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AN EXTREMAL PROBLEM WITH APPLICATIONS TO

RENEWABLE ENERGY PRODUCTION

Thomas Ashley1,*, Emilio Carrizosa1

and Enrique Fernández-Cara2

Abstract. Dynamic optimisation provides complex challenges for optimal solution, but greatly
increases applicability when considering time dependent situations. In this work, a constrained dynamic
optimisation problem is analysed and subsequently applied to the resolution of a real-world engineer-
ing problem concerning Solar Power Tower plants. We study the existence of solutions and deduce an
appropriate optimality characterisation in this applied framework. Two iterative algorithms are pre-
sented, convergence properties are discussed and a numerical illustration is given utilising realistic data.
Finally, conclusions are drawn on the considered model and some ideas for future work are discussed.
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1. Introduction

Constrained optimisation problems are of great theoretical and practical interest, due to their complex nature
and ability to describe real-world situations. Recent literature on the application of constrained optimisation
can be seen from [13], where the authors consider on-line optimisation applied to a chemical reactor and [11],
where a review on applied optimisation methods can be found.

The mathematical complexity of such problems is amplified when the decision variables are functions of
time and consequently belong to an infinite dimensional vector space. Related problems model many realistic
situations in a very acceptable and efficient way. For example in [18], the authors utilise approximate dynamic
programming to optimise problems within ambulance management and present a numerical illustration utilising
real-world data; in [16], the authors present a review of dynamic optimisation vehicle routing problems and
discuss various solution methods.

In a previous work, the authors considered a stationary constrained problem motivated by the optimisation
of the aiming action in a Solar Power Tower (SPT) plant, see [1]. The purpose of that paper was to determine
strategies that maximise the radiation energy reaching the target (receiver). Optimisation techniques have
been applied regularly in the literature to renewable energy research; see [8], where the authors present a
review of related methods in sustainable buildings; see also [6], where multi-objective techniques are applied to
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renewable energy systems, utilising particle swarm methods. The work presented in this paper looks to extend
the optimisation model considered in [1] to the dynamic case, where additional time-dependent constraints are
considered.

In order to present a rigorous formulation of the problem we are interested in, let us introduce some notation
and let us recall some definitions. As usual, for any Euclidean space S, we denote by | · | the associated norm.
On the other hand, H1(0, T ; S) stands for the Sobolev space of continuous functions p : [0, T ] 7→ S such that
ṗ(t) exists a.e. and ∫ T

0

|ṗ(t)|2 dt < +∞.

The associated duality product will be denoted by 〈· , ·〉. Also, the symbol C will denote a generic positive
constant.

In this work, we consider extremal problems of the following kind:{
Maximise J(p) =

∫ T
0
G(t,p(t)) dt

Subject to p ∈ Pad,
(1.1)

where Pad is a subset of a Hilbert space P of functions p = p(t) that take values in an Euclidean space F. It
will be assumed that 

G : [0, T ]× F 7→ R is a continuous function,

G is differentiable with respect to p at any (t,p) and

∂G

∂p
: [0, T ]× F 7→ R is continuous.

(1.2)

More precisely, P and Pad will be given by

P = H1(0, T ; F), (1.3)

Pad = {p ∈ P : p(t) ∈ R ∀t ∈ [0, T ], M(p) ≤ σ}, (1.4)

where

R is a nonempty compact convex set in F, (1.5)

M : H1(0, T ; F) 7→ E is a C1 mapping (E is another Euclidean space) (1.6)

and σ ∈ E. In (1.4) and henceforth, the inequality M(p) ≤ σ must be understood component-wise.
In this paper, our aim is to solve theoretically and numerically the previous optimisation problem (1.1),

paying special attention to applications to solar energy production. Details on the meaning of the variables and
the functionals in the context of SPT plants will be given in Sections 4 and 5.

The plan of the paper is the following. In Section 2, we first prove the existence of a solution to (1.1) and
subsequently characterise the solutions by an appropriate optimality system. We then formulate and analyse two
iterative algorithms in Section 3, the first one relying on a penalty method and the second one using Augmented
Lagrangian techniques. Section 4 is devoted to particularise (1.1) in the context of a SPT plant; there, the
existence and characterisation of optimal aiming strategies are established. The algorithms are illustrated with
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numerical experiments for a real SPT plant in Section 5. Finally, Section 6 contains some conclusions and the
description of future work.

2. Theoretical analysis: existence and optimality results

This section deals with the theoretical analysis of (1.1). To this purpose, let us introduce the set P0 = {p ∈
P : p(t) ∈ R ∀t ∈ [0, T ]}. It will be assumed that the mapping M in (1.6) satisfies the following:

M is sequentially weakly lower semicontinuous in H1(0, T ; F), (2.1)

in the sense that pn → p weakly in H1(0, T ; F) implies lim infn→+∞M(pn) ≥M(p) and

M is bounded on bounded sets and coercive in P0, (2.2)

in the sense that, for any σ ∈ E, the set of functions p ∈ P0 satisfying M(p) ≤ σ is bounded in H1(0, T ; F)
(equivalently, if pn ∈ P0 for all n and ‖pn‖p → +∞, then |(M(pn)−σ)+| → +∞ for all σ ∈ E; here, z+ denotes
the positive part of z, understood component-wise).

Our first result is the following:

Theorem 2.1. Assume that the assumptions (1.2)–(2.2) are satisfied and the set Pad, given by (1.4), is non-
empty. Then, there exists at least one solution to (1.1).

Proof. The proof is standard if we take into account carefully the properties of the spaces and mappings involved
in the formulation of the problem, see for instance [7].

Thus, let {pn} be a maximising sequence for (1.1), that is, a sequence in Pad such that

J(pn)→ sup
p∈Pad

J(p) as n→ +∞.

The pn are uniformly bounded in H1(0, T ; F), since they all belong to Pad and (2.2) holds. Consequently, at
least for a subsequence (again indexed by n), one has

pn → p̂ weakly in H1(0, T ; F) and strongly in C0([0, T ]; F).

The set Pad is closed in P, thanks to (1.4), (1.5) and (2.1). Hence, p̂ ∈ Pad. On the other hand, p 7→ J(p)
is continuous in C0([0, T ]; F), thanks to (1.2). Therefore, one has

J(p̂) = max
p∈Pad

J(p).

This ends the proof.

Remark 2.2. In view of the possible non-convexity of J and M , uniqueness is in general out of scope.

From now on, it will be assumed that the hypotheses (1.2)–(1.6) are satisfied. Note that P0 is a non-empty
closed convex set of H1(0, T ; F). In our second result, we present suitable necessary optimality conditions that
must be satisfied by the solutions to (1.1). For simplicity, we will assume from now on that E = R2 and we will
denote by M1 and M2 (resp. σ1 and σ2) the components of M (resp. σ).

Theorem 2.3. Let p̂ be a solution to (1.1). Assume that the constraints associated to M are qualified at p̂,
that is:

• ∃q1,q2 ∈ H1(0, T ; F) such that 〈∇Mi(p̂),qi〉 < 0 for i = 1, 2
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Then, there exist λ1, λ2 ≥ 0 such that the triplet (p̂, λ1, λ2) satisfies{
〈∇J(p̂),p− p̂〉 − λ1〈∇M1(p̂),p− p̂〉 − λ2〈∇M2(p̂),p− p̂〉 ≤ 0 ∀p ∈ P0,

λi(Mi(p̂)− σi) = 0, i = 1, 2.
(2.3)

For the proof, we can use several arguments. Thus, we can directly apply the Karush-Kuhn-Tucker principle;
see for instance Theorem 9-2.3 in [15]. We can also argue as in the proof of the Dubovirski-Milyouyin formalism;
see [10] for details.

3. Some iterative algorithms

3.1. Penalisation

In this section, we introduce an iterative method for the solution of (1.1) based on partial penalisation
techniques. The advantage of this approach is that it reduces the task to the solution of other optimisation
problems where only some constraints are kept (those easier to handle). The drawback is that a (small) parameter
must be introduced and this can have a significant (undesired) influence at the numerical level.

Thus, let us set

Jµ(p) := J(p)− 1

2µ
|(M(p)− σ)+|2 (3.1)

for any µ > 0. Recall that (M(p)− σ)+ stands for the positive part of M(p)− σ and | · | denotes the Euclidean
norm in E. Then, a suitable approximation of (1.1) is the following:{

Maximise Jµ(p)

Subject to p ∈ P0

(3.2)

and it is reasonable to expect that, for small µ > 0, any solution to the penalized problem (3.2) solves
approximately (1.1).

Algorithm (Penalisation):

1. Choose µ0 > 0 and p0 ∈ P0.
2. For n ≥ 0, solve the following extremal problem:Maximise Ĵn(p) := J(p)− 1

2µn
|(M(p)− σ)+|2

Subject to p ∈ P0

(3.3)

3. Take µn+1 = aµn with 0 < a < 1 and go to step 2 with n replaced by n+ 1.

Theorem 3.1. Let pn be the solution to (3.3) for all n ≥ 1, and assume that µn → 0. Then, any weak limit p∗
of {pn}is a solution to (1.1).

Proof. Let p be a solution to (1.1). The following holds:

1. For all n ≥ 0 there exists pn. Indeed, we are maximising in (3.3) a sequentially weakly upper semicon-
tinuous function in a closed convex set P0 ⊂ H1(0, T ; F). Arguing as in the proof of Theorem 2.1, the
existence of a solution follows.
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2. The pn are uniformly bounded in H1(0, T ; F), since

J(pn)− 1

2µn
|(M(pn)− σ)+|2 ≥ J(p) ∀n ≥ 1.

Moreover, |(M(pn)− σ)+|2 ≤ Cµn and limn→+∞ |(M(pn)− σ)+|2 = 0. So, there exists at least one weak
limit point p∗.

3. If p∗ is a weak limit, at least for a subsequence one has pk → p∗ weakly in H1(0, T ; F) and strongly
in C0([0, T ]; F). Then,

|(M(p∗)− σ)+|2 ≤ lim inf
k→+∞

|(M(pk)− σ)+|2 = 0,

whence pvec∗ ∈ Pad. On the other hand, the following holds for any p′ ∈ Pad:

J(p′) = Ĵk(p′) ≤ Ĵk(pk) for all k whence J(p′) ≤ lim inf
k→+∞

Jµk(pk) ≤ J(p∗).

This ends the proof.

From the practical viewpoint, instead of solving each subproblem (3.3) exactly, it can be more interesting to
stop the resolution when the size of ∇Ĵn is sufficiently small. This motivates the following result:

Theorem 3.2. Let us assume that µn ↘ 0, τn ↘ 0,

|(M(p)− σ)+|2 ≥ Cτn‖p‖p ∀p ∈ P0

and

lim inf
n→+∞

〈∇M(pn),p′ − pn〉 ≤ 〈∇M(p∗),p
′ − p∗〉 ∀p′ ∈ P0

and let us stop the resolution of (3.3) when

‖∇Ĵn(p)‖p = ‖∇J(p)− 1

µn
(M(p)− σ)+ · ∇M(p)‖p ≤ τn.

Then, any weak limit p∗ solves (1.1). Furthermore, if

1

µn
(Mi(p

n)− σi)+ → λi∗, i = 1, 2

for a subsequence, then the Karush-Khun-Tucker conditions (2.3) are satisfied by p∗, λ
1
∗ and λ2∗.

Proof. Again, let p be a solution to (1.1). Then:

1. If pn denotes the n-th iterate, with ‖∇Ĵn(pn)‖P ≤ τn, one has

J(pn)− 1

2µn
|(M(pn)− σ)+|2 ≥ J(p)− τn‖pn − p‖P.

As a consequence,

|(M(pn)− σ)+|2 ≤ Cµn
(
|(M(pn)− σ)+|2 + 1

)
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and ‖pn‖P ≤ C. We deduce that, at least for a subsequence, pk → p∗ weakly in H1(0, T ; F) and strongly
in C0([0, T ]; F).

2. Any weak limit p∗ is a solution to (1.1) (proved as in Thm. 3.1). Now, let us set λin = 1
µn (Mi(p

n)− σi)+
for i = 1, 2. Then,

|λ1n|2 + |λ2n|2 =
2

µn
(

1

µn
|(M(pn)− σ)+|2) ≤ C[|(M(pn)− σ)+|2 + 1] ≤ C.

Therefore, we can suppose that λin → λi∗, where λi∗ ≥ 0. Since

‖∇Ĵn(pn)‖P = ‖∇J(pn)− 1

µn

2∑
i=1

(Mi(p
n)− σi)∇Mi(p

n)‖P

= ‖∇J(pn)−
2∑
i=1

λin∇Mi(p
n)‖ ≤ τn,

one has 〈∇J(pn),pn〉 → 〈∇J(p∗),p∗〉 and

〈∇J(p∗),p
′ − pn〉 → 〈∇J(p∗),p

′ − p∗〉 ∀p′ ∈ P.

3. Consequently, for any p′ ∈ P0, we see that

〈∇J(p∗)−
2∑
i=1

λi∗∇Mi(p∗),p
′ − pn〉

= 〈∇J(pn)−
2∑
i=1

λin∇Mi(p
n),p′ − pn〉+ 〈∇J(p∗)−∇J(pn),p′ − pn〉

+

2∑
i=1

(λin − λi∗)〈∇Mi(p
n),p′ − pn〉+

2∑
i=1

λi∗〈∇Mi(p
n)−∇Mi(p∗),p

′ − pn〉.

This yields

〈∇J(p∗)−
2∑
i=1

λi∗∇Mi(p∗),p
′ − pn〉

≤ τn‖p′ − pn‖P + |〈∇J(p∗)−∇J(pn),p′ − pn〉|

+

2∑
i=1

|〈∇Mi(p
n),p′ − pn〉|λin − λi∗|

+

2∑
i=1

λi∗(〈∇Mi(p
n),p′ − pn〉− < ∇Mi(p∗),p

′ − pn >)

and, taking lower limits, we easily find that 〈∇J(p∗)−
∑2
i=1 λ

i
∗∇Mi(p∗),p

′ − p∗〉 ≤ 0 for all p′ ∈ P0.

This ends the proof.

In the remainder of this section, we will be concerned with the numerical solution of (3.2). To this purpose,
we will first introduce a time discretisation and then an iterative algorithm of the gradient kind.

Thus, let us begin by replacing H1(0, T ; F) by a finite dimensional space. The easiest and most natural way
is to introduce a large integer N , set τ := T/N , consider a uniform partition {t0 = 0 < t1 < t2 < ... < tN = T}
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with tn = nτ for all n and, then, work in the corresponding space of continuous and piecewise linear functions
pN : [0, T ] 7→ F.

This space will be denoted by XN . We will also consider the closed convex set P0,N := XN ∩ P0 and
the orthogonal projector P0,N : XN 7→ P0,N . Observe that P0,N (pN )(t) is, for each t, the projection of each
component of pN (t) onto R. For fixed µ > 0, the considered N -th approximated problem to (3.2) is as follows:{

Maximise Jµ(pN )

Subject to pN ∈ P0,N .
(3.4)

In order to solve this problem, we can apply a gradient ascent algorithm with variable step size and projection.
Accordingly, in the n-th iterate we compute the function pn+1

N , with

pn+1
N = P0,N (p̃n+1

N ), p̃n+1
N = pnN + γn∇Jµ(pnN ). (3.5)

Here, γn is a conveniently chosen positive number and ∇Jµ(pnN ) denotes the gradient of the objective function
in (3.4), that is,

∇Jµ(pN ) = ∇J(pN )− 1

µ
(M(pN )− σ)+ · ∇M(pN ). (3.6)

Therefore, the gradient ascent algorithm requires, at each step, the calculation of the derivative of the
objective function and a projection of each component of pN (t) for each nodal time t = tj . Obviously, the
complexity of this computation depends on dim F, N and the properties of the particular function G = G(t,p)
and the mapping M : H1(0, T ; F) 7→ E.

The previous penalisation algorithm, denoted Algorithm 1 in this paper, is outlined in a pseudocode shown
below.

Algorithm 1 Penalisation

µ← Set penalisation parameter (small) float
γ0 ← Set initial step size float
Tol← Simulation tolerance float
p0 ← Initial variable set float
for N = 1 to T do

while ObjDiff > Tol do
while StepDiff ≤ 0 do

J(p)← Calculate objective function float
M(p)← Calculate constraint set float
∇Jµ(pN ) = ∇J(pN )− 1

µ (M(pN )− σ)+ · ∇M(pN ).

p̃n+1
N = pnN + γn∇Jµ(pnN ).

pn+1
N = P0,N (p̃n+1

N )
J(p̃n+1

N )← Calculate updated objective function float
StepDiff = |Jµ(pn+1

N )− Jµ(pnN )|
γn+1 = γn · ε
Next;

ObjDiff = |Jµ(pn+1
N )− Jµ(pn+1

N−1)|
Next;

end;
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3.2. Augmented Lagrangian

The optimisation problem (1.1) can also be solved using the information furnished by Theorem 2.3. This is
performed in this section using Augmented Lagrangian techniques. Again, it will be assumed that E = R2 and
M1 and M2 will denote the components of M .

Thus, let us first introduce the so called Augmented Lagrangian Lµ : H1(0, T ; F)×E 7→ R, with

Lµ(p;λ) := J(p)−
2∑
i=1

ψ(Mi(p)− σi, λi;µ), (3.7)

where we have set

ψ(z, β;µ) :=

z · β +
1

2µ
|z|2 if z + µβ ≥ 0

−µ
2
|β|2 otherwise

(3.8)

and, again, µ > 0.
Then, it can be proved that the (1.1) is equivalent to the following extremal problemMinimise sup

p∈P0

Lµ(p;λ)

Subject to: λ ∈ E, λ ≥ 0.
(3.9)

Let us provide an explanation. The inequality constraintM(p) ≤ σ is equivalent to the equalityM(p)+s = σ,
with the so called slack variable s belonging to E and satisfying s ≥ 0. In view of the optimality conditions (2.3),
it makes sense to consider the “Modified Lagrangian”

L̃(p, s;λ) := J(p)− λ · (M(p) + s− σ) (3.10)

and its penalised version

L̃µ(p, s;λ) := J(p)− λ · (M(p) + s− σ)− 1

2µ
|M(p) + s− σ|2. (3.11)

Then, recalling (3.7)–(3.8), it is easy to check that

sup
s∈E, s≥0

L̃µ(p, s;λ) = Lµ(p;λ),

whence we see that (3.9) is an appropriate reformulation of (1.1).

Algorithm (Augmented Lagrangian):

1. Choose µ0, λ01, λ
0
2 ≥ 0 adn p0 ∈ P0.

2. For n ≥ 0, solve the following extremal problem:Maximise L̂n(p;λn) := J(p)−
2∑
i=1

ψ(Mi(p)− σi, λni ;µn)

Subject to p ∈ P0.

(3.12)
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3. Update the multipliers: λn+1
i = (λni + 1

µn (Mi(p
n)− σi))+.

4. Take µn+1 = aµn with 0 < a < 1 and go to step 2 with n replaced by n+ 1.

The following results justify the use of the augmented Lagrangian Lµ in (3.7) for small values of µ:

Theorem 3.3. Assume that J and the constraint functionals Mi are in C2 in P and p∗ is a solution to (1.1)
(or at least a local maximiser), with M(p∗) < σ. Also, assume that the usual second order sufficient conditions
hold at p∗ for some λ∗ = (λ1∗, λ

2
∗) with λi∗ ≥ 0. Then, there exists µ̄ > 0 such that, for all µ ∈ (0, µ̄], p∗ is a

minimiser of p→ Lµ(p;λ∗).

Proof. First, note that for small µ̄ and 0 < µ < µ̄, ψ(Mi(p∗) − σi, λ
i
∗;µ) ≡ − 1

2µ|λ
i
∗|2, whence

∇pLµ(p;λ∗)|p=p∗ = ∇J(p∗), and L′′µ(p;λ∗)|p=p∗ = J ′′(p∗).
By assumption, p∗ solves (1.1), Mi(p∗) > σi,

〈∇J(p∗)−
2∑
i=1

λi∗∇Mi(p∗),p
′ − p∗〉 ≤ 0 ∀p′ ∈ P0,

λi∗ ≥ 0 and λi∗(Mi(p∗)− σi) = 0 (whence λi∗ = 0)

and

(J ′′ −
2∑
i=1

λi∗M
′′
i )(p∗; p

′ − p∗,p
′ − p∗) ≤ −a‖p′ − p∗‖2P ∀p′ ∈ P0 (a > 0).

Consequently, the second order sufficient conditions hold for p → Lµ(p;λ∗) at p∗ if µ ≤ µ̄ and the proof is
done.

Theorem 3.4. Assume that the hypotheses in Theorem 3.3 are satisfied with λ1∗ = λ2∗ = 0. Then, there
exists a, µ̄, ε > 0 such that, if |λ1|+ |λ2| ≤ a/µ and 0 < µ ≤ µ̄, one has:

1. The extremal problem 
Maximise Lµ(p;λ) := J(p)−

∑2
i=1 ψ(Mi(p)− σi, λi;µ)

Subject to p ∈ P0, ‖p− p∗‖P ≤ ε
‖p− p∗‖P ≤ Cµ(|λ1|+ |λ2|)

(3.12′)

is uniquely solvable.
2. Let p̃ be the unique solution to (3.12′). Then

〈L′′µ(p̃;λ)(p′ − p̃),p′ − p̃〉 ≤ −ã‖p′ − p̃‖2P ∀p′ ∈ P0. (3.13)

Proof. From standard arguments, we readily see that (3.12′) is solvable. On the other hand, for small µ̄ and ε,
one has

∇Lµ(p;λ) = ∇J(p) and 〈L′′µ(p;λ)q, z〉 = J ′′(p; q, z) ∀q, z ∈ P.

Consequently, one has (3.13) at any solution p̃. This implies uniqueness and the proof is done.
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Arguing as in [15], it can also be proved that ‖p̃− p∗‖P ≤ Cµ(|λ1|+ |λ2|) for some C > 0.
As in the previous section, in order to solve (3.9) we must provide a finite dimensional approximation. With

the notation used in Section 3.1, a suitable choice is the following:

Minimise sup
pN∈P0,N

Lµ(pN ;λ)

Subject to: λ ∈ E, λ ≥ 0.
(3.14)

This problem can be solved with a duality-penalty algorithm that at the nth step furnishes the multipliers
λn+1
i . The strategy is as follows:

• Compute a solution pnN to the problem

{
Maximise Lµ(pN ;λn)

Subject to pN ∈ P0,N

(3.15)

• Then, take

λn+1
i = (λni +

1

µ
(Mi(p

n
N )− σi))+ (3.15′)

for i = 1, 2.

As in Section 3.1, the solution of (3.15) can be carried out through a variable step gradient ascent method

with projection. Thus, at the k-th step, we compute pn,k+1
N , with

pn,k+1
N = P0,N (p̃n,k+1

N ), p̃n,k+1
N = pn,kN + γk∇Lµ(pn,kN ;λn). (3.16)

Algorithm 2 is outlined in the pseudocode shown below.
In the following section, we will detail the model for a SPT plant and verify that all assumptions made in

the formulation of the general problem in Section 1 remain valid.

4. The model for a SPT plant

The extremal problem (1.1) can be used to model the optimisation of the aiming strategy in a SPT plant if
we assume that

• p = p(t) defines the set of points aimed by the heliostats on the receiver at times t ∈ [0, T ],
• R is the receiver surface,
• G = A · G1 + (1 − A) · G2 is a balanced combination of the objective functions G1 and G2, respectively

corresponding to radiation and closeness to a target aiming strategy),
• J(p) is, accordingly, a quantification of the payoff produced by the aiming strategy determined by p and
• M(p) is a measure of the change over time of the aiming strategy, corresponding to p and the associated

energy reaching the receiver.
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For clarity, let us give the list of symbols needed in this section.

Nomenclature

R Receiver surface
h A generic heliostat h
H Total number of heliostats in the field.
ph(t) Aiming point for heliostat h at time t
p(t) Collection of aim points at time t
ṗ(t) Collection of the speeds of the aim points at time t
Vp Target speed vector
(u, v) Coordinates on the receiver surface
Fu,v(h, ph, t) Gaussian distribution of the radiation due to helio-

stat h aiming at ph at time t
Fu,v0 (h,p, t) Total radiation captured by the aiming point vector

p at time t
A Balance parameter
M1 Speed constraint operator
M2 Radiation constraint operator
σ1 Speed constraint threshold
σ2 Radiation constraint threshold
Eu,vtar Target radiation distribution
I Number of test points
(ui, vi) The ith test point on the receiver surface

A SPT plant is a renewable energy system, containing a field of heliostats with a centrally located tower,
atop of which one has a receiver. The concentration of incident solar radiation onto the receiver by the heliostats
allows for high temperatures to be achieved, which can then be used to drive a turbine through the use of a
heat transfer medium.

Much research considering this form of renewable energy generation can be found in the literature, including
[5], where the authors look to optimise annual revenue by considering dispatch measures. Also, the redesign of
a known SPT plant heliostat field through the use of optimisation techniques is considered in [9].

As considered by the authors in previous work, see [1, 2], the aiming point of each heliostat in the field
on the receiver surface directly affects the energy generation. In particular, it has been shown that, although
maximising incident radiation is important, it is also beneficial to maintain a desired flux distribution to aid
thermal transfer [17, 20].

In this paper we extend the models to the dynamic case, considering time dependent variables and constraints.
These constraints, as introduced in Sections 1 and 2, concern physical aspects of the SPT. One of them must be
viewed as a limitation on the rotational speed of the heliostat and is obviously justified by operational reasons.
On the other hand, the radiation at any point of the receiver surface should not vary drastically over short time
periods, in order to prevent flash heating and this is considered in the second constraint.

As in [1], the radiation passing through the system is modelled using a Gaussian distribution.
We assume that there are H heliostats in the field and we denote by ph(t) the point aimed by the h-th

heliostat at time t. We have ph(t) ∈ Ω̄ for all h and t; Ω ⊂ R2 is bounded, open and convex with 0 ∈ Ω and we
take R = Ω̄. Accordingly, the Euclidean space F will have dimension 2H:

F = R2H . (4.1)

The usual Euclidean norm in F will be denoted by ‖ · ‖.
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Algorithm 2 Augmented Lagrangian

λ← Lagrangian multiplier float
σ ← Constraint constantfloat
µ← Penalty constantfloat
Tol← Simulation tolerance float
p← Variable set float
J← Objective function float
M← Constraint set float
for t = 1 to T do

while ObjDiff > Tol do
while StepDiff ≤ 0 do

J(p)← Calculate objective function float
M(p)← Calculate constraint set float
∇Jµ(pN ) = ∇J(pN )− 1

µ (M(pN )− σ)+ · ∇M(pN ).

Maximise L̂µ(p, s;λ)
Fix s
Maximise Lµ(pN ;λn)

p̃n,k+1
N = pn,kN + γk∇Lµ(pn,kN ;λn)

pn,k+1
N = P0,N (p̃n,k+1

N )
Jµ(p̃n+1

N )← Calculate updated objective function float
StepDiff = |Jµ(pn+1

N )− Jµ(pnN )|
γk+1 = γk · ε
Next;

ObjDiff = |L̂µ(pn,k+1
N ;λn)− L̂µ(pn,kN ;λn)|

λn+1 = (λn + 1
µ (Mi(p

n
N )− σ))+

Next;

end;

At time t, the radiation measured at a point (u, v) ∈ R and furnished by the h-th heliostat is given
by Fu,v(h, ph(t), t). For each h, it will be assumed that the real-valued function (u, v, ph, t) 7→ Fu,v(h, ph, t)
is smooth. The associated total radiation captured over the receiver surface R for a given heliostat h is thus
given by

F0(h, ph(t), t) :=

∫∫
R

Fu,v(h, ph(t), t) dudv.

Therefore, the total radiation supplied by all heliostats at time t can be written in the form

f(p(t), t) :=

H∑
h=1

F0(h, ph(t), t) =

∫∫
R

( H∑
h=1

Fu,v(h, ph(t), t)
)

dudv, (4.2)

where we have used the notation p := (p1, . . . , pH).
In order to limit the motion of heliostats, so that they do not move faster than their velocity limits, we

introduce the velocity ṗh = ṗh(t) of each heliostat h, the velocity vector ṗ = ṗ(t) and a target velocity vector
Vp ∈ F with Vp ≥ 0 and we impose the collective velocities to be approximately below Vp in the sense that∫ T

0

‖(ṗ(t)−Vp)+‖2 dt ≤ σ1
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for some σ1 ≥ 0.
The change in time in radiation at each point of the receiver must also be limited and kept below a fixed

value σ2. This will be witten in the form

∫ T

0

(∫∫
R

∣∣∣ H∑
h=1

d

dt
Fu,v(h, ph(t), t)

∣∣∣2 dudv

)
dt ≤ σ2.

Our objective is to maximise the radiation captured by the receiver, whilst maintaining a target energy profile
which maximises absorption. Thus, we deal with the constrained optimisation problem (1.1), where

G(t,p) := A

∫∫
R

( H∑
h=1

Fu,v(h, ph, t)
)

dudv

− (1−A)

∫∫
R

∣∣∣ H∑
h=1

Fu,v(h, ph, t)− Eu,vtar (t)
∣∣∣2 dudv

(4.3)

(A ∈ [0, 1] is a weighting parameter),

M1(p) :=

∫ T

0

‖(ṗ(t)−Vp)+‖2 dt, (4.4)

M2(p) :=

∫ T

0

(∫∫
R

∣∣∣ H∑
h=1

d

dt
Fu,v(h, ph(t), t)

∣∣∣2 dudv
)

dt, (4.5)

the σi are prescribed non-negative constants and Eu,vtar = Eu,vtar (t) is the desired target distribution at time t.
For convenience, we will assume that

σ2 > M2(0) =

∫ T

0

(∫∫
R

∣∣∣ H∑
h=1

d

dt
Fu,v(h, 0, t)

∣∣∣2 dudv
)

dt. (4.6)

This is sufficient to guarantee that the zero function in H1(0, T ; F) belongs to Pad and, consequently, Pad is
non-empty. From a realistic viewpoint, the assumption on the smoothness of (u, v, ph, t) 7→ Fu,v(h, ph, t) should
be weakened, in order to cover realistic situations such as those related to cloud effects. However, it will be kept
in this paper for simplicity. As shown below, this will make it possible to apply the “general” results in the
previous sections.

In the following sections, we will check that the theoretical analysis in Section 2 and the proposed iterative
algorithms in Section 3 are valid in this framework. In particular, we consider the existence of optimal aim-
ing strategies, their characterisation through optimality conditions and finite dimensional approximations and
penalty and duality-penalty solution methods are described.

4.1. Existence and optimality

The following result holds:

Proposition 4.1. Let F, G and M be given by (4.1) and (4.3)–(4.5) and let P and Pad be given by (1.3)–(1.4).
Then, the assumptions (1.2) and (1.5)–(2.2) are satisfied.
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Proof. It is clear that (1.2), (1.5) and (1.6) are satisfied. For convenience, let us introduce

ah(t, ph;u, v) :=
∂

∂ph
Fu,v(h, ph, t), bh(t,p;u, v) :=

H∑
h=1

Fu,v(h, ph, t)− Eu,vtar (t)

and

c(t,p,q;u, v) :=

H∑
h=1

d

dt

∂

∂ph
Fu,v(h, ph, t)qh.

Then, one has

∂G

∂ph
(t,p) = A

∫∫
R

ah(t, ph;u, v) dudv − 2(1−A)

∫∫
R

bh(t,p;u, v)ah(t, ph;u, v) dudv,

for all h and (t,p) and

〈M ′1(p),q〉 = 2

∫ T

0

(ṗ(t)−Vp)+ · q̇(t) dt

and

〈M ′2(p),q〉 = 2

∫ T

0

[ ∫∫
R

( H∑
h=1

d

dt
Fu,v(h, ph(t), t)

)
c(t,p(t),q(t);u, v) dudv

]
dt

for all p,q ∈ H1(0, T ; F).
Let us now check that (2.1) holds. Assume that pn → p weakly in H1(0, T ; F). Since this implies the uniform

convergence of the pn in [0, T ], we have

lim
n→+∞

M2(pn) = M2(p) (4.7)

On the other hand, since p 7→M1(p) is convex and continuous in H1(0, T ; F), we also have

lim inf
n→+∞

M2(pn) ≥M2(p). (4.8)

From (4.7) and (4.8), we get (2.1).
Finally, it is clear that (2.2) is satisfied. Indeed, if p ∈ P0 and M(p) ≤ σ, we have in particular that

|p(t)| ≤ C ∀t ∈ [0, T ] (4.9)

and ∫ T

0

|ṗ(t)|2 dt ≤ 2

∫ T

0

|(ṗ(t)2 −Vp)+|2 dt+ C ≤ C, (4.10)

whence p belongs to a bounded set in H1(0, T ; F).
This ends the proof.
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From Proposition 4.1, we get the following consequences:

– Theorem 2.1 can be applied and there exists at least one optimal aiming strategy for the modelled SPT
plant.

– Theorem 2.3 can also be applied and, assuming that at an optimal p̂ the constraints associated to the Mi

are qualified, we get the necessary conditions (2.3) for some multipliers λ1, λ2 ≥ 0.

4.2. Finite dimensional approximation and iterative algorithms

In practice, as in Sections 3.1 and 3.2, we must approximate the infinite dimensional problem (1.1) corre-
sponding to (4.3)–(4.5) and replace H1(0, T ; F) by XN and P0 by P0,N . The resulting tasks are thus to solve
(3.4) and/or (3.14).

Note that, in both cases, the computations of ∇J(pN ), ∇M1(pN ) and ∇M2(pN ) are needed and this requires
integrals on R, with respect to (u, v) of several functions. For this reason, it is convenient to fix a set of test
points (ui, vi), 1 ≤ i ≤ I and replace these integrals by appropriate finite sums.

The total radiation reaching the receiver at time t is therefore approximated by

∫ T

0

∫∫
R

( H∑
h=1

Fu,v(h, ph(t), t)
)

dudv dt ≈
N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn) (4.11)

Similarly, the deviation from the target distribution is approximated by

∫ T

0

∫∫
R

b(t,p(t);u, v)2 dudv dt ≈
N∑
n=1

I∑
i=1

b(tn,p(tn);ui, vi)2. (4.12)

Finally, the constraint mappings M1 and M2 given by (4.4)-(4.5) are approximated as follows:

M1(p)=

∫ T

0

‖(ṗ(t)−Vp)+‖2 dt‖ ≈MN
1 (pN ) :=

N∑
n=1

(
1

2
|p(tn)− p(tn−1)| − Vp)2+, (4.13)

M2(p)=

∫ T

0

(∫∫
R

( H∑
h=1

d

dt
Fu,v(h, pnh(t), t)

)2
dudv

)
dt

≈MN
2 (pN ) :=

N∑
n=1

I∑
i=1

∣∣∣ H∑
h=1

Fui,vi(h, ph(tn), tn)−Fui,vi(h, ph(tn−1), tn−1)
∣∣∣2. (4.14)

4.2.1. Penalisation algorithm

After these approximations, we see that, in the case of the SPT model, the objective function in (3.4) is given
by:

JNµ (pN ) = A

N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn)− (1−A)

N∑
n=1

I∑
i=1

b(tn,p(tn);ui, vi)2

− 1

2µ

[( N∑
n=1

(
1

2
|p(tn)− p(tn−1)| − Vp)2+ − σ1

)2
+

+
( N∑
n=1

I∑
i=1

∣∣∣ H∑
h=1

Fui,vi(h, ph(tn), tn)−Fui,vi(h, ph(tn−1), tn−1)
∣∣∣2−σ2)2

+

]
.
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It is not difficult to compute from this identity the partial derivatives of JNµ and, accordingly, its gradient
∇Jµ. This makes it possible to apply the gradient ascent algorithm in the present context.

The choice of step size parameters γk used in the iterates (3.5) have a large impact on the speed of convergence
of the algorithm. Much research has been conducted in the optimisation of this parameter, see for example [12].
A frequently successful strategy corresponds to the so called Armijo’s Rule [14]. In this method, a constant
value ε ∈ [0, 1] is used to iteratively reduce γk until an increase in the objective function is no longer found.
Thus, with a suitable choice of an initial γ0, the largest possible value is taken per iteration.

In this work, we apply a variant to the Armijo’s Rule, whereby the parameter γk is different for each
component, that is, for each heliostat h ∈ H. Consequently, the γkh are computed according to the rules

γkh = γk−1h · εh, h = 1, . . . ,H. (4.15)

The gradient ascent method with projection is then:

pn+1
N = P0,N (p̃n+1

N ), p̃n+1
N = pnN + Γk∇Jµ(pnN ), (4.16)

where Γk = diag(γk1 , . . . , γ
k
N ).

The gradient ascent method applied to the penalisation algorithm, as described in the pseudocode given in
Algorithm 2, is applied at each step of the discretised time period. The computed optimal result at a given time
is then used as the initial guess for the next time step. In this way, the overall optimal schedule can be found
by considering each discretised time point individually.

4.2.2. Augmented Lagrangian algorithm

Following the finite dimensional reduction method outlined in Section 3, the Augmented Lagrangian given
in equations (3.7) can be approximated as follows:

Lµ(pN , λ) ' LNµ (pN , λ) := A

N∑
n=1

I∑
i=1

H∑
h=1

Fui,vi(h, ph(tn), tn)

−(1−A)

N∑
n=1

I∑
i=1

H∑
h=1

b(tn,p(tn);ui, vi)2−
2∑
i=1

ψ(MN
i (pN )−σi, λi;µ),

(4.17)

where ψ is defined in (3.8) and MN
1 and MN

2 are respectively given in (4.13) and (4.14).
The gradient of this function can be calculated as before and the gradient ascent method can be applied to

the intermediate problems (3.15).
The Augmented Lagrangian algorithm, as summarised in the pseudocode in Section 3.2, follows a similar

procedure to that of the penalisation algorithm, with extra stages to update the Lagrangian multipliers. Recall
that, after the computation of the solution to (3.15), the Lagrange multipliers must be updated, according to
the formula (3.15′). Then, a new optimisation problem must be solved using the last computed solution as an
initial iterate and so on.

In the following section, we present an illustrative example that demonstrates, in the framework of the
optimisation of SPT plants, the usefulness of the formulation (1.1) and the theoretical results in Section 2 and
the functionality of the previous algorithms.

5. A numerical experiment

The behavior of the previous algorithms is illustrated for the PS10 SPT plant located in Sanlúcar la Mayor,
Seville (Spain); see http://www.abengoa.com/web/en. The field of this SPT plant has 624 heliostats arranged

http://www.abengoa.com/web/en
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Figure 1. Heliostat layout.

Figure 2. Midday radiation.

in a radial pattern around a centrally located tower. The layout of the heliostats can be seen in Figure 1, where
the receiver is mounted atop a North facing tower.

In Figure 2, the reflected solar radiation at midday is shown, where the heliostats are colour coded according
to the energy they would provide to the system if they aimed at the centre of the receiver. From this figure, it
can be clearly seen that an adequate aiming strategy is important, as there are large differences in the energy
contributions provided by the heliostats in the field. It is completely natural to fix a dynamic aiming strategy,
as the incident radiation on the heliostat field changes over time.

Utilising the algorithms developed in Section 3 and the SPT plant model described in Section 4, we present
a numerical illustration that finds the optimal aiming strategy for the PS10 SPT plant across a single day.

We consider 10 equally spaced time points, where input to the model includes incident solar radiation on the
field and solar angle.

We look to optimise the general dynamic optimisation problem (1.1), by considering the two forms given
by the algorithms: penalisation (3.4) and Augmented Lagrangian (3.14). As already mentioned, the objective
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Table 1. Penalisation algorithm parameter values.

Parameter Value Summary

T 10 Number of time points
σ1 0 M1 constraint threshold
σ2 1e4 M2 constraint threshold
H 624 Number of heliostats in field.
µ 1e5 Penalisation constant
Vp 0.5 Velocity constraint constant
Etar 2.2e6 Target uniform distribution value (Wm2)
A 0.7 Weighting parameter
γ0 0.01 Initial step size

is to maximise radiation reaching the receiver surface across the day, whilst restricting the movement speed of
heliostat aim points and also limiting the change in radiation over time at any point on the receiver.

5.1. Penalisation algorithm

The penalisation algorithm is applied to the 10 point optimisation problem, with the parameter values given
in Table 1. We set a uniform target distribution and fix limits on the aiming point velocities and global change
in radiation along the receiver. Considering the constraints derived in Section 3.1, we then look to maximise
the objective function at each time point utilising the gradient ascent method.

To start the algorithm, we define an initial set of aiming points on the receiver, randomly spread, as shown
in Figure 3. This choice is ideal for early morning, as it allows for a slow warm-up of the entire receiver surface.

The resultant set of aiming points and the radiation distribution on the receiver are then used as the initial
solution to the first time problem. Each subsequent time point is then considered, utilising the computed
optimal solution from the previous one as its initial solution. The aiming strategies for all time points are given
in Figures 4–13.

From Figures 4–13, the evolution of the aiming strategy across the day can be seen. The effect of the dynamic
constraints on aiming point velocity and change in radiation can be seen in the slow movement of aim points
towards the center in Figures 4–8. During these early hours of low incident solar radiation, the maximum is
captured when a heliostat aims at the center.

The change in aiming strategy from Figures 8 and 9 identifies a shift in behaviour, caused by the incident
radiation on the heliostat field and the target distribution imposed in the constraints.

Figure 14 gives the level of incident radiation on the heliostat field for the considered time period, and
Figure 15 gives the maximum radiation value detected on the receiver with the indicated aiming strategy. It
can be seen that, as the level of incident radiation on the field increases (towards midday), the same happens
to the maximum level of radiation on a particular point on the receiver. This is due to the centrally focused
aiming strategy shown in Figure 7.

Once the level of radiation reaches the target distribution limit given in Table 1, at time t = 5, the aiming
strategy must adjust in order to maintain a uniform distribution, as seen in Figure 9.

The computation time of the penalisation algorithm is dependent on the prescribed model parameters, such as
step size, constraint limits, convergence tolerance, etc. However, with an adequate selection of these parameters,
the previous numerical illustration can be achieved in 2.5 minutes utilising a computer with specifications:
Intel R©CoreTM i7-7700HQ CPU @ 2.80 GHz.

5.2. Augmented Lagrangian algorithm

The Augmented Lagrangian algorithm is also applied to the 10 point optimisation problem, with the param-
eter values given in Table 2. We set a uniform target distribution and fix limits on the aiming point velocities
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Figure 3. Initial aiming point distribution.

Figure 4. t = 1 aiming distribution.
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Figure 5. t = 2 aiming distribution.

Figure 6. t = 3 aiming distribution.
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Figure 7. t = 4 aiming distribution.

Figure 8. t = 5 aiming distribution.
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Figure 9. t = 6 aiming distribution.

Figure 10. t = 7 aiming distribution.
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Figure 11. t = 8 aiming distribution.

Figure 12. t = 9 aiming distribution.
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Figure 13. t = 10 aiming distribution.

Figure 14. Incident radiation on SPT plant.

and change in radiation along the receiver. Considering the constraints in Section 3.2, we then look to maximise
the objective function across each time point utilising the gradient ascent method.

To start the algorithm, we define an initial set of aiming points on the receiver as in the case of the penalisation
algorithm, shown in Figure 16.

For each time point considered, the algorithm takes the initial solution from the previous time step, and
optimises using the gradient ascent method described in Section 3.2. Once a solution has been found for a
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Figure 15. Maximum flux on receiver.

Table 2. Augmented Lagrangian algorithm parameter values.

Parameter Value Summary

T 10 Number of time points
σ1 0 M1 constraint threshold
σ2 1e4 M2 constraint threshold
H 624 Number of heliostats in field.
µ 2e−5 Penalisation constant
λ0 1e6 Initial Lagrange multiplier
Vp 0.5 Velocity constraint constant
Etar 2.2e6 Target uniform distribution value (Wm2)
A 0.7 Weighting parameter
γ0 0.01 Initial step size

particular time point, the Lagrangian multipliers are updated, and the solution is used to re-optimise the same
time point. This is repeated until no improvement on the solution can be found. The resultant solution is then
used as the initial solution to the next time point.

The computed aiming strategies using the augmented lagrangian algorithm are then given in Figures 17–41.
The maximum flux on the receiver surface and the incident radiation level on the heliostat field are given in

Figure 42.
The results furnished by the Augmented Lagrangian algorithm agree with those provided by the penalisation

algorithm.

5.3. Numerical considerations

The PS10 plant field contains 624 heliostats, however there exist other larger SPT plants (with potentially
thousands of heliostats) which greatly increases the dimensionality of the problem. The aiming points are
described on the receiver surface in polar coordinates, necessitating 2H variables for the gradient ascent tech-
nique. Within each step of the algorithm, the gradients must be calculated, and aiming points updated, before
the radiation calculations are performed. For larger values of H increases to sufficient levels, the application of
the algorithms presented in this paper may become infeasible, due to computation times.

For the numerical approximations presented in this paper, the heliostat field size will have an effect on
performance.
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Figure 16. t = 0 aiming distribution.

Figure 17. t = 1, λ0 aiming distribution.
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Figure 18. t = 1, λ1 aiming distribution.

Figure 19. t = 1, λ2 aiming distribution.
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Figure 20. t = 1, λ3 aiming distribution.

Figure 21. t = 2, λ0 aiming distribution.
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Figure 22. t = 2, λ1 aiming distribution.

Figure 23. t = 2, λ2 aiming distribution.
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Figure 24. t = 3, λ0 aiming distribution.

Figure 25. t = 3, λ1 aiming distribution.
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Figure 26. t = 3, λ2 aiming distribution.

Figure 27. t = 4, λ0 aiming distribution.
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Figure 28. t = 4, λ1 aiming distribution.

Figure 29. t = 5, λ0 aiming distribution.
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Figure 30. t = 5, λ1 aiming distribution.

Figure 31. t = 5, λ2 aiming distribution.
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Figure 32. t = 6, λ0 aiming distribution.

Figure 33. t = 6, λ1 aiming distribution.
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Figure 34. t = 7, λ0 aiming distribution.

Figure 35. t = 7, λ1 aiming distribution.
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Figure 36. t = 8, λ0 aiming distribution.

Figure 37. t = 8, λ1 aiming distribution.
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Figure 38. t = 9, λ0 aiming distribution.

Figure 39. t = 9, λ1 aiming distribution.
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Figure 40. t = 10, λ0 aiming distribution.

Figure 41. t = 10, λ1 aiming distribution.
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Figure 42. Maximum flux on receiver and incident solar radiation.

6. Conclusions and future work

In this work, a general dynamic optimisation problem has been investigated. Theoretical properties of the
problem have been discussed, including the demonstration of solution existence and optimality. Furthermore, a
real-world example for a SPT plant has been considered, where a mathematical model that describes transfer
of energy within the system is developed. The theoretical properties of the general optimisation problem are
shown applicable to the real world problem, and dynamic constraints that describe SPT plant limitations are
given. Two algorithms have been considered to find the optimal solution, and a numerical illustration is given
using real data.

The numerical illustration finds the optimal aiming strategy for a SPT plant over the period of one day,
considering the change in incident radiation from the Sun as input. The physical limitations of the plant have
been introduced as dynamic constraints, in terms of heliostat rotation speed and flux homogeneity on the
receiver surface over time.

The two algorithms presented in this paper provide similar results in the numerical experiment, in similar
computational times. The Augmented Lagrangian algorithm is a modification of a penalty technique, which
should provide better numerical stability in some cases. With larger size problems, and adequately chosen
parameters, this model could increase the reliability of the algorithm.

The dynamic optimisation problem considered in this paper must be viewed as an improvement of other
research concerning the optimisation of aiming strategies in SPT plants, for example [4, 19], due to the inclusion
of dynamic constraints. Instead of optimising the aiming strategy at certain fixed times, the method presented
in this paper looks to optimise across a time period. This approach can arrive to a solution that more closely
reflects the true optimum when considering problems in dynamic systems.

The methods presented in this work can be adapted to all types of SPT plants, and even other forms of
concentrating solar power technology. The inclusion of more heliostats, or multiple receivers, has been carried
out in several real-world plants and the work presented here can be directly extended to consider these cases.

The use of a modified Armijos’ Rule for the step size in the gradient ascent method can lead to faster
convergence. However, with a poor parameter selection, this may actually reduce the convergence speed. Further
adaptation to the algorithms presented in this work should consider carefully the effects of such techniques, in
conjunction with a highly multi-modal objective function.

Considering the problem dimensionality when increasing the number of variables, specifically the number of
heliostats in our example, one method that could be used to extend the presented approach could be to use a
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clustering algorithm. Thus, the heliostats could be clustered into groups, considering a weighted objective of
difference in location and energy, as shown in [3].

An extension to this work would be the integration of a thermal transfer model of the receiver, whereby
the aiming strategy and thermal transfer could be coupled within the optimisation process. This would further
increase the level to which the true system is modelled, as dynamic transfer of heat through the receiver changes
based upon flow rates within the tubes. This would therefore have an affect on the aiming strategy.
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