα}α>0 is uniformly bounded in the space L2(0, T ;H2(0, L))∩H1(0, T ;L2(0, L)). It
is not difficult to verify that {yα}α>0 converges, as α goes to 0, to a controlled solution to the viscous Burgers
equation with same initial datum y0.

On the other hand, Theorem 1.1 establishes the existence of uniformly bounded controls for the non-viscous
Burgers-α system; the family of associated solutions {yα}α>0 is uniformly bounded in C1([0, T ]× [0, L]). Appro-
priate arguments like those presented in the last paragraph, used in combination with Remark 3.10, allow us
to guarantee that {yα}α>0 converges, as α → 0, to a controlled solution to the non-viscous Burgers equation
with the same initial datum y0. For uncontrolled nonlocal conservation laws, a similar question related to the
singular limit was studied in [14].

An additional interesting question is to determine the order of convergence of yα, in the convergence space.

5.3. Null controllability with two controls

In Theorems 1.1 and 1.2, we have used three scalar controls. It remains open to see whether, using arguments
similar to those in [41], it is also possible to prove global uniform null controllability with only two scalar
controls.
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5.4. Global exact controllability to the trajectories

At least two additional questions remain open here: (i) to obtain uniform global exact controllability to
trajectories for the viscous Burgers-α system with trajectories in W 1,∞(0, T ;W 1,∞(0, L;R2)); (ii) to reduce the
number of scalar controls.

5.5. Less regular initial conditions

In [41], the author proved a null controllability result for the viscous Burgers equation with initial datum
in L2(0, L). Is it also possible to control uniformly L2 initial conditions in the case of the viscous Burgers-α
system?
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[22] A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a
nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798–819.

[23] J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations. J. Funct. Anal. 174 (2009)
479–508.

[24] L. Evans, Partial differential equations, 2 ed., Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society,
Providence (2010).

[25] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh
Sect. A 125 (1995) 31–61.

[26] E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Syst. Control Lett.
56 (2007) 366–372.



26 R.K.C. ARAÚJO ET AL.
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