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a b s t r a c t

This paper deals with a cost sensitive extension of the standard Support Vector Machine (SVM) using an
ordered weighted sum of the deviations of misclassified individuals with respect to their corresponding
supporting hyperplanes. In contrast with previous heuristic approaches, an exact method that applies
the ordered weighted average operator in the classical SVM model is proposed. Specifically, when
weights are sorted in non-decreasing order, a quadratic continuous formulation is developed. For
general weights, a mixed integer quadratic formulation is proposed. In addition, our results prove
that nonlinear kernel functions can be also applied to these new models extending its applicability
beyond the linear case. Extensive computational results reported in the paper show that the predictive
performance provided by the proposed exact solution approaches are better than the ones provided
by the classical models (linear and nonlinear kernel) and similar or better than the previous ones
provided by the heuristic solution by Maldonado et al. (2018).

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Support Vector Machine (SVM) models have become one of
he most used approaches of Mathematical Programming to ad-
ress classification problems. SVM techniques have been applied
n many different fields since the introduction of the classi-
al soft margin SVM by [1,2]. Among them, image recognition,
ioinformatics and face detection, see [3] and references therein.
In the literature, many models based on the classical soft

argin SVM approach have been developed with the aim of im-
roving its predictive performance. For instance, different norms
ave been used to measure the margin between classes, see [4]
here the methodology for SVM and kernel functions is extended
o the general case of ℓp-norms with p > 1. Other approaches
ake the presence of outliers or label noise into consideration,
ee [5–7] among others. The identification of outliers or label
oise in these models has resulted especially effective in or-
er to improve the predictive performance. Alternatively, other
odels also consider feature selection which provides a better

nterpretation of the resulting classifier, see [8–12]. Besides, cost
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sensitive SVM has recently become a useful approach to deal with
class-imbalance datasets (see for instance [13,14]). In these cost
sensitive SVM models, the penalizations of misclassified data are
different depending whether the errors correspond to individuals
in one class or the other. The model studied in this paper could
be considered as a different perspective of the cost sensitive SVM
approach.

In [15] a new approach to the classical soft-margin Support
Vector Machine is proposed. This methodology proposes to apply
the OWA operator to modify the hinge loss function of classical
SVM. The idea is rather appealing in that it allows to tune the
importance of deviations according to their size, that is to say,
classification errors are differently accounted considering a pref-
erence ranking induced by deviations of misclassified data with
respect to the corresponding supporting hyperplanes.

The penalization of the classification errors unevenly accord-
ing to their sizes is related to the use of OWA operators that
have become very popular in different areas of decision theory.
Surprisingly, although very natural, this approach had been never
tried in SVM until the paper [15] proposed a two-step heuristic
method to solve their model: (1) the classical SVM is trained and
its classification errors induce an order based on the deviations of
misclassified data with respect to the corresponding supporting
hyperplanes associated with their classes; (2) the SVM is re-

trained using a weighted sum of classification errors with weights
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nduced from the order of the solution in the first step. In [16],
he same authors propose an analogous method, but using the
nduced order of fuzzy density-based methods for outlier detec-
ion. This approach is very simple and has the same complexity
s the classical SVM beyond of being applied twice. Moreover,
s the authors show in their paper, its predictive performance
s superior to the traditional SVM in a set of databases that are
eported in the paper.

Actually, the approach by [15], denoted from now on as app-
WA-SVM, is a heuristic approximation to the exact application
f OWA operators to classical SVM. As far as we know, the use
f the ordered weighted average in the classical SVM has only
een tackled from this heuristic perspective in the literature. Un-
ike previous heuristic studies, our exact method determines the
ptimal hyperplane penalizing the deviation of each individual
y the weight associated with its position in the ordered vector
f deviations. This operator allows to use very different ways
f accounting the deviations in the objective function, among
hem, an alternative way of limiting the influence of outliers
y assigning the smallest weights to the last positions of the
ector. Particularly, Example 2.1 illustrates how the proposed
xact approach is different from the previous heuristic approach
ntroduced in [15]. Another novel aspect with respect to previous
orks is that we prove that nonlinear kernels can be used in this
xact methodology. This is an important theoretical contribution
hich shows that the technique of using kernels to get nonlinear
lassifiers extends further to models beyond the standard one.
Our contributions in this paper are the following:

(i) We develop an exact methodology for the SVM considering
the OWA operator to penalize the deviations for the first
time in the literature.

(ii) We prove that nonlinear kernel functions can be accommo-
dated in the formulations that are proposed.

(iii) Our analysis distinguishes between convex OWA operators
(those induced by monotone non-decreasing weights) and
non-convex ones. For the first family of methods the com-
plexity of the exact OWA-SVM is similar to the classical
SVM. However, the second family of methods, namely the
non-convex ones, is more complex since it involves solving
mixed-integer second-order cone programs.

(iv) We provide then two models that can be solved by using
general MIP solvers as CPLEX, Gurobi or Xpress.

(v) We test the performance of OWA-SVM compared with clas-
sical SVM and with app-OWA-SVM. Our results confirm
those already reported by [15]: OWA-SVM is superior to
SVM, k nearest neighbors, naïve Bayes and the logistic re-
gression and it performs similar or better than app-OWA-
SVM.

The remainder of this paper is structured as follows. In Sec-
ion 2, some notation and details about the problem are de-
cribed. Moreover, an illustrative example is detailed. Section 3
s devoted to the development of an SVM model which includes
he OWA when non-decreasing weights are considered. Besides,
n Section 4 we introduce a general mixed integer quadratic
odel which allows the use of the OWA for general weights (not
ecessarily non-decreasing). Section 5 contains computational
xperiments carried out on several datasets. Finally, Section 6
ncludes conclusions and some future research lines.

. Soft margin hinge loss SVM including OWA operators

In binary classification problems, we are given a training set
f individuals, N = {1, . . . , n}, divided into two classes. Each
ndividual, i, is represented by a pair (xi, yi) ∈ Rd

× {−1, 1},
where d is the number of considered features, x is a vector with
i

2

features’ values and yi is the label associated with the class of the
individual. The goal of SVM models is to determine a hyperplane
wTx+ b that optimally separates the training set and that allows
the classification of new individuals.

The classical soft margin SVM model is a compromise be-
tween maximizing the distance (margin) between the two par-
allel class-supporting hyperplanes and minimizing the deviations
of individuals. It is formulated as follows, see [17],

(ℓ2-SVM)min
w,b,ξ

1
2
∥w∥

2
2 + C

n∑
i=1

ξi,

s.t. yi(wTxi + b) ≥ 1 − ξi, i ∈ N,

w ∈ Rd,

b ∈ R,

ξi ≥ 0, i ∈ N.

In this formulation, w- and b-variables are the coefficients
of the optimal separating hyperplane and ξ-variables represent
the deviations of each individual with respect to the support-
ing hyperplane associated with its class. The margin between
both supporting hyperplanes is given by 2

∥w∥2
. Consequently, as

mentioned before, the objective function is a balance between
the maximization of the margin and the minimization of the
deviations. Observe that this balance is regulated by the constant
parameter C .

Nonlinear classifiers can also be obtained by using the classical
SVM model. In order to determine a nonlinear separator, data of
the training set N are mapped onto a higher dimension space
by using a projection function φ(·). By the use of duality theory
and kernel functions, one can determine the optimal separator
without explicitly knowing φ(·). To clarify this aspect, it should
be mentioned that kernel functions are those such that can be
expressed as K (xi, xj) = φ(xi) · φ(xj), where · denotes the scalar
roduct. This, together with the fact that dual formulation of
2-SVM and the resulting optimal separating hyperplane only de-
end on the dot product of training samples, makes unnecessary
he explicit use of φ(·). For more details about this kernel-based
ethod, see [18].
In the context of SVM models, OWA operators can be applied

o the second term of the objective function of the classical SVM,
.e., considering the ordered weighted sum of deviations of indi-
iduals instead of the sum of them. The idea of OWA for a set of
mounts is to consider the weighted sum of them but taking into
ccount that the weights are assigned depending on the positions
n the ordered sequence of these amounts. For instance, given a
eviation vector ξ′, the ordered weighted sum of the components
f this vector is

∑n
i=1 λiξ

′

(i), where ξ′

() = (ξ ′

(1), ξ
′

(2), . . . , ξ
′

(n)) is the
ector ξ′ with its elements sorted in non-decreasing order and
i ≥ 0 represents the weight associated with the ith position of
he ordered vector ξ′

(). Observe that for the case λi = 1, ∀i ∈ N ,
e obtain the sum of these amounts. Hence, a new SVM model
onsidering OWA operator can be expressed as follows,

min
w,b,ξ

1
2
∥w∥

2
2 + C

n∑
i=1

λiξ(i),

s.t. yi(wTxi + b) ≥ 1 − ξi, i ∈ N,

ξ(i) ≤ ξ(i+1), i = 1, . . . , n − 1,

w ∈ Rd,

b ∈ R,

ξi ≥ 0, i ∈ N,

where ξ(i) is a variable that represents the ith smallest devia-
tion among the elements in the training set N . Note that el-
ements of vector ξ are equal to the ones of ξ but sorted in
()
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on-decreasing order. Next sections focus on modeling the sort-
ng of the deviations and provide valid exact formulations for this
roblem.
As mentioned in the introduction, a heuristic approach for

VM with OWA was introduced in [15]. The following exam-
le shows the difference between this approach and the exact
ethod proposed in this paper.

xample 2.1. Suppose we are given the training sample detailed
in Table 1 consisting of 18 individuals, 9 of them belonging to
class −1 and the remaining to class 1. Particularly, the four
olumns of Table 1 report the label, class and data values of two
eatures of each individual, respectively.

This sample can be represented in R2 as can be seen in Fig. 1.
bserve that the coordinates of the individuals are given by the
eature values, color blue represents the individuals of class −1
nd color red represents the individuals belonging to class 1.
t can be seen that individuals with labels 5 and 6 are outliers
individuals significantly different from the ones of their class) or
abel noise (wrongly classified individuals).

If the classical SVM, ℓ2-SVM, is applied to this dataset, the
esulting optimal separating hyperplane is the one appearing in
ig. 2. It can be seen that individuals 4, 9, 10, 14 and 15 are not
orrectly classified.
We would like to analyze whether the use of OWA in SVM,

onsidering the λ-vector given in Table 2, could improve the
erformance of the classifier. If we apply the heuristic approach
pp-OWA-SVM, proposed in [15], the optimal solution (w∗, b∗, ξ∗)

of ℓ2-SVM must be taken into consideration for the second step.
Particularly, in the first step of the mentioned procedure, the ℓ2-
SVM is solved and then the order induced by 1− yi((w∗)Txi + b∗)
for i = 1, . . . , n is used for the second step. Observe that ξ ∗

i =

0 for the individuals correctly classified with respect to their
supporting hyperplanes (in this instance: 18, 1, 13, 2, 16, 5 and
12) and ξ ∗

i = 1− yi((w∗)Txi + b∗) for the remaining elements. As
can be seen in Fig. 2, the individuals sorted in a non-decreasing
way are given in the following vector:

v = (18, 1, 13, 2, 16, 5, 12, 8, 6, 7, 11, 3, 17, 15, 10, 9, 14, 4).

This order satisfies that:

ξ ∗

18 ≤ ξ ∗

1 ≤ ξ ∗

13 ≤ ξ ∗

2 ≤ ξ ∗

16 ≤ ξ ∗

5 ≤ ξ ∗

12

≤ ξ ∗

8 ≤ ξ ∗

6 ≤ ξ ∗

7 ≤ ξ ∗

11 ≤ ξ ∗

3 ≤ ξ ∗

17

≤ ξ ∗

15 ≤ ξ ∗

10 ≤ ξ ∗

9 ≤ ξ ∗

14 ≤ ξ ∗

4 .

In the second step of app-OWA-SVM, the classical model is
again solved but considering the weighted sum of the deviations
where the weight of each deviation is given by the indices in v,
i.e.,
1
2
∥w∥

2
2 + C(λ1ξ18 + λ2ξ1 + λ3ξ13

+λ4ξ2 + λ5ξ16 + λ6ξ5 + λ7ξ12 + λ8ξ8 +

λ9ξ6 + λ10ξ7 + λ11ξ11 + λ12ξ3 + λ13ξ17

+λ14ξ15 + λ15ξ10 + λ16ξ9 + λ17ξ14 +

λ18ξ4).

By solving this second step, the obtained separating hyper-
plane is the one shown in Fig. 3. Observe that, with this heuristic
approach, individuals 4, 9, 10, 14 and 15 are again wrongly clas-
sified. In this example, there is no improvement when using this
two-step approach. Observe that the sorting of the second step
solution does not entirely correspond to the order obtained in the
first step. In fact, in the second step solution: ξ ∗

11 ≤ ξ ∗

7 ≤ ξ ∗

3 ≤ ξ ∗

6
while in the first step solution ξ ∗

6 ≤ ξ ∗

7 ≤ ξ ∗

11 ≤ ξ ∗

3 . Consequently,
the term of the deviations in the second step objective function
3

Fig. 1. Graphical representation of the training set.

Table 1
Data of the training sample.
Label y x1 x2

1 −1 2.00 4.00
2 −1 2.00 2.00
3 −1 4.00 1.00
4 −1 9.29 1.63
5 −1 12.3 17.5
6 −1 13.3 17.5
7 −1 4.70 2.90
8 −1 5.14 4.70
9 −1 7.70 3.36

10 1 7.60 7.70
11 1 10.30 7.90
12 1 9.90 5.20
13 1 12.00 5.70
14 1 4.70 6.80
15 1 6.36 5.08
16 1 7.41 1.06
17 1 8.00 6.00
18 1 11.00 3.00

Table 2
Weights used in the OWA operator.
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13 λ14 λ15 λ16 λ17 λ18

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 1 0 0

is not an OWA operator, but a weighted sum based on the order
of the first step.

Unlike this heuristic approach, the use of the formulations
proposed in this paper gives the optimal hyperplane when the
deviations are penalized by their corresponding weights depend-
ing on their positions in the deviations ordered vector. By using
this exact single-step method, the optimal solution is the one pre-
sented in Fig. 4. It should be highlighted that, with this solution,
only three individuals (5, 6 and 16) are not correctly classified.
Note that the optimal solution provided by this exact approach
is more robust against the presence of outliers (individuals 5 and
6).

The main advantage of the approach presented in this paper is
that it generalizes the traditional way in which the deviations of
misclassified individuals are measured. Instead of the classic sum
of deviations, the use of the ordered weighted average operator
allows to obtain a more flexible model. Consequently, the decisor
can control how to penalize big and small deviations depending
on the studied field or the specific dataset. For instance, in the
above example we can observe that individuals 5 and 6 seem
to be outliers in comparison with the remaining data. A small
penalization of the individuals with a very big deviation is an
advantage for the performance of the classifier as can be observed
in Fig. 4. In Section 5, it will be observed that the use of the
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Fig. 2. Optimal hyperplane for ℓ2-SVM.

Fig. 3. Separating hyperplane obtained by the app-OWA-SVM proposed in [15].

Fig. 4. Optimal hyperplane obtained by using the exact approach detailed in
next sections.

OWA operator provides a better predictive performance in many
datasets. Since this model is a generalization of the classical one,
it also more complex. For this reason, bigger times are required
to solve the models exactly.

In the next sections, we address the formulation of this prob-
em. Recall that our objective is to provide an exact methodology
or dealing with OWA operators with soft margin SVM. For this
urpose, we distinguish between convex and non convex OWA
perators. The reason of the aforementioned distinction is that,
s we will detail in Section 3, the use of non-decreasing weights
convex case) allows to build a quadratic continuous formulation
4

whose difficulty is similar to that of ℓ2-SVM. In contrast, the
use of non-convex OWA operators leads to the introduction of
a mixed integer quadratic programming model which is compu-
tationally more complex. Section 4 deals with the use of these
non-convex OWA operators. Besides, Sections 3 and 4 discuss
whether nonlinear kernels can be accommodated in each model.

3. An SVM-model introducing convex OWA operators

In order to apply a correct OWA operator to the deviations
of the SVM model, one has to multiply sorted deviation by the
corresponding λ-weight in the formulation. We begin analyzing
the case of monotone non-decreasing λ-weights since, as we will
how, it induces simpler mathematical programming models.
With the aim of providing a formulation of this problem,

ogether with the w-, b- and ξ-variables used in the classical ℓ2-
SVM, we need to include a new set of variables to model the order
of the deviations of the individuals with respect to the supporting
hyperplane associated with their classes. In particular, we define

zij =

⎧⎨⎩
1, if deviation of observation i is in the jth

position of the sorted vector of deviations,
0, otherwise,

(1)

for i, j ∈ N . Given a vector of the deviation values related to
each individual, ξ′, the use of z-variables allows us to express
the ordered weighted average of these deviations with λ-weights
given in non-decreasing order as follows,

n∑
i=1

λiξ
′

(i) = max
z

n∑
i=1

n∑
j=1

λjξ
′

i zij,

s.t.
n∑

i=1

zij = 1, j ∈ N, (2)

n∑
j=1

zij = 1, i ∈ N, (3)

zij ≥ 0, i, j ∈ N. (4)

Constraints (2) and (3) ensure, respectively, that exactly one
element of N is in each position and that each position is allocated
to exactly one element of N . Besides, due to total unimodularity
property, z-variables can be relaxed as presented in (4). Hence, a
formulation of the SVM with convex OWA operators is given by

min
w,b,ξ

1
2
∥w∥

2
2 + max

z

n∑
i=1

n∑
j=1

Cλjξizij,

.t. (2)–(4),

yi(wTxi + b) ≥ 1 − ξi, i ∈ N, (5)

w ∈ Rd, (6)

b ∈ R, (7)

ξi ≥ 0, i ∈ N. (8)

Like in the ℓ2-SVM formulation, constraints (5) are the classical
nes appearing in ℓ2-SVM and the restrictions which determine
he deviations of misclassified elements of N . Constraints (6)–(8)
etermine the domains of the corresponding variables.
Observe that this optimization model includes an inner maxi-

ization problem which intends to obtain the OWA of deviations
aking advantage of the fact of using a non-decreasing weight
ector. Considering the results of [19] in the context of facility
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ocation problems, we obtain the following quadratic continuous
ormulation dualizing the inner problem.

C-OWA-SVM) min
w,b,ξ,u,v

1
2
∥w∥

2
2 +

n∑
i=1

ui +

n∑
j=1

vj,

s.t. (5)–(8),

ui + vj ≥ Cλjξi, j ∈ N, (9)

ui ∈ R, i ∈ N, (10)

vj ∈ R, j ∈ N, (11)

where v- and u-variables are dual variables associated with con-
straints (2) and (3), respectively. Note that C-OWA-SVM is a
quadratic continuous model which determines a linear classifier
considering ordered weighted average of individuals errors.

Remark 3.1. By considering the model proposed in [20] for min-
imizing the sum of k largest functions, an alternative formulation
to C-OWA-SVM is

(OT-C-OWA-SVM) min
w,b,ξ,t,d

1
2
∥w∥

2
2

+

n∑
k=1

(λn−k+1 − λn−k)

(
ktk +

n∑
i=1

dik

)
s.t. (5)–(8),

dik ≥ Cξi − tk, i, k ∈ N,

dik ≥ 0, i, k ∈ N,

tk ∈ R, k ∈ N.

Some preliminary computational results show that formulation
C-OWA-SVM outperforms, in terms of computational times, for-
mulation OT-C-OWA-SVM.

As in classical SVM, it would be interesting to check whether
it is possible to develop a methodology for obtaining nonlinear
separators by applying the kernel trick. For this reason, once we
have a primal formulation of C-OWA-SVM, we present its dual
version that will be very useful to build nonlinear classifiers. The
following results give a formulation of the dual problem.

Proposition 3.1. The dual form of C-OWA-SVM is given by:

max
α,η

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj,

s.t.
n∑

i=1

αiyi = 0, (12)

αi ≤

n∑
j=1

ηijCλj, i ∈ N, (13)

n∑
i=1

ηij = 1, j ∈ N, (14)

n∑
j=1

ηij = 1, i ∈ N, (15)

0 ≤ αi, i ∈ N, (16)

0 ≤ ηij, i, j ∈ N. (17)

Proof. The Lagrangian function associated with model
C-OWA-SVM is

L(w, b, ξ, u, v) =
1
2
∥w∥

2
2 +

n∑
ui +

n∑
vj
i=1 j=1

5

+

n∑
i=1

αi[1 − ξi − yi(wTxi + b)]

−

n∑
i=1

µiξi +

n∑
i=1

n∑
j=1

ηij(Cλjξi − ui − vj),

where α ≥ 0, µ ≥ 0 and η ≥ 0 are positive Lagrangian
multipliers. The necessary and sufficient optimality conditions for
C-OWA-SVM result in:

∂L(w, b, ξ, u, v)
∂wj

= wj −

n∑
i=1

αiyixij = 0, j ∈ N, (18)

∂L(w, b, ξ, u, v)
∂b

= −

n∑
i=1

αiyi = 0, (19)

∂L(w, b, ξ, u, v)
∂ξi

= −αi − µi +

n∑
j=1

ηijCλj = 0, i ∈ N,

(20)

∂L(w, b, ξ, u, v)
∂ui

= 1 −

n∑
j=1

ηij = 0, i ∈ N, (21)

∂L(w, b, ξ, u, v)
∂vj

= 1 −

n∑
i=1

ηij = 0, j ∈ N, (22)

αi[1 − ξi − yi(wTxi + b)] = 0, i ∈ N, (23)

µiξi = 0, i ∈ N, (24)

ηij(Cλjξi − ui − vj) = 0, i, j ∈ N, (25)

αi, µi, ηij ≥ 0, i, j ∈ N. (26)

From (18), it can be shown that wj =
∑n

i=1 αiyixij for j ∈ N .
Besides, as in the classic SVM, condition (19) results in constraint
(12). In addition, conditions (20) can be replaced by inequalities
(13). Finally, constraints (14) and (15) can be deduced from
conditions (21) and (22), respectively.

By using the complementary slackness conditions and replac-
ing wj =

∑n
i=1 αiyixij in the Lagrangian function, we obtain

L(w, b, ξ , u, v) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj. □

Observe that the formulation of the dual problem depends on
the observed data through the scalar product of two observations.
Hence, replacing in C-OWA-SVM the scalar products of training
data by a kernel function K (xi, xj) = φ(xi)·φ(xj), where φ is a map
f the observations in a higher dimension space, the resulting
ormulation is

C-OWA-SVMK ) max
α,η

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi, xj),

s.t. (12)–(17).

Thus, kernel trick can be applied. Recall that this trick consists
in using kernel functions in such a way that it is not necessary to
explicitly know the transformation φ(·) and this formulation does
not depend on the dimension of feature space.

Given a sample, x, belonging to an unknown class, the sepa-
rating function of a nonlinear SVM is given by

wT
φφ(x) + b =

n∑
α∗

i yiφ(xi) · φ(x) + b

i=1
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=

n∑
i=1

α∗

i yiK (xi, x) + b. (27)

hen using C-OWA-SVMK to obtain a nonlinear separator, α∗

alues are given by the optimal solution of C-OWA-SVMK . The
ollowing result states how to determine the value of b coeffi-
ient.

roposition 3.2. b-coefficient of the separating function associated
ith C-OWA-SVMK is given by

=
1 − yk(

∑n
i=1 α∗

i yiK (xi, xk))
yk

,

where k ∈ N verifies that 0 < α∗

k < C
∑n

j=1 η∗

kjλj, and (α∗, η∗) are
the optimal values of C-OWA-SVMK .

Proof. Let k ∈ N be such that 0 < α∗

k < C
∑n

j=1 η∗

kjλj. Then, due
to conditions (20), µ∗

k > 0. Since (24) holds, ξ ∗

k = 0. Considering
(23), we obtain

1 − yk

(
n∑

i=1

α∗

i yiK (xi, xk) + b

)
= 0.

Then,

b =
1 − yk(

∑n
i=1 α∗

i yiK (xi, xk))
yk

. □

The discussion above proves that kernel trick can be used in
OWA-SVM provided that λ-weights are given in non-decreasing
order and that C-OWA-SVMK formulation is used. Furthermore,
the nonlinear separator can be easily obtained by using (27) and
Proposition 3.2.

Regarding formulation C-OWA-SVMK , we find some differ-
ences with respect to the classical kernel extension of ℓ2-SVM.
pecifically, it is necessary to include some variables (η) and
onstraints ((13)–(15),(17)) which do not appear in the classical
ual model. Despite this, the resulting formulation C-OWA-SVMK
s a convex quadratic continuous formulation that can be solved
n reasonable small times comparable to the times of classical
ernel-version SVM model as we will see in Section 5. Then, we
ave obtained an exact OWA-SVM approach for non-decreasing
-weights that can be efficiently solved.

. An SVM-model introducing non convex OWA operators

The main goal of this Section is to introduce OWA in the SVM
odel when general λ-weights are considered, not necessarily
iven in non decreasing order. In contrast with the formulation
ddressed in the previous section, the use of general λ-weights
orces the introduction of binary variables in the formulation in
rder to model the sorting of the SVM related deviations. As
consequence, the resulting model is a quadratic mixed inte-
er formulation which is computationally more complex than
-OWA-SVM. Besides, in spite of using a MIQP to model OWA-
VM with general λ-weights, we are able to deal with a kernel
xtension in a different way.
As previously mentioned, OWA operators with general λ-

eights have been applied in many combinatorial optimization
roblems. Particularly, in [21], OWA problems are analyzed from
modeling point of view and several formulations are compared.
ased on this analysis, we present a quadratic mixed integer
ormulation for the SVM model that we are studying.

To this purpose, it is necessary to use the z-variables described
n (1) and to introduce a new family of continuous variables, for
∈ N , defined as:

= deviation associated with the individual which is in the
k

6

kth position of the sorted vector of deviations,

The resulting formulation is the following:

(NC-OWA-SVM) min
w,b,ξ,z,θ

1
2
∥w∥

2
2 + C

n∑
k=1

λkθk,

s.t. (2), (5)–(8),

θk ≥ ξi − M(1 −

n∑
j=1
j≤k

zij), i, k ∈ N,

(28)

zik ∈ {0, 1}, i, k ∈ N, (29)

θk ≥ 0, k ∈ N. (30)

Constraints (28) ensure that deviation value in position k is at
least the deviation of element i, if i is in a position smaller than
or equal to k, for i, k ∈ N . Constraints (28) use a big M parameter
to establish this link between θk- and ξi-variables. Note that the
maximum distance between two points of the training data is a
valid value of M .

Observe that, in contrast with formulation C-OWA-SVM, it
is necessary to include binary variables to correctly model the
order. As a consequence, completely different techniques must be
applied to extend kernel trick to this formulation. In what follows,
we develop a model to accommodate nonlinear kernel functions
in NC-OWA-SVM, see [22].

Remark 4.1. In model NC-OWA-SVM, assume that z-variables are
fixed to ẑ (feasible assignment). Then the following formulation
can be stated,

(NC-OWA-SVM(ẑ)) min
w,b,ξ,θ

1
2
∥w∥

2
2 + C

n∑
k=1

λkθk,

s.t. (5)–(8), (30),

θk ≥ ξi − M

⎛⎜⎝1 −

n∑
j=1
j≤k

ẑij

⎞⎟⎠ , i, k ∈ N.

(31)

The dual formulation of NC-OWA-SVM(ẑ) is

(NC-OWA-SVMD(ẑ)) max
α,µ

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj

− M
n∑

i=1

n∑
k=1

µik

⎛⎝1 −

∑
j≤k

ẑij

⎞⎠ ,

s.t. (12), (16),

αi ≤

n∑
k=1

µik, i ∈ N, (32)

n∑
i=1

µik ≤ Cλk, i, k ∈ N, (33)

µik ≥ 0, i, k ∈ N. (34)

Besides, from necessary and sufficient optimality conditions,

j =

n∑
i=1

αiyixij for j ∈ N .

Based on the link between NC-OWA-SVM(ẑ) and
NC-OWA-SVMD(ẑ), we propose an alternative formulation of
OWA-SVM for general weights. This formulation allows the use



A. Marín, L.I. Martínez-Merino, J. Puerto et al. Knowledge-Based Systems 237 (2022) 107705

o
r

(

P
(
N

P
(
n∑
a
(

f
f
e

(

f kernel functions and, consequently, the use of nonlinear sepa-
ators.

NC-OWA-SVMD) min
α,b,ξ,θ,z

1
2

n∑
i=1

n∑
j=1

yiyjαiαjxi · xj + C
n∑

k=1

λkθk,

s.t. (2),(7),(8),(28)–(30),

yi(
n∑

j=1

yjαjxi · xj + b) ≥ 1 − ξi, i ∈ N.

(35)

roposition 4.1. Given an optimal solution of NC-OWA-SVM,
w∗, b∗, ξ∗, θ∗, z∗), it can be built a feasible solution of
C-OWA-SVMD, (α∗, b∗, ξ∗, θ∗, z∗), with the same objective value.

roof. Given a solution of NC-OWA-SVM, (w∗, b∗, ξ∗, θ∗, z∗), then
w∗, b∗, ξ∗, θ∗) is an optimal solution of NC-OWA-SVM(z∗). From
ecessary and sufficient optimality conditions, w∗

=
n
i=1 α′

iyixij, where α′ are the optimal values of α variables
ppearing in NC-OWA-SVMD(z∗). By defining α∗

= α′,
α∗, b∗, ξ∗, θ∗, z∗) is feasible for NC-OWA-SVMD and

1
2
∥w∗

∥
2
2 + C

n∑
k=1

λkθ
∗

k =
1
2

n∑
i=1

n∑
j=1

yiyjα∗

i α
∗

j xi · xj + C
n∑

k=1

λkθ
∗

k . □

Proposition 4.2. Given an optimal solution of NC-OWA-SVMD,
(α∗, b∗, ξ∗, θ∗, z∗), a feasible solution of NC-OWA-SVM with the
same objective value, (w∗, b∗, ξ∗, θ∗, z∗), can be built.

Proof. Given an optimal solution of NC-OWA-SVMD, (α∗, b∗, ξ∗,

θ∗, z∗), we define w∗

j =
∑n

i=1 α∗

i yixij. This solution is feasi-
ble for NC-OWA-SVM since NC-OWA-SVMD has been built from
NC-OWA-SVM, by replacing wj by

∑n
i=1 αiyixij. □

Propositions 4.1 and 4.2 show that formulations NC-OWA-SVM
and NC-OWA-SVMD are equivalent in the sense that optimal
solutions to NC-OWA-SVM can be built from optimal solutions
of NC-OWA-SVMD with the same objective value, and viceversa.
Note that formulation NC-OWA-SVMD allows us to accommodate
nonlinear kernel functions. Replacing scalar products by a general
kernel function, the resulting formulation is

(NC-OWA-SVMK ) min
α,b,ξ,θ,z

1
2

n∑
i=1

n∑
j=1

yiyjαiαjK (xi, xj) + C
n∑

k=1

λkθk,

s.t. (2),(7),(8),(28)–(30),

yi(
n∑

j=1

yjαjK (xi, xj) + b) ≥ 1 − ξi, i ∈ N. (36)

Observe that, in NC-OWA-SVMK formulation, a valid value
or big M parameter should be determined and, the tighter the
ormulation, the better the performance. In order to obtain a good
stimate for M , one can solve the following auxiliary problem:

UBM) max
α,b,ξ,θ

θ,

s.t. (7),(8),(12),(36),

θ ≥ ξi, i ∈ N (37)

1
2

n∑
i=1

n∑
j=1

yiyjαiαjK (xi, xj) + Cλnθ ≤ UB, (38)

0 ≤ αi ≤ C
∑
k

λk, i ∈ N, (39)

θ ≥ 0, (40)
7

where UB is an upper bound on the optimal value of
NC-OWA-SVMK and θ is a variable that represents the deviation
of the individual that is in the nth position of the sorted vector
of deviations, the largest one. In UBM formulation, constraint
(12) must be satisfied since it appears in NC-OWA-SVMD(z ′) for
each feasible assignment z ′. In addition, constraints (36) ensure
that α solutions satisfy the constraints of NC-OWA-SVMK and
constraints (37) establish that θ is the largest deviation. Besides,
we include constraint (38) which restrict the objective value of
the original problem to be smaller than or equal to a certain
upper bound. Finally, the remaining constraints determine the
bounds of the problem variables. Note that constraints (39) result
from the combination of constraints (32) and (33) appearing in
formulation NC-OWA-SVMD(ẑ).

In a similar way, upper and lower bounds on b-variable could
be obtained. Particularly,

(UBb) max
α,b,ξ,θ

b,

s.t. (7),(8),(12),(36)–(40)

provides an upper bound on b-variable. Analogously,

(LBb) min
α,b,ξ,θ

b,

s.t. (7),(8), (12), (36) –(40)

allows us to obtain a lower bound on b-variable.
We can conclude that, by using an initial upper bound on

C-OWA-SVMK (UB) and auxiliary problems (UBM, UBb, LBb), a
valid big M value and bounds on the b-variable can be deter-
mined. Then, NC-OWA-SVMK can be solved more efficiently. In
Algorithm 1, the method for solving NC-OWA-SVMK is outlined.
Algorithm 1: Method for solving NC-OWA-SVMK .

Data: Training sample composed by a set of n individuals
with d features.

Result: OWA-SVM classifier using non convex weights
and a certain kernel function K (·, ·).

1 Solve the dual form of problem ℓ2-SVM with kernel
function K (·, ·) obtaining a solution (α′, b′).

2 Consider the deviations associated with the optimal
solution (α′, b′) and sort them in non-decreasing order,
obtaining a sorted vector of deviations θ ′.

3 Build a feasible solution for NC-OWA-SVMK :

UB∗
:=

1
2

n∑
i=1

n∑
j=1

yiyjα′

iα
′

jK (xi, xj) + C
n∑

k=1

λkθ
′

k

4 Solve the problems LBb and UBb establishing UB=UB∗ in
constraints (38). Obtain optimal objective values: lb from
LBb and ub from UBb.

5 Solve the problem UBM establishing UB=UB∗ in
constraints (38) and adding constraint:

lb ≤ b ≤ ub. (41)

The optimal solution of UBM is denoted as ubM .
6 Solve NC-OWA-SVMK including constraints (41) and using

M = ubM . The optimal solutions of NC-OWA-SVMK are
denoted by (α∗, b∗, ξ∗, θ∗, z∗).

Next section will be devoted to some computational studies
on the different OWA-SVM models.
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nalyzed datasets.
Label Complete name n d Class(%)

DUKE Duke breast-cancer 44 7129 52.3/47.7
COLON Colon cancer 62 2000 35.5/64.5
SONAR Sonar 208 60 46.6/53.4
IONO Ionosphere 351 34 64.1/35.9
WBC Wisconsin Breast Cancer 569 30 62.7/37.3
AUS Australian Credit 690 14 55.5/44.5
DIA Pima Indians Diabetes 768 8 65.1/34.9
GC German Credit 1000 24 70.0/30.0
SPL Splice 1000 60 51.7/48.3
SVMG3 svmguide3 1243 21 23.8/76.2

5. Computational experiments

As mentioned in Section 1, [15], which is our benchmark,
resents a heuristic approach to the use of OWA in the soft-
argin SVM, that for the sake of presentation we denote by app-
WA-SVM. The app-OWA-SVM approach is a two-step method. In
he first step, the classical soft margin SVM is solved and in the
econd step, the order induced by this optimal solution on the
eviations is used to assign fixed weights to a new soft-margin
VM model.
In this section, we analyze the performance of our exact ap-

roach to OWA-SVM in comparison with app-OWA-SVM, the
lassical soft-margin SVM, k nearest neighbors, naïve Bayes and
he logistic regression. In our computational studies, we imple-
ented our exact OWA-SVM, app-OWA-SVM and the classical
VM. The reader is referred to results in [15], where it is shown
hat even the classical soft margin SVM outperforms k nearest
eighbors, naïve Bayes and the logistic regression. We report
esults based on ten datasets described in Table 3, taken from
he publicly available repository [23], which include those used
n our benchmark [15]. Observe that Table 3 details the complete
ames of the datasets, the sample size, the number of features
nd the proportion of each class in the sample.
Our comparison does not only include the previously men-

ioned models using linear kernel, but also their corresponding
aussian kernel versions. Recall that the Gaussian kernel function
an be expressed as

(xi, xj) = exp
(

−
∥xi − xj∥

2σ 2

)
,

here σ > 0 is known as the width parameter, see [24]. For that
eason, in the reported results, we distinguish between the results
f the model with and without the Gaussian kernel.
In order to define the parameters, we follow the same strategy

s in [15]. Specifically, we performed a ten fold cross validation
or C and σ in {2−7, 2−6, . . . , 26, 27

}.
Moreover, we analyze four OWA weights based on linguis-

ic quantifiers (see [25,26]): basic, quadratic, exponential and
rigonometric. For the sake of completeness, we recall the expres-
ions of these quantifiers:

• Basic quantifier: Qb(r) = r α̃ , α̃ ≥ 0.

• Quadratic quantifier: Qq(r) =

(
1

1 − α̃(r)0.5

)
, α̃ ≥ 0.

• Exponential quantifier: Qe(r) = e−α̃r , α̃ ≥ 0.
• Trigonometric quantifier: Qr (r) = arcsin(rα̃), α̃ ≥ 0.

Considering these quantifiers, the associated weights can be
determined by calculating

λ′

i = Q
(
1 −

i − 1
)

− Q
(
1 −

i
)

, for i ∈ N.

n n

8

Hence, the final weights are given by

λi =
λ′

i

λ̄′
,

where λ̄′ is the average of λ′-vector.
The specific choice of these weights is motivated since they

are the ones reported in [15]. Note that the quantifiers related to
the weights include a new parameter α̃ which is also validated in
α ∈ {0.2, 0.4, 0.6, 0.8}.

To compare the results of the models, two classification per-
formance metrics are presented: the accuracy (ACC) and the area
under the curve (AUC). The accuracy is calculated as

ACC =
TP + TN

TP + TN + FP + FN
,

here TP are true positives, TN are true negatives, FP false pos-
tives and FN false negatives. The area under the curve is given
y

UC =

TP
TP + FN

+
TN

TN + FP
2

.

Regarding the solution methods used for solving the models,
classical soft-margin ℓ2-SVM and the ℓ2-SVM model using Gaus-
sian kernel are solved with SVC function of Scikit Learn module in
Python, see [27]. Moreover, app-OWA-SVM and app-OWA-SVMK ,
the models with linear and Gaussian kernel (respectively) appear-
ing in [15] are solved by using the two-step method proposed by
them.

The exact OWA-SVM models that we propose can be solved
depending on the weights with different approaches. Specifically,
C-OWA-SVMK is used for the weights based on basic and expo-
nential quantifiers since they are monotone non-decreasing. Be-
sides, the weight based on the quadratic quantifier is also mono-
tone non-decreasing for α̃ = 0.2. For this reason, C-OWA-SVMK
is also used with these weights. Note that C-OWA-SVMK formu-
lation is also the one used in the linear kernel case, i.e., K (xi, xj) =

xi · xj. For the remaining weights, NC-OWA-SVM and
NC-OWA-SVMK (following Algorithm 1) are applied to obtain the
classifiers. It should be noted that all our computational studies
were performed using CPLEX 20.1.0 in Python on an Intel(R)
Xeon(R) W-2245 CPU 256 GB RAM computer. For further informa-
tion, the implemented code can be found in https://github.com/
LuisammGh/OWA_SVMs_and_related_models.

Before comparing the predictive performance of the models,
we would like to emphasize the level of adequacy provided by
app-OWA-SVM with respect to the correct final ranking of the
deviations. Table 4 reports an illustrative example of how the
order of deviations behave in app-OWA-SVM methods compared
with the correct final ranking. Specifically, Table 4 reports, for
the considered datasets, the average percentage of coincidences
between the positions that occupy the individuals in the sorted
deviations vector of step one and their positions in step two of
the app-OWA-SVM method. In addition, in the third column of
Table 4, we report the average percentage of coincidences be-
tween the final order in the app-OWA-SVM method and the order
provided by C-OWA-SVMK . It should be highlighted that these
results are obtained when applying the ten fold cross validation
to the models with C = 1, σ = 1, basic quantifier weight and
α = 0.6.

Results of Table 4 show how the induced order of classical
SVM, in step 1 in [15], is not the same as the one resulting in the
second step of app-OWA-SVM. This order is neither the same as
the sorting obtained by applying C-OWA-SVMK . In contrast with
the approaches in [15], the exact OWA-SVM models, proposed in
this paper, set the order of the deviations while solving the model

https://github.com/LuisammGh/OWA_SVMs_and_related_models
https://github.com/LuisammGh/OWA_SVMs_and_related_models
https://github.com/LuisammGh/OWA_SVMs_and_related_models
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verage percentage of coincidence in the positions of the sorted deviations
ector.
Data Step 1 - Step 2 (%) Step 2 - C-OWA-SVMK (%)

DUKE 1.02% 0.77%
COLON 1.80% 2.16%
SONAR 1.44% 3.05%
IONO 1.68% 2.06%
WBC 1.17% 0.18%
AUS 0.86% 1.71%
DIA 0.56% 1.62%
GC 0.40% 0.36%
SPL 0.03% 0.00%
SVMG3 0.87% 1.52%

itself and therefore they actually apply exact OWA operators to
SVM. This shows that the method in [15] is a OWA-like approach
but actually, it is not an exact application of OWA operators.

Focusing on the performance classification metrics, Table 5
eports the best results in terms of ACC provided by the different
odels. Note that ℓ2-SVM and ℓ2-SVMK show the ACC of the

classic model with linear and Gaussian kernels, respectively. The
column corresponding to app-OWA-SVM presents the results of
the model proposed in [15] and column app-OWA-SVMK shows
the results for the model in [15] using the Gaussian kernel.
Finally, ex-OWA-SVM and ex-OWA-SVMK report the best results
of our proposed exact OWA-SVM methods using the formulations
in Sections 3 and 4 . Observe that, for all datasets, the best ACC are
either the one provided by the method presented in [15] using the
Gaussian kernel, or the ACC of the exact OWA-SVM model using
the Gaussian kernel.

Particularly, ex-OWA-SVMK provides the best ACC results for
SONAR, WBC, AUS and SVMG3 datasets; app-OWA-SVMK and ex-
OWA-SVMK seem to yield the same results in the DUKE, COLON,
IONO and GC cases; whereas the best results for DIA and SPL are
obtained by app-OWA-SVMK . In general, we can observe that the
accuracy (ACC) of app-OWA-SVMK and ex-OWA-SVMK are simi-
lar. This indicates that both approaches are worthy in the sense
that they improve this classification performance metric with
respect to the classical SVM, which in turns outperforms k nearest
neighbors, naïve Bayes and the logistic regression (see [15]),
achieving almost the same value.

Table 6 reports the AUC for the best combination of param-
eter values in each case. As for the ACC measure, the best AUC
results are always provided by app-OWA-SVMK and ex-OWA-
SVMK . Regarding the results, we observe that the AUC of both
approaches are quite similar. For the DUKE, COLON, IONO, DIA,
SPL and SVMG3 datasets, the same AUC is achieved by app-OWA-
SVMK and ex-OWA-SVMK ; ex-OWA-SVMK provides the best re-
sults for the SONAR, WBC and AUS datasets; and finally, the
app-OWA-SVMK reports the best values of AUC for GC dataset.
Both approaches, app-OWA-SVMK and ex-OWA-SVMK , improve
the AUC of the classical ℓ2-SVM and ℓ2-SVMK .

To conclude the analysis, we wish to include some information
on the CPU times needed to solve these problems. Table 7 reports
the average solving time (in seconds) per fold of the models for
the parameter values that provide the best AUC. For the approach
in [15], we report the time required by the two steps that are
involved in the method.

Concerning the times of ex-OWA-SVM and ex-OWA-SVMK , we
note in passing that they correspond to formulation C-OWA-SVMK
since, in all cases tested, the best results in terms of accuracy
and AUC are obtained using monotone non-decreasing weights.
Table 7 shows that the exact approach for OWA-SVM requires
more time than the classical SVM and also more than the methods
9

presented in [15]. This is due to the fact that models in [15] have
essentially the same complexity as the classical SVM.

The aforementioned results show that the exact OWA-SVM
models introduced in this paper improve the classification per-
formance metrics of the classical SVM. Furthermore, these mea-
sures are similar to the ones reported in previous approaches to
OWA-SVM models in terms of ACC and AUC, although they have
the advantage of actually capturing the essence of OWA in its
application to SVM.

6. Conclusions

OWA operators have been applied to different problems of
decision theory. This paper proposes an exact approach that
allows the introduction of OWA operators for the deviation errors
appearing in the soft-margin SVM. For this aim, we have dis-
tinguished between OWA-SVM with non-decreasing λ-weights
and OWA-SVM with general λ-weights (not necessarily non-
decreasing).

The use of non-decreasing weights allowed to formulate the
model using only continuous variables. As consequence, a
quadratic continuous formulation was developed, C-OWA-SVM.
In addition, it was shown that nonlinear kernels could be ac-
commodated in this model by the use of the dual formulation.
The required solving time of this formulation is similar to the
classical one. In contrast, the use of non-monotone weights in the
OWA-SVM leads us to the use of binary variables to model the
order of the deviations vector. Then, a mixed integer quadratic
formulation, NC-OWA-SVM, is necessary to solve this problem.
Hence, NC-OWA-SVM is more complex than C-OWA-SVM. De-
spite this, it is also possible to apply nonlinear kernel by the use
of an alternative formulation.

We have compared the proposed models with the heuristic
approach to OWA-SVM appearing in [15]. Regarding the results,
we can conclude that app-OWA-SVM provides solutions very
different from the optimal solutions of the resulting model of
applying actual OWA operators to SVM. However, both method-
ologies show similar predictive performance improving the ones
obtained with the classical SVM (linear and nonlinear), k nearest
eighbors, naïve Bayes and the logistic regression.
As future research, it could be interesting to analyze the OWA-

VM model using other ℓp-norms. For instance, it could be eval-
ated whether the use of ℓ1-norm to measure the margin associ-
ted with the separating hyperplane together with OWA operator
or deviations provides a better predictive performance. It could
lso be studied if nonlinear kernels could be applied when using
1-norm. Another line of research could be the development of
more complete exact model including other aspects such as

eature selection or outlier detection. The development of this
ew model would imply the use of extra constraints and/or new
olution techniques. The above mentioned subjects will be the
asis of a follow up paper.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

Alfredo Marín has been supported by Spanish Ministry of Sci-
nce and Innovation under project PID2019-110886RB-I00. Part
f this research was conducted while he was on sabbatical at Uni-
ersidad de Sevilla, Spain. Luisa I. Martínez-Merino, Antonio M.



A. Marín, L.I. Martínez-Merino, J. Puerto et al. Knowledge-Based Systems 237 (2022) 107705

T
B

able 5
est ACC results of each model.
ACC (%)

Data ℓ2-SVM app-OWA-SVM ex-OWA-SVM ℓ2-SVMK app-OWA-SVMK ex-OWA-SVMK

DUKE 88.50% 88.50% 88.50% 86.00% 90.50% 90.50%
COLON 85.48% 85.48% 85.48% 88.57% 90.48% 90.48%
SONAR 80.36% 80.79% 78.38% 70.26% 90.38% 91.33%
IONO 90.60% 90.89% 90.89% 95.44% 95.72% 95.72%
WBC 98.07% 98.07% 97.71% 98.24% 98.42% 98.77%
AUS 85.51% 86.09% 85.51% 86.38% 87.25% 87.39%
DIA 77.60% 77.73% 77.73% 77.34% 78.38% 78.12%
GC 76.90% 77.50% 77.30% 77.30% 77.50% 77.50%
SPL 81.30% 82.00% 81.70% 88.40% 89.80% 89.40%
SVMG3 82.46% 82.62% 82.46% 83.27% 85.03% 85.27%
Table 6
Best AUC results for each model.
AUC (%)

Data ℓ2-SVM app-OWA-SVM ex-OWA-SVM ℓ2-SVMK app-OWA-SVMK ex-OWA-SVMK

DUKE 87.50% 87.50% 87.50% 85.00% 90.00% 90.00%
COLON 86.67% 86.67% 86.67% 87.50% 90.42% 90.42%
SONAR 80.36% 80.97% 78.65% 70.12% 90.27% 91.52%
IONO 88.67% 88.89% 88.89% 94.55% 95.15% 95.15%
WBC 97.70% 97.70% 97.14% 97.84% 98.08% 98.44%
AUS 86.20% 86.67% 86.20% 86.54% 87.46% 87.71%
DIA 72.32% 72.96% 73.00% 72.19% 73.30% 73.30%
GC 68.98% 71.00% 69.19% 68.74% 71.67% 69.90%
SPL 81.41% 82.02% 81.78% 88.41% 89.86% 89.86%
SVMG3 65.60% 65.94% 65.48% 70.40% 74.85% 74.85%
Table 7
Times per fold of each model for the best parameter values.
Time (s)

Data ℓ2-SVM app-OWA-SVM ex-OWA-SVM ℓ2-SVMK app-OWA-SVMK ex-OWA-SVMK

Step 1 Step 2 Step 1 Step 2

DUKE 0.006 0.008 1.179 0.364 0.003 0.002 0.043 0.056
COLON 0.002 0.002 0.472 0.258 0.002 0.001 0.077 0.114
SONAR 0.002 0.002 0.105 1.685 0.003 0.003 0.734 1.178
IONO 0.023 0.014 0.212 4.725 0.006 0.003 1.900 4.967
WBC 0.003 0.003 0.494 12.628 0.003 0.002 4.915 9.345
AUS 0.011 0.425 0.297 19.900 0.014 0.014 8.105 26.609
DIA 0.013 0.009 0.286 25.133 0.013 0.008 9.944 21.536
GC 0.033 0.016 0.560 41.788 0.024 0.025 17.090 31.707
SPL 0.022 0.522 0.815 40.561 0.057 0.038 16.387 30.866
SVMG3 0.181 0.088 1.900 71.205 0.072 0.031 24.438 61.576
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