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A GLIOBLASTOMA PDE-ODE MODEL INCLUDING CHEMOTAXIS AND
VASCULATURE

Antonio Fernández-Romero, Francisco Guillén-González and
Antonio Suárez*

Abstract. In this work we analyse a PDE-ODE problem modelling the evolution of a Glioblastoma,
which includes chemotaxis term directed to vasculature. First, we obtain some a priori estimates for
the (possible) solutions of the model. In particular, under some conditions on the parameters, we obtain
that the system does not develop blow-up at finite time. In addition, we design a fully discrete finite
element scheme for the model which preserves some pointwise estimates of the continuous problem.
Later, we make an adimensional study in order to reduce the number of parameters. Finally, we detect
the main parameters determining different width of the ring formed by proliferative and necrotic cells
and different regular/irregular behaviour of the tumor surface.
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1. Introduction

Among the group of brain tumors, the Glioblastoma (GBM) is the most aggressive form with a survival
of a little more than one year [26]. Moreover, GBM differs from many solid tumors in the sense that they
grow infiltratively into the brain tissue, there exists an important presence of necrosis and they produce a
high proliferation tumor cells. For all these reasons, GBM is one of the cancer types with more interest in the
mathematical oncology community (see [1, 4, 32] and references therein).

Some studies about the morphology of GBM are based in the magnetic resonance images (MRI) in order
to obtain results related to prognosis and survival (see [23, 27–29]). Specifically, Molab1 group classifies the
GBM depending on the width of the tumor ring and/or the tumor surface regularity (see [27,28] respectively).
The study of [27] concludes that tumors with slim ring have better prognostic, specifically 7 months of more
survival than tumors with thick ring. In [28], the survival of patients in relation to the surface growth, regular
or irregular, of the GBM, show that tumors with a regular surface have better prognostic, more than 5 moths
of survival, than tumor with irregular surface.

In [39], the authors use the Fisher–Kolmogorov equation to reproduce the infiltrative characteristic of the
GBM. However, more complex mathematical models are also built to simulate phenomena such that the tumor
ring and the regularity surface of the GBM. One model appears in [30] where the tumor ring is studied by
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a PDE-ODE system of two equations (proliferative tumor and necrosis). In [11, 12], the authors present a
PDE-ODE system with three equations (proliferative tumor, necrosis and vasculature) which is able to capture
different behaviours of tumor ring and regularity surface of the GBM via a nonlinear diffusion tumor increasing
with vasculature.

In this paper, we present a PDE-ODE system, also with three equations (tumor, necrosis and vasculature)
and we study the biological behaviours of the GBM such as the tumor ring volume, studied in [27,30], and the
regularity surface considered in [28]. Unlike the system considered in [11, 12], we have included a chemotaxis
term. This term has been already introduced to model the movement of some populations towards a higher
concentration of the chemical substance or another living organism, see for instance the reviews given in [5,10,
15,16,31] and the references herein. Specifically, in this paper, we have included the chemotaxis term modelling
the movement of tumor to vasculature.

Some previous chemotactic PDE-ODE models have been extensively studied in the literature, see for instance
[6,33–35] where the authors model the cells movement with a parabolic-ODE system. Specifically, in [35] a system
of PDEs is considered using a probabilistic framework of reinforced random walks. The authors analyse various
combinations of taxis and local dynamics giving examples of aggregation, blow-up and collapse. Later, in [33],
some analytical and numerical results which support the numerical observations of [35] are presented using a
similar model than in [35]. Moreover, in [3, 6] a model of tumor inducing angiogenesis is proposed consisting
of a equation with chemotaxis and haptotaxis term, and two nonlinear ODEs. Finally, in [34] a stochastic
system related to bacteria and particles of chemical substances is discussed where the position of each particle
is described by a equation of a chemotaxis system.

Several works such as [19,36–38] have shown existence results for systems of three differential equations mod-
elling cancer invasion. In [36] the global existence and boundedness of solution for a parabolic-parabolic-ODE
system with nonlinear density-dependent chemotaxis and haptotaxis and logistic source is deduced. Further-
more, in [37], the authors have proved global existence of solutions for a parabolic-elliptic-ODE system with
chemotaxis, haptotaxis and logistic growth. The study of existence of solutions for the chemotaxis and hapto-
taxis model with nonlinear diffusion is presented in [38]. The global existence of solution and its asymptotic
behaviour are studied in [19] for a parabolic-parabolic-ODE system modelling the cells invasion process.

Recently, a PDE-ODE model with chemotaxis is studied in [18] obtaining asymptotic stability results using
a proper transformation and energy estimates. Another PDE-ODE with chemotaxis problem is considered in
[24], see also [25], modelling the evolution of biological species and they obtain analytical results concerning
the bifurcation of constant steady states and global existence of solutions for a range of initial data. In [14] a
parabolic-ODE problem is analysed, and it is shown that, under several conditions, any stationary solution is
locally stable.

In this paper, we investigate the following parabolic PDE-ODE system in (0, 𝑇𝑓 )× Ω (Ω ⊆ R3 is a bounded
and regular domain and 𝑇𝑓 > 0 corresponds to the final time)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑇

𝜕𝑡
− 𝜈 ∆𝑇⏟  ⏞  

Diffusion

+ 𝜅 ∇ · (𝑇 ∇Φ)⏟  ⏞  
Chemotaxis

= 𝑓1 (𝑇, 𝑁, Φ)

𝜕𝑁

𝜕𝑡
= 𝑓2 (𝑇, Φ)

𝜕Φ
𝜕𝑡

= 𝑓3 (𝑇, 𝑁, Φ)

(1.1)

endowed with non-flux boundary condition on the boundary 𝜕Ω

(−𝜈 ∇𝑇 + 𝜅 𝑇 ∇Φ) · 𝑛 = 0 (1.2)

where 𝑛 is the outward unit normal vector to 𝜕Ω and initial conditions at time 𝑡 = 0:

𝑇 (0, ·) = 𝑇0, 𝑁 (0, ·) = 𝑁0, Φ (0, ·) = Φ0 in Ω. (1.3)
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Table 1. Parameters.

Variable Description Value

𝜈 Speed diffusion
cm2

s

𝜅 Speed chemotaxis
cm2

s · density
𝜌 Tumor proliferation rate day−1

𝛼 Hypoxic death rate day−1

𝛾 Vasculature proliferation rate day−1

𝛿 Vasculature destruction by tumor day−1

𝐾 Carrying capacity cell/cm3

Here, 𝑇 (𝑡, 𝑥), 𝑁(𝑡, 𝑥) and Φ(𝑡, 𝑥) represent the tumor and necrotic densities and the vasculature concentration
at the point 𝑥 ∈ Ω and time 𝑡 > 0, respectively.

The nonlinear reactions functions 𝑓𝑖 : R3 → R for 𝑖 = 1, 2, 3 have the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓1 (𝑇, 𝑁, Φ) := 𝜌 𝑃 (Φ, 𝑇 ) 𝑇

(︂
1− 𝑇 + 𝑁 + Φ

𝐾

)︂
⏟  ⏞  

Tumor growth

−𝛼 𝑆(Φ, 𝑇 ) 𝑇⏟  ⏞  
Hypoxia

𝑓2 (𝑇, 𝑁, Φ) := 𝛼 𝑆(Φ, 𝑇 ) 𝑇 + 𝛿 𝑄 (Φ, 𝑇 ) Φ

𝑓3 (𝑇, 𝑁, Φ) := 𝛾 𝑅 (Φ, 𝑇 ) Φ
(︂

1− 𝑇 + 𝑁 + Φ
𝐾

)︂
⏟  ⏞  

Vasculature growth

− 𝛿 𝑄 (Φ, 𝑇 ) Φ⏟  ⏞  
Vascular destruction

by the tumor

.

(1.4)

The parameters in (1.1) have the following description [17,21,22] (Tab. 1).
The functions 𝑃 (Φ, 𝑇 ), 𝑆 (Φ, 𝑇 ), 𝑅 (Φ, 𝑇 ) and 𝑄 (Φ, 𝑇 ) appearing in (1.4) are adimensional factors with the

following biological meaning:

(1) The tumor growth cells need space and a well amount of nutrients to grow. If this amount of nutrients per
cell is suitable, the proliferation of tumor cells will occur. Hence, we introduce the tumor proliferation factor
𝑃 (Φ, 𝑇 ) in 𝑓1 as a volume fraction of the vasculature.

(2) We consider the hypoxia as a decreasing term due to lack of vasculature. Hence, low vasculature produces
more tumor destruction. Therefore, the factor 𝑆 (Φ, 𝑇 ) must be a volume fraction of the lack of vasculature.

(3) The vasculature growth factor 𝑅 (Φ, 𝑇 ) will depend on the amount of tumor and the vasculature does not
grow without tumor. Thus, 𝑅 (Φ, 𝑇 ) will be a volume fraction of tumor.

(4) The destruction of vasculature will increase with tumor and there will not be vascular destruction without
tumor. In consequence, 𝑄 (Φ, 𝑇 ) will be a volume fraction of tumor.

Thus, these factor functions 𝑃 (Φ, 𝑇 ), 𝑆 (Φ, 𝑇 ), 𝑅 (Φ, 𝑇 ) and 𝑄 (Φ, 𝑇 ) must satisfy the following modelling
conditions:

0 ≤ 𝑃 (Φ, 𝑇 ) , 𝑆 (Φ, 𝑇 ) , 𝑄 (Φ, 𝑇 ) , 𝑅 (Φ, 𝑇 ) ≤ 1 ∀ (𝑇, Φ) ∈ R2, (1.5)

and,
𝑃 (Φ, 𝑇 ) = 0 for Φ = 0 and 𝑃 (Φ, 𝑇 ) increases if Φ increases, (1.6)

𝑆 (Φ, 𝑇 ) increases if Φ decreases, (1.7)



410 A. FERNÁNDEZ-ROMERO ET AL.

𝑅 (Φ, 𝑇 ) = 0 for 𝑇 = 0 and 𝑅 (Φ, 𝑇 ) increases if 𝑇 increases (at least for 𝑇 ≤ 𝐾), (1.8)

𝑄 (Φ, 𝑇 ) = 0 for 𝑇 = 0 and 𝑄 (Φ, 𝑇 ) increases if 𝑇 increases. (1.9)

We assume along the paper the following assumptions on the initial data

0 ≤ 𝑇0(𝑥), 𝑁0(𝑥), Φ0(𝑥) ≤ 𝐾, 𝑎.𝑒. 𝑥 ∈ Ω. (1.10)

In order to obtain some estimates of the solutions of (1.1)–(1.3) (see (2.1)), we define the following truncated
system of (1.1): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑇

𝜕𝑡
− 𝜈 ∆𝑇 + 𝜅 ∇ · (𝑇+ ∇Φ) = 𝑓1

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
𝜕𝑁

𝜕𝑡
= 𝑓2 (𝑇+, Φ+)

𝜕Φ
𝜕𝑡

= 𝑓3

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
(1.11)

subject to (1.2) and (1.3). We have denoted Φ𝐾
+ = min {𝐾, max {0, Φ}} and 𝑇+ = max {0, 𝑇} and the same for

𝑁+ and Φ+.
The main contributions of this work are the following:

(1) Theorem 1.1 (A priori estimates).
(a) Any regular enough solution (𝑇, 𝑁, Φ) of the truncated problem (1.11)–(1.3) satisfies:

0 ≤ Φ ≤ 𝐾, 𝑇 ≥ 0 and 𝑁 ≥ 0, 𝑎.𝑒. in (0, 𝑇𝑓 )× Ω

and
𝑇, 𝑁 are bounded in 𝐿∞

(︀
0, 𝑇𝑓 ; 𝐿1 (Ω)

)︀
.

(b) Assuming that there exists a constant 𝐶1 > 0 such that

𝐶1 𝑃 (Φ, 𝑇 ) ≥ 𝑅 (Φ, 𝑇 ) Φ, ∀ 0 ≤ Φ ≤ 𝐾, and 𝑇 ≥ 0 (1.12)

and
𝜌 ≥ 𝜅

𝜈
𝛾 𝐶1, (1.13)

then
𝑇, 𝑁 are bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)) .

(c) Assuming additionally that there exist constants 𝐶𝑖 > 0 for 𝑖 = 2, 3, 4 such that for all 0 ≤ Φ ≤ 𝐾 and
𝑇 ≥ 0, ⃒⃒⃒𝜕 (𝑅 (Φ, 𝑇 ) Φ)

𝜕 Φ

⃒⃒⃒
,
⃒⃒⃒𝜕 (𝑅 (Φ, 𝑇 ) Φ)

𝜕 𝑇

⃒⃒⃒
≤ 𝐶2, (1.14)

⃒⃒⃒𝜕 (𝑄 (Φ, 𝑇 ) Φ)
𝜕 Φ

⃒⃒⃒
,
⃒⃒⃒𝜕 (𝑄 (Φ, 𝑇 ) Φ)

𝜕 𝑇

⃒⃒⃒
≤ 𝐶3 (1.15)

and ⃒⃒⃒𝜕 (𝑆 (Φ, 𝑇 ) 𝑇 )
𝜕 Φ

⃒⃒⃒
,
⃒⃒⃒𝜕 (𝑆 (Φ, 𝑇 ) 𝑇 )

𝜕 𝑇

⃒⃒⃒
≤ 𝐶4, (1.16)

then
∇𝑁, ∇Φ are bounded in 𝐿∞

(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
,

and
∇𝑇 is bounded in 𝐿2

(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
.
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By Theorem 1.1(a), for any (𝑇, 𝑁, Φ) solution of (1.11), we deduce that 𝑇+ = 𝑇 , 𝑁+ = 𝑁 and Φ𝐾
+ = Φ

and then, 𝑓𝑖

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
= 𝑓𝑖 (𝑇, 𝑁, Φ) for 𝑖 = 1, 3 and 𝑓2

(︀
𝑇+, Φ𝐾

+

)︀
= 𝑓2 (𝑇, Φ). Hence, we obtain the

following crucial corollary:

Corollary 1.2. If (𝑇, 𝑁, Φ) is a solution of the truncated problem (1.11), then (𝑇, 𝑁, Φ) is also a solution
of (1.1)–(1.3) and (𝑇, 𝑁, Φ) satisfies the estimates of Theorem 1.1.

The existence of solutions of problem (1.11) is out of the scope of this paper. It is an interesting open
problem that could be treated in a forthcoming paper.

(2) In Section 3, we design a Finite Element numerical scheme, computing
(︀
Φℎ

𝑘 , 𝑇ℎ
𝑘 , 𝑁ℎ

𝑘

)︀
as an approximation

of (Φ(𝑡𝑘, ·), 𝑇 (𝑡𝑘, ·), 𝑁(𝑡𝑘, ·)) where 𝑡𝑘 is a partition of the time interval (0, 𝑇𝑓 ) and ℎ is the mesh size. To
build the scheme, we will use the change of variable in the PDE equation with chemotaxis, 𝑇 = 𝑒

𝜅
𝜈 Φ 𝑢,

similar to the used in [8, 9, 20], in order to obtain an equivalent system with diffusion for the new variable
𝑢.

Theorem 1.3 (Discrete version of Theorem 1.1(a)). Scheme (3.3)–(3.9) has a unique solution satisfying
the first pointwise estimates of Theorem 1.1(a), these are:

0 ≤ Φ𝑘
ℎ ≤ 𝐾, 𝑇 𝑘

ℎ ≥ 0 and 𝑁𝑘
ℎ ≥ 0, in Ω. (1.17)

The design of a numerical scheme preserving the whole estimates of Theorem 1.1, and not only the estimates
(1.17), remains as an open problem.

(3) A parametric study through numerical simulations is made in order to detect different behaviours for the
ring width and the regularity of the surface of the tumor.

The outline of the paper is as follows. In Section 2, we prove Theorem 1.1. In Section 3 we build a numerical
scheme which preserves the a priori estimates of the continuous model given in Theorem 1.1(a). Later, in
Section 4, we show a possible example of the dimensionless reaction functions of the system satisfying the
hypotheses given in (1.6)–(1.9) and (1.12)–(1.16) and we make an adimensionalization of the model. Section 5
is dedicated to show, by means of some numerical simulations, the different behaviour of the ring width-volume
and the regularity surface with respect to the dimensionless parameters. Finally, the more technical part of the
proof of Theorem 1.1(b), obtained via an Alikakos’ argument, is given in an Appendix A.

2. A priori estimates of the solutions of (1.3)–(1.11)

2.1. Proof of Theorem 1.1(a)

Lemma 2.1. Any solution (𝑇, 𝑁, Φ) of the truncated problem (1.11) satisfy the following pointwise estimates:

0 ≤ Φ ≤ 𝐾, 𝑇 ≥ 0 and 𝑁 ≥ 0, 𝑎.𝑒. in (0, 𝑇𝑓 )× Ω. (2.1)

Proof. Let (𝑇, 𝑁, Φ) be a solution of (1.11). Since one can rewrite 𝑓1(𝑇+, 𝑁+, Φ𝐾
+ ) = 𝑇+

̃︀𝑓1(𝑇+, 𝑁+, Φ𝐾
+ ),

multiplying the first equation of (1.11) by 𝑇− = min {𝑇, 0} and integrating in Ω, we get

1
2

d
d𝑡

∫︁
Ω

(𝑇−)2 d𝑥 + 𝜈

∫︁
Ω

| ∇𝑇− |2=
∫︁

Ω

𝑇− 𝑇+
̃︀𝑓1

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
d𝑥 = 0, 𝑎.𝑒. in (0, 𝑇𝑓 ) .

Hence, since 𝑇− (0, 𝑥) = 0, then 𝑇− (𝑡, 𝑥) = 0 a.e. (𝑡, 𝑥) ∈ (0, 𝑇𝑓 )× Ω. We repeat the same argument for the
other two equations of (1.11) using now that

Φ− 𝑓3

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
= 0 and 𝑁− 𝑓2 (𝑇+, Φ+) ≤ 0.

To obtain the upper bound Φ ≤ 𝐾, we multiply the third equation of (1.11) by (Φ−𝐾)+ = max {0, Φ−𝐾}
and integrate in Ω,
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1
2

d
d𝑡

∫︁
Ω

(︀
(Φ−𝐾)+

)︀2 d𝑥 =
∫︁

Ω

𝑓3

(︀
𝑇+, 𝑁+, Φ𝐾

+

)︀
(Φ−𝐾)+ d𝑥, 𝑎.𝑒. in (0, 𝑇𝑓 ) .

Since 𝑓3(𝑇+, 𝑁+, Φ𝐾
+ ) ≤ 𝛾 Φ𝐾

+ (1 − Φ𝐾
+

𝐾 ), then 𝑓3(𝑇+, 𝑁+, Φ𝐾
+ )(Φ − 𝐾)+ ≤ 0. As (Φ (0, 𝑥)−𝐾)+ = 0, then

(Φ (𝑡, 𝑥)−𝐾)+ = 0 a.e. (𝑡, 𝑥) ∈ (0, 𝑇𝑓 )× Ω. �

Lemma 2.2. Any solution of (𝑇, 𝑁, Φ) satisfies the estimates:

‖𝑇‖𝐿∞(0,𝑇𝑓 ;𝐿1(Ω)) + ‖
√︀

𝑃 (Φ, 𝑇 ) 𝑇‖𝐿2(0,𝑇𝑓 ;𝐿2(Ω)) ≤ 𝐶 (𝜌, 𝐾, |Ω|, 𝑇𝑓 ) , (2.2)
‖𝑁‖𝐿∞(0,𝑇𝑓 ;𝐿1(Ω)) ≤ 𝐶 (𝜌, 𝛼, 𝛿, 𝐾, |Ω|, 𝑇𝑓 ) . (2.3)

Proof. Let (𝑇, 𝑁, Φ) be a solution of (1.11). Integrating in Ω the first equation of (1.11) and using that
𝑃 (Φ, 𝑇 ) , 𝑆 (Φ, 𝑇 ) ≥ 0, we obtain that

d
d𝑡

∫︁
Ω

𝑇 d𝑥 =
∫︁

Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 d𝑥−
∫︁

Ω

𝜌 𝑃 (Φ, 𝑇 )
𝑇 2

𝐾
d𝑥−

∫︁
Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇
𝑁 + Φ

𝐾⏟  ⏞  
≥0

d𝑥

−
∫︁

Ω

𝛼 𝑆 (Φ, 𝑇 ) 𝑇⏟  ⏞  
≥0

d𝑥 ≤
∫︁

Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 d𝑥− 1
𝐾

∫︁
Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥.

Thus,
d
d𝑡

∫︁
Ω

𝑇 d𝑥 +
1
𝐾

∫︁
Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥 ≤
∫︁

Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 d𝑥.

Rewriting 𝑃 (Φ, 𝑇 ) 𝑇 =
√︀

𝑃 (Φ, 𝑇 )
√︀

𝑃 (Φ, 𝑇 ) 𝑇 and applying Young’s inequality for the right side, we get,

d
d𝑡

∫︁
Ω

𝑇 d𝑥 +
1
𝐾

∫︁
Ω

𝜌 𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥 ≤ 𝜌

(︂
1

2 𝐾

∫︁
Ω

𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥 +
𝐾

2

∫︁
Ω

𝑃 (Φ, 𝑇 )
)︂

.

Hence, using that 𝑃 (Φ, 𝑇 ) ≤ 1, we conclude that

d
d𝑡

∫︁
Ω

𝑇 d𝑥 +
𝜌

2 𝐾

∫︁
Ω

𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥 ≤ 𝜌 𝐾

2
|Ω|.

Integrating in (0, 𝑡) for 0 < 𝑡 ≤ 𝑇𝑓 , we obtain that

‖𝑇 (𝑡, ·) ‖𝐿1(Ω) +
𝜌

2 𝐾

∫︁ 𝑡

0

∫︁
Ω

𝑃 (Φ, 𝑇 ) 𝑇 2 d𝑥 d𝑡 ≤ 𝑇𝑓
𝜌 𝐾

2
|Ω|, ∀𝑡 ∈ (0, 𝑇𝑓 )

whence we deduce (2.2).
To prove (2.3), we integrate the second equation of (1.11) in Ω× (0, 𝑡), with 0 < 𝑡 ≤ 𝑇𝑓 ,

‖𝑁 (𝑡, ·) ‖𝐿1(Ω) ≤ 𝛼

∫︁ 𝑡

0

∫︁
Ω

𝑇 d𝑥 d𝑡 + 𝛿

∫︁ 𝑡

0

∫︁
Ω

Φ d𝑥 d𝑡

where we have used (1.5). Thus, using that Φ ≤ 𝐾 and the bound obtained for 𝑇 in (2.2), we get (2.3). �
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2.2. Proof of Theorem 1.1(b)

In order to obtain the 𝐿∞ estimate for 𝑇 , firstly we make a change of variable such that we rewrite the
diffusion term and chemotaxis term as an unique diffusion term depending on the new variable. In fact, we
consider:

𝑤 = log (𝑇 )− 𝜒 Φ ⇔ 𝑇 = 𝑒𝑤 𝑒𝜒 Φ = 𝑒𝜒 Φ 𝑢 (2.4)

with 𝑢 = 𝑒𝑤 and 𝜒 =
𝜅

𝜈
.

Thus, the first equation of (1.1) changes to(︀
𝑒𝜒 Φ 𝑢

)︀
𝑡
− 𝜈∇ ·

(︀
𝑒𝜒 Φ ∇ 𝑢

)︀
= 𝑓1

(︀
𝑒𝜒 Φ 𝑢, 𝑁, Φ

)︀
(2.5)

and the boundary condition (1.2) to
∇𝑢 · 𝑛 = 0. (2.6)

Lemma 2.3 (Proof of Theorem 1.1(b)). Assume (1.12) and (1.13). Then, given any solution (𝑇, 𝑁, Φ) of
(1.11), it holds that 𝑢 is bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)) and ∇𝑢 is bounded in 𝐿2

(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
. Moreover, 𝑇

and 𝑁 are bounded in 𝐿∞(0, 𝑇𝑓 ; 𝐿∞(Ω)).

Proof. To obtain the 𝐿∞ estimates for 𝑇 and 𝑁 , taking into account the 𝐿∞ estimates for Φ, it suffices that
𝑢 be 𝐿∞. The proof of 𝑢 is based in 𝐿𝑝 estimates with an Alikakos’ argument. Let (𝑇, 𝑁, Φ) be a solution of
(1.11). We multiply (2.5) by 𝑢𝑝−1 (for any 𝑝 ≥ 2), and analyse term by term:

– Time derivative term: (︀
𝑒𝜒 Φ 𝑢

)︀
𝑡

𝑢𝑝−1 = 𝜒 Φ𝑡 𝑒𝜒 Φ 𝑢𝑝 +
1
𝑝
𝑒𝜒 Φ (𝑢𝑝)𝑡 (2.7)

and the second term of the right side of (2.7) can be expressed as

1
𝑝
𝑒𝜒 Φ (𝑢𝑝)𝑡 =

1
𝑝

(︀
𝑒𝜒 Φ 𝑢𝑝

)︀
𝑡
− 𝜒

𝑝
𝑒𝜒 Φ 𝑢𝑝 Φ𝑡. (2.8)

Hence, from (2.7) and (2.8),(︀
𝑒𝜒 Φ 𝑢

)︀
𝑡

𝑢𝑝−1 =
1
𝑝

(︀
𝑒𝜒 Φ 𝑢𝑝

)︀
𝑡

+
𝑝− 1

𝑝
𝜒 Φ𝑡 𝑒𝜒 Φ 𝑢𝑝. (2.9)

– Nonlinear diffusion term:

−𝜈∇ ·
(︀
𝑒𝜒 Φ ∇ 𝑢

)︀
𝑢𝑝−1 = −𝜈 ∇ ·

(︀
𝑒𝜒 Φ (∇ 𝑢) 𝑢𝑝−1

)︀
+ 𝜈 𝑒𝜒 Φ (𝑝− 1) 𝑢𝑝−2 | ∇ 𝑢 |2

= −𝜈 ∇ ·
(︀
𝑒𝜒 Φ (∇ 𝑢) 𝑢𝑝−1

)︀
+ 𝜈 𝑒𝜒 Φ (𝑝− 1)

4
𝑝2
| ∇(𝑢𝑝/2) |2 . (2.10)

– Reaction term:

𝑓1

(︀
𝑒𝜒 Φ 𝑢, 𝑁, Φ

)︀
𝑢𝑝−1 = 𝜌 𝑃 (Φ, 𝑇 ) 𝑒𝜒 Φ 𝑢𝑝

(︂
1− 𝑒𝜒 Φ 𝑢 + 𝑁 + Φ

𝐾

)︂
− 𝛼 𝑆 (Φ, 𝑇 ) 𝑒𝜒 Φ 𝑢𝑝. (2.11)

Rewriting in (2.9) the function Φ𝑡 as 𝑓3

(︀
𝑒𝜒 Φ 𝑢, 𝑁, Φ

)︀
and adding (2.9)–(2.11), we get:

1
𝑝

(︀
𝑒𝜒 Φ 𝑢𝑝

)︀
𝑡
− 𝜈 ∇ ·

(︀
𝑒𝜒 Φ (∇ 𝑢) 𝑢𝑝−1

)︀
+ 𝜈 𝑒𝜒 Φ (𝑝− 1)

4
𝑝2
| ∇(𝑢𝑝/2) |2 +𝛼 𝑆 (Φ, 𝑇 ) 𝑒𝜒 Φ 𝑢𝑝

+
(︂

𝜌 𝑃 (Φ, 𝑇 )−
(︂

𝑝− 1
𝑝

)︂
𝜒 𝛾 𝑅 (Φ, 𝑇 ) Φ

)︂
𝑒𝜒 Φ 𝑢𝑝

(︂
𝑒𝜒 Φ 𝑢 + 𝑁 + Φ

𝐾

)︂
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=
(︂

𝜌 𝑃 (Φ, 𝑇 )−
(︂

𝑝− 1
𝑝

)︂
𝜒 𝛾 𝑅 (Φ, 𝑇 ) Φ

)︂
𝑒𝜒 Φ 𝑢𝑝 +

𝜒

𝑝
𝑒𝜒 Φ 𝑢𝑝 𝛿 𝑄 (Φ, 𝑇 ) Φ. (2.12)

Due to hypothesis (1.13) and (1.12), it is easy to see in (2.12) that,

𝜌 𝑃 (Φ, 𝑇 )−
(︂

𝑝− 1
𝑝

)︂
𝜒 𝛾 𝑅 (Φ, 𝑇 ) Φ ≥ 0.

Using now that 0 ≤ Φ ≤ 𝐾, (1.5) and (1.13) we obtain that

1
𝑝

(︀
𝑒𝜒 Φ 𝑢𝑝

)︀
𝑡
− 𝜈 ∇ ·

(︀
𝑒𝜒 Φ (∇ 𝑢) 𝑢𝑝−1

)︀
+ 𝜈 𝑒𝜒 Φ (𝑝− 1)

4
𝑝2
| ∇(𝑢𝑝/2) |2 +𝛼 𝑆 (Φ, 𝑇 ) 𝑒𝜒 Φ 𝑢𝑝

≤ 𝐶 𝑒𝜒 Φ𝑢𝑝 (2.13)

with 𝐶 > 0. Integrating (2.13) in Ω, it holds that

1
𝑝

d
d𝑡

∫︁
Ω

𝑒𝜒 Φ 𝑢𝑝 d𝑥 + 𝜈 (𝑝− 1)
4
𝑝2

∫︁
Ω

𝑒𝜒 Φ | ∇(𝑢𝑝/2) |2 d𝑥 + 𝛼

∫︁
Ω

𝑆 (Φ, 𝑇 ) 𝑒𝜒 Φ 𝑢𝑝 d𝑥

≤ 𝐶

∫︁
Ω

𝑒𝜒 Φ𝑢𝑝 d𝑥 (2.14)

with 𝐶 > 0 independent of 𝑝 (along the proof, we will denote by 𝐶 different constants independent of 𝑝). Using
the auxiliary variable 𝑤 = 𝑢𝑝/2, we can rewrite (2.14) as follows

1
𝑝

d
d𝑡
‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) + 4 𝜈

(𝑝− 1)
𝑝2

‖𝑒
𝜒 Φ
2 ∇𝑤‖2𝐿2(Ω) ≤ 𝐶 ‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω). (2.15)

Thus, applying Gronwall’s lemma, we deduce for 𝑝 = 2 that

∇𝑢 is bounded in 𝐿2
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
.

Now, using the following equivalent norms with constants independent of 𝑝

‖𝑧‖2𝐿2(Ω) ≤ ‖𝑒
𝜒 Φ
2 𝑧‖2𝐿2(Ω) ≤ 𝑒𝜒 𝐾‖𝑧‖2𝐿2(Ω), (2.16)

multiplying (2.15) by 𝑝 and using that
𝑝− 1

𝑝
≥ 1

2
for any 𝑝 ≥ 2, we obtain that

d
d𝑡
‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) + 2 𝜈 ‖∇𝑤‖2𝐿2(Ω) ≤ 𝐶 𝑝 ‖𝑤‖2𝐿2(Ω). (2.17)

We are going to apply the following Gagliardo-Nirenberg interpolation inequality ([13], Thm. 10.1)

‖𝑤‖2𝐿2(Ω) ≤ 𝜀‖∇ 𝑤‖2𝐿2(Ω) + 𝐶

(︂
1
𝜀

)︂𝑛/2

‖𝑤‖2𝐿1(Ω) (2.18)

with 𝜀 > 0 and 𝑛 the dimension of Ω (in this case 𝑛 = 3). Applying (2.18) for 𝜀 =
𝜈

𝐶 𝑝
in the right hand side

of (2.17), we deduce that

d
d𝑡
‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) + 𝜈 ‖∇𝑤‖2𝐿2(Ω) ≤ 𝐶 𝑝2 ‖𝑤‖2𝐿1(Ω). (2.19)

Using (2.18) in (2.19) but now for 𝜀 = 𝜈, it holds that

d
d𝑡
‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) + ‖𝑤‖2𝐿2(Ω) ≤ 𝐶

(︀
𝑝2 + 1

)︀
‖𝑤‖2𝐿1(Ω). (2.20)
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Finally, due to (2.16), we can deduce that

d
d𝑡
‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) + 𝐶1 ‖𝑒

𝜒 Φ
2 𝑤‖2𝐿2(Ω) ≤ 𝐶

(︀
𝑝2 + 1

)︀
‖𝑤‖2𝐿1(Ω)

(2.21)

where 𝐶1 = 𝑒−𝜒 𝐾 .
Hence, we obtain that

max
𝑡∈(0,𝑇𝑓 )

‖𝑢‖𝑝
𝐿𝑝(Ω) ≤ ‖𝑒

𝜒 Φ
2 𝑤 (𝑡) ‖2𝐿2(Ω) ≤ 𝑒−𝐶1 𝑡 𝐶‖𝑢0‖𝑝

𝐿∞(Ω)

+𝐶
(︀
𝑝2 + 1

)︀
𝑒−𝐶1 𝑡

∫︁ 𝑡

0

𝑒𝐶1 𝑠

(︂∫︁
Ω

𝑢𝑝/2 d𝑥

)︂2

𝑑𝑠 ≤ 𝐶 ‖𝑢0‖𝑝
𝐿∞(Ω) + 𝐶

(︀
𝑝2 + 1

)︀
max

𝑡∈(0,𝑇𝑓 )
‖𝑢‖𝑝

𝐿𝑝/2(Ω)

≤ 𝐶 max
{︁(︀

𝑝2 + 1
)︀

max
𝑡∈(0,𝑇𝑓 )

‖𝑢‖𝑝
𝐿𝑝/2(Ω)

, ‖𝑢0‖𝑝
𝐿∞(Ω)

}︁
. (2.22)

Following a similar argument to used by Alikakos in [2] (see Appendix A), from (2.22) we can obtain that

𝑢 is bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)) .

As consequence, 𝑇 is bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)).
Since 𝑁𝑡 = 𝑓2 (𝑇, Φ) and 𝑇 and Φ are bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)) we obtain that 𝑁 is bounded in

𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)). �

2.3. Proof of Theorem 1.1(c)

Let (𝑇, 𝑁, Φ) be a solution of (1.11). Taking gradient in the second and third equation of (1.11),

(∇ Φ)𝑡 = 𝛾

[︂(︂
𝜕 (𝑅 (Φ, 𝑇 ) Φ)

𝜕 Φ
∇ Φ +

𝜕 (𝑅 (Φ, 𝑇 ) Φ)
𝜕 𝑇

∇ 𝑇

)︂(︂
1− 𝑇 + 𝑁 + Φ

𝐾

)︂
−𝑅 (Φ, 𝑇 ) Φ

𝐾
(∇ 𝑇 +∇ 𝑁 +∇ Φ)

]︂
− 𝛿

(︂
𝜕 (𝑄 (Φ, 𝑇 ) Φ)

𝜕 Φ
∇ Φ

+
𝜕 (𝑄 (Φ, 𝑇 ) Φ)

𝜕 𝑇
∇ 𝑇

)︂
, (2.23)

(∇ 𝑁)𝑡 = 𝛼

(︂
𝜕 (𝑆 (Φ, 𝑇 ) 𝑇 )

𝜕 Φ
∇ Φ +

𝜕 (𝑆 (Φ, 𝑇 ) 𝑇 )
𝜕 𝑇

∇ 𝑇

)︂
+ 𝛿

(︂
𝜕 (𝑄 (Φ, 𝑇 ) Φ)

𝜕 Φ
∇ Φ +

𝜕 (𝑄 (Φ, 𝑇 ) Φ)
𝜕 𝑇

∇ 𝑇

)︂
. (2.24)

Using the change of variable 𝑇 = 𝑒𝜒 Φ 𝑢 as in Lemma 2.3, we deduce that

∇ 𝑇 = 𝜒 𝑒𝜒 Φ 𝑢 ∇Φ + 𝑒𝜒 Φ ∇𝑢 = 𝜒 𝑇 ∇ Φ + 𝑒𝜒 Φ ∇𝑢 (2.25)

and we know from Lemma 2.3 that ∇ 𝑢 is bounded in 𝐿2
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
. Taking into account that 𝑇 and Φ are

bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)), it holds that

|∇ 𝑇 | ≤ 𝐶 (|∇ Φ|+ |∇ 𝑢|) .

Thus, rewriting (2.23) and (2.24) in terms of ∇ 𝑢, multiplying (2.23) and (2.24) by ∇ Φ and ∇ 𝑁 respectively
and integrating in Ω, we deduce

1
2

d
d𝑡
‖∇ Φ‖2𝐿2(Ω) ≤ 𝐶1 ‖∇ Φ‖2𝐿2(Ω) + 𝐶2

∫︁
Ω

|∇ 𝑢| |∇ Φ| d𝑥 + 𝐶3

∫︁
Ω

|∇ 𝑁 | |∇ Φ| d𝑥, (2.26)
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and
1
2

d
d𝑡
‖∇ 𝑁‖2𝐿2(Ω) ≤ 𝐶4

∫︁
Ω

|∇ Φ| |∇ 𝑁 | d𝑥 + 𝐶5

∫︁
Ω

|∇ 𝑢| |∇ 𝑁 | d𝑥, (2.27)

with 𝐶𝑖 > 0 for 𝑖 = 1, . . . , 5. In (2.26) and (2.27) we have applied the inequality∫︁
Ω

𝑣 |∇ 𝑢| |∇ Φ| d𝑥 ≤ ‖𝑣‖𝐿∞(Ω)

∫︁
Ω

|∇ 𝑢| |∇ Φ| d𝑥

with 𝑣 = 𝑇, 𝑁, Φ since 𝑇 , 𝑁 and Φ are bounded in 𝐿∞ (0, 𝑇𝑓 ; 𝐿∞ (Ω)).
Using now Cauchy–Schwarz and Young’s inequalities in (2.26) and (2.27) and adding them, it holds that

1
2

d
d𝑡

(︁
‖∇ Φ‖2𝐿2(Ω) + ‖∇ 𝑁‖2𝐿2(Ω)

)︁
≤ ̂︀𝐶1

(︁
‖∇ Φ‖2𝐿2(Ω) + ‖∇ 𝑁‖2𝐿2(Ω)

)︁
+ ̂︀𝐶2 ‖∇ 𝑢‖2𝐿2(Ω), (2.28)

with ̂︀𝐶𝑖 > 0 for 𝑖 = 1, 2. Since ∇𝑢 is bounded in 𝐿2
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
, applying Gronwall’s Lemma, it holds that

∇ 𝑁 and ∇ Φ are bounded in 𝐿∞
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
.

Finally, using (2.25) in (2.23) and (2.24), we obtain that

(∇ 𝑁)𝑡 and (∇ Φ)𝑡 are bounded in 𝐿2
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
.

Corollary 2.4. ∇𝑇 is bonded in 𝐿2
(︀
0, 𝑇𝑓 ; 𝐿2 (Ω)

)︀
.

3. A FE numerical scheme

In this section, we are going to design an uncoupled and linear fully discrete scheme to approach (1.1)–(1.3)
by means of an Implicit-Explicit (IMEX) Finite Difference in time and 𝑃1 continuous finite element with “mass-
lumping” in space discretization. This scheme will preserve the pointwise estimates that appear in Lemma 2.1
considering acute triangulations.

Now we introduce the hypotheses required along this section.

(a) Let 0 < 𝑇𝑓 < +∞. We consider the uniform time partition

(0, 𝑇𝑓 ] =
𝐾𝑓−1⋃︁
𝑘=0

(𝑡𝑘, 𝑡𝑘+1] ,

with 𝑡𝑘 = 𝑘 d𝑡 where 𝐾𝑓 ∈ N and d𝑡 =
𝑇𝑓

𝐾𝑓
is the time step. Let Ω ⊆ R2 or R3 a bounded domain with

polygonal or polyhedral lipschitz-continuous boundary.
(b) Let {𝒯ℎ}ℎ>0 be a family of shape-regular, quasi-uniform triangulations of Ω formed by acute N-simplexes

(triangles in 2D and tetrahedral in 3D with all angles lowers than 𝜋/2), such that

Ω =
⋃︁
𝒦∈𝒯ℎ

𝒦,

where ℎ = max
𝒦∈𝒯ℎ

ℎ𝒦, with ℎ𝒦 being the diameter of 𝒦. We denote 𝒩ℎ = {𝑎𝑖}𝑖∈𝐼 the set of all the nodes of

𝒯ℎ.
(c) Conforming piecewise linear, finite element spaces associated to 𝒯ℎ are assumed for approximating 𝐻1 (Ω):

𝑁ℎ =
{︀
𝑛ℎ ∈ 𝒞0

(︀
Ω
)︀

: 𝑛ℎ|𝒦 ∈ 𝒫1 (𝒦) , ∀ 𝒦 ∈ 𝒯ℎ

}︀
and its Lagrange basis is denoted by {𝜙𝑎}𝑎∈𝒩ℎ

.
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Let 𝐼ℎ : 𝒞0
(︀
Ω
)︀
→ 𝑁ℎ be the nodal interpolation operator and consider the discrete inner product

(𝑛ℎ, 𝑛ℎ)ℎ =
∫︁

Ω

𝐼ℎ (𝑛ℎ · 𝑛ℎ) =
∑︁

𝑎∈𝒩ℎ

𝑛ℎ (𝑎) 𝑛ℎ (𝑎)
∫︁

Ω

𝜙𝑎, ∀𝑛ℎ, 𝑛ℎ ∈ 𝑁ℎ

which induces the discrete norm ‖𝑛ℎ‖ℎ =
√︀

(𝑛ℎ, 𝑛ℎ)ℎ defined on 𝑁ℎ (that is equivalent to 𝐿2 (Ω)-norm).
Before building the numerical scheme, we will transform the first equation of (1.1) into a non-linear diffusion

equation throughout the change of variable 𝑇 = 𝑢 𝑒𝜒 Φ as in Lemma 2.3. Therefore, the first equation of (1.1)
changes to:

𝑒𝜒 Φ 𝑢𝑡 − 𝜈∇ ·
(︀
𝑒𝜒 Φ ∇ 𝑢

)︀
= ̂︀𝑓1 (𝑢, 𝑁, Φ) (3.1)

where ̂︀𝑓1 (𝑢, 𝑁, Φ) = 𝑇

[︂
𝜌 𝑃 (Φ, 𝑇 ) + 𝜒 Φ

(︂
𝛾 𝑅 (Φ, 𝑇 )

(︂
𝑇 + 𝑁 + Φ

𝐾

)︂
+ 𝛿 𝑄 (Φ, 𝑇 )

)︂]︂

−𝑇

[︂
𝜌 𝑃 (Φ, 𝑇 )

(︂
𝑇 + 𝑁 + Φ

𝐾

)︂
+ 𝛼 𝑆 (Φ, 𝑇 ) + 𝜒 𝛾 𝑅 (Φ, 𝑇 ) Φ

]︂
.

(3.2)

Thus, we consider the following linear uncoupled numerical scheme for (3.1) jointly with (1.1)𝑏 and (1.1)𝑐:
given 𝑢𝑘

ℎ, 𝑁𝑘
ℎ , Φ𝑘

ℎ ∈ 𝑁ℎ, find 𝑢𝑘+1
ℎ , 𝑁𝑘+1

ℎ , Φ𝑘+1
ℎ ∈ 𝑁ℎ in a decoupled way (first Φ, then 𝑢 and finally 𝑁) satisfying(︁

𝑒𝜒 Φ𝑘
ℎ 𝛿𝑡𝑢

𝑘+1
ℎ , 𝑣

)︁
ℎ

+ 𝜈
(︁
𝑒𝜒 Φ𝑘

ℎ ∇ 𝑢𝑘+1
ℎ ,∇𝑣

)︁
=
(︂(︁ ̂︀𝑓1

)︁𝑘

ℎ
, 𝑣

)︂
ℎ

, ∀𝑣 ∈ 𝑁ℎ, (3.3)

𝛿𝑡𝑁
𝑘+1
ℎ (𝑎) =

(︁ ̂︀𝑓2

)︁𝑘

ℎ
(𝑎) , ∀𝑎 ∈ 𝒩ℎ, (3.4)

𝛿𝑡Φ𝑘+1
ℎ (𝑎) =

(︁ ̂︀𝑓3

)︁𝑘

ℎ
(𝑎) , ∀𝑎 ∈ 𝒩ℎ. (3.5)

We have denoted

𝛿𝑡𝑢
𝑘+1
ℎ =

𝑢𝑘+1
ℎ − 𝑢𝑘

ℎ

d𝑡

and similarly for 𝛿𝑡𝑁
𝑘+1
ℎ and 𝛿𝑡Φ𝑘+1

ℎ . The approximation of the initial conditions are taken as

𝑢0
ℎ = 𝐼ℎ (𝑢0) ∈ 𝑁ℎ, 𝑁0

ℎ = 𝐼ℎ (𝑁0) ∈ 𝑁ℎ, Φ0
ℎ = 𝐼ℎ (Φ0) ∈ 𝑁ℎ (3.6)

where we consider for simplicity that 𝑇0, 𝑁0, Φ0 ∈ 𝒞0
(︀
Ω
)︀

with 𝑢0 = 𝑒−𝜒 Φ0 𝑇0.

Finally, the functions
(︁ ̂︀𝑓𝑖

)︁𝑘

ℎ
for 𝑖 = 1, 2, 3 in (3.3)–(3.5), have the following definitions:

(︁ ̂︀𝑓1

)︁𝑘

ℎ
= 𝑇 𝑘

ℎ

(︂
𝜌 𝑃 𝑘

ℎ + 𝜒 Φ𝑘
ℎ

(︂
𝛾 𝑅𝑘

ℎ

(︂
𝑇 𝑘

ℎ + 𝑁𝑘
ℎ + Φ𝑘

ℎ

𝐾

)︂
+ 𝛿 𝑄𝑘

ℎ

)︂)︂
− 𝑇 𝑘+1

ℎ

(︂
𝜌 𝑃 𝑘

ℎ

(︂
𝑇 𝑘

ℎ + 𝑁𝑘
ℎ + Φ𝑘

ℎ

𝐾

)︂
+ 𝛼 𝑆𝑘

ℎ + 𝜒 𝛾 𝑅𝑘
ℎ Φ𝑘

ℎ

)︂
, (3.7)(︁ ̂︀𝑓2

)︁𝑘

ℎ
= 𝛼 𝑆𝑘

ℎ 𝑇 𝑘+1
ℎ + 𝛿 𝑄𝑘

ℎ Φ𝑘+1
ℎ , (3.8)(︁ ̂︀𝑓3

)︁𝑘

ℎ
= 𝛾 𝑅𝑘

ℎ Φ𝑘
ℎ

(︃
1−

Φ𝑘+1
ℎ

𝐾

)︃
− Φ𝑘+1

ℎ

(︂
𝛾 𝑅𝑘

ℎ

𝑇 𝑘
ℎ + 𝑁𝑘

ℎ

𝐾
+ 𝛿 𝑄𝑘

ℎ Φ𝑘+1
ℎ

)︂
. (3.9)

The functions 𝑃 𝑘
ℎ , 𝑆𝑘

ℎ, 𝑅𝑘
ℎ and 𝑄𝑘

ℎ in (3.7)–(3.9), are the corresponding dimensionless factors 𝑃
(︀
Φ𝑘

ℎ, 𝑇 𝑘
ℎ

)︀
,

𝑆
(︀
Φ𝑘

ℎ, 𝑇 𝑘
ℎ

)︀
, 𝑅
(︀
Φ𝑘

ℎ, 𝑇 𝑘
ℎ

)︀
and 𝑄

(︀
Φ𝑘

ℎ, 𝑇 𝑘
ℎ

)︀
defined in (4.1)–(4.4) with 𝑇 𝑘

ℎ = 𝑒𝜒 Φ𝑘
ℎ 𝑢𝑘

ℎ and 𝑇 𝑘+1
ℎ = 𝑒𝜒 Φ𝑘+1

ℎ 𝑢𝑘+1
ℎ .
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Remark 3.1. There exists an unique solution of scheme (3.3)–(3.9) because:

(1) Φ𝑘+1
ℎ (𝑎) can be computed directly from (3.5).

(2) There exists an unique 𝑢𝑘+1
ℎ solution of (3.3) by Lax–Milgram theorem.

(3) 𝑁𝑘+1
ℎ (𝑎) can be computed directly from (3.4).

3.1. Proof of Theorem 1.3

In this part, we are going to get a priori energy estimates for the fully discrete solution 𝑢𝑘+1
ℎ , 𝑁𝑘+1

ℎ and
Φ𝑘+1

ℎ (and hence, for 𝑇 𝑘+1
ℎ ) of (3.3)–(3.5) which are independent of (ℎ, 𝑘).

The following result is based on the hypothesis of acute triangulations to get a discrete maximum principle,
see [7]. In fact, we arrive at discrete version of Lemma 2.1.

Lemma 3.2 (Proof of Theorem 1.3). Let 𝑢𝑘
ℎ, 𝑁𝑘

ℎ , Φ𝑘
ℎ ∈ 𝑁ℎ with 𝑇 𝑘

ℎ = 𝑒𝜒 Φ𝑘
ℎ 𝑢𝑘

ℎ such that 0 ≤ 𝑢𝑘
ℎ, 𝑁𝑘

ℎ , Φ𝑘
ℎ in

Ω (in particular 𝑇 𝑘
ℎ ≥ 0 in Ω). Then, 0 ≤ Φ𝑘+1

ℎ ≤ 𝐾 and 𝑢𝑘+1
ℎ , 𝑁𝑘+1

ℎ ≥ 0 in Ω (and also 𝑇 𝑘+1
ℎ ≥ 0).

Proof. – Step 1. Φ𝑘+1
ℎ ≥ 0.

Multiplying (3.5) by (Φ𝑘+1
ℎ (𝑎))− and using that Φ𝑘

ℎ(𝑎) ≥ 0, it holds that:

1
d𝑡

(︀
Φ𝑘+1

ℎ (𝑎)
)︀2
− ≤

(︁ ̂︀𝑓3

)︁𝑘

ℎ
(𝑎)

(︀
Φ𝑘+1

ℎ (𝑎)
)︀
− . (3.10)

Indeed, using the form of
(︁ ̂︀𝑓3

)︁𝑘

ℎ
given in (3.9), the following estimates hold

𝛾 𝑅𝑘
ℎ (𝑎)

(︀
Φ𝑘

ℎ (𝑎)
)︀ (︀

Φ𝑘+1
ℎ (𝑎)

)︀
− ≤ 0

and

−
(︂

𝛾 𝑅𝑘
ℎ (𝑎)

(︂
𝑇 𝑘

ℎ (𝑎) + 𝑁𝑘
ℎ (𝑎) + Φ𝑘

ℎ (𝑎)
𝐾

)︂
+ 𝛿 𝑄𝑘

ℎ (𝑎)
)︂(︀

Φ𝑘+1
ℎ (𝑎)

)︀ (︀
Φ𝑘+1

ℎ (𝑎)
)︀
− ≤ 0.

Adding the last two inequalities, one has(︁ ̂︀𝑓3

)︁𝑘

ℎ
(𝑎)

(︀
Φ𝑘+1

ℎ (𝑎)
)︀
− ≤ 0. (3.11)

Therefore, from (3.10) and (3.11),
(︀
Φ𝑘+1

ℎ (𝑎)
)︀
− ≡ 0 ∀𝑎 ∈ 𝒩ℎ and this implies Φ𝑘+1

ℎ ≥ 0 in Ω.
– Step 2. Φ𝑘+1

ℎ ≤ 𝐾.
Multiplying (3.5) by

(︀(︀
Φ𝑘+1

ℎ −𝐾
)︀

(𝑎)
)︀
+

, it holds that

1
d𝑡

(︀(︀
Φ𝑘+1

ℎ −𝐾
)︀

(𝑎)
)︀2
+
≤
(︁ ̂︀𝑓3

)︁𝑘

ℎ
(𝑎)

(︀
Φ𝑘+1

ℎ (𝑎)−𝐾
)︀
+

. (3.12)

On the other hand, since in every node 𝑎 ∈ 𝒩 , due to the form of
(︁ ̂︀𝑓3

)︁𝑘

ℎ
given in (3.9) the following estimates

hold (︃
𝛾 𝑅𝑘

ℎ (𝑎) Φ𝑘
ℎ (𝑎)

(︃
1−

Φ𝑘+1
ℎ (𝑎)

𝐾

)︃)︃(︀
Φ𝑘+1

ℎ (𝑎)−𝐾
)︀
+
≤ 0

and

−
(︂

𝛾 𝑅𝑘
ℎ (𝑎)

(︂
𝑇 𝑘

ℎ (𝑎) + 𝑁𝑘
ℎ (𝑎)

𝐾

)︂
+ 𝛿 𝑄𝑘

ℎ (𝑎)
)︂(︀

Φ𝑘+1
ℎ (𝑎)

)︀ (︀
Φ𝑘+1

ℎ (𝑎)−𝐾
)︀
+
≤ 0.

Thus, adding the last two inequalities, we obtain that(︁ ̂︀𝑓3

)︁𝑘

ℎ
(𝑎)

(︀
Φ𝑘+1

ℎ (𝑎)−𝐾
)︀
+
≤ 0. (3.13)

Therefore, from (3.12) and (3.13),
(︀
Φ𝑘+1

ℎ (𝑎)−𝐾
)︀
+
≡ 0 ∀𝑎 ∈ 𝒩ℎ and this implies Φ𝑘+1

ℎ ≤ 𝐾 in Ω.
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– Step 3. 𝑢𝑘+1
ℎ ≥ 0.

Let 𝐼ℎ((𝑢𝑘+1
ℎ )−) ∈ 𝑁ℎ be defined as

𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁
=
∑︁

𝑎∈𝒩ℎ

(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− 𝜙𝑎,

where
(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− = min

{︀
0, 𝑢𝑘+1

ℎ (𝑎)
}︀

. Analogously, one defines 𝐼ℎ((𝑢𝑘+1
ℎ )+) ∈ 𝑁ℎ as

𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
+

)︁
=
∑︁

𝑎∈𝒩ℎ

(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
+

𝜙𝑎,

where
(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
+

= max
{︀

0, 𝑢𝑘+1
ℎ (𝑎)

}︀
. Notice that 𝑢𝑘+1

ℎ = 𝐼ℎ((𝑢𝑘+1
ℎ )−) + 𝐼ℎ((𝑢𝑘+1

ℎ )+).
Choosing 𝑣 = 𝐼ℎ((𝑢𝑘+1

ℎ (𝑎))−) in (3.3), it follows that,

1
d𝑡

⃦⃦⃦ (︀
𝑢𝑘+1

ℎ

)︀
−

⃦⃦⃦2

ℎ
+ 𝜈

(︁(︁
𝑒𝜒 Φ𝑘

ℎ

)︁
∇𝑢𝑘+1

ℎ ,∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁)︁
≤
(︁ ̂︀𝑓1

(︀
𝑢𝑘

ℎ, 𝑢𝑘+1
ℎ , 𝑁𝑘

ℎ , Φ𝑘
ℎ

)︀
,
(︀
𝑢𝑘+1

ℎ

)︀
−

)︁
ℎ

, (3.14)

where we have used in the left hand side that

1
d𝑡

⃦⃦⃦ (︀
𝑢𝑘+1

ℎ

)︀
−

⃦⃦⃦2

ℎ
≤ 1

d𝑡

⃦⃦⃦ (︂
𝑒

𝜒 Φ𝑘
ℎ

2

)︂ (︀
𝑢𝑘+1

ℎ

)︀
−

⃦⃦⃦2

ℎ

and that in every node 𝑎 ∈ 𝒩ℎ,

𝛿𝑡𝑢
𝑘+1
ℎ (𝑎) ·

(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− =

1
d𝑡

(︂⃒⃒⃒ (︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

⃒⃒⃒2
− 𝑢𝑘

ℎ (𝑎) ·
(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

)︂
≥ 1

d𝑡

(︂⃒⃒⃒ (︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

⃒⃒⃒2)︂
using that 𝑒𝜒 Φ𝑘

ℎ(𝑎) > 0, 𝑢𝑘
ℎ (𝑎) ≥ 0 and

(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− ≤ 0. On the other hand, we can make the following

decomposition in the diffusion term(︁(︁
𝑒𝜒 Φ𝑘

ℎ

)︁
∇𝑢𝑘+1

ℎ ,∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁)︁
=
(︁(︁

𝑒𝜒 Φ𝑘
ℎ

)︁
∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁
,∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁)︁
+
(︁(︁

𝑒𝜒 Φ𝑘
ℎ

)︁
∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
+

)︁
,∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁)︁
=
⃦⃦⃦ (︁

𝑒𝜒 Φ𝑘
ℎ

)︁1/2

∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁ ⃦⃦⃦2

𝐿2(Ω)

+
∑︁

𝑎̸=̃︀𝑎∈𝒩ℎ

(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

(︀
𝑢𝑘+1

ℎ (̃︀𝑎)
)︀
+

(︁(︁
𝑒𝜒 Φ𝑘

ℎ

)︁
∇𝜙𝑎,∇𝜙̃︀𝑎

)︁
.

Hence, using that
(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

(︀
𝑢𝑘+1

ℎ (̃︀𝑎)
)︀
+
≤ 0 if 𝑎 ̸= ̃︀𝑎, 𝑒𝜒 Φ𝑘

ℎ(𝑎) is a positive function and that

∇𝜙𝑎 · ∇𝜙̃︀𝑎 ≤ 0 ∀𝑎 ̸= ̃︀𝑎 ∈ 𝒩ℎ

(owing to the hypothesis of acute triangulation), we deduce,(︁(︁
𝑒𝜒 Φ𝑘

ℎ

)︁
∇𝑢𝑘+1

ℎ ,∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁)︁
≥
⃦⃦⃦ (︁

𝑒𝜒 Φ𝑘
ℎ

)︁1/2

∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁ ⃦⃦⃦2

𝐿2(Ω)
. (3.15)

Adding (3.15) in (3.14), it holds that

1
d𝑡

⃦⃦⃦ (︀
𝑢𝑘+1

ℎ

)︀
−

⃦⃦⃦2

ℎ
+ 𝜈

⃦⃦⃦ (︁
𝑒𝜒 Φ𝑘

ℎ

)︁1/2

∇𝐼ℎ

(︁(︀
𝑢𝑘+1

ℎ

)︀
−

)︁ ⃦⃦⃦2

𝐿2(Ω)
≤
(︂(︁ ̂︀𝑓1

)︁𝑘

ℎ
,
(︀
𝑢𝑘+1

ℎ

)︀
−

)︂
ℎ

. (3.16)
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On the other hand, by using that in every node 𝑎 ∈ 𝒩ℎ, due to the form of
(︁ ̂︀𝑓1

)︁𝑘

ℎ
given in (3.7), the following

estimates hold(︂
𝜌 𝑃 𝑘

ℎ (𝑎) + 𝜒 Φ𝑘
ℎ (𝑎)

(︂
𝛾 𝑅𝑘

ℎ (𝑎)
(︂

𝑇 𝑘
ℎ (𝑎) + 𝑁𝑘

ℎ (𝑎) + Φ𝑘
ℎ (𝑎)

𝐾

)︂
. + 𝛿 𝑄𝑘

ℎ (𝑎)
)︂)︂(︀

𝑇 𝑘
ℎ (𝑎)

)︀ (︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− ≤ 0

and

−
(︂

𝜌 𝑃 𝑘
ℎ (𝑎)

(︂
𝑇 𝑘

ℎ (𝑎) + 𝑁𝑘
ℎ (𝑎) + Φ𝑘

ℎ (𝑎)
𝐾

)︂
+ 𝛼 𝑆𝑘

ℎ (𝑎) + 𝜒 𝛾 𝑅𝑘
ℎ (𝑎) Φ𝑘

ℎ (𝑎)
)︂(︀

𝑇 𝑘+1
ℎ (𝑎)

)︀ (︀
𝑢𝑘+1

ℎ (𝑎)
)︀
− ≤ 0

owing to
(︀
𝑇 𝑘+1

ℎ (𝑎)
)︀ (︀

𝑢𝑘+1
ℎ (𝑎)

)︀
− =

(︁(︀
𝑢𝑘+1

ℎ (𝑎)
)︀
−

)︁2

𝑒𝜒 Φ𝑘+1
ℎ (𝑎) ≥ 0.

Then, adding the last two inequalities, we obtain that(︂(︁ ̂︀𝑓1

)︁𝑘

ℎ
,
(︀
𝑢𝑘+1

ℎ

)︀
−

)︂
ℎ

≤ 0. (3.17)

Therefore, from (3.16) and (3.17),
(︀
𝑢𝑘+1

ℎ

)︀
− ≡ 0 and this implies 𝑢𝑘+1

ℎ ≥ 0 in Ω. As we recover 𝑇 𝑘+1
ℎ from

𝑢𝑘+1
ℎ and Φ𝑘+1

ℎ as 𝑇 𝑘+1
ℎ = 𝑒𝜒 Φ𝑘+1

ℎ 𝑢𝑘+1
ℎ , we have in particular that 𝑇 𝑘+1

ℎ ≥ 0 in Ω.
– Step 4. 𝑁𝑘+1

ℎ ≥ 0.
Finally, for (3.4) it is easy to obtain that

1
d𝑡

(︀
𝑁𝑘+1

ℎ (𝑎)
)︀2
− ≤

(︁ ̂︀𝑓2

)︁𝑘

ℎ
(𝑎)

(︀
𝑁𝑘+1

ℎ (𝑎)
)︀
− . (3.18)

In addition,
(︁ ̂︀𝑓2

)︁𝑘

ℎ
(𝑎) ≥ 0 in every node 𝑎 ∈ 𝒩ℎ due to the form of

(︁ ̂︀𝑓2

)︁𝑘

ℎ
given in (3.8). Hence,

(︁ ̂︀𝑓2

)︁𝑘

ℎ
(𝑎)

(︀
𝑁𝑘+1

ℎ (𝑎)
)︀
− ≤ 0. (3.19)

Thus, from (3.18) and (3.19),
(︀
𝑁𝑘+1

ℎ (𝑎)
)︀
− ≡ 0 ∀𝑎 ∈ 𝒩ℎ and this implies 𝑁𝑘+1

ℎ ≥ 0 in Ω.
�

4. Adimensionalization

Here, we simplify the number of the parameters of (1.1) and present the simulations according to the dimen-
sionless parameters. For that, we consider as one possible example of the dimensionless factors 𝑃 (Φ, 𝑇 ), 𝑆 (Φ, 𝑇 ),
𝑄 (Φ, 𝑇 ) and 𝑅 (Φ, 𝑇 ) appearing in (1.4) satisfying the hypotheses (1.12)–(1.16), the following ones:

𝑃 (Φ, 𝑇 ) =
Φ

Φ + 𝑇
, (4.1)

𝑆 (Φ, 𝑇 ) =
𝐾 − Φ

𝑇 + Φ + 𝐾
, (4.2)

𝑅 (Φ, 𝑇 ) =
𝑇

𝑇 2

𝐾
+ Φ + 𝐾

, (4.3)
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and

𝑄 (Φ, 𝑇 ) =
𝑇

Φ + 𝑇
· (4.4)

These factors 𝑃 , 𝑆, 𝑄 and 𝑅 satisfy the conditions (1.5)–(1.9). To verify (1.12), observe that

𝑅(Φ, 𝑇 )Φ
𝑃 (Φ, 𝑇 )

=
𝑇 (Φ + 𝑇 )

𝑇 2/𝐾 + Φ + 𝐾
≤ 𝐶1

for some 𝐶1 > 0.
Moreover, in (4.2) and (4.3) we consider a regularization in the denominator since without this regularization,

the partial derivatives of (4.2) and (4.3) degenerate in (0, 0).
For the adimensionalization, we start studying the carrying capacity parameter 𝐾 > 0. We consider the

change of variables ̃︀𝑇 =
𝑇

𝐾
, ̃︀𝑁 =

𝑁

𝐾
and ̃︀Φ =

Φ
𝐾

passing the normalized capacity equal to 1.

Now, we consider the diffusion parameter 𝜈 and the tumor proliferation parameter 𝜌. We know that 𝜌 is
related to the time variable while 𝜈 is related to the spatial variable. Thus, we can make the following change
of the independent variables: ⎧⎪⎪⎨⎪⎪⎩

𝑠 = 𝜌 𝑡 ⇒ 𝑑𝑠 = 𝜌 d𝑡,

𝑦 =
√︂

𝜌

𝜈
𝑥 ⇒ 𝑑𝑦 =

√︂
𝜌

𝜈
d𝑥.

(4.5)

Applying these changes in (1.1), it holds that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕 ̃︀𝑇
𝜕𝑠

−∆ ̃︀𝑇 + 𝐾
𝜅

𝜈
∇ ·
(︁̃︀𝑇 ∇̃︀Φ)︁ = ̃︀𝑓1

(︁̃︀𝑇 , ̃︀𝑁, ̃︀Φ)︁
𝜕 ̃︀𝑁
𝜕𝑠

= ̃︀𝑓2

(︁̃︀𝑢, ̃︀Φ)︁
𝜕̃︀Φ
𝜕𝑠

= ̃︀𝑓3

(︁̃︀𝑢, ̃︀𝑁, ̃︀Φ)︁
(4.6)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

̃︀𝑓1

(︁̃︀𝑇 , ̃︀𝑁, ̃︀Φ)︁ = 𝑃
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀𝑇 (︁1−

(︁̃︀𝑇 + ̃︀𝑁 + ̃︀Φ)︁)︁− 𝛼

𝜌
𝑆
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀𝑇 ,

̃︀𝑓2

(︁̃︀𝑇 , ̃︀Φ)︁ =
𝛼

𝜌
𝑆
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀𝑇 +

𝛿

𝜌
𝑄
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀Φ,

̃︀𝑓3

(︁̃︀𝑇 , ̃︀𝑁, ̃︀Φ)︁ =
𝛾

𝜌
𝑅
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀Φ(︁1−

(︁̃︀𝑇 + ̃︀𝑁 + ̃︀Φ)︁)︁− 𝛿

𝜌
𝑄
(︁̃︀Φ, ̃︀𝑇)︁ ̃︀Φ.

(4.7)

Hence, we obtain the following dimensionless parameters (Tab. 2).
Thus, we reduced three parameter from the original model (1.1): 𝜌, 𝜈 and 𝐾.

Remark 4.1. To simplify the notation, we consider along the rest of the paper: 𝑠 = 𝑡, 𝑦 = 𝑥, 𝜅* = 𝜅, 𝛼* = 𝛼,
𝛾* = 𝛾, 𝛿* = 𝛿, ̃︀𝑇 = 𝑇 , ̃︀𝑁 = 𝑁 , ̃︀Φ = Φ and ̃︀𝑓𝑖 = 𝑓𝑖 for 𝑖 = 1, 2, 3.
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Table 2. Dimensionless parameters.

Dimensionless parameter 𝜅* 𝛼* 𝛾* 𝛿*

Original parameter 𝐾
𝜅

𝜈

𝛼

𝜌

𝛾

𝜌

𝛿

𝜌

Finally, the adimensionalizated system is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑇

𝜕𝑡
−∆𝑇 + 𝜅 ∇ · (𝑇 ∇Φ) = 𝑃 (Φ, 𝑇 ) 𝑇 (1− (𝑇 + 𝑁 + Φ))− 𝛼 𝑆 (Φ, 𝑇 ) 𝑇,

𝜕𝑁

𝜕𝑡
= 𝛼 𝑆 (Φ, 𝑇 ) 𝑇 + 𝛿 𝑄 (Φ, 𝑇 ) Φ,

𝜕Φ
𝜕𝑡

= 𝛾 𝑅 (Φ, 𝑇 ) ̃︀Φ (1− (𝑇 + 𝑁 + Φ))− 𝛿 𝑄 (Φ, 𝑇 ) Φ.

(4.8)

5. Numerical simulations

In this section, we will show some numerical simulations in order to detect which parameters of (4.8) are
more important in the behaviour of the ring width between necrosis and tumor and the regular or irregular
growth of the surface of a GBM.

For the numerical simulations we will use the uncoupled and linear fully discrete scheme defined in (3.3)–
(3.5) by means of an Implicit-Explicit (IMEX) Finite Difference in time approximation and 𝑃1 continuous finite
element with “mass-lumping” in space.

We will use the computational domain, Ω = (−9, 9)× (−9, 9), the final time, 𝑇𝑓 = 500, the structured trian-
gulation, {𝒯ℎ}ℎ>0 of Ω such that Ω =

⋃︀
𝒦∈𝒯ℎ

𝒦, partitioning the edges of 𝜕Ω into 45 subintervals, corresponding
with the mesh size ℎ = 0.4 and the time step, d𝑡 = 10−3.

We consider along the work necrosis zero initially and initial tumor given by Figure 5.
For the vasculature, we will take different initial conditions depending on the kind of tumor growth considered.

5.1. Ring width

Here, we present some numerical simulations according to the tumor-ring. Based on the study [27], we know
that tumors with a thick tumor ring have the worst prognosis as we can see in the Figure 1.

In order to measure different rings, we will compare the density of tumor with respect to the density of tumor
and necrosis. In every simulation, we will change the value of one parameter and testing how the tumor growth
changes.

Since the subjects of study are tumor and necrosis, we change the parameters of the tumor and necrosis
equations, these are, 𝜅 and 𝛼. Then, in all the simulations the value of 𝛾 and 𝛿 are fixed (see Tab. 3).

For 𝜅 and 𝛼, we will take either 𝜅 = 5 and 𝛼 ∈ [10, 100] or 𝜅 ∈ [1, 10] and 𝛼 = 45 (see Tab. 4).
Moreover, we take the initial vasculature defined uniformly in space.

5.1.1. Tumor ring quotient

We will start studying the ratio between proliferative tumor density,
∫︁

Ω

𝑇 d𝑥 and total tumor density,∫︁
Ω

(𝑇 + 𝑁) d𝑥 and we consider the different values of 𝜅 and 𝛼 given in Table 4. In fact, we compute the
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Figure 1. Survival versus the ring width of GBM.

Table 3. Fixed value parameters.

Variable 𝛾 𝛿

Value 0.255 2.55

Table 4. Variable value parameters.

Variable (fixed value) 𝜅 (5) 𝛼 (45)

Ranges [1, 10] [10, 100]

following “ring quotient” (RQ) coefficient:

0 ≤ RQ =

∫︁
Ω

𝑇 d𝑥∫︁
Ω

(𝑇 + 𝑁) d𝑥

≤ 1. (5.1)

Thus, if RQ is near to zero, there exists a high density of necrosis (which implies slim tumor ring) whereas
if RQ is close to one, there is not enough necrosis in comparison with proliferative tumor density (which means
thick tumor ring).

We can see in Figures 2a and 2b, how the model captures two kinds of tumor ring changing the parameter 𝛼
and the tumor rings for different 𝜅 do not change. This means that a change of the rate of tumor destruction
for hypoxia produces much difference in the tumor rings.

Hence, the best configurations to obtain a slim (resp. thick) ring would be choose a big (resp. small) 𝛼.

5.1.2. Density tumor growth

In Figure 3, we compute the total tumor
∫︁

Ω

(𝑇 + 𝑁) d𝑥 for the values of 𝜅 and 𝛼 given in Table 4.

We can see in Figure 3 how the variation in the parameters 𝜅 and 𝛼 produces changes in the total tumor
density. In fact, the total tumor decreases with respect to 𝜅 and 𝛼.

Therefore, we conclude that 𝛼 is the most important parameter in order to change the tumor ring and both
𝜅 and 𝛼 have relevance to change the total density in the tumor growth.
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Figure 2. RQ versus time for 𝜅 and 𝛼. (a) RQ versus time for 𝜅. (b) RQ versus time for 𝛼.

Figure 3.

∫︁
Ω

(𝑇 + 𝑁) d𝑥 versus time for 𝜅 and 𝛼. (a)
∫︁

Ω

(𝑇 + 𝑁) d𝑥 versus time for 𝜅. (b)∫︁
Ω

(𝑇 + 𝑁) d𝑥 versus time for 𝛼.

5.2. Regularity surface

In this case, we will test if our model (4.8) can develop different regularities for the tumor surfaces. Now, we
will base our results on the study published in [28] where appears the following survival curve.

From Figure 4, the authors conclude that tumors with a regular surface have better prognosis than tumors
with irregular surface.

Along this section, we simulate the tumor growth with the initial tumor defined in Figure 5, necrosis zero
and the vasculature distributed in different zones as in Figure 6.

Thus, the question is if the chemotaxis term (of tumor going to the vasculature) implies tumor growth with
regular or irregular surface. We remember that the chemotaxis term in (4.8) is defined by 𝜅 ∇ · (𝑇 ∇Φ) with
𝜅 > 0.

Now, we want to detect which parameter is more relevant changing the regularity of the tumor surface,
showing some simulations in which we move the value of one of them and observe how the tumor changes. For
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Figure 4. Survival versus the regularity surface of GBM.

Figure 5. Initial tumor.

Figure 6. Initial vasculature.



426 A. FERNÁNDEZ-ROMERO ET AL.

Table 5. Variable value parameters.

Variable (fixed value) 𝜅 (5) 𝛼 (45) 𝛾 (0.255) 𝛿 (2.55)

Ranges [1, 10] [10, 100] [0.01, 0.5] [0.1, 5]

this, it is important the interaction between tumor and vasculature. Then, we will move the parameters which
appear in tumor and vasculature equations, 𝜅, 𝛼, 𝛾 and 𝛿.

For these parameters we take the values of Table 5 (each parameter will change its value in the range, jointly
the other parameters take fixed values).

5.2.1. Regularity surface quotient

The pictures of Figure 7 show the quotient between the area occupied by the total tumor (tumor and
necrosis) and the area of ratio the smallest circle containing the tumor. Thus, we present these computations
for the different values of 𝜅, 𝛼, 𝛾 and 𝛿 chosen in Table 5. In fact, we compute the following “surface quotient”
(SQ) coefficient:

0 ≤ SQ =

∫︁
Ω

(𝑇 + 𝑁)min d𝑥

𝜋 · (Rmax)2
≤ 1 (5.2)

where (𝑇 + 𝑁)min and Rmax are defined as follows:

(𝑇 + 𝑁)min =

⎧⎨⎩1 if 𝑇 + 𝑁 ≥ 0.001,

0 otherwise.
(5.3)

Rmax = max {ratio of the subdomain where (𝑇 + 𝑁)min = 1} . (5.4)

Thus, we will deduce that if SQ is near to zero, tumor will have an irregular surface whereas if SQ is close to
one, tumor will have a regular surface.

Remark 5.1. By the size of mesh considered, at the beginning of the pictures given in Figure 7, the value of
SQ is larger than 1 and it is observed oscillations in the graphs of SQ. Indeed, if we consider a mesh size smaller,
these initial values of SQ and the oscillations can be reduced. In order to check this, we show an example of SQ
versus time for different 𝜅 considering a mesh size smaller.

However, we think that it is not necessary the use of a mesh size smaller since we obtain the same behaviour
(in average) for the mesh considered initially and with this mesh, we reduce the computational time.

We see in Figure 7, how our model differentiates two kinds of tumor growth changing the parameter 𝜅, see
Figure 7a, and with lower variation for 𝛼, see Figure 7b. On the other hand, we do not appreciate changes in
the variation of parameters 𝛾 and 𝛿 for the irregularity of tumor growth as we see in Figures 7c and 7d.

5.2.2. Area

Once we have identified that the more important parameters for the regularity surface are firstly 𝜅 and later
𝛼, we measure the area of total tumor for these parameters as in Table 5 (Fig. 8).

We see in Figure 9 how the largest area corresponds to the smallest 𝛼 = 10 and the smallest area holds for
the highest 𝛼 = 100. In the case of variation of 𝜅, Figure 9a, a similar influence in the total tumor area for
𝜅 = 1 and 𝜅 = 10 is observed.

Thus, we have obtained a higher variation of total area for the different values of 𝛼 than for 𝜅, see Figure 9.
Nevertheless, in the simulation of the “surface quotient” (SQ), we obtained more variation between the different
values of 𝜅 that for the different values of 𝛼, see Figure 7. Hence, the factor which modifies this change is Rmax,
defined by (5.4). In fact, Rmax will change more with the variation of 𝜅 than for the variation of 𝛼.
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Figure 7. SQ versus time for 𝜅1, 𝛼, 𝛾 and 𝛿. (a) SQ versus time for 𝜅. (b) SQ versus time for
𝛼. (c) SQ versus time for 𝛾. (d) SQ versus time for 𝛿.

Figure 8. SQ versus time for 𝜅 using a mesh size smaller.
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Figure 9. Area of total tumor versus time for 𝜅 and 𝛼. (a) Area of total tumor versus time
for 𝜅. (b) Area of total tumor time for 𝛼.

Figure 10. Irregular tumor growth for 𝜅 = 10. (a) 𝑡 = 50. (b) 𝑡 = 100. (c) 𝑡 = 150. (d) 𝑡 = 200.
(e) 𝑡 = 250.

5.2.3. Tumor growth

Here, we examine the tumor growth for 𝜅 = 10 in five times step in order to see the variation in space of
tumor (see Figure 10). For this growth, the rest of parameters take the fixed values showed in Table 5.

We observe an irregular tumor growth for 𝜅 = 10 when time increases. These results are in concordance with
Figure 9a, where we observed a great irregularity for 𝜅 = 10 and with Figure 9a, where the area of the tumor
for 𝜅 = 10 is increasing.

Finally, we conclude that 𝜅 is the more relevant parameters in the irregular surface of tumor and 𝛼 is the
most important parameter for total area in the tumor growth.

5.3. Discussion

Summarizing the results obtained with respect to the ring width and the regularity surface for the chemotactic
and dimensionless system (4.8) related to GBM growth model, we deduce that this model can capture these two
properties varying some parameters. Moreover, we have proved that the parameters more relevant according to
the tumor growth are 𝜅 and 𝛼.

For the tumor ring, where the vasculature is uniformly distributed, the results show that the hypoxia param-
eter 𝛼 is the most relevant coefficient as we can observe in Figures 2a and 2b.

In the case of regularity surface, where the vasculature is non-uniformly distributed, the parameter which
produces more irregularity in the tumor surface is the chemotaxis parameter 𝜅, see Figures 7a–7d.
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Finally, after the reduction of our model (1.1) from 7 initial parameters to 2 (𝜅 and 𝛼) which capture the
different behaviour of tumor growth, we conclude that hypoxia coefficient 𝛼 is the main parameter for the tumor
ring and area of tumor and 𝜅 is the most influential parameter for the regularity surface.

Appendix A.

In this appendix, we will prove an Alikakos’ recursive 𝐿∞ estimate.
Following the proof of Lemma 2.3, we obtain in (2.22) that

max
𝑡∈(0,𝑇𝑓 )

‖𝑢‖𝑝
𝐿𝑝(Ω) ≤ ̃︀𝐶 max

{︁(︀
𝑝2 + 1

)︀
max

𝑡∈(0,𝑇𝑓 )
‖𝑢‖𝑝

𝐿𝑝/2(Ω)
, ‖𝑢0‖𝑝

𝐿∞(Ω)

}︁
. (A.1)

In [2], the authors obtained an estimate starting from an estimate like (A.1) but with power 𝑝 instead of 𝑝2.
Taking in (A.1) 𝑝 = 2𝑘 for all 𝑘 ≥ 1, it holds that,

max
𝑡∈(0,𝑇𝑓 )

∫︁
Ω

𝑢2𝑘

d𝑥 ≤ 𝐶 max
{︁(︀

22 𝑘 + 1
)︀

max
𝑡∈(0,𝑇𝑓 )

(︂∫︁
Ω

𝑢2𝑘−1
d𝑥

)︂2

, ‖𝑢0‖2
𝑘

𝐿∞(Ω)

}︁
≤ 𝐶 𝐶2 max

{︃(︀
22 𝑘 + 1

)︀ [︃
max

{︃(︁
22 (𝑘−1) + 1

)︁
max

𝑡∈(0,𝑇𝑓 )

(︂∫︁
Ω

𝑢2𝑘−2
d𝑥

)︂2

,

‖𝑢0‖2
𝑘−1

𝐿∞(Ω)

}︃]︃2

, ‖𝑢0‖2
𝑘

𝐿∞(Ω)

⎫⎬⎭
≤ 𝐶 𝐶2 𝐶22

max

{︃(︀
22 𝑘 + 1

)︀ (︁
22 (𝑘−1) + 1

)︁2
(︂

max
𝑡∈(0,𝑇𝑓 )

∫︁
Ω

𝑢2𝑘−3
d𝑥

)︂22

,

(︀
22 𝑘 + 1

)︀
‖𝑢0‖2

𝑘

𝐿∞(Ω)

}︁
≤ 𝐶 𝐶2 𝐶22

𝐶23
max

{︃(︀
22 𝑘 + 1

)︀ (︁
22 (𝑘−1) + 1

)︁2 (︁
22 (𝑘−2) + 1

)︁23

max
𝑡∈(0,𝑇𝑓 )

(︂∫︁
Ω

𝑢2𝑘−3
d𝑥

)︂23

,

(︀
22 𝑘 + 1

)︀ (︁
22 (𝑘−1) + 1

)︁2

‖𝑢0‖2
𝑘

𝐿∞(Ω)

}︂
≤ . . . ≤

≤
(︀
𝐶
(︀
22 𝑘 + 1

)︀)︀ (︁
𝐶
(︁

22 (𝑘−1) + 1
)︁)︁2 (︁

𝐶
(︁

22 (𝑘−2) + 1
)︁)︁22

. . .
(︀
𝐶
(︀
22 + 1

)︀)︀2𝑘−1 ̃︀𝐾2𝑘

, (A.2)

where ̃︀𝐾 is the constant that dominates ‖𝑢‖𝐿1(Ω) for all time, since 𝑢 ∈ 𝐿∞
(︀
0, 𝑇𝑓 ; 𝐿1 (Ω)

)︀
(using Lem. 2.2,

taking into account that ‖𝑢0‖𝐿∞(Ω) and the hypothesis (1.10)). Thus, from (A.2)

max
𝑡∈(0,𝑇𝑓 )

∫︁
Ω

𝑢2𝑘

d𝑥 ≤
(︀
𝑎 22 𝑘

)︀ (︁
𝑎 22(𝑘−1)

)︁2 (︁
𝑎 22(𝑘−2)

)︁22 (︁
𝑎 22(𝑘−3)

)︁23

. . .
(︀
𝑎 22

)︀2𝑘−1 ̃︀𝐾2𝑘

, (A.3)

for a certain 𝑎 ≥ 3 𝐶 since 𝐶
(︀
22(𝑘−𝑗) + 1

)︀
≤ 𝑎 22 𝑘 if 𝑎 ≥ 3 𝐶 for all 𝑗 = 0, . . . , 𝑘 − 1. Thus, we can express

(A.3) as

max
𝑡∈(0,𝑇𝑓 )

∫︁
Ω

𝑢2𝑘

d𝑥 ≤ 𝑎
∑︀𝑘−1

𝑗=0 2𝑗

22
∑︀𝑘−1

𝑗=0 (𝑘−𝑗)2𝑗 ̃︀𝐾2𝑘

= 𝑎2𝑘−1 2(−𝑘−6+2𝑘+1) ̃︀𝐾2𝑘

. (A.4)

Taking the limit as 𝑘 → +∞ of the 1/2𝑘 power of both sides of (A.4) we obtain

max
𝑡∈(0,𝑇𝑓 )

‖𝑢‖𝐿∞(Ω) ≤ lim
𝑘→+∞

(︃
𝑎

2𝑘−1
2𝑘 2

(−𝑘−6+2𝑘+1)
2𝑘 ̃︀𝐾)︃ = 𝑎 22 ̃︀𝐾. (A.5)
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Hence,
𝑢 ∈ 𝐿∞ (0, +∞; 𝐿∞ (Ω)) .
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