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a b s t r a c t

In this article we deal with one-dimensional inverse problems concerning the Burgers
equation and some related nonlinear systems (involving heat effects and/or variable
density). In these problems, the goal is to find the size of the spatial interval from some
appropriate boundary observations of the solution. Depending on the properties of the
initial and boundary data, we prove uniqueness and non-uniqueness results. In addition,
we also solve some of these inverse problems numerically and compute approximations
of the interval sizes.
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1. Introduction

This paper deals with some inverse problems for nonlinear time-dependent PDEs in one spatial dimension.
The analysis and solution of inverse problems of many kinds has recently increased a lot because of their relevance

n many applications: elastography and medical imaging, seismology, potential theory, ion transport problems or
hromatography, finances, etc.; see for instance [3,9,15]. The variety of inverse problems is huge in comparison with
heir direct analogs and many inverse problems coming from very classical and basic direct problems wait for theoretical
nd numerical research. Let us mention the monographs by Bellassoued and Yamamoto [2], Isakov [13], Romanov [16]
nd Hasanov and Romanov [10], where many theoretical and numerical aspects of inverse problems for partial differential
quations are depicted.
In this paper, we consider problems related to the identification of the size of the spatial interval where a time-

ependent governing nonlinear equation must be satisfied. We will focus on the Burgers equation and some variants,
atisfied for (x, t) ∈ (0, ℓ)×(0, T ). We will assume that the equation is complemented with boundary and initial conditions
orresponding to known data, respectively for x ∈ {0, ℓ} and t = 0. Then, we will try to determine the width ℓ of the spatial
nterval from some extra information, for instance given at x = 0. The main goals will be to establish or discard uniqueness
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and to compute approximations of the solutions to the inverse problems. Related questions have been analyzed recently
for the linear heat and wave equations in [1].

The plan is the following. In Section 2, we consider the viscous Burgers equation under several different circumstances.
ections 3 and 4 respectively deal with the Burgers equation coupled to a heat equation and the variable density Burgers
ystem. Finally, we present the results of some numerical experiments in Section 5.
Throughout this paper, ∥·∥ and (· , ·) will stand for the usual L2 norm and scalar product, respectively. In the particular

ase of the space L2(0, ℓ), we will sometimes write (· , ·)ℓ in order to make the length ℓ explicit. The symbol C will denote
generic positive constant.

. Some positive and negative results for the viscous Burgers equation

Let us consider the following system for the Burgers equation:⎧⎨⎩
ut − uxx + uux = 0, 0 < x < ℓ, 0 < t < T ,
u(0, t) = η(t), u(ℓ, t) = 0, 0 < t < T ,
u(x, 0) = u0(x), 0 < x < ℓ.

(1)

The unknown u = u(x, t) can be interpreted (for example) as the velocity of the particles of a homogeneous viscous
fluid in a tube where the flow is allowed only lengthwise. It can also be viewed as the car traffic density in a road in a
simplified model, see for instance [14].

The main inverse problem for (1) is the following:
IP-1: Fix u0 = u0(x) and η = η(t) in (1) in appropriate spaces and assume that β := ux|x=0 is known. Then, find ℓ.

We are first interested in proving uniqueness. More precisely, the following question is in order:
Uniqueness for IP-1: Let uℓ and uL be the solutions to (1) respectively associated to the spatial intervals (0, ℓ) and (0, L).
ssume that the corresponding observations uℓx(0, ·) and uL

x(0, ·) coincide, that is,

uℓx(0, t) = uL
x(0, t) in (0, T ). (2)

hen, do we have ℓ = L?
In the sequel, we will provide some positive and negative answers to this question, depending on the kind of imposed

oundary or initial data.

.1. The simplest cases: zero initial and/or boundary data

.1.1. Case I: η ̸≡ 0 and u0 ≡ 0
If u0 ≡ 0, we get uniqueness:

heorem 2.1. Assume that 0 < ℓ ≤ L, η ∈ L∞(0, T ) satisfies η ̸≡ 0 and u0 ≡ 0. Let uℓ and uL be the solutions to (1)
espectively corresponding to ℓ and L and let us assume that, for some M > 0,

|uℓx(x, t)| ≤ M in (0, ℓ) × (0, T ) and |uL
x(x, t)| ≤ M in (0, L) × (0, T ) (3)

and (2) holds. Then, ℓ = L.

Proof. The proof is standard. It can be achieved by contradiction, assuming that ℓ < L. Indeed, note that uℓ ∈ L∞((0, ℓ)×
0, T )) and uL

∈ L∞((0, L) × (0, T )). If we set v := uℓ − uL, one has

vt − vxx + vuℓx + uLvx = 0 in (0, ℓ) × (0, T )

nd also v(0, t) = 0 and vx(0, t) = 0 in (0, T ). Consequently, from the unique continuation property of the heat equation
see [17]), we have v = 0 in (0, ℓ) × (0, T ). This yields uL(x, t) = 0 in (ℓ, L) × (0, T ) and then (again from unique
ontinuation) uL

≡ 0, which is an absurd. □

.1.2. Case II: η ≡ 0 and u0 ̸≡ 0
Let us show that, as in the case of the linear heat equation (see [1]), non-uniqueness holds in general. More precisely,

counter-example to uniqueness can be found. We will follow three steps:

1- Using the Cole–Hopf transformation (named after J.D. Cole and E. Hopf’s works [6,11], respectively), we will
rewrite (1) as a system for the heat equation.

2- Then, we will prove a result similar to [1, Proposition 2.1] and we will deduce non-uniqueness for the inverse
problem corresponding to the heat equation with Neumann boundary conditions.

3- Finally, coming back to the original variables, we will be able to conclude.
2
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The Cole–Hopf transformation is given by

ϕ(x, t) = Me−
1
2

∫ x
0 u(ξ,t) dξ

or, equivalently,

u(x, t) = −2
ϕx(x, t)
ϕ(x, t)

, ϕ(0, t) ≡ M, (4)

where M is a positive constant. Using (4), the Burgers system (1) can be rewritten in the form⎧⎨⎩
ϕt − ϕxx = 0, 0 < x < ℓ, 0 < t < T ,
ϕx(0, t) = 0, ϕx(ℓ, t) = 0, 0 < t < T ,
ϕ(x, 0) = ϕ0(x), 0 < x < ℓ,

(5)

where we have introduced ϕ0(x) := Me−
1
2

∫ x
0 u0(ξ ) dξ .

Let us denote by λn and ϕ̃n (resp. µn and ψ̃n) the eigenvalues and eigenfunctions of the Neumann Laplacian in (0, ℓ)
(resp. (0, L)). Then,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λn :=
n2π2

ℓ2
, n ∈ N ∪ {0},

ϕ̃n(x) :=

⎧⎪⎪⎨⎪⎪⎩
√

2
ℓ
cos

(nπx
ℓ

)
, n ∈ N,

1
√
ℓ
, n = 0, 0 < x < ℓ,

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µn :=
n2π2

L2
, n ∈ N ∪ {0},

ψ̃n(x) :=

⎧⎪⎪⎨⎪⎪⎩
√

2
L
cos

(nπx
L

)
, n ∈ N,

1
√
L
, n = 0, 0 < x < L.

The solutions to (5) corresponding to ℓ and L can be defined for all t > 0. They are respectively given by

ϕℓ(x, t) =

∞∑
n=0

(ϕ0, ϕ̃n)ℓ e−λnt ϕ̃n(x), 0 < x < ℓ, t > 0 (6)

and

ϕL(x, t) =

∞∑
n=0

(ϕ0, ψ̃n)L e−µnt ψ̃n(x), 0 < x < L, t > 0. (7)

Recall that these scalar products are respectively given by

(f , g)ℓ :=

∫ ℓ

0
f (x)g(x) dx and (f , g)L :=

∫ L

0
f (x)g(x) dx.

For any set K , let us denote by #K the cardinal of K . Then, the following holds:

Proposition 2.2. If L/ℓ ∈ Q, then there exist initial data ϕ0 verifying

#{n : (ϕ0, ϕ̃n)ℓ ̸= 0} = #{n : (ϕ0, ψ̃n)L ̸= 0} = 1, (8)

such that ϕℓxx(0, t) = ϕL
xx(0, t) for all t > 0. Thus, we can have non-uniqueness with initial data ϕ0 satisfying (8) even if |L − ℓ|

is arbitrarily small.

Proof. Let m0, n0 ∈ N be given such that n0 < m0 and ℓ = n0L/m0, that is, m0/L = n0/ℓ. Let us choose k1, n1 ∈ N such
that n1 = k1m0/n0. Note that

λk1 =
k21π

2

ℓ2
=

n2
1π

2

L2
= µn1

nd set

ϕ0(x) := cos
(
k1πx

)
+ a = cos

(n1πx)
+ a, x ∈ R, (9)
ℓ L
3
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where a is a real constant.
The functions in (6) and (7) corresponding to this ϕ0 are the following:

ϕℓ(x, t) = a + e−
k21π

2

ℓ2
t cos

(
k1π
ℓ

x
)

(10)

nd

ϕL(x, t) = a + e−
n21π

2

L2
t cos

(n1π

L
x
)
. (11)

onsequently,

ϕℓx (0, t) = ϕL
x(0, t) = 0. □

From (4), (10) and (11), we get

uℓ(x, t) =
2k1π
ℓ

e−
k21π

2

ℓ2
t sin

(
k1π
ℓ
x
)

e−
k21π

2

ℓ2
t cos

(
k1π
ℓ
x
)

+ a

and uL(x, t) =
2n1π

L
e−

n21π
2

L2
t sin

( n1π
L x

)
e−

n21π
2

L2
t cos

( n1π
L x

)
+ a

.

If a is sufficiently large, these functions are well defined, solve the Burgers systems respectively in (0, ℓ) × (0, T )
nd (0, L) × (0, T ) for

u0(x) =
2k1π
ℓ

sin
(

k1π
ℓ
x
)

cos
(

k1π
ℓ
x
)

+ a
=

2n1π

L
sin

( n1π
L x

)
cos

( n1π
L x

)
+ a

nd, moreover, satisfy (3).
This ends the proof of non-uniqueness in this case. □

.2. Results where η(t) ̸≡ 0 and u0(x) ̸≡ 0

In order to prove uniqueness when both η and u0 are nonzero (and η is sufficiently large), we need an auxiliary result
oncerning traces of functions in H2(0, ℓ):

emma 2.3. Let L∗ > 0 be given. Then⏐⏐⏐⏐dfdx (0)
⏐⏐⏐⏐ ≤

C(L∗)
ℓ3/2

∥f ∥H2(0,ℓ)

or any f ∈ H2(0, ℓ) and any ℓ with 0 < ℓ ≤ L∗.

The proof is elementary. It can be found in [1].

heorem 2.4. Assume that 0 < ℓ ≤ L ≤ L∗, 0 < T0 < T ,

uℓx(0, t) = uL
x(0, t) in (0, T ), ∥u0∥L2(0,L) ≤ M0,

|uℓx(x, t)| ≤ M in (0, ℓ) × (T0, T ) and |uL
x(x, t)| ≤ M in (0, L) × (T0, T ),

where L∗, M0 and M are some positive constants. There exists δ0 > 0 (only depending on L∗, T0, T , M0 and M) such that, if∫ T

T0

|η(t)|2 dt ≥ δ0, (12)

one necessarily has ℓ = L.

Proof. In this proof, we will denote by A the one-dimensional Dirichlet Laplacian in (ℓ, L), with the associated eigenvalues
0 < ζ1 < ζ2 < · · · .

Let us assume that ℓ < L. Then, arguing as in the proof of Theorem 2.1, we deduce that

uL(ℓ, t) = uL(L, t) = 0 in (0, T ). (13)

Therefore, from well known energy estimates, one has

∥uL(· , t)∥L2(ℓ,L) = ∥e−tAuL(· , 0)∥L2(ℓ,L) ≤ M0e−ζ1t ∀t ∈ (T0, T ),
2 −2
where ζ1 is the first eigenvalue of A, that is, ζ1 = π (L − ℓ) .

4
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Let us put uL
= uh

+ z for t ∈ (T0, T ), with uh(· , t) := e−(t−T0)AuL(· , T0). Then, we have:

∥uh(· , t)∥H2(ℓ,L) ≤
M0

T0
e−ζ1T0 in (T0, T ).

n the other hand,

z(· , t) =

∫ t

T0

e−(t−s)A(uLuL
x)(· , s) ds

and the standard parabolic regularity estimates and the fact that |uL
x| ≤ M yield:

∥z∥L2(T0,T ;H2(ℓ,L)) ≤ C(M)∥uL
∥L2(T0,T ;L2(ℓ,L)) ≤ C(T ,M0,M)e−ζ1T0 .

Therefore,

∥uL
∥L2(T0,T ;H2(ℓ,L)) ≤ C(T ,M0,M)

(
1 +

1
T0

)
e−ζ1T0

and, from Lemma 2.3, we get:

∥uL
x(ℓ, ·)∥L2(T0,T ) ≤

C(L∗, T ,M0,M)
(L − ℓ)3/2

(
1 +

1
T0

)
exp

(
−

π2T0
(L − ℓ)2

)
. (14)

aximizing the right hand side with respect to L − ℓ, we obtain:

∥uL
x(ℓ, ·)∥L2(T0,T ) ≤

1

T 3/4
0

(
1 +

1
T0

)
C(L∗, T ,M0,M).

Now, we can continue exactly as in the proof of Theorem 2.7 in [1] and deduce that, if δ0 is large enough, we get a
ontradiction. □

. The Burgers equation with heat effects

The system is now⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − uxx + uux = kθ, 0 < x < ℓ, t > 0,
θt − θxx + uθx = 0, 0 < x < ℓ, t > 0,
u(0, t) = η(t), u(ℓ, t) = 0, t > 0,
θ (0, t) = λ(t), θ (ℓ, t) = 0, t > 0,
u(x, 0) = u0(x), θ (x, 0) = θ0(x), 0 < x < ℓ.

(15)

Here, k ∈ R is given.
As before, u can be interpreted as the velocity of the fluid particles in a one-direction flow. This time, we assume that

heat effects are important and, consequently, the evolution of a temperature θ = θ (x, t) must also be taken into account.
We will deal with the following inverse problem:

IP-2: Fix (u0, θ0) and (η, λ) in (15) in appropriate spaces and assume that β := ux|x=0 and α := θx|x=0 are known. Then, find
.
The uniqueness property to analyze is as follows:

niqueness for IP-2: Let (uℓ, θ ℓ) and (uL, θ L) be the solutions to (15) associated to the spatial intervals (0, ℓ) and (0, L),
espectively. Assume that the corresponding observations (uℓx(0, ·), θ

ℓ
x (0, ·)) and (uL

x(0, ·), θ
L
x (0, ·)) coincide, that is,

uℓx(0, t) = uL
x(0, t) and θ ℓx (0, t) = θ Lx (0, t) in (0, T ). (16)

hen, do we have ℓ = L?
If (u0, θ0) ≡ (0, 0), we have again uniqueness:

heorem 3.1. Assume that 0 < ℓ ≤ L < T , η, λ ∈ L∞(0, T ) satisfy (η, λ) ̸≡ (0, 0) and (u0, θ0) ≡ (0, 0). Let (uℓ, θ ℓ) and
uL, θ L) be the solutions to (15) respectively corresponding to ℓ and L and let us assume that, for some M > 0, |uℓx|+ |θ ℓx | ≤ M
nd |uL

x| + |θ Lx | ≤ M respectively in (0, ℓ) × (0, T ) and (0, L) × (0, T ), furthermore, (16) is satisfied. Then, ℓ = L.

The proof is very similar to the proof of Theorem 2.1. Thus, if we assume that ℓ < L and we set v := uℓ − uL

nd ψ := θ ℓ − θ L, it is clear from unique continuation that (v, ψ) = (0, 0) in (0, ℓ) × (0, T ). From energy estimates,
e deduce that (uL, θ L) = (0, 0) in (ℓ, L) × (0, T ) and finally, again from unique continuation, (uL, θ L) ≡ (0, 0), which is

mpossible.
On the other hand, it is obvious that any solution to (1) is a particular solution to (15), corresponding to θ0 ≡ 0 and

≡ 0. Consequently, the counter-example considered in Section 2.1.2 is also a counter-example to uniqueness for IP-2
hen we allow u to be nonzero.
0

5
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To our knowledge, it is unknown if a counter-example to uniqueness can also be found with θ0 ̸≡ 0.
As before, we can deduce a uniqueness result for (15) for large η. More precisely, the following holds:

Theorem 3.2. Assume that 0 < ℓ ≤ L ≤ L∗, 0 < T0 < T , ∥(u0, θ0)∥L2(0,L) ≤ M0, |uℓx(x, t)| + |θ ℓx (x, t)| ≤ M in (0, ℓ) × (T0, T ),
|uL

x(x, t)| + |θ Lx (x, t)| ≤ M in (0, L) × (T0, T ) and (16) holds. There exists δ1 > 0 (only depending on L∗, T0, T , M0 and M) such
that, if∫ T

T0

|η(t)|2 dt ≥ δ1, (17)

one necessarily has ℓ = L.

Proof. It is similar to the proof of Theorem 2.4.
Thus, let us assume that ℓ < L. As before, this implies

uL(ℓ, t) = uL(L, t) = 0 and θ L(ℓ, t) = θ L(L, t) = 0 in (0, T ).

The following estimates for (uL, θ L) hold:

∥uL(· , T0)∥L2(ℓ,L) = M0e−ζ1T0 and ∥θ L(· , T0)∥L2(ℓ,L) = M0e−ζ1T0 ,

∥uL
∥L2(T0,T ;L2(ℓ,L)) = C(T ,M0)e−ζ1T0 and the same hold for θ L.

Let us put uL
= w + z, with w(· , t) := e−(t−T0)AuL(· , T0). Then

∥w(· , t)∥H2(ℓ,L) ≤
C
T0

e−ζ1T0 and z(· , t) =

∫ t

T0

e(t−s)A (
−uLuL

x + kθ L
)
(· , s) ds in (T0, T ),

hence

∥z∥L2(T0,T ;L2(ℓ,L)) ≤ C
[
M∥uL

∥L2(T0,T ;L2(ℓ,L)) + k∥θ L∥L2(T0,T ;L2(ℓ,L))
]
.

onsequently,

∥uL
∥L2(T0,T ;H2(ℓ,L)) ≤ C(T , L∗,M,M0)

(
1 +

1
T0

)
e−ζ1T0

and

∥uL
x(ℓ, ·)∥L2(T0,T ) ≤

C(T , L∗,M,M0)
(L − ℓ)3/2

(
1 +

1
T0

)
e
−
π2T0
(L−ℓ)2 .

At this point, we can continue as in the proof of Theorem 2.4 and deduce that, for δ1 large enough, (17) leads to a
ontradiction. □

It is interesting to note that, in this result, the size of λ (that is, θ |x=0) is not relevant at all.

emark 3.3. A simplified version of (15) can be obtained if we skip the transport terms. We find the linear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − uxx = kθ, 0 < x < ℓ, t > 0,
θt − θxx = 0, 0 < x < ℓ, t > 0,
u(0, t) = η(t), u(ℓ, t) = 0, t > 0,
θ (0, t) = λ(t), θ (ℓ, t) = 0, t > 0,
u(x, 0) = u0(x), θ (x, 0) = θ0(x), 0 < x < ℓ

(18)

It is not difficult to check that the assertions on uniqueness/nonuniqueness in Section 2 can be extended to this system
with very similar (and in fact simpler) arguments. □

Similar inverse problems can be considered for coupled Burgers-heat systems where the heat flux is given and the
temperature is observed at x = 0. These are the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − uxx + uux = kθ, 0 < x < ℓ, t > 0,
θt − θxx + uθx = 0, 0 < x < ℓ, t > 0,
u(0, t) = u(t), u(ℓ, t) = 0, t > 0,
θx(0, t) = χ (t), θx(ℓ, t) = 0, t > 0,

(19)
u(x, 0) = u0(x), θ (x, 0) = θ0(x), 0 < x < ℓ

6
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − uxx = kθ, 0 < x < ℓ, t > 0,
θt − θxx = 0, 0 < x < ℓ, t > 0,
u(0, t) = u(ℓ, t) = 0, t > 0,
θx(0, t) = χ (t), θx(ℓ, t) = 0, t > 0,
u(x, 0) = u0(x), θ (x, 0) = θ0(x), 0 < x < ℓ.

(20)

Now, the problems for (19) and (20) are as follows: (u0, θ0), u, χ and the additional observations β := ux|x=0
nd ζ := θ |x=0 are known and, again, we try to find ℓ.
The same questions above are in order. Results similar to Theorems 3.1 and 3.2 can be proved in this context.

. The case of the variable density Burgers equation

This is more interesting, but also more difficult. We consider a non-homogeneous (or variable density) one-dimensional
luid, modelled as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(ut + uux) − uxx = 0, 0 < x < ℓ, t > 0,
ρt + uρx = 0, 0 < x < ℓ, t > 0,
u(0, t) = u(t), u(ℓ, t) = 0, t > 0,
ρ(0, t) = ρ(t), t ∈ R+ ∩ {t : u(t) > 0},
u(x, 0) = u0(x), ρ(x, 0) = ρ0(x), 0 < x < ℓ.

(21)

Of course, this can be viewed as a toy model for the variable density Navier–Stokes system. The corresponding inverse
problem is the following:
IP-3: Fix (u0, ρ0) and (u, ρ) in (21) in appropriate spaces and assume that β := ux|x=0 and γ := ρ|x=01{t:u(t)≤0} are known.
hen, find ℓ.
This is the uniqueness question we are interested in:

niqueness for IP-3: Let (uℓ, ρℓ) and (uL, ρL) be the solutions to (21) respectively associated to (0, ℓ) and (0, L). Assume that
he corresponding (uℓx(0, ·), ρ

ℓ(0, ·)) and (uL
x(0, ·), ρ

L(0, ·)) coincide. Then, do we have ℓ = L?

4.1. A result for zero initial data

When the initial data vanish, we have a positive uniqueness result for this problem:

Theorem 4.1. Assume that 0 < ℓ ≤ L, T > 0 and (u0, ρ0) and (u, ρ) satisfy{
u, ρ ∈ L∞(0, T ), u ̸≡ 0, ρ ≥ 0,
u0 ≡ 0, ρ0 ∈ L∞(0, L), ρ0 ≥ a0 > 0.

et (uℓ, ρℓ) and (uL, ρL) be the solutions to (21) for 0 < t < T respectively corresponding to ℓ and L. Let us assume that
uℓt | + |uℓx| + |ρℓx | ≤ M and |uL

t | + |uL
x| + |ρL

x | ≤ M respectively in (0, ℓ)× (0, T ) and (0, L)× (0, T ) and uℓx(0, ·) = uL
x(0, ·) and

ℓ(0, ·) = ρL(0, ·). Then, ℓ = L.

For the proof, we will use a unique continuation property satisfied by the solutions to systems of the form{
a(x, t)vt − vxx + b(x, t)vx + c(x, t)v + d(x, t)p = 0, (x, t) ∈ Q ,
pt + m(x, t)px + r(x, t)v = 0, (x, t) ∈ Q ,

(22)

here we assume that Q := (0, ℓ) × (0, T ),

b, c, d,m, r ∈ C0(Q ), a ∈ C1(Q ) and a ≥ a0 > 0 in Q . (23)

More precisely, we have the following:

Proposition 4.2. Assume that (23) is satisfied and (v, p) solves (22), with v, vx, vxx, p, px ∈ C0(Q ). Also, assume that{
v(0, t) = 0, vx(0, t) = 0, p(0, t) = 0, 0 < t < T ,
v(x, 0) = 0, p(x, 0) = 0, 0 < x < ℓ.

(24)

Then, one has v ≡ 0 and p ≡ 0.

The proof of this Proposition relies on appropriate local Carleman estimates for the solutions to (22) and is postponed
to Section 4.2.
7
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Proof of Theorem 4.1. Note that uℓ ∈ L∞((0, ℓ)×(0, T )) and uL
∈ L∞((0, L)×(0, T )). If we set v := uℓ−uL and p := ρℓ−ρL,

ne has⎧⎪⎪⎨⎪⎪⎩
ρℓvt − vxx + ρℓvuℓx + ρℓuLvx + (uL

t + uLuL
x)p = 0, 0 < x < ℓ, t > 0,

pt + uLpx + vρℓx = 0, 0 < x < ℓ, t > 0,
v(0, t) = 0, vx(0, t) = 0, p(0, t) = 0, t > 0,
v(x, 0) = 0, p(x, 0) = 0, 0 < x < ℓ.

Consequently, v and p satisfies (22) with a = ρℓ, b = ρℓuL, c = ρℓuℓx , d = uL
t + uLuL

x, m = uL and r = ρℓx and (24).
In view of Proposition 4.2, one has v = 0 and p = 0 in (0, ℓ) × (0, T ). This yields uL(x, t) = 0 in (ℓ, L) × (0, T ).

ince the equations satisfied by uL and ρL also possess the unique continuation property, we find that uL
≡ 0, which is

mpossible. □

It would be interesting to find nonzero initial data (u0, ρ0) such that uniqueness fails. On the other hand, it would also
e interesting to prove a result similar to Theorem 3.2 asserting that, if the boundary data are large enough (with respect
o the other data in the system), uniqueness is satisfied. However, to our knowledge these questions are open.

A still more complex situation is found when we deal with a variable density fluid where thermal effects are relevant.
or example, we can consider the variable density Boussinesq-like system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(ut + uux) − uxx = θ, 0 < x < ℓ, t > 0,
ρ(θt + uθx) − θxx = 0, 0 < x < ℓ, t > 0,
ρt + uρx = 0, 0 < x < ℓ, t > 0,
u(0, t) = u(t), u(ℓ, t) = 0, t > 0,
ρ(0, t) = ρ(t), t ∈ R+ ∩ {t : u(t) > 0},
θx(0, t) = θx(ℓ, t) = 0, t > 0,
ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), θ (x, 0) = θ0(x), 0 < x < ℓ.

(25)

This is the related inverse problem: (u0, θ0, ρ0) and (u, ρ) are given and the additional observations β := ux|x=0 and
ζ := θ |x=0 are known for t ∈ (0, T ) and we try to find ℓ.

A result similar to Theorem 4.1 can also be established in this case.

4.2. Proof of Proposition 4.2

The proof of Proposition 4.2 can be obtained by combining two Carleman inequalities that can be deduced for the
solutions to the first and the second equation in (22). The main steps are the following:

• To choose a suitable weight function (the same in both inequalities);
• To argue as in [18] and [12] deduce appropriate estimates for v and p.
• Finally, to add and eliminate all undesirable terms on the right hand sides.

Step 1: Let us first recall some known Carleman estimates for the solutions to equations like those in (22).
Thus, assume that a, b and c are as in Proposition 4.2 and set Lv := avt − vxx + bvx + cv for any suitable v. For any
> 0, β > 0, x0 > ℓ, δ > 0 and T > 0 (to be definitively fixed below), we take

ϕ(x, t) := eλψ(x,t), with ψ(x, t) := |x − x0|2 −
4δ2β
T 2 |t − T/2|2. (26)

Note that ϕ can be used in the proof of the Carleman inequality in [18]. Consequently, the following holds:

Theorem 4.3. There exists λ0 > 0 with the following property: for any λ ≥ λ0, there exist constants s0 = s0(λ) > 0 and
0 = C0(λ) such that∫∫

Q

(
1
sϕ

(|vt |2 + |vxx|
2) + sλ2ϕ|vx|

2
+ s3λ4ϕ3

|v|2
)
e2sϕ dx dt

≤ C0

(∫∫
Q

|Lv|2e2sϕ dx dt +

∫ T

0

(
s3λ3ϕ3

|v|2 + sλϕ|vx|
2
+ |vt |

2
)
e2sϕ dt

⏐⏐⏐
x=0,ℓ

+ s2λ2eC0λ
∫ ℓ

0

(
|v|2 + |vx|

2
)
e2sϕ dx

⏐⏐⏐
t=0,T

) (27)

or all s ≥ s0 and any v ∈ H2,1(Q ).

Now, let m be as in (23) and let us set B := ϕt +mϕx and Ep := pt +mpx for any p. We can also adapt the proof of the
arleman estimate for transport equations in [4] and deduce the following result:
8
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Theorem 4.4. Assume that min(x,t)∈Q |B(x, t)| ≥ B0 > 0. Then, there exist constants s0 > 0 and C > 0 such that

s2
∫∫

Q
|p|2e2sϕ dx dt ≤ C

∫∫
Q

|Ep|2e2sϕ dx dt

+ s
∫ T

0
mB|p|2e2sϕ dt

⏐⏐⏐x=ℓ
x=0

+ s
∫ ℓ

0
B|p|2e2sϕ dx

⏐⏐⏐t=T

t=0

(28)

for all s ≥ s0 and any p ∈ H1(Q ).

Step 2: Let us assume that t0 ∈ (0, T ) and δ > 0 is such that 0 < t0 − δ < t0 + δ < T and let us set

Qδ := (0, ℓ) × (t0 − δ, t0 + δ).

Let us introduce the new variable t̃ with t̃ = t0 − δ +
2δ
T

t and the new function ϕ̃ with

ϕ̃(x, t̃) := eλψ̃(x,t̃) and ψ̃(x, t̃) := ψ(x, t̃) ≡ |x − x0|2 − β|t̃ − t0|
2
.

Then, (27) can be rewritten as an estimate in Qδ . By denoting t̃ (resp. ϕ̃) again by t (resp. ϕ), the following is found:∫∫
Qδ

( 1
sϕ

(|vt |2 + |vxx|
2) + sλ2ϕ|vx|

2
+ s3λ4ϕ3

|v|2
)
e2sϕ dx dt

≤ C
(∫∫

Qδ
|p|2e2sϕ dx dt + K1 + K2

)
,

(29)

here

K1 :=

∫ t0+δ

t0−δ

(
s3λ3ϕ3

|v|2 + sλϕ|vx|
2
+ |vt |

2
)
e2sϕ dt

⏐⏐⏐
x=0,ℓ

≤ Cs3λ3eCλ
∫ t0+δ

t0−δ

(
|v(0, t)|2 + |vx(0, t)|2 + |vt (0, t)|2

)
e2sϕ(0,t) dt

+ Cs3λ3eCλM2
∫ t0+δ

t0−δ

e2sϕ(ℓ,t) dt

(30)

and

K2 := Cs2λ2eCλ
∫ ℓ

0

(
|v|2 + |vx|

2
)
e2sϕ dx

⏐⏐⏐
t=t0−δ,t0+δ

≤ Cs2λ2eCλM2e2se
λ(|x0 |

2
−βδ2)

. (31)

On the other hand, the estimate (28) applied to the second equation of (22) in Qδ gives:

s2
∫∫

Qδ
|p|2e2sϕ dx dt ≤ C

∫∫
Qδ

|v|2e2sϕ dx dt

+ s
∫ t0+δ

t0−δ

mB|p|2e2sϕ
⏐⏐⏐x=ℓ
x=0

dt + s
∫ ℓ

0
B|p|2e2sϕ dx

⏐⏐⏐t=t0+δ2

t=t0−δ

and we find that

s2
∫∫

Qδ
|p|2e2sϕ dx dt ≤ C

∫∫
Qδ

|v|2e2sϕ dx dt + R1 + R2, (32)

where

R1 := CseCλM2
∫ t0+δ

t0−δ

|p|2e2sϕ dt
⏐⏐⏐x=ℓ
x=0

≤ CseCλM2
∫ t0+δ

t0−δ

|p(0, t)|2e2sϕ(0,t) dt + CseCλM4
∫ t0+δ

t0−δ

e2sϕ(ℓ,t) dt
(33)

and

R2 := CseCλM
∫ ℓ

0
|p|2e2sϕ dx

⏐⏐⏐t=t0+δ

t=t0−δ
≤ CseCλM3e2se

λ(|x0 |
2
−βδ2)

. (34)

In (30), (31), (33) and (34), we have used that |v|+|v |+|v |+|p| ≤ M in Q . It is not restrictive to assume that M ≥ 1.
x t

9
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Step 3: After adding (29) and (32), if we take into account the estimates of the Ki and Ri and the data and observations,
assuming that s and λ are sufficiently large, we find:∫∫

Qδ

( 1
sϕ

(|vt |2 + |vxx|
2) + sλ2ϕ|vx|

2
+ s3λ4ϕ3

|v|2
)
e2sϕ dx dt + s2

∫∫
Qδ

|p|2e2sϕ dx dt

≤ Cs3λ3eCλM2
∫ t0+δ

t0−δ

(
|v(0, t)|2 + |vx(0, t)|2 + |vt (0, t)|2 + |p(0, t)|2

)
e2sϕ(0,t) dt

+ Cs3λ3eCλM4
∫ t0+δ

t0−δ

e2sϕ(ℓ,t) dt + Cs2λ2eCλM3e2se
λ(|x0 |

2
−βδ2)

= Cs3λ3eCλM4
∫ t0+δ

t0−δ

e2sϕ(ℓ,t) dt + Cs2λ2eCλM3e2se
λ(|x0 |

2
−βδ2)

.

(35)

Now, we argue as follows:

• First, we fix λ > 0 such that (35) holds and choose x0, t0 and δ as before and ε ∈ (0, ℓ).
• Then, we take β > 0 large enough such that |x0|2 − |x0 − ℓ+ ϵ|2 < 3β δ

2

4 .
• Finally, we choose κ ∈ (0, δ/2) such that βκ2 < 2ε (x0 − ℓ)+ ε2.

With these constants ε and κ , one has

|x − x0|2 − β|t − t0|2 ≥ µ := |x0 − ℓ+ ε|2 − βκ2 > max(|x0 − ℓ|2, |x0|2 − βδ2) (36)

or all (x, t) ∈ (0, ℓ− ε) × (t0 − κ, t0 + κ). Taking into account (24), we deduce from (35) that∫∫
(0,ℓ−ε)×(t0−κ,t0+κ)

(
sλ4|v|2 + |p|2

)
dx dt

≤ 2δCsλ3eCλM4e2s(e
λ|x0−ℓ|2

−eλµ)
+ Csλ2eCλM3e2s(e

λ(|x0 |
2
−βδ2)

−eλµ)

≤ C∗s
(
e2s(e

λ|x0−ℓ|2
−eλµ)

+ e2s(e
λ(|x0 |

2
−βδ2)

−eλµ)
)
,

(37)

here C∗ depends on M , δ and λ but is independent of s. But, in view of (36), this right hand side goes to zero as s → +∞.
onsequently, v(x, t) = 0 and p(x, t) = 0 in (0, ℓ− ε) × (t0 − κ, t0 + κ).
Since ε and κ are arbitrarily small and t0 is arbitrary in (0, T ), v ≡ 0 and p ≡ 0 and the proof is achieved. □

. Some numerical results

In this section, we will perform some numerical experiments for the previous inverse problems. We will carry out the
econstruction of the unknown length through the resolution of some appropriate extremal problems. This strategy has
een applied in some previous papers of the authors for other similar problems, see [5,7,8]. The results of the numerical
ests that follow will serve to illustrate the theoretical results in the previous sections.

.1. Inverse problems for the Burgers equation

We deal with the following
eformulation of IP-1: Given T > 0, η = η(t), u0 = u0(x) and β = β(t), find ℓ ∈ (ℓ0, ℓ1) such that

J1(ℓ) ≤ J1(ℓ′) ∀ ℓ′
∈ (ℓ0, ℓ1), (38)

here J is given by

J1(ℓ) :=
1
2

∫ T

0
|β(t) − uℓx(0, t)|

2
dt. (39)

Here, uℓ is the state, i.e. the solution to (1) corresponding to the length ℓ.
Three different situations will be analyzed for the Burgers equation. In the first two cases, we will check that uniqueness

holds: zero initial data and nonzero initial data and sufficiently large η. In the third case we will consider a non-uniqueness
situation corresponding to some nonzero initial data and ‘‘small’’ η and we will study the behavior of the numerical
algorithm. To this purpose (and also in the experiences in the following sections), we will implement the fmincon function
from the MatLab Optimization Toolbox using the active-set minimization algorithm.
Case 1.1: Burgers equation with u0 = 0 and η ̸= 0.

We take T = 5, η(t) = 5 sin3 t in (0, T ) and u0(x) ≡ 0. Starting from Li = 3, our goal is to recover the desired value of
the length Ld = 2.

The results of this numerical experiments can be seen in Table 1, where the effect of random noise on the target
are shown. The computed length is denoted by L . The corresponding solution to (38)–(39) is displayed in Fig. 1. The
c

10
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Table 1
Burgers equation, u0 = 0 and η ̸= 0. Results with random noise in the
target (desired length: Ld = 2).
% noise Cost Iterates Computed Lc
1% 1.e−3 12 1.997140631
0.1% 1.e−5 15 1.999169558
0.01% 1.e−7 11 1.999912907
0.001% 1.e−9 10 2.000021375
0% 1.e−17 9 1.999999985

Fig. 1. Burgers equation with u0 = 0 and η ̸= 0. The computed solution.

Fig. 2. Burgers equation, u0 = 0 and η ̸= 0. The iterates in active-set algorithm.

evolution of the iterates and the cost in the minimization process in the absence of random noise appear in Figs. 2 and
3, respectively.
Case 1.2: Burgers equation with u0 ̸= 0 and large η.

We take T = 5, η(t) = 5(sin t)3 in (0, T ) and u0(x) ≡ 3x(2 − x). Now, starting from Li = 2.4, the target value that we
ant to recover is Ld = 2.
The results of the numerical implementation are shown in Table 2, where again random noise was incorporated. The

ontents of Figs. 4–6 are similar to those above.
ase 1.3: Burgers equation with u ̸= 0 and ‘‘small’’ η.
0

11
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Fig. 3. Burgers equation, u0 = 0 and η ̸= 0. Evolution of the cost.

Fig. 4. Burgers equation, u0 ̸= 0 and large η. The computed solution.

Table 2
Burgers equation, fixed u0 and large η. Results with random noise in the
target (desired length: Ld = 2).
% noise Cost Iterates Computed Lc
1% 1.e−2 6 2.032815856
0.1% 1.e−5 11 2.012510004
0.01% 1.e−5 9 1.985859861
0.001% 1.e−6 9 1.994836103
0% 1.e−6 9 1.997637334

Here, we deal with a non-uniqueness situation. Our aim is to investigate the behavior of the algorithm in a situation
of this kind.

We take T = 6, η = 0 in (0, T ) and u0(x) ≡ π sin(πx/2)/(2 + cos(πx/2)). Note that we have u0(x) ≡ sin(3πx/L1d)/(2 +

os(3πx/L1d)) ≡ sin(2πx/L2d)/(2 + cos(2πx/L2d)), with L1d = 6 and L2d = 4; consequently, this initial data can be used as
n Section 2.1.2 to prove non-uniqueness.

We will consider the following experiments:
12
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Fig. 5. Burgers equation, fixed u0 and large η. The iterates in active-set algorithm.

Fig. 6. Burgers equation, fixed u0 and large η. Evolution of the cost.

• First, we start from Li = 5.6, and we obtain the results exhibited in Figs. 7 and 8. The computed value is L1c =

5.998083259 and the associated cost is J(L1c ) < 10−8.
• Then, we start from Li = 4.6, and we obtain the results exhibited in Figs. 9 and 10. The computed value is

L2c = 4.000601673 and the associated cost is again J(L2c ) < 10−9.

The corresponding computed boundary observations are displayed in Figs. 11 and 12, respectively. Thus, we confirm
that these identical observations correspond, as we already knew, two different solutions. (See Figs. 13 and 14.)

5.2. Inverse problems for the Burgers-heat system

This section is concerned with IP-2 and other related problems. We will consider several choices of boundary conditions
and also several different observations.
13
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Fig. 7. Burgers equation, η = 0, fixed u0(x). Iterates in active-set algorithm with L1d = 6.

Fig. 8. Burgers equation, η = 0, fixed u0(x). Evolution of the cost for L1d = 6, J(L1c ) < 10−8 .

.2.1. Dirichlet boundary conditions for u and θ and stress and flux observations
We consider the system (15). A reformulation of IP-2 is the following:⎧⎨⎩ Minimize J2(ℓ) :=

1
2

∫ T

0
|β(t) − uℓx(0, t)|

2
dt +

1
2

∫ T

0
|α(t) − θ ℓx (0, t)|

2
dt

Subject to: ℓ ∈ (ℓ0, ℓ1), (uℓ, θ ℓ) satisfies (15).

ase 2.1: Burgers-heat system with (u0, θ0) = (0, 0) and η ̸= 0 and λ ̸= 0.
We take T = 5, η(t) ≡ 5 sin3 t, λ(t) ≡ 0.2 cos(t) sin(t) and (u0(x), θ0(x)) ≡ (0, 0). Starting from Li = 1, our goal is

o recover the desired value of the length Ld = 2.
The computed length is Lc = 1.999999534, the cost is J(Lc) < 10−14 is reached at the iterate 8 of the optimization

lgorithm. The corresponding solution to (15) is displayed in Figs. 15 and 16. The evolution of the iterates and the cost
n the minimization process in the absence of the random noise appear in Figs. 17 and 18, respectively.
ase 2.2: Burgers-heat system with (u , θ ) ̸= (0, 0) and large η.
0 0

14
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Fig. 9. Burgers equation, η = 0, fixed u0(x). Iterates in active-set algorithm with L2d = 4.

Fig. 10. Burgers equation, η = 0, fixed u0(x). Evolution of the cost for L2d = 4, J(L2c ) < 10−9 .

We take T = 5, η(t) = 5 sin3 t and λ(t) = 6 sin(t) cos(t) in (0, T ), u0(x) ≡ 0.1x(2− x) and θ0(x) ≡ 0.1x2(x− 3). Starting
from Li = 1, our goal is to recover the desired value of the length Ld = 2.

The computed length is Lc = 2.000000005, the cost is J(Lc) < 10−17 is reached at the iterate 9 of the optimization
algorithm. The corresponding solution to (15) is displayed in Figs. 19 and 20. The evolution of the iterates and the cost
in the minimization process in the absence of the random noise appear in Figs. 21 and 22, respectively.

5.2.2. Dirichlet boundary conditions for u, Neumann boundary conditions for θ and stress observation
In this section, the system under study is (19). The inverse problem is similar to IP-2 and a suitable reformulation is:⎧⎨⎩ Minimize J3(ℓ) :=

1
2

∫ T

0
|β(t) − uℓx(0, t)|

2
dt

ℓ ℓ
Subject to: ℓ ∈ (ℓ0, ℓ1), (u , θ ) satisfies (19).
15
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Fig. 11. Burgers equation, η = 0, fixed u0(x). The computed boundary observation ux(0, ·) for L1c = 5.996562049.

Fig. 12. Burgers equation, η = 0, fixed u0(x). The computed boundary observation ux(0, ·) for L2c = 4.007345905.

s before, two different situations will be analyzed for this problem. In both cases, respectively corresponding to zero
nitial data and nonzero initial data and sufficiently large η, we will check that uniqueness holds.
Case 2.3: Burgers-heat system with (u0, θ0) = (0, 0) and η ̸= 0.

We observe that this case is reduced to the Burgers single equation.
We take T = 5, η(t) = 5 sin3 t in (0, T ) and (u0(x), θ0(x)) ≡ (0, 0). Starting from Li = 1, our goal is to recover the

desired value of the length Ld = 2.
The computed length is Lc = 1.999999964, the cost is J(Lc) < 10−16 is reached in the iterate 10 of the optimization

algorithm. The corresponding solution to (15) is displayed in Figs. 23 and 24. The evolution of the iterates and the cost
in the minimization process in the absence of the random noise appear in Figs. 25 and 26, respectively.
Case 2.4: Burgers-heat system with (u0, θ0) ̸= (0, 0) and large η.

We take T = 5, η(t) = 5 sin3 t in (0, T ) and u0(x) = 0.1x(2 − x), θ0(x) = 0.1(1 + x2(x − 3)). Starting from Li = 1.4, our
goal is to recover the desired value of the length L = 2.
d
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Fig. 13. Burgers equation, η = 0, fixed u0(x). The computed solution corresponding to L1c = 5.998083259.

Fig. 14. Burgers equation, η = 0, fixed u0(x). The computed solution corresponding to L2c = 4.000601673.

Fig. 15. Burgers equation with heat effect with (u0, θ0) = (0, 0) and (η, λ) ̸= (0, 0) with two observations ux(0, t) and θx(0, t). The computed solution
u.

The computed length is Lc = 2.001874913, the cost is J(Lc) < 10−6 is reached in the iterate 9 of the optimization

lgorithm. The corresponding solution to (15) is displayed in Figs. 27 and 28. The evolution of the iterates and the cost

n the minimization process in the absence of the random noise appear in Figs. 29 and 30, respectively.
17
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Fig. 16. Burgers equation with heat effect with (u0, θ0) = (0, 0) and (η, λ) ̸= (0, 0) with two observations ux(0, t) and θx(0, t). The computed solution
θ .

Fig. 17. Burgers equation with heat effect with (u0, θ0) = (0, 0) and (η, λ) ̸= (0, 0) with two observations ux(0, t) and θx(0, t). The iterates in
ctive-set algorithm.
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u

θ

Fig. 18. Burgers equation with heat effect with (u0, θ0) = (0, 0) and (η, λ) ̸= (0, 0) with two observations ux(0, t) and θx(0, t). Evolution of the cost.

Fig. 19. Burgers equation with heat effect with (u0, θ0) ̸= (0, 0) and large (η, λ) with two observations ux(0, t) and θx(0, t). The computed solution
.

Fig. 20. Burgers equation with heat effect with (u0, θ0) ̸= (0, 0) and large (η, λ) with two observations ux(0, t) and θx(0, t). The computed solution
.
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a

Fig. 21. Burgers equation with heat effect with (u0, θ0) ̸= (0, 0) and large (η, λ) with two observations ux(0, t) and θx(0, t). The iterates in active-set
lgorithm.

Fig. 22. Burgers equation with heat effect with (u0, θ0) ̸= (0, 0) and large (η, λ) with two observations ux(0, t) and θx(0, t). Evolution of the cost.

Fig. 23. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The computed solution u.
20
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Fig. 24. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The computed solution θ .

Fig. 25. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The iterates in active-set algorithm.

Fig. 26. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). Evolution of the cost.
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Fig. 27. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The computed solution u.

Fig. 28. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The computed solution θ .

Fig. 29. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). The iterates in active-set algorithm.
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R

Fig. 30. Burgers equation with heat effect with (u0, θ0) = (0, 0) and η ̸= 0 with one observation ux(0, t). Evolution of the cost.
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