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Abstract 

 

In this paper, a series of f(α) kinetic equations able to describe the random scission degradation 

process of polymers are formulated in such a way that the reaction rate of the thermal degradation of 

polymers that go through a random scission mechanism could be directly related to the reacted 

fraction of the process. The proposed equations are validated by the study of the thermal degradation 

of the polybutylene terephtalate (PBT). The combined kinetic analysis of thermal degradation curves 

of this polymer obtained under different thermal pathways have shown that the proposed equation 

fits all these curves while other conventional models used in literature do not. 
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1. Introduction 

 

The ever increasing commercial importance of polymeric materials has entailed a continuous interest 

in their thermal stability. As a consequence, a huge number of papers dealing with this topic have 

been published in the last years [1-11]. The kinetic modelling of the decomposition process plays a 

central role in many of those studies, being crucial for an accurate prediction of the materials 

behaviour under different working conditions [12-25]. A precise prediction requires the knowledge 

of the so called kinetic triplet, namely, the activation energy, the pre-exponential factor and the 

kinetic model, f(). This latter parameter, also known as conversion function, is an algebraic 

expression that is associated with the physical model that describes the kinetics of a solid state 

reaction [26, 27]. Therefore, the kinetic analysis also provides some understanding of the mechanism 

of the reaction under study [26, 28-30]. Knowledge of the mechanism of thermal degradation of 

available macromolecules is very helpful in the field of the thermal stability of polymers [7]. 

 

Heating of polymers may produce either a breakage of the main chain, in the side chain or of the 

substituent atoms [7]. Random scission is a degradation mechanism often attributed to the pyrolysis 

of a wide number of polymers. It assumes a random cleavage of bonds along the polymer chains, 

producing fragments of progressively shorter length that will eventually evaporate when the size is 

small enough [31-42] However, the kinetics models describing the random scission mechanisms 

cannot be directly expressed as a function of the reacted fraction what makes difficult to apply to the 

kinetic analysis of thermal decomposition data obtained by TG or DSC. This fact would explain  that  

most of the works focused on the study of the kinetics of polymer degradation assume “n-order” 

kinetic models, without any guarantee that these empirical conversion functions can actually 

describe correctly the polymer degradation mechanism.  In the present work, the original Simha-

Wall equation for depolymerisation processes will be reformulated in such a way that the reaction 
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rate can be directly expressed as a function of f() and the time or the temperature. The proposed 

equations will be validated by the study of the thermal degradation of Polybutylene terephtalate 

(PBT), a commonly used commercial polymer which is widely recognized to decompose by means 

of a random scission mechanism [7], but it is yet to be studied using a random scission model. The 

analysis will be performed by means of the Combined Kinetic Analysis method, that allows for the 

simultaneous analysis of a set of experimental curves recorded under any thermal schedule and 

without any assumption about the kinetic model followed by the reaction [43-48]. The kinetic 

parameters thus obtained are used to reconstruct the original curves in order to demonstrate that 

these new f() functions can be used successfully to describe random scission driven reactions, 

something that cannot be achieved by first or “n-order” kinetic models. 

 

2. Theoretical background 

 

The reaction rate, d/dt, of a solid state reaction can be described by the following equation [49]: 

 

       
fRTEA

dt

d
 exp                               (1), 

 

where A is the Arrhenius pre-exponential factor, R is the gas constant, E the activation energy,  the 

reacted fraction, T is the process temperature and f() accounts for the reaction rate dependence on . 

The kinetic model, f() is an algebraic expression which is usually associated with a physical model 

that describes the kinetics of the solid state reaction [26]. Table 1 show the functions corresponding 

to the most commonly used mechanisms found in literature. Eq. (1) is a general expression that 

describes the relationship among the reaction rate, reacted fraction and temperature independently of 

the thermal pathway used for recording the experimental data. In the case that the experimental data 

were recorded at a constant heating rate β=dT/dt, Eq. (1) can be written as follows [50]: 
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        



fRTE

A

dT

d
 exp                     (2) 

 

For experiments performed under isothermal conditions, the sample temperature is rapidly increased 

up to a certain temperature and maintained at this temperature, while the reaction evolution is 

recorded as a function of the time. Under these experimental conditions, the term Aexp(-E/RT) 

remains constant at a value k, and therefore Eq. (1) can be written as follows: 

 

      
fk

dt

d
                (3), 

 

Sample Controlled Thermal Analysis (SCTA) is another alternative approach with is attracting a 

rising interest for decomposition reactions [49, 51, 52]. In SCTA experiments, the evolution of the 

reaction rate with the time is predefined by the user and, most usually, it is maintained at a constant 

value along the entire process. In this case, the technique is named Constant Rate Controlled 

Analysis (CRTA). This way, by selecting a decomposition rate that is slow enough, the mass and 

heat transfer phenomena occurring during the reaction are minimized, what is an useful asset when 

dealing with reactions as complex as polymer pyrolysis. Thus, the results obtained by CRTA are 

more representative of the forward reaction than those resulting from more conventional methods 

[49, 51, 53-55]. 

Under constant rate thermal analysis (CRTA) conditions, the reaction rate is maintained at a constant 

value C= d/dt selected by the user and Eq. (1) becomes: 

 

                                                        )()/exp( fRTEAC                       (4) 

 



 5

2.1  Isoconversional Analysis 

 

Isoconversional methods (model-free methods) are used for determining the activation energy as a 

function of the reacted fraction without any previous assumption on the kinetic model fitted by the 

reaction. The Friedman isoconversional method [56] is a widely used differential method that, unlike 

conventional integral model-free methods, provides accurate values of activation energies even if the 

activation were a function of the reacted fraction [57]. Eq. (1) can be written in logarithmic form: 

 

          
RT

E
Af

dt

d









)(lnln 
                               (5) 

 

Moreover, at a constant value of , f() would be also constant and Eq. (5) would be written in the 

form: 

 

                                              
RT

E
Const

dt

d







 

ln                (6)       

 

The activation energy at a constant  value can be determined from the slope of the plot of the left 

hand side of Eq. (6) against the inverse of the temperature, at constant values of . 

 

2.2. Combined Kinetic Analysis. 

 

The logarithmic form of the general kinetic equation (1) can be written as follows: 

 

                         RT
EA

f

dtd









ln

)(
ln




              (7) 
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The plot of the left hand side of the equation versus the inverse of the temperature will yield a 

straight line if the proper f() is considered for the analysis. The activation energy can be calculated 

from the slope of such plot, while the intercept leads to the pre-exponential factor. As no assumption 

regarding the thermal pathway is made in Eq (7), the kinetic parameters obtained should be 

independent of the thermal pathway. Thus, this method would allow for the simultaneous analysis of 

any sets of experimental data obtained under different thermal schedules [44, 45]. To overcome the 

limitation related to the fact that the f() functions were proposed assuming idealized physical 

models which may not be necessarily fulfilled in real systems, a new procedure has been introduced 

in a recent work, where the following  f() general expression was proposed [45]: 

 

       mncf   1)(                      (8) 

 

This equation is a modified form of the Sestak-Berggren empirical equation [58]. It has been shown 

that it can fit every function listed in table 1 by merely adjusting the parameters c, n and m by means 

of the maximize function incorporated in Mathcad software [44, 45]. Therefore, Eq (7) works as an 

umbrella that covers the most common physical models and its possible deviations from ideal 

conditions.  

 

From Eq. (7) and (8) we reach: 

 

          
  RT

EcA
dtd

mn











ln

1
ln




                (9) 

 

This last equation should fit experimental data obtained under any heating schedule. The Pearson 

linear correlation coefficient between the left hand side of the equation and the inverse of the 
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temperature is set as an objective function for optimization. By means of the maximize function of 

the software Mathcad, parameters n and m that yield the best linear correlation are obtained, and the 

corresponding values of E can be calculated.  

 

3. Proposal of Random Scission Kinetic Functions. 

 

According to Simha-Wall [59], the cleavage of bonds in random scission processes follows a first 

order kinetics and the following expressions hold true: 

 

)1()1( xAexk
dt

dx RT

E




                (10) 

 

        




 

 

N

LLN
xx L 1

111 1                      (11), 

 

where x, N and L are the fraction of bonds broken, the initial degree of polymerization and the 

minimum length of the polymer that is not volatile, respectively. As N is usually negligible in 

comparison to L, Eq. (11) can be simplified to: 

 

                )1(111 1   Lxx L       (12) 

 

As the thermal degradation processes are mainly studied by thermogravimetry, where the weight lost 

is directly related to the degree of degradation, it is noteworthy to point out that only the broken 

bonds that lead to a fragment small enough would actually evaporate and therefore be detected as 

mass lost. Then, a relationship between the detected weight loss and the actual reacted fraction must 
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be established before the equations can be used. That can be achieved by means of Eq (12), which 

relates the reacted fraction in terms of mass lost with the fraction of bonds broken. This relationship 

is shown graphically in figure 1. However, as x cannot be measured by conventional techniques, and 

L is very difficult to obtain experimentally, the application of Eq. (12) has been severely limited. 

Nevertheless, by differentiating Eq (12), and incorporating Eq (10) we get: 

 

             )1()1()1( 2 xkxxLL
dt

d L  
              (13) 

 

This way, taking into account Eq (1), we can determine the conversion function f() that describes a 

random scission model: 

 

          1)1()1()(  LxxLLf                      (14) 

  

Many kinetic analysis methods involve the fitting of experimental data to a certain kinetic model 

[29]. This requires the f() functions for the different models to be previously known. Thus, if 

random scission mechanisms are to be used in this way, f() must be determined. However, a 

symbolic solution can only be reached for L=2. In this latter case, from Eq (12) and Eq (13) we 

obtain: 

 

                                 )(2 2/1 
 k

dt

d
                            (15) 

 

Therefore, f() must be: 

                                                       )(2)( 2/1  f                             (16) 
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Taking into account that the relationship between x and  is established in Eq (12), for any given L 

and assigning values to , from Eq (12) and (14) it is possible to calculate numerically the 

corresponding f() conversion functions, which are plotted against  in Figure 2.  

 

As it was stated in section 2.2, the general expression in Eq (8) can be used to fit the most used 

kinetic models by adjusting three fitting parameters. This optimization procedure can be extended to 

the random scission f() functions here developed. Thus, Table 2 lists the values of c, n and m that 

make Eq (8) match the functions plotted in figure 2. The equations resulting from introducing in Eq 

(8) the proper parameters can now be used as random scission f() conversion functions in any 

kinetic analysis method. 

 

For the sake of comparison, Figure 3 includes the f() conversion functions for the different kinetic 

models most commonly used in literature for solid state reactions: “n order”, diffusion controlled 

and nucleation and growth kinetic models.  The shape of the functions included in Figure 3 are quite 

different to those of the random scission f() conversion plots (Figure 2). Therefore, as the results of 

a kinetic analysis are heavily dependent on the kinetic model considered, random scission driven 

reactions could never be adequately described by other models, and in particular by “n-order” 

models, as it is often done in literature, and doing so will only result in wrong kinetic parameters.  

 

4. Experimental 

 

A commercial Polybutylene Terephtalate from Aldrich, (product number 435147) was used for 

performing the study. Thermogravimetry measurements were carried out with a homemade TGA 

instrument that uses a CI Electronics Ltd electrobalance connected to a gas flow system to work in 

inert atmosphere (70 cc min-1 N2). Small samples (9mg) were used in order to minimize heat and 
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mass transfer phenomena. They were placed on a 1 cm diameter platinum pan inside a low thermal 

inertia homemade furnace. The instrument allows working either under conventional linear heating 

conditions or under sample controlled conditions. A description of the experimental set-up can be 

found in references [52, 60, 61]. A set of thermal degradation curves, obtained under linear heating 

rate, constant rate and isothermal conditions, were carried out. Experimental integral curves were 

differentiated by means of the Origin software (OriginLab) to obtain the differential curves required 

for the kinetic analysis.  

 

5. Results and Discussion 

 

Figure 4 shows the experimental curves recorded for the thermal degradation of Polybutylene 

Terephtalate under linear heating rate (3a) sample controlled (3b) and isothermal (3c) conditions. 

Linear heating rate experiments were carried out at 1, 2 and 5 K min-1; sample controlled 

experiments at the constant reaction rate of 8.3 10-4 min-1; and the isothermal experiment at 583 K.   

 

Figure 5 shows some of the Friedman isoconversional plots obtained from the simultaneous analysis 

were analyzed performed by means of Eq (11) of the  experimental curves included in Figure 4. The 

activation energy calculated from the slope of the Friedman plots for different  values are included 

in Table 3 together with their corresponding linear correlation coefficients. These results 

demonstrate that a constant activation energy E = 176 kJ mol-1 describes the entire process and is 

independent of the  values.  

 

The experimental curves presented in Figure 4 will be analyzed first by means of the Combined 

Kinetic Analysis method according to Eq (7), using a “n order” function as f()as it is frequently 

done in the literature. The results will then be compared with those obtained when the fitting 
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procedure is performed using the random scission equation as the conversion function, as is 

proposed here.  

 

5.1 Fit to a “n order” function. 

 

Figure 6 shows the result of the combined analysis of every experimental curve in Figure 4. The left 

hand side of the Eq (7), using (1-)n as f() function, is plotted versus 1/T. The fit of the 

experimental data to the “n order” kinetic function is not good, especially the points at both high and 

low  values that present an important deviation. The best fit is obtained for an order n = 0.923, and 

leads to an activation energy value of 176 ± 1 kJ mol-1, and a correlation factor of 0.990. The slope 

of the plot leads to and the intercept to an Arrhenius preexponential factor of (6.6 ± 1.5) 1012 min-1. 

Despite of the not so good fit, the activation energy obtained is interestingly the same that was 

yielded by the isoconversional analysis, in which no kinetic model was assumed. 

 

In order to check the validity of the kinetic parameters calculated by the method, a set of curves that 

have been simulated assuming identical heating conditions as those used in the experiments, and the 

kinetic parameters obtained from the analysis. The simulations have been performed from Eq (1) and 

the equations that define the heating conditions, i.e. linear heating or constant rate. Both the 

simulated and the original experimental curves are plotted in Figure 7 for comparison. It seems clear 

from the simulated curves that the parameters obtained from the analysis fail to properly reconstruct 

the experimental data, mainly at low values of . It can be deduced from the sample controlled 

experiment, Fig 7b, the existence of a short induction period at the beginning of the process that the 

“n order” model is unable to account for. This inability is responsible for the incorrect reconstruction 

of the experimental curves. 
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5.1 Fit by means of random scission equation 

 

The combined kinetic analysis of the whole set of experimental data shown in Figure 4 was 

performed by means of the Eq (9). Figure 8 shows the plot of the values obtained for the left hand 

side of Eq (9) versus 1/T. It is clear that all experimental data can be properly fitted by a single 

straight line with n = 1.138 and m = 0.294, giving a correlation factor of 0.997. The slope of the plot 

leads to an activation energy value of 180 ± 1 kJ mol-1 and the intercept to an Arrhenius 

preexponential factor of (2.0 ± 0.3) 1013 min-1. The calculated activation energy is very close to that 

obtained by means of Friedman isoconversional analysis, in which no kinetic model had been 

previously assumed, thus validating the kinetic parameters obtained by the combined kinetic analysis 

procedure. 

 

Figure 4 shows the set of curves that have been simulated using the kinetic parameters obtained from 

the combined analysis, assuming identical heating conditions as those used in the experiments. This 

time, as it can be observed in Fig 4, both the reconstructed (simulated) curves and the experimental 

ones match almost exactly, proving that the kinetic parameters calculated by means of the Sestak 

Berggren equation, i.e. activation energy, preexponential factor and conversion function, are 

perfectly suitable to describe the process.  

 

Figure 9 shows the comparison of f() function resulting from the combined analysis, i.e. (1-)1.138  

0.294, with some of the conversion functions listed in Table 1, and with the random scission f() 

functions corresponding to L = 2 and L=8. All conversion functions are normalized at f(0.5) for an 

easier differentiation in the shape between the different models. The plot shows that the conversion 

function associated with the thermal degradation of PBT has a very close resemblance to a random 
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scission model, although it does not exactly match it, probably due to the deviation of the real 

process from the ideal conditions assumed in the model.  

 

The results here obtained are in good agreement with the statements previously made in the literature 

about the fact that first order models are able to describe polymer degradation process only at high 

degrees of conversion {Westerhout, 1997 #240; Gao, 2003 #275}. As it can be observed in figure 7, 

both first order and random scission functions are very similar for  values over 0.5. The differences 

in both models could be attributed to the fact that at the beginning, the chain cleavage would hardly 

yield a loss of mass, hence the induction time that appears in the CRTA curve at very low values of 

. After the reaction has underwent some progress, and the polymer chains have been sufficiently 

shortened, successive ruptures will start producing fragments small enough to evaporate so that 

eventually the system has to cool down in order to maintain the reaction rate that was predetermined 

in the experiment set up. At this point, both conversion functions become very similar, giving the 

wrong impression that a random scission driven process can be described by a first order model at 

high values of . 

 

5. Conclusion 

 

In this work, Simha-Wall equations for the description of random scission mechanisms have been 

reformulated and new f() conversion functions for these models have been developed. These new 

equations have been applied together with Combined Kinetic Analysis to study the thermal 

degradation of polybutylene terephtalate. Experimental curves obtained under linear heating, 

isothermal and sample controlled conditions have been analyzed simultaneously, obtaining kinetic 

parameters which can be used to successfully reconstruct all the curves. The close match between 

the reconstructed curves and the original ones proves the validity of the kinetic analysis method and 
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the results. The close similarity between the experimental conversion function obtained from the 

combined analysis with that corresponding to a random scission process proves the latter as the 

mechanism that drives the decomposition of PBT.  

 

Additionally, it has been demonstrated that first order or “n-order” conversion functions are 

completely different from that of random scission mechanisms. Thus, random scission driven 

reactions could never be correctly described by means of “n-order” empirical models, as it has been 

done frequently in the literature for describing the thermal degradation of polymers as frequently 

assumed in literature.  
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TABLE  1.  f() and g() kinetic functions for the most widely used kinetic models, and including the 

random scission models 

 

 

Mechanism 

 

1Symbol 
 

f() 

 

Phase boundary controlled reaction 

(contracting area) 

 

R2 

 

21)1(   

 

Phase boundary controlled reaction 

(contracting volume) 
R3 

32)1(   

 

Random nucleation followed by an 

instantaneous growth of nuclei. 

(Avrami-Erofeev eqn. n =1) 

F1 

 

)1(   

 

Random nucleation and growth of 

nuclei through different nucleation 

and nucleus growth models. 

(Avrami-Erofeev eqn.) 

     An 

 

 

  nn 11)1ln()1(    

 

Two-dimensional diffusion D2   

Three-dimensional diffusion 

(Jander equation) 

 

D3 
  



 


3/1

3/2

112

)1(3




 

 

Three-dimensional diffusion 

(Ginstling-Brounshtein equation) 
D4 

 
 

Random Scission L=2 L2 )(2 2/1     

Random Scission L=3-8 L3-L8 No symbolic solution  
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TABLE  2.  Values for the parameters n, m and c that make the Eq (7) fit the random scission f() 

kinetic functions for different values of L 

 

L c n m 

2 1.204 1.119 0.4 

3 2.080 1.057 0.396 

4 2.929 1.039 0.394 

5 3.767 1.030 0.391 

6 4.597 1.024 0.389 

7 5.422 1.020 0.388 

8 6.242 1.017 0.386 
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TABLE  3.  Activation energy values for different values of conversion and their correlation 

coefficients, obtained by the Friedman isoconversional analysis of the curves showed in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 r Ea 

0.1 0.999 179 ± 6 kJ 

0.2 0.999 179 ± 5 kJ 

0.3 0.999 179 ± 4 kJ 

0.4 0.999 177 ± 5 kJ 

0.5 0.998 176 ± 6 kJ 

0.6 0.997 174 ± 7 kJ 

0.7 0.997 175 ± 7 kJ 

0.8 0.997 175 ± 8 kJ 

0.9 0.995 177 ± 8 kJ 
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Figures Caption 

 

 

Figure 1: Relashionship between the actual fraction of bonds broken (x) and the  for 

different random scission kinetic functions, according to Eq (6). 

 

Figure 2: Comparison of the random scission f() functions from L=2 to L=8 calculated 

numerically (solid lines) with those obtained  from Eq (7) using the c, n and m parameters 

included in Table 2. 

 

Figure 3: the f() conversion functions for the different kinetic models most commonly used 

in literature for solid state reactions: “n order” (a), nucleation and growth (b), and diffusion 

controlled (c) kinetic models 

 

Figure 4. Experimental curves (dotted lines) obtained for the thermal decomposition of 

Polybutylene Terephtalate under 70 cc N2 flow and the following experimental conditions: (a) linear 

heating rate of 1, 2 and 5 K min-1; (b) sample controlled degradation rate of 8.3 10-4 min-1; and (c) 

isotherm at 538 K. Reconstructed curves (solid lines) using the following kinetic parameters: n = 

1.138,  m = 0.294, E = 180 kJ mol-1 and A = 2 10-13 min-1.  

 

Figure 5. Friedman plots resulting of the isoconversional analysis of the experimental curves 

presented in figure 4. 
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Figure 6. Combined kinetic analysis of the experimental curves included in figure 3 for the results 

of the optimization procedure of equation (7), that is n = 0.923, E = 176 kJ mol-1 and A = (6.6 ± 1.5) 

1012 min-1, when (1-)n is used as the conversion function  f().  

 

Figure 7. Experimental curves (dotted lines) obtained for the thermal decomposition of 

Polybutylene Terephtalate under 70 cc N2 flow and the following experimental conditions: (a) linear 

heating rate of 1, 2 and 5 K min-1; (b) sample controlled degradation rate of 8.3 10-4 min-1; and (c) 

isotherm at 538 K. Reconstructed curves (solid lines) with the kinetic parameters obtained when (1-

)n is used as the conversion function  f(), that is n = 0.923, E = 176 kJ mol-1 and A = (6.6 ± 1.5) 

1012 min-1,  

 

Figure 8. Combined kinetic analysis of curves included in figure 3 by means of equation (9) for the 

resulting of the optimization procedure, i.e. n = 1.138 and m = 0.294. 

 

Figure 9.  Comparison of the f() functions (solid lines) normalized at  = 0.5 corresponding to 

some of the ideal kinetic models included in Table 1 with the reduced Sestak-Berggren equation 

(dotted line) including the parameters n and m calculated by means of the equation (9) for the 

thermal degradation of Polybutylene Terephtalate. 
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Figure 1: Relashionship between the actual fraction of bonds broken (x) and 

the  for different random scission kinetic functions, according to Eq (6) 
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Figure 2: Comparison of the random scission f() functions from L=2 to L=8 calculated 

numerically (solid lines) with those obtained  from Eq (7) using the c, n and m parameters 

included in Table 2. 
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Figure 3: the f() conversion functions for the different kinetic models most commonly 

used in literature for solid state reactions: “n order” (a), nucleation and growth (b), and 

diffusion controlled (c) kinetic models 
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Figure 4. Experimental curves (dotted lines) obtained for the thermal decomposition of 

Polybutylene Terephtalate under 70 cc N2 flow and the following experimental conditions: (a) linear 

heating rate of 1, 2 and 5 K min-1; (b) sample controlled degradation rate of 8.3 10-4 min-1; and (c) 

isotherm at 538 K. Reconstructed curves (solid lines) using the following kinetic parameters: n = 

1.138,  m = 0.294, E = 180 kJ mol-1 and A = 2 10-13 min-1. 
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Figure 5. Friedman plots resulting of the isoconversional analysis of the experimental curves 

presented in figure 4. 
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Figure 6. Combined kinetic analysis of the experimental curves included in figure 3 for the results 

of the optimization procedure of equation (7), that is n = 0.923, E = 176 kJ mol-1 and A = (6.6 ± 1.5) 

1012 min-1, when (1-)n is used as the conversion function  f().  

 

 

 

 

 



 33

500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0
 1 K/min
 2 K/min
 5 K/min



T / K

(a)

450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0 CRTA 8.3 10-4 min-1



T / K

(b)

 

0 1000 2000 3000

0.0

0.2

0.4

0.6

0.8

1.0

 

time (min)

(c)

 

Figure 7. Experimental curves (dotted lines) obtained for the thermal decomposition of 

Polybutylene Terephtalate under 70 cc N2 flow and the following experimental conditions: (a) linear 

heating rate of 1, 2 and 5 K min-1; (b) sample controlled degradation rate of 8.3 10-4 min-1; and (c) 

isotherm at 538 K. Reconstructed curves (solid lines) with the kinetic parameters obtained when (1-

)n is used as the conversion function  f(), that is n = 0.923, E = 176 kJ mol-1 and A = (6.6 ± 1.5) 

1012 min-1,  
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Figure 8. Combined kinetic analysis of curves included in figure 4 by means of equation (9) for the 

resulting of the optimization procedure, i.e. n = 1.138 and m = 0.294. 
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Figure 9.  Comparison of the f() functions (solid lines) normalized at  = 0.5 corresponding to 

some of the ideal kinetic models included in Table 1 with the reduced Sestak-Berggren equation 

(dotted line) including the parameters n and m calculated by means of the equation (9) for the 

thermal degradation of Polybutylene Terephtalate. 

 

 


